
A Flexible Framework for Type Inference with
Existential Quantification

Ross Tate1, Juan Chen2, and Chris Hawblitzel2

1 University of California, San Diego
2 Microsoft Research, Redmond

Abstract. Preserving types through compilation guarantees safety of
the compiler output without trusting the compiler: the compiler output
is annotated with types and can be verified. Type inference can make
this technique more practical by inferring most of the needed type infor-
mation. Existential types, however, are difficult to infer, especially those
with implicit pack and unpack operations.
This paper proposes a framework for type inference with existential quan-
tification and demonstrates the framework on a small object-oriented
typed assembly language. The framework is flexible enough to support
language features such as downward casts, arrays, and interfaces. The
framework is based on category theory, the first such application of cat-
egory theory to type inference to the best of our knowledge.

1 Introduction

Internet users regularly download and execute safe, untrusted code, in the form
of Java applets, JavaScript code, Flash scripts, and Silverlight programs. In the
past, browsers have interpreted much of this code, but the desire for better
performance has recently made just-in-time compilation more common, even for
scripting languages. However, compilation poses a security risk: users must trust
the compiler, since a buggy compiler could translate safe source code into unsafe
assembly language code. Therefore, Necula and Lee [16] and Morrisett et. al. [15]
introduced proof-carrying code and typed assembly language. These technologies
annotate assembly language with proofs or types that demonstrate the safety
of the assembly language, so that the user trusts a small proof verifier or type
verifier, rather than trusting a compiler.

Before a verifier can check the annotated assembly language code, someone
or something must produce the annotations. Morrisett et. al. [15] proposed that
a compiler generate these annotations: the compiler preserves enough typing in-
formation at each stage of the compilation to generate types or proofs in the
final compiler output. The types may evolve from stage to stage; for example,
local variable types may change to virtual register types, and then to physical
register types and activation record types [15] or stack types [14]. Nevertheless,
each stage derives its types from the previous stage’s types, and all compiler
stages must participate in producing types. Furthermore, typical typed inter-
mediate languages include pseudo-instructions, such as pack and unpack, that

coerce one type to another. The compiler stages must also preserve these pseudo-
instructions.

Implementing type preservation in an existing compiler may require substan-
tial effort. In our earlier experience [3], we modified 19,000 lines of a 200,000-line
compiler to implement type preservation. Even a 10% modification may pose
an obstacle to developers trying to retrofit large legacy compilers with type
preservation, especially when these modifications require developers to interact
with the complex type systems that are typical in typed compiler intermediate
languages [15, 14, 13, 3, 9]. To ease the implementation of type preservation in
legacy compilers, we’d like to minimize the number of type annotations that the
compiler passes from stage to stage, and use type inference to fill in the missing
types. For example, instead of having each stage explicitly track the type of each
register in each basic block, a type inference algorithm could infer the register
types (either between each stage, or after compilation).

Type inference is difficult or undecidable for many type systems. Universally
and existentially quantified types are challenging to infer [20, 8, 10, 7, 18], and
such quantified types are ubiquitous in typed assembly languages. In particular,
existentially quantified types describe objects [3, 9], closures [15], and arrays [13]
in many typed assembly languages. These existential types are critical to verify-
ing the safety of a program: they ensure that instructions operating on different
fields of the same data structure maintain a consistent view of the data. For
example, they ensure that the array length checked by an array bounds check
instruction matches the array accessed by a subsequent array load or store in-
struction [13]. To be useful for typed assembly language, type inference must be
able to infer operations on existential types across assembly language instruc-
tions.

This paper makes two contributions:

1. It proposes a framework, based on category theory, for type inference in
type systems with existential quantification. Our application of the frame-
work focuses on quantification over classes, but the framework is also flexible
enough to support other forms of quantification, such as quantification over
integers [13].

2. It demonstrates the framework on a small object-oriented, class-based typed
assembly language “iTal”. Specifically, it shows that the framework can in-
fer all the types inside each function of any typeable iTal program, using
only the type signature of each function. In particular, iTal requires no type
annotations inside a function: no type annotations on interior basic blocks,
no type annotations on instructions, and no pseudo-instructions for coercing
one type to another.

The framework is not limited to a single language like iTal; it applies to a range
of type systems that satisfy certain properties. This is important for scaling up
to real-world typed assembly languages, which inevitably require more features
(e.g. casts, arrays, interfaces, generics) than found in a simple language like iTal.

2 Background and Related Work

This section motivates the use of existential types in typed assembly languages,
and discusses existing approaches to type inference for quantified types.

For many class-based, object-oriented languages without quantified types,
type inference is straightforward. For example, Java bytecode omits type anno-
tations from local variables, and uses a forward dataflow analysis to infer these
types [11]. The analysis must be able to join types that flow into merge points in
the bytecode: if one branch assigns a value of type τ1 to variable x, and another
branch assigns a value of type τ2 to variable x, then where the two paths merge,
x will have type τ1tτ2, where τ1tτ2 is the least common supertype of τ1 and τ2,
known as the join (which, even in Java’s simple type system, is subtle to define
properly [6]).

Like Java bytecode, our framework uses a forward dataflow analysis, but un-
like Java bytecode, it supports existential types, and defines joins on existential
types. The existential types allow a type system to check individual assembly
language instructions for method invocation, array accesses, casts, and other
operations (in contrast to Java bytecode, which is forced to treat each of these
operations as single, high-level bytecode instructions). Consider the following
(incorrect) code for invoking a method on an object p:

void Unsafe(Point p, Point q) {
vt = p.vtable;
m = vt.method1;
m(q); }

This code above invokes p’s method method1, but passes the wrong “this”
pointer to method1. The code is unsafe: if p’s class is some subclass of Point,
then method1 may refer to fields defined in the subclass, which q does not nec-
essarily contain, since q may belong to a different subclass of Point. Most type
systems for object-oriented typed assembly languages use existential types to
distinguish between safe method invocations and unsafe code [4, 3, 9]. LILC [4],
for example, describes p’s type and q’s type with existential types: both p and
q have type ∃α¿Point. Ins(α), which says that p and q are each instances of
some class α that is a subclass of Point, and that the class α contains methods
requiring that an instance of α be passed as a “this” pointer. The type system
conservatively assumes that the α for p may differ from the α for q, ensuring that
only p can be passed to p’s methods, and only q can be passed to q’s methods.

Type inference Hindley-Milner type inference [12] is used by the ML and
Haskell languages. The algorithm for Hindley-Milner inference discovers omit-
ted types by using unification to solve systems of equations between types. For
a simple enough type system, this algorithm can infer all types in a program
without relying on any programmer-supplied type annotations (unlike our for-
ward dataflow analysis, it does not require a method type signature as a start-
ing point). Unfortunately, this remarkable result does not extend to all type

systems. In particular, first-class quantified types are known to make type in-
ference undecidable [20]. Extensions to the Hindley-Milner approach supporting
first-class quantified types require some type annotations [8, 10] or pack/unpack
annotations [7]. Alternatives to the Hindley-Milner approach, such as local type
inference [18], also require some type annotations. Although these extended and
alternative algorithms [8, 10, 7, 18] were developed for functional languages, they
could be applied to a typed assembly language like iTal by treating each ba-
sic block as a (recursive) function. Unfortunately, this would force a compiler
to provide type annotations on some of the basic blocks, which our approach
avoids.

Much of the difficulty in inferring first-class quantified types stems from the
broad range of types that type variables can represent. In the type ∃α. α , many
type systems allow α to represent any type in the type system, including quan-
tified types like ∃α. α itself. To simplify type inference, our framework restricts
what quantified variables may represent. In this respect, our work is most sim-
ilar to the Pizza language’s internal type system [17], whose existential types
quantify over named classes rather than over all types. Although our framework
and Pizza’s internal type system share some features, such as defining joins for
existential types, they differ in important ways. In particular, Pizza’s joins exist
due to special finiteness properties of the Pizza type system, and therefore are
not as broadly applicable as the joins in our framework. In addition, Pizza can
only existentially quantify each value separately, but for the applications in this
paper it is essential that the same existential bound is shared by many values.

With respect to inference in assembly language, our work is most similar to
Coolaid [2], which performs a forward dataflow analysis to infer values and types
of registers for code compiled from a Java-like language. Coolaid’s inference in-
troduces “symbolic values” to represent unknown values; these symbolic values
correspond to existentially quantified variables in iTal’s state types. Coolaid is
more specialized towards a particular source language and a particular compi-
lation strategy than most typed assembly languages are, whereas iTal encodes
objects and classes using more standard, general-purpose types (namely, existen-
tial types and bounded quantification). This makes us optimistic that our frame-
work will more easily grow to incorporate more advanced programming language
features, such as generics with bounded quantification. Chang et. al. [2] state
that “We might hope to recover some generality, yet maintain some simplicity,
by moving towards an ‘object-oriented’ TAL”. The goal of our framework is to
support exactly such an object-oriented TAL (Typed Assembly Language).

3 Language iTal

This section explains a small class-based object-oriented typed assembly lan-
guage iTal (inferrable Tal), which supports type inference with existential types:
type inference can infer all the types inside each function of any typeable iTal
program, using only the function signature. It requires no type annotations on
basic blocks, no annotations on instructions, and no type coercion instructions.

Appendix A defines a source language and Appendix B describes the translation
from the source language to iTal. Appendix C proves the transitivity of state
type subtyping. Appendix D proves the soundness of iTal.

The purpose of iTal is to shed some light on the general framework in the
next section. iTal focuses on only core object-oriented features such as classes,
single inheritance, object layout, field fetch, and virtual method invocation. Our
framework is not limited to iTal. It applies to more expressive languages with
casts, interfaces, arrays, control stacks, and records. The first three features
require more significant changes in the type system and are discussed later in
the paper. Support for the other features is mostly straightforward and omitted.

iTal borrows ideas from LILC , a low-level object-oriented typed intermediate
language [4]. It preserves classes, objects, and subclassing, instead of compiling
them away as in most previous object encodings. iTal is even lower level than
LILC in that iTal makes control flow explicit.

iTal uses type Ins(C) to represent only objects of “exact” class C, not C’s
subclasses, unlike most source languages. An existential type ∃α¿C. Ins(α)
represents objects of C and C’s subclasses where type variable α indicates the
dynamic types of the objects. The subclassing bound C on α means that, the
dynamic type α is a subclass of the static type C. The source language type C
is translated to the existential type.

The separation between static and dynamic types guarantees the soundness
of dynamic dispatch. A type system without such separation cannot detect the
error in the “Unsafe” example in the previous section.

Type variables in iTal have subclassing bounds and are instantiated with
only class names. The bounds cannot be arbitrary types. This simplifies both
type inference and type checking in iTal.

The syntax of iTal is shown below.

class type ω ::= α | C
type τ ::= Int | Code(Φ) | Ins(ω) | Vtable(ω) | ∃α¿C. Ins(α)
value v ::= n | `
operand o ::= v | r | [r + n]
instr ι ::= bop r, o | mov r, o | mov [r1 + n], r2 | call o
binary op bop ::= add | sub | mul | div
instrs ιs ::= jmp ` | jz o, `t, `f | ret | ι; ιs
func prec Φ ::= {ri : τi}n

i=1

function f ::= Φ {−−→` : ιs}
heap value hv ::= ins(C){v1, . . . , vn} | vtable(C){v1, . . . , vn} | f
heap H ::= • | H, ` 7→ hv
reg bank R ::= • | R, r 7→ v
frame F ::= (R; ιs)
prog P ::= (H;

−→
F)

A class type ω is either a type variable (ranged over by α, β, and γ) or a
class name (ranged over by A, B, and C). A special class named Object is a
superclass of any other class type.

iTal supports primitive type Int and code pointer type Code(Φ) where Φ
describes function signatures. The rest are object-oriented: type Ins(ω) describes
objects of “exact” ω; type Vtable(ω) represents the virtual method table of class
ω; type ∃α¿C. Ins(α) represents objects of C and C’s subclasses. The existential
type can be used to type fields in objects and registers in function signatures,
but not registers in basic block preconditions.

Values in iTal include integers n and heap labels `. Operands include values,
registers r, and memory words [r + n] (the value at memory address r + n). All
values are word-sized.

Instructions in iTal are standard. Instruction bop r, o computes “r bop o”
and assigns the result to r. Instruction mov r, o moves the value of o to register
r. Instruction mov [r1 + n], r2 stores the value in r2 into the memory word at
address r1 + n. Instruction call o calls a function o.

Instruction sequences ιs consist of a sequence of the above instructions ended
with a control transfer instruction. Instruction jmp ` jumps to a block labeled `.
Instruction jz o, `t, `f branches to `t if o equals 0 and to `f otherwise. Instruction
ret returns to the caller.

A function Φ {−−→` : ιs} specifies its signature Φ and a sequence of basic blocks,
each of which has a label ` and a body ιs. The notation −→a means a sequence of
items in a. For simplicity, functions do not return values.

iTal has only three kinds of heap values: objects ins(C){v1, . . . , vn} meaning
an instance of C with fields v1, . . . , vn; vtables vtable(C){v1, . . . , vn} meaning
the vtable of C with methods v1, . . . , vn; and functions.

A program contains a heap H and a sequence of program frames. The heap
is a mapping from heap labels to heap values. Each program frame consists
of a register bank and an instruction sequence. A register bank is a mapping
from registers to values. iTal uses program frames to simulate the control stacks
and the return addresses. Each frame represents the state of a function that is
currently called and has not yet returned: the register bank represents the state
of registers, and the instruction sequence represents what instructions are to
be executed. The leftmost frame is for the function that is currently executed.
When calling a function, the execution puts a new frame to the left of the existing
frames and copies the register bank of the caller to the callee. When the callee
returns, the frame for the callee is removed and the control transfers back to the
caller to the instruction right after the call.

Using program frames results in simple type systems but maybe unconven-
tional abstract machines. Supporting realistic control stacks is orthogonal to the
core idea of this paper.

Static Semantics We first introduce the environments used by the static se-
mantics.

class decl cdecl ::= C : B{τ1, . . . , τn, Φ1, . . . , Φm}
class decls Θ ::= • | Θ, cdecl
heap value env Ψv ::= • | Ψv, ` : τ
code label env Ψc ::= • | Ψc, ` : Σ
constr env ∆ ::= • | ∆,α ¿ C
reg type Γ ::= • | Γ, r : τ
state type Σ ::= ∃∆.Γ

A class declaration C : B{τ1, . . . , τn, Φ1, . . . , Φm} introduces a class C with
superclass B and fields types τ1, . . . , τn and methods signatures Φ1, . . . , Φm. It
specifies all fields and methods of C, including those from the superclasses.
Method bodies are translated to functions on the heap. Therefore, class dec-
larations contain only method signatures. Θ is a sequence of class declarations,
which the compiler preserves to iTal.

Heap value environment Ψv maps heap value labels to their types, and code
label environment Ψc maps basic block labels to their preconditions (state types).
Ψc can be a partial map if there is unreachable code. Domains of Ψv and Ψc are
disjoint. The compiler preserves Ψv during the compilation. The type inference
computes Ψc from Ψv. The type checker checks each basic block, given Ψc. We
use Ψ to denote the union of Ψv and Ψc.

The constraint environment ∆ is a sequence of type variables and their
bounds. Each type variable has a superclass bound. The register bank type
Γ is a partial map from registers to types.

iTal uses state types Σ, another form of existential types, to represent pre-
conditions of basic blocks. A state type ∃∆.Γ specifies a constraint environment
∆ and a register bank type Γ . iTal automatically “unpacks” a register when
it is assigned a value with an existential type ∃α¿C. Ins(α): the existentially
quantified type variable is lifted to the constraint environment of the state type,
and the register has an instance type. In a state type ∃∆.Γ , ∆ records the type
variables for the “unpacked” registers so far, and Γ never maps a register to an
existential type ∃α¿C. Ins(α). This convention eliminates the explicit “unpack”
and makes type inference and type checking easier. Rules corresponding to the
traditional “pack” operation will be explained later in the section.

State type Σ in iTal can be viewed as Σ → void in traditional type systems3.

Subclassing. iTal preserves source-level subclassing between class names. Judg-
ment Θ; ∆ ` ω1 ¿ ω2 means that under the class declarations Θ and the
constraint environment ∆, class type ω1 is a subclass of ω2. Subclassing is re-
flexive (rule sc-ref) and transitive (rule sc-trans). A class C is a subclass of B if
C declares so in its declaration (rule sc-class). A type variable α is a subclass of
a class name C if C is α’s bound (rule sc-var).

3 Therefore, the existentially quantified type variables in Σ can be lifted out to the
top level and become universally quantified.

Θ; ∆ ` ω

Θ;∆ ` ω ¿ ω
sc-ref

Θ; ∆ ` ω1 ¿ ω2 Θ;∆ ` ω2 ¿ ω3

Θ; ∆ ` ω1 ¿ ω3
sc-trans

Θ(C) = C : B{. . .}
Θ; ∆ ` C ¿ B

sc-class
α ¿ C ∈ ∆

Θ; ∆ ` α ¿ C
sc-var

Subtyping between State Types. Subtyping between two state types is used to
check control transfer. The judgment Θ ` Σ1 ≤ Σ2 means that under class
declarations Θ, state type Σ1 is a subtype of Σ2.

θ : dom(∆′) → (dom(∆) ∪ dom(Θ))
∀r ∈ dom(Γ ′), Θ;∆ ` Γ (r) = Γ ′(r)[θ]
∀α ¿ C ∈ ∆′, Θ; ∆ ` θ(α) ¿ C

Θ ` (∃∆.Γ) ≤ (∃∆′.Γ ′) st-sub

The non-standard rule st-sub is the key to type inference in iTal. It allows
subtyping between two state types without first unpacking one type and then
packing to the second type. No type coercion is necessary.

A state type ∃∆.Γ is a subtype of ∃∆′.Γ ′, if there is a substitution θ that
maps any type variable in ∆′ to either a type variable in ∆ or a constant class
name in Θ, such that Γ ′(r) after substitution is the same as Γ (r) for all registers
in Γ ′. The substitution needs to preserve subclassing in ∆′, that is, for each
constraint α ¿ C in ∆′, θ(α) should be a subclass of C under ∆. The substitution
is computed during type inference and made ready to use by the type checker.

We can derive that Θ ` ∃∆.(Γ, r : Ins(C)) ≤ ∃(∆,α ¿ C).(Γ, r : Ins(α))
from st-sub, one case of the traditional “pack” rule for existential types.

Subtyping between state types is reflexive and transitive, as implied by the
st-sub rule. For reflexivity, we can use the identity substitution. For transitivity,
if Θ ` (∃∆1.Γ1) ≤ (∃∆2.Γ2), and Θ ` (∃∆2.Γ2) ≤ (∃∆3.Γ3), then there is a
substitution θ1 : ∆2 → (∆1 ∪ Θ) and another substitution θ2 : ∆3 → (∆2 ∪ Θ).
The composition of θ1 and θ3 is a mapping from ∆3 to ∆1 ∪Θ and satisfies the
requirements for subtyping between ∃∆1.Γ1 and ∃∆3.Γ3.

Before explaining the typing rules for instructions, we describe some judg-
ments those typing rules use.

Value Typing. The judgment Θ; Ψ ` v : τ means that under the class declarations
Θ and the heap environment Ψ , value v has type τ . The two rules for integers
and heap labels are straightforward.

Θ; Ψ ` n : Int vt-int
Θ;Ψ ` ` : Ψv(`) vt-lbl

Operand Typing. The judgment Θ;Ψ ;∆; Γ ` o : τ means that under environ-
ments Θ, Ψ , ∆, and Γ , operand o has type τ . The rule ot-vtable means that the
first field of an object with type Ins(ω) is the vtable (with type Vtable(ω)).
The rules ot-field and ot-meth specify field fetch from objects and method

fetch from vtables respectively. Both rules use class declarations in Θ to de-
cide which field or method to access. The helper function mtype is defined as
mtype(ω, {ri : τi}n

i=1) = (rthis : ω, {ri : τi}n
i=1) where rthis is a special register

to hold the “this” pointer.

Θ;Ψ ` v : τ

Θ; Ψ ; ∆; Γ ` v : τ
ot-v

Θ;Ψ ;∆; Γ ` r : Γ (r)
ot-r

Θ;Ψ ;∆; Γ ` r : Ins(ω)
Θ;Ψ ;∆; Γ ` [r + 0] : Vtable(ω) ot-vtable

Θ; Ψ ; ∆; Γ ` r : Ins(ω) Θ; ∆ ` ω ¿ C
Θ(C) = C : B{τ1, . . . , τn, Φ1, . . . , Φm} 1 ≤ j ≤ n

Θ; Ψ ; ∆;Γ ` [r + j] : τj
ot-field

Θ; Ψ ; ∆; Γ ` r : Vtable(ω) Θ; ∆ ` ω ¿ C
Θ(C) = C : B{τ1, . . . , τn, Φ1, . . . , Φm} 1 ≤ k ≤ m

Θ;Ψ ;∆; Γ ` [r + k] : Code(mtype(ω,Φk)) ot-meth

Assignability. The judgment Θ; ∆ ` τ1 ←↩ τ2 means that under the environments
Θ and ∆, a value of type τ2 can be assigned to a memory location with type τ1.
In most type systems assignability is the same as subtyping: Θ;∆ ` τ1 ←↩ τ2 if
τ2 is a subtype of τ1. iTal uses assignability to avoid confusion with subtyping
between state types. The rule at-pack handles “packing” subclass objects to
superclass objects (with existential types).

Θ;∆ ` τ ←↩ τ
at-ref

Θ; ∆ ` ω ¿ C

Θ; ∆ ` ∃α¿C. Ins(α) ←↩ Ins(ω)
at-pack

Assign Registers. The judgment ∆; Γ ` {r ← τ}(∆′; Γ ′) means that assigning a
value of type τ to register r changes the constraint environment to ∆′ and the
register type to Γ ′. When τ is an existential type ∃α¿C. Ins(α) (rule asgn-e),
the assignment automatically lifts the existentially quantified type variable to
the constraint environment so the register does not have an existential type.

∆′ = ∆; β ¿ C
Γ ′ = Γ [r : Ins(β)] β 6∈ dom(∆)

∆; Γ ` {r ← ∃α¿C. Ins(α)}(∆′; Γ ′)
asgn-e τ 6= ∃α¿C. Ins(α)

∆; Γ ` {r ← τ}(∆;Γ [r : τ])
asgn

Instruction Sequence Typing. The judgment Θ;Ψ ;∆; Γ ` ιs means that under
environments Θ, Ψ , ∆, and Γ , instruction sequence ιs is well-typed. Checking the
control transfer instructions (t-jmp and t-je) uses subtyping between state types
to guarantee control flow safety. Rule t-call uses assignability to guarantee that

arguments can be assigned to formals, and t-movM guarantees weak updates of
memory locations (object fields).

When checking the control transfer instructions jmp and je (rules t-jmp and
t-je), the checker requires that the current state type be a subtype of the pre-
condition of the target.

In rule t-ret, checking the return instruction does nothing because iTal re-
quires that the caller save the program state before calling the callee, and that
the return instruction restore the program state.

Rule t-call checks that the call target has a code type, and that types for
parameters match those in the precondition, and that the rest of the instructions
is well-typed under the current environments.

Rule t-bop requires that both operands of a binary operation be integers. The
environments are unchanged. Rule t-movR checks moving a value to a register,
which might change the environments. The rest of the instruction sequence is
checked under the new environments. Rule t-movM checks moving a value to a
memory location. In iTal, the only memory locations that can be updated are
object fields and only strong updates (updates with a value of the same type as
before) are allowed. The environments are unchanged. Here, the rule uses the
assignability rule to guarantee strong updates.

Θ; Ψ ; ∆; Γ ` ret t-ret
Θ ` ∃∆.Γ ≤ Ψc(`)
Θ;Ψ ;∆; Γ ` jmp `

t-jmp

Θ;Ψ ;∆; Γ ` o : Int Θ ` ∃∆.Γ ≤ Ψc(`t) Θ ` ∃∆.Γ ≤ Ψc(`f)
Θ;Ψ ;∆; Γ ` jz o, `t, `f

t-je

Θ; Ψ ; ∆; Γ ` o : Code({ri : τi}n
i=1) Θ; Ψ ; ∆; Γ ` ιs

Θ; ∆ ` τi ←↩ Γ (ri) ∀1 ≤ i ≤ n

Θ;Ψ ;∆; Γ ` call o; ιs t-call

Θ; Ψ ; ∆;Γ ` r : Int Θ; Ψ ; ∆; Γ ` o : Int Θ;Ψ ;∆; Γ ` ιs

Θ; Ψ ; ∆;Γ ` bop r, o; ιs
t-bop

Θ; Ψ ; ∆; Γ ` o : τ ∆;Γ ` {r ← τ}(∆′;Γ ′) Θ;Ψ ; ∆′;Γ ′ ` ιs

Θ; Ψ ; ∆;Γ ` mov r, o; ιs t-movR

Θ; Ψ ; ∆;Γ ` r1 : Ins(ω) Θ; Ψ ; ∆;Γ ` [r1 + m] : τm

Θ; Ψ ;∆; Γ ` r2 : τ Θ; ∆ ` τm ←↩ τ Θ; Ψ ; ∆;Γ ` ιs

Θ;Ψ ;∆; Γ ` mov [r1 + m], r2; ιs
t-movM

Program Typing. The judgment Θ;Ψ ` P means that under the environments
Θ and Ψ , the program P is well-typed. As explained previously, iTal uses pro-
gram frames to simulate the call stack. A well-typed program requires that each
program frame in the program be well-typed (rule t-prog): in each frame, the reg-

ister bank is typed and the instruction sequence is well-typed under the register
bank type.

` Θ Θ ` H : Ψ
Fi = (Ri, ιsi) Θ; Ψ ` Ri : Γi Θ; Ψ ; •;Γi ` ιsi ∀1 ≤ i ≤ n

Θ;Ψ ` (H;
−→
F)

t-prog

The rest of the static semantics is straightforward and will be explained
briefly.

Judgment ` Θ specifies well-formedness of class declarations. Judgment Θ `
cdecl specifies well-formedness of one class declaration. Each class declaration in
Θ needs to be well-formed to make Θ well-formed. If a class has a superclass,
the superclass has to appear before the subclass to avoid cycles in subclassing.
Each class declaration contains types for all its fields and methods, including
those from superclasses.

Θ = cdecl1, . . . , cdecln Θ ` cdecli ∀1 ≤ i ≤ n

` Θ
t-cdecls

Θ ` B : {τ1, . . . , τj , Φ1, . . . , Φk}
B appears before C in Θ, j ≤ n, k ≤ m

Θ; • ` τi ∀j < i ≤ n Θ; • ` Code(Φi) ∀k < i ≤ m

Θ ` C : B{τ1, . . . , τn, Φ1, . . . , Φm} t-cdecl

Judgment Θ ` H : Ψ means that the heap H has type Ψ .

dom(H) = dom(Ψ) Θ; Ψ ` H(`) : Ψ(`) ∀ ` ∈ dom(H)
Θ ` H : Ψ

t-heap

Judgment Θ; Ψ ` R : Γ means that the register bank R has type Γ .

dom(R) = dom(Γ) Θ; Ψ ` R(r) : Γ (r) ∀ r ∈ dom(R)
Θ; Ψ ` R : Γ

t-rb

Judgment Θ; ∆′ ` ∃∆.Γ means that under environments Θ and ∆′, the state
type ∃∆.Γ is well-formed. For each register r in the domain of R, Γ (r) cannot
be an existential type ∃α¿ω. Ins(α).

Θ;∆′,∆ ` Γ (r) Γ (r) 6= ∃α¿ω. Ins(α) ∀r ∈ dom(Γ)
Θ;∆′ ` ∃∆.Γ

w-st

Judgment Θ; ∆ ` τ means that under environments Θ and ∆, type τ is
well-formed. The free type variables in τ should be in ∆.

freeTv(τ) ⊆ dom(∆)
Θ; ∆ ` τ

wt

Judgment Θ; Ψ ` hv : τ means that under environments Θ and ∆, heap value
hv has type τ . Rules hv-obj and hv-vtable check objects and vtables respectively.
Fields in an objet should be assigned values with compatible types. Rule hv-
func checks a function. The precondition of the first basic block is the function
signature with all registers unpacked. The helper “unpack(Φ)” is defined as:

unpack(•) = ∃•.•
unpack(Φ, r : τ) = ∃(∆,β ¿ C).(Γ, r : Ins(β)) if

(
unpack(Φ) = ∃∆.Γ
τ = ∃α¿C. Ins(α)

)

unpack(Φ, r : τ) = ∃∆.(Γ, r : τ) if
(

unpack(Φ) = ∃∆.Γ
τ 6= ∃α¿C. Ins(α)

)

∆(C) = C : B{τ ′1, . . . , τ ′n,
−→
Φ } Θ;Ψ ` v0 : Vtable(C)

Θ;Ψ ` vi : τi Θ; • ` τ ′i ←↩ τi∀1 ≤ i ≤ n

Θ; Ψ ` ins(C){v0, v1, . . . , vn} : Ins(C)
hv-obj

∆(C) = C : B{τ ′1, . . . , τ ′n, Φ1, . . . , Φm}
Θ;Ψ ` vi : Code(mtype(C, Φi))∀1 ≤ i ≤ n

Θ; Ψ ` Vtable(C){v1, . . . , vn} : Vtable(C) hv-vtable

Θ; • ` Φ Ψc(`1) = unpack(Φ)
Ψc(`i) = ∃∆i.Γi Θ; Ψ ; ∆i;Γi ` ιsi ∀1 ≤ i ≤ n

Θ;Ψ ` Φ {`1 : ιs1, . . . , `n : ιsn} : Code(Φ) hv-func

Dynamic Semantics. This section explains how programs evaluate. Judgment
P → P ′ means that program P evaluates one step to P ′.

When the top frame sees a jump instruction, the instructions for the target
block is loaded into the top frame and execution continues (rule jmp). The branch
instruction is evaluated similarly.

Evaluating the return instruction simply throws away the top frame (the
callee) and goes back to the second frame (the caller) (rule ret). The caller has
the state before calling the callee.

Evaluating the move instruction changes the register bank (rule movR) or the
heap (rule movM), depending on whether a new value is moved into a register
or a memory location.

Evaluating the call instruction creates a new frame as the new top. In the
new frame, the values for the parameters are copied from the caller, and the
instructions are from the first block of the callee.

H(`) = ιs`

(H; (R; jmp `) ::
−→
F) → (H; (R; ιs`) ::

−→
F)

jmp

H(`t) = ιst

(H; (R, jz 0, `t, `f) ::
−→
F) → (H; (R; ιst) ::

−→
F)

jeT

n 6= 0 H(`f) = ιsf

(H; (R; jz n, `t, `f) ::
−→
F) → (H; (R; ιsf) ::

−→
F)

jeF

(H; (R; ret) ::
−→
F) → (H;

−→
F)

ret

R′ = R1[r 7→ R(r) bop n]

(H; (R; (bop r, n; ιs)) ::
−→
F) → (H; (R′; ιs) ::

−→
F)

bop

(H; (R; (mov r, v; ιs)) ::
−→
F) → (H; (R[r 7→ v]; ιs) ::

−→
F)

movR

H(`) = ins(C){v1, . . . , vn} 1 ≤ m ≤ n
H ′ = H[` 7→ ins(C){v1, . . . , vm−1, v, vm+1, . . . , vn}]

(H; (R; (mov [` + m], v; ιs)) ::
−→
F) → (H ′; (R; ιs) ::

−→
F)

movM

H(`) = Φ {`1 : ιs1, . . . , `n : ιsn} R′(r) = R(r) ∀r ∈ dom(Φ)

(H; (R; (call `; ιs)) ::
−→
F) → (H; (R′; ιs1) :: (R; ιs) ::

−→
F)

call

Type Inference Type inference computes preconditions for each basic block
in a function from the function signature. The precondition of the entry block
is the function signature with all registers unpacked.

Type inference uses a forward data flow analysis, starting from the entry
block. For each basic block, if type inference finds a precondition, it then type
checks the instruction sequence in the block, until it reaches the control transfer
instruction. If the control transfer instruction is “ret”, the block is done. Oth-
erwise (“jmp” or “je”), type inference propagates the current state type to the
target(s). If a target has no precondition, the current state type will be the new
precondition for the target. Otherwise, type inference computes the join of the
current state type and the precondition of the target, and uses the result as the
new precondition for the target. If the precondition of the target changes, type
inference goes through the target again to propagate the changes further.

Type inference continues until it finds a fixpoint. When joining two state
types, the result is a super type of the two state types. The type system does not
have an infinite chain of super types for any given state type, which guarantees
termination of type inference.

Join Computing the join (least upper bound) of two state types is the most
important task during type inference. We use Σ1 t Σ2 to represent the join of
Σ1 and Σ2, and α̂ to represent variables in the join (generalization variables).

The join operation is performed in two steps. The first step generalizes the
two register bank types to a common super type of both Γ1 and Γ2. The gen-
eralization is done by replacing every occurrence of class types where Γ1 and
Γ2 differ with a fresh type variable. The bound of the fresh type variable will
be computed in the second step of join. For example, the generalization of
{r1 : Ins(C), r2 : Ins(α), r3 : Ins(C)} and {r1 : Ins(D), r2 : Ins(β), r3 : Ins(C)}
is {r1 : Ins(γ̂1), r2 : Ins(γ̂2), r3 : Ins(C)}. The type of r1 in the join is a fresh
type variable γ̂1 because the types of r1 differ in the two register bank types.
Similarly, the type of r2 is another fresh type variable. The type of r3 is Ins(C)
because the two register bank types agree with the type of r3.

The generalization omits registers that appear in Γ1 or Γ2 but not both.
For example, if Γ1 has types for r1 and r2 and Γ2 has types for r1 and r3, the
generalization will compute a register bank type with type for r1 only.

The generalization also remembers where the fresh generalization variables
come from. If two types ω1 and ω2 are generalized to a type variable α̂, then α̂
comes from ω1 in Γ1 and ω2 in Γ2, recorded as α̂ 7→ ω1 and α̂ 7→ ω2 respectively.
In the previous generalization example, the generalization records two maps: the
map for Γ1 is γ̂1 7→ C, γ̂2 7→ α, and the map for Γ2 is γ̂1 7→ D, γ̂2 7→ β. The
mappings are called representations for Γ1 and Γ2 respectively. They will be used
in the second step to compute bounds for γ̂1 and γ̂2.

The judgment ` Gen(Γ1, Γ2) ; ΓG : (R1; R2) means generalizing Γ1 and Γ2

to ΓG. The representation for Γ1 is R1 and the one for Γ2 is R2.

dom(Γ1) ∩ dom(Γ2) = ∅
` Gen(Γ1, Γ2) ; ∅ : (∅;∅)

Gen(Γ1\r, Γ2\r) ; Γ ′ : (R′1; R
′
2)

Gen(Γ1(r), Γ2(r)) undefined

` Gen(Γ1, Γ2) ; Γ ′ : (R′1;R
′
2)

Gen(Γ1\r, Γ2\r) ; Γ ′ : (R′1;R
′
2)

(R′1, R
′
2) ` Gen(Γ1(r), Γ2(r)) ; τ : (R1; R2) Γ = Γ ′, r : τ

` Gen(Γ1, Γ2) ; Γ : (R1; R2)

To generalize two register bank types, we need to generalize the types for
each register in dom(Γ1) ∩ dom(Γ2). The judgment (R1, R2) ` Gen(τ1, τ2) ;
τ : (R′1; R

′
2) means that generalizing two types τ1 and τ2 results in type τ and

extends the representations to R′1 and R′2. Generalization of types focus on type
variables and classes. If τ1 and τ2 are the same type τ , the result is τ (that is, the
first rule dominates). Otherwise, generalization of two instance types or vtable
types introduces a fresh generalization variable α̂ and adds to the representations
mappings from α̂ to the corresponding class types.

(R1, R2) ` Gen(τ, τ) ; τ : (R1;R2)

α̂ fresh

(R1, R2) ` Gen(Ins(ω1),
Ins(ω2)

) ; Ins(α̂) : (R1, α̂ 7→ ω1; R2, α̂ 7→ ω2)

α̂ fresh

(R1, R2) ` Gen(
∃α¿ω1. Ins(α),
∃β¿ω2. Ins(β)) ; ∃γ¿α̂. Ins(γ) : (R1, α̂ 7→ ω1;R2, α̂ 7→ ω2)

α̂ fresh

(R1, R2) ` Gen(
Vtable(ω1),
Vtable(ω2)

) ; Vtable(α̂) : (R1, α̂ 7→ ω1; R2, α̂ 7→ ω2)

∀1 ≤ i ≤ n, (R1,i−1, R2,i−1) ` Gen(τi, τ
′
i) ; τ ′′i : (R1,i; R2,i)

R1,0 = R1, R2,0 = R2

(R1, R2) ` Gen(Code({ri : τi}n
i=1),

Code({ri : τ ′i}n
i=1)

) ; Code({ri : τ ′′i }n
i=1) : (R1,n; R2,n)

The second step of join is factorization of the two representations. The goal
is to compute the constraint environment of the result state type. This step is
done by unifying equivalent generalization variables.

We define an equivalence relation for generalization variables: α̂ ≡ β̂ if
R1(α̂) = R1(β̂) and R2(α̂) = R2(β̂), and use 〈α̂〉 to denote the arbitrarily chosen
representative for the equivalence class where α̂ belongs.

The judgment Fact(R1, R2) ; ∆ means that factorization of R1 and R2

computes ∆, the constraint environment for the result state type. dom(∆) is
the set of equivalence class representatives. A variable α̂ in dom(∆) has bound
LUB(R1(α̂), R2(α̂)), the least common superclass name of R1(α̂) and R2(α̂).

The following rule describes the join process: generalization of Γ1 and Γ2

produces ΓG; factorization of two representations produces ∆. The join result
contains ∆ and ΓG with all variables α̂ replaced with 〈α̂〉. The join produces
two substitutions. The one for ∃∆1.Γ1 is θ1 : dom(∆) → (dom(∆1) ∪ dom(Θ))
defined as θ1(〈α̂〉) = R1(α̂), which shows that the join is a super type of ∃∆1.Γ1

using rule st-sub. The other substitution is similar.

dom(∆1) ∩ dom(∆2) = ∅ ` Gen(Γ1, Γ2) ; ΓG : (R1; R2)
Fact(R1, R2) ; ∆ Γ = ΓG[θ] θ(α̂) = 〈α̂〉∀α̂ ∈ ΓG

(∃∆1.Γ1) t (∃∆2.Γ2) = ∃∆.Γ

Extending iTal iTal contains only enough constructs to support single inher-
itance, field fetch, and method invocation. For example, each type variable can
have only a class name as the superclass bound, as the simple bound is enough

to represent objects. Type inference, especially joining two types, is straightfor-
ward. iTal may need more expressive type constructs to support more features,
making joins more difficult to determine.

For example, supporting downward cast needs existential types with lower
type variable bounds (see [4]). Introducing type variable bounds requires multiple
variable bounds. Joining ∃α1 ¿ β1, β1 ¿ γ1.{r1 : Ins(α1), r2 : Ins(β1), r3 : Ins(γ1)}
with ∃α2 ¿ γ2, γ2 ¿ β2.{r1 : Ins(α2), r2 : Ins(β2), r3 : Ins(γ2)} results in a state
type ∃∆.{r1 : Ins(α), r2 : Ins(β), r3 : Ins(γ)} where in ∆, α is a subclass of both
β and γ, but β and γ do not have any subclassing relation.

Other language features, such as multiple inheritance, arrays, and generics,
require more complex bounds. Records, out parameters, and narrowing returns
require more complex types for registers. Given such type systems, it is nontrivial
to decide whether the join of two types always exists. The rest of the paper
explains a general framework for type inference, which guarantees the existence
of a join as long as the type system satisfies the requirements of the framework.

Section 4 gives a high-level overview of the challenges of existential types
and the concepts behind this framework. Section 5 provides the details of the
framework while providing the reasons for how things are modeled and why they
work. Section 6 gives a concrete example of how to find factorization structures,
the essential concept behind this framework. Section 7 provides models for com-
mon operations besides joins, namely introducing variables and adding inferred
constraints or equalities to bounds. Section 8 demonstrates how to add language
features by changing the expressibility of existential bounds. Section 9 intro-
duces the current shortcomings of this framework and how we hope to address
them. Methods for other common operations, such as introducing variables and
adding inferred constraints or equalities, can be found along with other tools in
the technical report [19].

4 Overview of the Framework

Existential types are extremely unwieldy. Joins are difficult enough to determine
and prove correct even without using existential quantification. When joining
existential types, it can be hard to predict what effect changes on the type
system will have on the process. A simple change, such as adding subtyping for
null pointers, may result in joins not existing. Complex changes, such as adding
generics, may turn out to be almost trivial. This framework can help type system
designers understand which changes are safe and which are destructive.

For purposes of brevity and good examples we will mostly be using record
types with record subtyping. The type Rec(A,B,C) represents a record whose
first field is a pointer to an instance of class A, second field to class B, and third
field to class C. The tails of records can be safely forgotten, expressed as the
prefix subtyping property Rec(A,B,C) ≤ Rec(A,B) ≤ Rec(A) and their like.

Existential Modeling Intuitively, any value v modeling Rec(C) also models
∃α ¿ C.Rec(α). With this intuition, Rec(C) models ∃α ¿ C.Rec(α). Similarly,

Rec(A) or Rec(B) also model ∃α ¿ C.Rec(α), supposing A and B extend C. The
reasoning behind this is that α can be assigned to A, which translates Rec(α)
to Rec(A), and this assignment is valid since A ¿ C holds.

Many existential type systems do not incorporate this reasoning into their
subtypings since such simple subtyping rules can actually lead to quite compli-
cated subtyping operations. For example, if B ¿ C and X ¿ Y hold, then
the join of Rec(B, C, C) and Rec(X, X, Y) is ∃α ¿ β ¿ γ.Rec(α, β, γ). Three
variables have to be introduced, even though both sides only refer to two classes
each, and they have to be bound to reflect the left-to-right subclass structure in
both records.

This framework is designed to allow this subtyping rule, along with the more
complicated one described next, and provide methods for subtypes and joins.

Existential Subtyping Besides subtyping between non-existential types and
existential types, we also want subtyping between existential types and exis-
tential types. Suppose ∃vars1.τ1 is a subtype of ∃vars2.τ2. This should mean
that any non-existential type τ which models ∃vars1.τ1 also models ∃vars2.τ2.
Ideally any two existential types with this property would be subtypes, but this
property may hold for unnatural reasons. For example, the bounds 0 ≤ n ≤ 1
and n2 = n have the same models over the integers, namely n = 0 and n = 1.
This is not a property general to ordered rings though: 0 ≤ n ≤ 1 has many
more models over the reals than n2 = n. Thus the equivalence of the two bounds
over the integers holds for unnatural reasons.

We aim to capture the natural cases. We say that ∃vars1.τ1 is a subtype
of ∃vars2.τ2 if there is a valid assignment of the variables vars2 into the space
defined by vars1 such that τ1 is a subtype of τ2 after substitution using the
assignment. For example, ∃α ¿ β ¿ C.Rec(α, C, β) is a subtype of ∃γ ¿
δ.Rec(γ, δ) as evidenced by assigning γ to α and δ to C due to prefix subtyping.
This way any valid assignment of α and β to exact classes can be extended to a
valid assignment of γ and δ to exact classes. Note that the names of variables are
insignificant: ∃α ¿ β ¿ C.Rec(α, C, β) is also a subtype of ∃α ¿ β.Rec(α, β).

Structural and General Types In order to reason about joins, we first need
to recognize some patterns in type systems. Here we recognize structural types,
general types, and generalized subtyping.

Every type has some underlying structure. The structure of Rec(Vtable(C), C)
is Rec(Vtable(?), ?). The structure forgets the classes being referred to. We call
such forms structural types. The space of structural types is much simpler since
it is not concerned with classes or variables. A subtyping can be imposed on
structural types as well. What should hold is that, since Rec(Vtable(C), C) is a
subtype of Rec(Vtable(C)) via prefix subtyping, Rec(Vtable(?), ?) should also
be a subtype of Rec(Vtable(?)). Thus the function mapping types to their struc-
tural type should be subtype-preserving.

Any structural type has a general type as well. The general type for Rec(Vtable(?), ?)
is Rec(Vtable(α), β). Each location which can refer to a class is given its own

variable. What makes this type general is that any type can be represented by the
general type of its structural type by some mapping of the general variables to ac-
tual classes. For example, Rec(Vtable(C), C) is represented by Rec(Vtable(α), β)
by the map (α 7→ C, β 7→ C). This map, which we call a representation, means
location α has value C and location β has value C.

Many subtyping rules can be phrased in terms of general types. For example,
the subtyping rule for Rec(B, C) ≤ Rec(B) can be phrased more generally by
Rec(α, β) ≤ Rec(α). This subtyping rule has the property that all locations in
the supertype come from locations in the subtype. Rec(α, β) is the general type
for Rec(B,C). Rec(γ) is the general type for Rec(B). The subtyping rule can be
rephrased as Rec(α, β) ≤ Rec(γ)[γ 7→ α]. (γ 7→ α) specifies how locations in the
supertype acquire their value from locations in the subtype.

For some type systems all such subtype rules can be phrased in such a man-
ner. For the purposes of brevity and simplicity, we only attempt to model such
type systems in the scope of this paper. Other type systems can be modeled but
require more complex concepts to do so.

Joins The major challenge of joining existential types is that the variables in one
type have no meaning in the other type. This is why many type systems require
a bijection of variables in order to share their meaning across the existential
quantification boundary. However, this prevents even basic subtyping rules such
as Rec(C) ≤ ∃α ¿ C.Rec(α).

The approach we take does not attempt to relate the variables of the different
existential types to each other. Instead we use structural types, general types,
and generalized subtyping to find a mutual connection between the types being
existentially quantified.

Suppose we want to join ∃α ¿ C.Rec(α, C) and ∃β À C.Rec(C, β, C). In
order to deal with the fact that α has no meaning in Rec(C, β, C) and vice-
versa, we forget variables and classes altogether and look at the structural types
Rec(?, ?) and Rec(?, ?, ?). The space of structural types is much simpler, so we
determine their join in that space: Rec(?, ?). Since Rec(?, ?) is a subtype of
Rec(?, ?) and Rec(?, ?, ?), we use generalized subtyping to produce a map from
the locations in Rec(γ1, γ2) to the locations in Rec(α1, α2) and Rec(β1, β2, β3).
The locations in Rec(α1, α2) have a representation for Rec(α,C): (α1 7→ α, α2 7→
C). Similarly, Rec(C, β, C) is represented by (β1 7→ C, β2 7→ β, β3 7→ C). The
representations and generalized subtype maps can be composed to produce two
maps from the locations in Rec(γ1, γ2): (γ1 7→ α, γ2 7→ C) and (γ1 7→ C, γ2 7→ β).
From this we produce a new representation which has all the properties that
both of these representations share. For example, both representations map γ1

to something which extends C, and γ2 to something extended by C. Also, both
representations map γ1 to something extending what γ2 maps to. This results
in a new type ∃δ ¿ C ¿ δ′.Rec(δ, δ′), which joins the two existential types.

Requirements To summarize, this framework for joining existential types has
three requirements. The first is that structural types have joins. The second

is that for every subtype rule, the values for the ‘locations’ in the supertype
come from values in the subtype. The third is that bounds and substitutions
need to have a factorization structure. This third requirement is explained in
the following section, and an example based on iTal is provided in Section 6.

There is a fourth requirement for this framework to be applied practically.
The representations for non-existential types need to be valid substitutions of
existential types and need to be tight with respect to the factorization struc-
ture. Without this, non-existential types either cannot be expressed or cannot
be joined using existential types. To see this, consider a traditional usage of
existential types for which variables can only map to variables in substitutions.
In this type system, Ins(C) and Ins(X) do not have the join ∃α.Ins(α) since α
cannot be substituted with C or X in the subtyping since they are not variables.
The general type for Ins(C) is Ins(α), but the representation (α 7→ C) is not a
valid substitution of existential types since variables cannot map to constants.
Hence this traditional usage of existential types does not have joins.

Computability This framework only provides the construction of the join, it
does not show that the construction is computable (for reasons described in the
future research section). In addition, if this is to be used for abstract interpre-
tation [5], then there is most likely the additional requirement that existential
subtyping is well-founded (no infinite sequences of strict supertypes). Although
this framework does not answer this question, it does offer some help. If struc-
tural subtyping is well-founded, then all that needs to be shown is that, for a
fixed number of ‘variables’, bounds are well-founded with respect to weakening.
For example, the bound α ¿ C is weaker than the bound α ¿ B when B ex-
tends C. If subclassing in Θ is well-founded, then weakening of bounds with one
variable α is also well-founded.

5 Formalization of the Framework

The concepts and processes described informally above can all be formalized
using (mostly basic) category theory. The approach is somewhat unconventional,
as are the definitions, so we will explain them in detail. Readers uninterested in
formalization may want to just read about factorization structures and skip to
Section 6 or jump straight to Section 8. Readers not comfortable with category
may prefer our ground-up explanation of this framework [19]

Basic Type Systems Rather than viewing the type Rec(α) as a type with a
free variable α, we view it as a type defined in the environment with a class called
α. Similarly, the type Rec(C) is a type defined in the environment with a class
called C. Rec(α) and Rec(C) are both types defined in the environment with
both classes α and C. At this point, variables and constants are interchangeable.
Their distinction only occurs in another context described later.

The map (α 7→ C) : {α} → {C} extends to a substitution mapping types de-
fined in the environment {α} to types defined in the environment {C}. Similarly

for the inclusion (α 7→ α) : {α} → {α,C} or the map (C 7→ α) : {C} → {α}.
Thus maps between environments can be extended to maps between type spaces.

This process can by formalized by a functor Type : Env → Prost. Env is
some category of environments. For the sample type system in this section, Env
is partially ordered sets and relation-preserving functions. Prost is the category
of preordered sets and relation-preserving functions. Type assigns an environ-
ment E to the set Type(E) of non-existential types defined in that environment
equipped with the subtyping relation in that environment. Type assigns envi-
ronment maps f to subtype-preserving substitutions [f] mapping types defined
in one environment to types defined in another environment.

Existential Types Rather than viewing ∃α as something which bounds the
free variable α in Rec(α), view it as something which extends the environment
by introducing a new variable, producing a new environment which Rec(α) is
defined in. Suppose Θ is the environment with no variables representing the class
hierarchy defined by the program. Θ[α] then is the environment Θ plus a class
variable α. ι : Θ → Θ[α] is the map including Θ into Θ[α]. ∃α then extends Θ
via ι and Rec(α) is defined in Θ[α].

With this in mind we introduce the category Θ ↓ Env of objects over Θ.
An object of Θ ↓ Env is a morphism e : Θ → E of Env from Θ to some

environment E . A morphism f : (Θ e−→ E) → (Θ e′−→ E ′) of Θ ↓ Env is a
morphism f : E → E ′ of Env such that e; f = e′. (Note that we use ; instead of
◦ for reverse composition.) In other words, f needs to preserve the structure of
Θ within E and E ′ specified by e and e′.

Here is where variables and constants become distinguishable. Say Θ is {C}.
Let ιC : {C} → {C, α} be the inclusion function. Then the map (C 7→ α, α 7→
α) : {C,α} → {C, α} is not a morphism in Θ ↓ Env from ιC to ιC . The
additional structure specified by ιC forces the constant C to stay fixed.

With this an existential type can be viewed as an object Θ
e−→ E of Θ ↓ Env

and a type τ defined in the type space Type(E) for the extended environment.
This type is expressed as ∃e.τ . So what was expressed as ∃α.Rec(α) is now
expressed as ∃ι.Rec(α) where ι : Θ → Θ[α]. ∃e.τ is a subtype of ∃e′.τ ′ when
there is a morphism f : e′ → e of Θ ↓ Env with the property that τ is a
subtype of τ ′[f] in the type space for E . Non-existential types can be inserted
into this framework by viewing them as types defined in the trivial extension
id Θ : Θ → Θ. ∃id Θ.τ is a subtype of ∃e′.τ ′ precisely when τ models ∃e′.τ ′ in the
sense described earlier.

For purposes of simplification and generality, we will model the bounds for
existential types as EnvΘ which then has a functor Type : EnvΘ → Prost
specifying the types definable in the bounded space. Typically EnvΘ will be
Θ ↓ Env or some closely related category, with Type specifying the type space
of the extended environment. With this we define the category ∃TypeΘ. The
objects are a pair 〈e, τ〉 where e is an object of EnvΘ and τ is a type in Type(e).
A morphism f : 〈e, τ〉 → 〈e′, τ ′〉 in ∃TypeΘ is a morphism f : e → e′ of EnvΘ

with the property that τ ′ is a subtype of τ [f] in Type(e′). Thus f serves as
evidence that ∃e′.τ ′ is a subtype of ∃e.τ . f is called strict if in fact τ ′ = τ [f].

Structural Types The structural type Rec(?) can also be interpreted as a type
defined in the somewhat trivial environment {?}. We model the triviality of {?}
more generally as being the terminal object F of the category EnvΘ. F being
a terminal object means that every object e of EnvΘ has exactly one morphism
to F, denoted as !e : e → F (or simply as !). So, given a type τ ∈ Type(e), the
structural type is τ [!e] ∈ Type(F). A terminal object in Set, the category of sets
and functions, is a singleton set, such as {?}.

General Types Type(F) is a preordered set, which can be made into a cate-
gory. Type(F)op is the category with objects being structural types and with a
unique morphism from τ to τ ′ when τ is a structural supertype of τ ′.

We represent generalization as a functor GenF : Type(F)op → ∃TypeΘ.
GenF(τ) specifies the general type and environment for the structural type τ .
For example, GenF(Rec(?, ?)) is 〈Θ[α, β], Rec(α, β)〉. Given two structural types
τ ≥ τ ′, GenF(τ ≥ τ ′) : GenF(τ) → GenF(τ ′) specifies where the locations in
τ come from in the locations of τ ′ to make the subtyping hold. For example,
GenF(Rec(?) ≥ Rec(?, ?)) : 〈Θ[γ], Rec(γ)〉 → 〈Θ[α, β], Rec(α, β)〉 is (γ 7→ α).
This is the formalization of generalized subtyping.

GenF can be extended to a functor Gen : ∃TypeΘ → ∃TypeΘ by Gen(〈e, τ〉) =
GenF(τ [!e]). Given f : 〈e, τ〉 → 〈e′, τ ′〉, then τ [f] ≥ τ ′ so τ [!e] = τ [f][!e′] ≥ τ ′[!e′].
Therefore we can define Gen(f) as Gen(τ [!e] ≥ τ ′[!e′]). Gen maps an existential
subtyping to the generelized subtyping behind it.

Representations We model representations by a strict natural transformation
rep : Gen → Id∃TypeΘ

. This specifies for each 〈e, τ〉 a strict morphism rep〈e,τ〉 :
GenF(τ [!]) → 〈e, τ〉 mapping the locations in τ to their values in the extended
environment e. Naturality captures the idea that representations interact well
with subtyping and substitution.

Factorization Structures Here we need to investigate a lesser known concept
from category theory known as factorization structures. We do so by observing
properties of Set and then generalizing to other categories.

In Set, any function f : X → Y can be factored into a surjection and an

injection: X f∗−−−−³ f [X]
im(f)

↪−−−→ Y. f [X] is the image of f and can be defined in
two ways. The first defines a subset of Y: {f(x) | x ∈ X}. The second groups
elements of X into equivalence classes: X/∼ where x ∼ x′ is defined as f(x) =
f(x′). f∗ : X ³ f [X] is the surjective function mapping elements of X to their
equivalence classes. im(f) : f [X] ↪→ Y is the injective inclusion of the subset of
Y into Y. This ability to factor every function into a surjection and injection
means Set has (Surjection, Injection)-factorizations.

Set has a more interesting but lesser-known property. Suppose the following
commutes in Set:

A B

C D

...
e

..
...
.........
...

f
..
...
.........
...
g

...
............ m

where e is surjective and m is injective. Define d : B → C by ∀a ∈ A. d(e(a)) =
f(a). This turns out to be a well-defined function since e is surjective, m is
injective, and the square commutes. d then is the unique diagonal making the
following commute:

A B

C D

...
e

..
...
.........
...

f
..
...
.........
...
g

...
............

m

.............
.............

.............
......................

...
............

d

The fact that such a d always exists and is unique in these situations means that
Set has unique (Surjection, Injection)-diagonalizations.

These concepts can be generalized to sources. A source is an indexed family

of morphisms all with the same domain, denoted by (A
fi−→ Bi)i∈I . A mono-

source in Set is a source with the property that ∀a, b ∈ A.
(∀i ∈ I. fi(a) =

fi(b)
) ⇒ a = b, which generalizes injections. In Set, any source (A fi−→ Bi)i∈I

can be factored into a surjection e : A ³ Ã and a mono-source (Ã mi−−→ Bi)i∈I
(meaning ∀i ∈ I. e; mi = fi). This property means Set has (Surjection, Mono-
Source)-factorizations.

Similarly, if the following diagram commutes in Set for all i ∈ I:

A B

C Di

...
e

..
...
.........
...

f
..
...
.........
...
gi

...
mi

where e is surjective and (C mi−−→ Di)i∈I is a mono-source, then there is a unique
diagonal d : B → C commuting for all i ∈ I. This property means Set has unique
(Surjection, Mono-Source)-diagonalizations.

To generalize this, replace Set with an arbitrary category, surjection with a
class E of morphisms in that category, and mono-source with a conglomerate M
of sources in that category. A category has an (E ,M) factorization structure if it
has both (E ,M)-factorizations and unique (E ,M)-diagonalizations. We assume
EnvΘ has some such factorization structure for finite sources.

E should be as large as possible, ideally being all epimorphisms in the cate-
gory. The intuition behind factorization is that it makes an intermediate object
with as many things true in it as possible. For example, defining f [X] as X/∼
demonstrates the idea of adding all equalities over X which f permits.

Tight Bounds The existential type ∃α ¿ β.Rec(α) has the unused variable
β. For the purposes of joining, the bound of an existential type needs to be
tight with respect to the quantified type. We formalize this using the (E ,M)
factorization structure of EnvΘ. The bound for ∃e.τ is tight if rep〈e,τ〉 belongs
to E . Typically this means something like every variable introduced by e is used
by a location of τ since rep〈e,τ〉 is surjective in some sense.

If an existential type is not tight, there is a smallest tight existential su-
pertype. Given ∃e.τ , factor rep〈e,τ〉 : Gen(τ [!]) → e into an E-morphism r :
Gen(τ [!]) → ẽ and an M-morphism m : ẽ → e. Suppose τ̃ is the general type
for τ , then ∃ẽ.τ̃ [r] is a tight existential supertype of ∃e.τ as evidenced by m.
In addition, ∃ẽ.τ̃ [r] is a subtype of all other tight existential supertypes of ∃e.τ
because EnvΘ has (E ,M)-diagonalizations.

Joins Given two existential types ∃e1.τ1 and ∃e2.τ2, the join can be constructed
as follows. First, let τt = τ1[!] tF τ2[!], the structural join. Then τ1[!] ≤ τt and
τ2[!] ≤ τt, so there is the following 2-source and its (E ,M)-factorization:

Gen(τt)

Gen(τ1[!]) Gen(τ2[!])

ẽ

e1 e2

...

Gen(τt ≥ τ1[!])
Gen(τt ≥ τ2[!])

..
...
.........
...
r

..
...
.........
...

rep〈e1,τ1〉
..
...
.........
...
rep〈e2,τ2〉.. m1

..m2

Let 〈G̃ , τ̃〉 be Gen(τt). The join is ∃ẽ.τ̃ [r], which is a supertype via m1 and m2.
Suppose ∃e.τ is a tight existential supertype of both ∃e1.τ1 and ∃e2.τ2 as

evidenced by f1 : e → e1 and f2 : e → e2. Then τ1[!] ≤ τ [!] and τ2[!] ≤ τ [!] so,
by property of joins, τt ≤ τ [!]. This means there is the following commutative
diagram with induced (E ,M)-diagonalization d :

Gen(τ [!])

e Gen(τt)

Gen(τ1[!]) Gen(τ2[!])

ẽ

e1 e2

..
..
............

Gen

..
.

Gen

...
...
Gen

..
...
.........
...

rep

..
..
............

f1

..
.

f2

.............
.............

.............
............
...d

...

Gen
Gen

..
...
.........
...

r
..
...
.........
...

rep
..
...
.........
...
rep...

m1

...m2

It is simple to verify τ̃ [r] ≤ τ [d]. Therefore ∃ẽ.τ̃ [r] is a subtype of ∃e.τ via d .
To get an intuition of what is happening, we will break the join process down

into a few steps. First r1 : Gen(τt) → e1, defined as Gen(τt ≥ τ1[!]); rep〈e1,τ1〉,
and r2, defined similarly, specify the values the locations of τt have in both e1
and e2. The factorization produces a representation r in which everything that
is true for both r1 and r2 is true for r . If two locations map to equal values by

both r1 and r2, then they will map to equal values by r . If a location maps to
values with the same property, such as ‘is a subclass of C’, then the location will
map to a value with that property by r . Therefore the joined existential type
will have as few variables as possible with as many constraints as possible.

Requirements An existential type system fits our framework for joining tight
existential types if it satisfies the following properties. There is a category EnvΘ

of existential bounds and valid assignments of variables. There is a functor Type :
EnvΘ → Prost specifying the non-existential type system for a fixed bound
and the substitution for an assignment of variables. There is a choice of finite
factorization structure (E ,M) for EnvΘ, preferring E to be as large as possible.
There is a choice of terminal object F of EnvΘ. The preordered set Type(F)
has joins. There is a functor GenF : Type(F)op → ∃TypeΘ. There is a strict
natural transformation rep : Gen → Id∃TypeΘ

.
This may seem like a lot of requirements, but most of them hold for any

type system. The key non-trivial requirements are joins for Type(F), the mor-
phism component of GenF, and the factorization structure of EnvΘ. There is
also one more requirement for practical purposes. There must be a Θ ∈ EnvΘ

whose types are the non-existential types, and, for all non-existential types τ in
Type(Θ), rep〈Θ,τ〉 must belong to E .

The following section provides a concrete construction of a factorization
structure. The technical report [19] provides tools for constructing categories
with useful factorization structures and other desirable properties. The techni-
cal report also has a generalization of this framework using factorization struc-
tures for functors [1]. This generalization offers a lot more flexibility and allows
generalized types and F to be defined independently of Θ.

6 Joins in iTal

Joins of structural types in iTal are very simple: produce the structural state
type with only the registers mapping to the same structural type in both state
types being joined. Subtyping in iTal also has the property that all the locations
in supertypes acquire their values from subtypes, since supertypes simply drop
registers. The only requirement of the framework left to show is that the category
of bounds and substitutions has a useful factorization structure. This section
demonstrates how to construct and prove such a factorization structure. Then
joins in iTal can be computed using the process defined by the framework, which
is what the join algorithm for iTal implements.

A bound in iTal defines a finite set of variables V and a map boundV : V → Θ.
These form the objects V of EnvΘ. Using boundV , V and Θ can be combined
into a single partially ordered set Θ[V]. Each valid substitutition defines a map
f : V → Θ[W] with the property that ∀α ∈ V. f(α) ¿ boundV (α) in Θ[W].
These form the morphisms f of EnvΘ. f can be extended to Θ[V] by mapping
elements of Θ to themselves in Θ[W].

Here we manually construct the factorization structure of this category. Note
that there are many existing constructive theorems on this topic [1, 19] so this
process rarely needs to be done by hand. We provide this to give a concrete
applied example of the process behind computing and proving joins. The con-
struction relies on the fact that Θ has least common superclasses, which always
holds in iTal due to single-inheritance.

E-Morphisms We define E to be the class of morphisms which are surjective
onto variables. More formally, f : V → W belongs to E whenever ∀γ ∈ W. ∃α ∈
V. f(α) = γ. Every variable in W is mapped to by some variable in V via f .

M-Sources We define M to be the conglomorate of mono-sources reflecting

subclasses. More formally, (V
fi−→ Wi)i∈I belongs to M whenever (Θ[V]

fi−→
Θ[Wi])i∈M is a mono-source in Set and ∀α ∈ V. ∀C ∈ Θ. (∀i ∈ I. fi(α) ¿
C in Θ[Wi]) ⇒ α ¿ C in Θ[V]. The second condition can be interpreted as
holding whenever subclassing is defined as strongly as possible in V while keeping
every fi relation-preserving.

(E, M)-Factorizations Given a source (V
fi−→ Wi)i∈I construct the (E ,M)-

factorization as follows. Define the equivalence ∼ on V by α ∼ β means ∀i ∈
I. fi(α) = fi(β). Then V/∼ is the set of ∼ equivalence classes of V. Let Ṽ be
the subset of V/∼ after removing the equivalence classes which are mapped to
the same element of Θ by every fi (in other words, remove the variables whose
assignments are constant across all fi). Define boundṼ (〈α〉) as the least common
superclass of {boundWi

(fi(α)) | i ∈ I} in Θ.

Define e : V → Θ[Ṽ] as e(α) =

{
〈α〉 ∈ Ṽ 〈α〉
〈α〉 /∈ Ṽ fi(α) for arbitrary choice of i ∈ I .

For each i ∈ I, define mi : Ṽ → Θ[Wi] as mi(〈α〉) = fi(α). The proofs that these
are all proper objects and morphisms, that e belongs to E , and that (Ṽ mi−→ Wi)i∈I
belongs to M are left to the diligent reader.

(E, M)-Diagonalizations Now suppose we have A e−→ B
gi−→ Di = A

f−→ C mi−→
Di holding for all i ∈ I with e in E and (C mi−→ Di)i∈I in M. Construct the
function d : B → Θ[C] by ∀α ∈ A. d(e(α)) = f(α). d is a well-defined function
since e is surjective onto B and (Θ[C] mi−−→ Θ[Di])i∈I is a mono-source in Set.

What still needs to be shown is that d : B → Θ[C] is valid. Given β ∈ B,
then ∀i ∈ I. mi(d(β)) = gi(β) ¿ boundB(β) in Θ[Di]. By definition of M, this
implies d(β) ¿ boundB(β) in Θ[C]. Therefore d is a proper morphism d : B → C .

7 Operations in the Framework

Besides subtyping and joining, there are other common operations necessary
for working with existential types. Here I formalize the theory behind these
operations and why they make sense.

Introducing Variables Often there are types representing nested existential
types. In our sample type system, there is the type ∃∃α ¿ ω.Rec(α). At certain
points the nested existential bound is pulled out into the outer existential. This
is done by introducing a new variable bounded by ω. Since this is a common
process for existential types, it is useful to express it categorically in the same
terms as the framework.

Suppose we have some existential type ∃e.τ . We also have some choice of
value v(ω) for ω in e. We want to build a new bound e′ by adding a bounded
variable to e. What should hold is that any assignment a : e → Θ and any choice
of subclass C of a(v(ω)) extends into an assignment aC : e′ → Θ. The choice of C
can be thought of as an assignment tC : (α ¿ ω) → Θ for which t(ω) = a(v(ω)).
This can be phrased categorically as whenever the following commutes:

(ω) (α ¿ ω)

e Θ

...................................
ιω

..
...
.........
...

v
..
...
.........
...
t

...

a

then the following unique commuting assignment is induced:

e e′ v ′

Θ

...
ιe ...

v ′
...

...
a

..
...
............

t

.............

.............

.........
...
.........
...
at

where ιe includes e into the extended environment e′, and v ′ assigns ω to v(ω)
and includes α into the extended environment e′.

The commuting square

(ω) (α ¿ ω)

e e′

...................................
ιω

..
...
.........
...

v
..
...
.........
...
v ′

...

ιe

with this property of inducing assignments is known as a pushout square. So the
process of introducing variables takes a template (α ¿ ω) with parameter ω and
an instantion v of ω in the bound e and constructs the pushout e[α ¿ v(ω)].

Readers unfamiliar with this concept should consider the following example.
Suppose we have ∃β ¿ C.∃∃α ¿ β.Rec(α, β). Intuitively, this should open into

∃α ¿ β ¿ C.Rec(α, β). To prove this, convince yourself that the following is a
pushout square in Θ ↓ Prost (where the inclusions have the obvious definitions):

Θ[ω] Θ[α ¿ ω]

Θ[β ¿ C] Θ[α ¿ β ¿ C]

...
............ ιω

..
...
.........
...

ω 7→ β
..
...
.........
...
ω 7→ β

..
............

ι

Adding Constraints Often analyses exploit comparisons made in branch con-
ditions to infer properties which must hold in the branch. One particularly im-
portant comparison for object-oriented languages is Runtime(α) = Runtime(β).
If this holds, then α = β, since runtime tags are unique to each class. To en-
code this in existential types, the existential bound should be adjusted so that
α and β become the same variable having the combined properties that α and β
had. What should hold is that any assignment a of the old existential bound for
which a(α) = a(β) should also be an assignment of the new existential bound.
This property can be encoded using the categorical concept called coequalizers.
Rather than introduce a new concept, there is a more general solution which can
also encode new information like α ¿ β. This more general solution is, again,
pushouts.

Using intuition much like with introducing new variables, the following forms
a pushout in Θ ↓ Prost (where the inclusions have the obvious definitions):

Θ[α, β] Θ[γ]

Θ[A ¿ α][β ¿ C] Θ[A ¿ γ ¿ C]

..
α, β 7→ γ

..
...
.........
...

........................ ..
...
.........
...

........................

..

α, β 7→ γ

The top map forces α and β to merge in value in the new environment. If the
top map were Θ[α, β] ↪→ Θ[α ¿ β], then it would force α to extend β in the
new environment.

Coequalizers, pushouts, and other devices are very common in naturally con-
structed categories like Θ ↓ Prost.

8 Flexibility of the Framework

This framework is able to handle type systems much more complex than iTal.
After requiring generalized subtyping, the real challenge and power of existential
types lie in the bounds. Here we investigate how various features can be expressed
in the bounds. All the constructions provided below use natural processes which
guarantee the presence of a useful factorization structure.

Interfaces Interfaces can be handled extremely simply. Unfortunately, com-
putability of joins presents some major problems because of multiple inheritance.
Depending on circumstances, more complex solutions may be necessary.

First, the simple solution. In iTal, every environment is a partially ordered
set. For interfaces, we need to add two more unary relations: IsClass and IsInterface.
These relations have their obvious interpretations. What may seem counterintu-
itive, though, is that not every item has either property IsClass or IsInterface.
This is due to the fact that a variable α may need to be able to represent both
classes and interfaces. If IsClass(α) holds, then α can only represent classes. With
this, we can add additional properties like ∀α ¿ β. IsClass(β) ⇒ IsClass(α). So
long as nothing can implement an infinite set of interfaces, then joins are com-
putable because iTal only allows upper-bounds for variables (provided we allow
variables to have multiple upper-bounds).

If, however, variables could have lower-bounds as well, computability may
not be so simple. If no interface is extended by an infinite set of interfaces or
classes, then joins are still computable. If not, then perhaps there is a finite set of
interfaces/classes which represents the infinite set. If this finite set is computable,
then joins are computable. In fact, if subclassing is co-well-founded, then weak-
ening of bounds is well-founded. If there is no finite representing set, we can use
pseudo-interfaces representing sets of interfaces with a common subclass in order
to make subclassing have necessary joins. Then, again, joins are computable. In
fact, if there is a global bound on the number of interfaces implemented by any
class, then weakening of bounds is still well-founded.

Generics and Arrays Interestingly, for class systems where arrays are classes
themselves, the solution for handling arrays is about the same as the solution
for handling generics. In fact, computing this solution is generally simpler than
for interfaces, and it has strong connections to unification.

The fundamental concept is partial mono-algebras. A mono-algebra is a set
with some operators and the operators are injective. For example, say there is
an operator Array which maps a class to its array class. Distinct classes have
distinct array classes, so Array is injective. A partial mono-algebra is like a
mono-algebra except its operators may not be defined for all arguments. For
example, suppose the SortedList generic is only defined on classes implementing
Comparable; then, when considered as an operator on the set of classes, it is
only a partial operator.

The fact that the operators are injective is extremely important when con-
sidering factorizations. Suppose we want to join Map(SortedList(B), Array(C))
and Map(SortedList(X), SortedList(Y)). Because these operators are injective,
the join will be ∃α, β.Map(SortedList(α), β), which is what we might expect. If
SortedList were not injective, then the join would have to be ∃α, β.Map(α, β)
for reasons we will not go into here. Interestingly, the algorithm for computing
this join uses a process much like unification.

Mono-algebras also allow for more powerful rules in your bounds. One such
rule which is particularly important for handling covariant arrays is ∀α, β. α ¿

Array(β) ⇒ (∃γ. α = Array(γ) ∧ γ ¿ β). If Array were not injective and
this rule were enforced, then the factorization structure would be lost so joins
may not always exist. For the interested reader, these rules are expressed cate-
gorically using implications [1], and appropriate implications interact well with
factorization structures.

Array Bounds Checking Array bounds checking can be expressed by existen-
tial types using the theory of ordered rings. This theory can be rather complex,
so often the simpler theory of ordered sets acted on by the integers is used
instead. Suppose there is one integer variable n. Then items in the correspond-
ing set look like a ∗ n + b, where a and b are integer constants, a very simple
form of polynomials. Since this set is ordered, bounds may look something like
0 ≤ n ≤ ` − 1 where ` is an integer variable representing the length of some
array. Under this bound, it is safe to access the array with length ` at index n.
A more complex scenario would be the bound 0 ≤ 2 ∗ n ≤ ` − 2, which makes
it safe to index by n, n + 1, 2 ∗ n, and 2 ∗ n + 1, which may be useful when an
array has some alternating structure.

The variable ` needs to be introduced at some point. Rather than using the
type Int[] to represent arrays of integers, one could use the type Int[`] where `
is some integer. Any field, parameter, or return type that originally was Int[]
would be changed to the type ∃` ≥ 0.Int[`]. Then the usual opening process
would pull ` into the outer existential bound whenever possible in the same way
∃α ¿ C.Ins(α) is handled. The original type of operation length : Int[] → Int
would be changed to Int[`] → `. Then on the true branch of the comparison
i < length(a), where i has type n and a has type Int[`], the constraint n ≤ `−1
is added to the bound using techniques described in the technical report [19].

Fortunately, joins are computable. Unfortunately, weakening of bounds is not
well-founded as demonstrated by the sequence (n ≤ 0, n ≤ 1, n ≤ 2, . . .). In this
case, there are domain-specific techniques for making type inference decidable.

9 Shortcomings and Future Research

Although extremely useful, this framework has a few shortcomings. Some are
unavoidable while others we believe can be improved upon. Below are the major
concerns we have and how we hope to solve them in future research.

Null Pointers A common subtype rule is null ≤ Ins(α) for any α. Unfor-
tunately, this does not fit into our framework because the value for α does
not come from within the type null. This is for good reason though, since
adding such a rule makes joins impossible. Consider the following two types:
τα = ∃α.Rec(null, α, null) and τβ = ∃β, β′.Rec(β, null, β′). The join would
have the structure τ? = Rec(?, ?, ?). Now consider the following two supertypes
of τα and τβ : τγ = ∃γ, γ′.Rec(γ, γ, γ′) and τδ = ∃δ, δ′.Rec(δ, δ′, δ′). The only
common subtype of τγ and τδ with structure τ? is τρ = ∃ρ.Rec(ρ, ρ, ρ). But τρ

is not a supertype of τβ , so τα and τβ cannot have a join. Fortunately, we have
always managed to find alternate solutions to rules of this form.

Covariance Another common rule expresses covariant types. Suppose SubIns(C)
represents instances of subclasses of C. Then SubIns(α) is a subtype of SubIns(β)
whenever α is a subclass of β. Again, this rule does not fit into our framework,
and again it is for good reason. Using this rule, there are only joins when the
inheritance hierarchy has joins, regardless of computability. To model such re-
quirements takes 2-categories. 2-categories are a rather advanced theory, so we
have left this to future research. Fortunately, the power of existential types tends
to make such subtypings either unnecessary or circumnavigatable.

Computability Although this framework gives a construction of joins it may
not always be the case that this construction is computable. This makes sense
since typically the construction of joins relies on properties and operations on
Θ, so if these operations are not computable then the existential join will not be
computable. There are a few potential solutions. One expresses these concepts in
terms of the category of computable sets and functions rather than Set. Another
uses the concept of finitely representable sets and coequalizers. We have left this
to future research since this framework provides the construction and proof of
the join, which is often the more difficult component to identify. Each instance
of the framework, then, can use the full power of the properties specific to that
instance when determining how to compute this explicit construction.

High-Level Languages So far all applications we have of this framework have
been to low-level languages. However, there is no requirement of the framework
that resticts it to such domains. There just tends to be more need for existential
types in low-level contexts. This framework makes the standard “pack” and “un-
pack” operations implicit. Removing the need for these cumbersome operations
may make existential types more accessible to programmers. In particular, exis-
tentially quantifying generics allows for improved type safety and greater mod-
ularity of implementation. We hope to combine the above techniques to provide
a high-level object-oriented language with existentially quantified generics.

10 Conclusions

We have introduced a category-theoretic framework for existential types. The
framework uses factorization structures to generate joins for existential types, so
that a dataflow analysis can use the joins to infer types in imperative programs.
This inference is powerful enough to infer types in a small object-oriented typed
assembly language, iTal, even though each iTal method’s assembly language code
omits all type annotations, except for the method’s type signature.

The framework applies to languages beyond iTal. Any type system can exploit
the framework if it satisfies these requirements: the types’ underlying structure

supports joins, the values in the ‘locations’ in the supertype come from the values
in the subtype, and the bounds and substitutions have factorization structures.
Many type systems satisfy these requirements, so that the framework describes
many features beyond iTal’s features: existential quantification with multiple
upper and lower bounds, interfaces, arrays, generics, and array bounds checks. In
addition to low-level languages, we hope to explore the impact of this framework
on high-level languages.

References

1. J. Adámek, H. Herrlich, and G. Strecker. Abstract and concrete categories. Wiley-
Interscience, New York, NY, USA, 1990.

2. B. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. Type-based verification
of assembly language for compiler debugging. In ACM international workshop on
Types in languages design and implementation, pages 91–102, 2005.

3. J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and P. Pratikaki.
Type-preserving compilation for large-scale optimizing object-oriented compilers.
In ACM conference on Programming language design and implementation, pages
183–192, 2008.

4. J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symp. on Principles of Programming Languages, pages 38–49,
2005.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.

6. A. Goldberg. A specification of java loading and bytecode verification. In ACM
conference on Computer and communications security, pages 49–58, 1998.

7. M. P. Jones. First-class polymorphism with type inference. In ACM symposium
on Principles of programming languages, pages 483–496, 1997.

8. D. Le Botlan and D. Rémy. MLF: Raising ML to the power of System F. In ACM
International Conference on Functional Programming, pages 27–38, 2003.

9. C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of Featherweight
Java. ACM Trans. on Programming Languages and Systems, 24(2):112–152, 2002.

10. D. Leijen. HMF: Simple type inference for first-class polymorphism. In ACM symp.
of the International Conference on Functional Programming, September 2008.

11. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Sun Microsys-
tems, 2nd edition, 1999.

12. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

13. G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker,
S. Weirich, and S. Zdancewic. TALx86: A realistic typed assembly language. In
ACM Workshop on Compiler Support for System Software, pages 25–35, 1999.

14. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly
language. Journal of Functional Programming, 13(5):957–959, 2003.

15. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language. In ACM Trans. on Programming Languages and Systems, volume 21,
pages 527–568. ACM Press, 1999.

16. G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In Sym-
posium on Operating Systems Design and Implementation, pages 229–243, 1996.

17. M. Odersky and P. Wadler. Pizza into java: translating theory into practice. In
ACM symposium on Principles of programming languages, pages 146–159, 1997.

18. B. C. Pierce and D. N. Turner. Local type inference. In ACM symposium on
Principles of programming languages, pages 252–265, 1998.

19. R. Tate, J. Chen, and C. Hawblitzel. A framework for type inference with exis-
tential quantification. Technical report, University of California, San Diego and
Microsoft Research, Redmond, http://cs.ucsd.edu/ rtate/existentials/, 2008.

20. J. B. Wells. Typability and type checking in system f are equivalent and undecid-
able. Annals of Pure and Applied Logic, 98:111–156, 1999.

A Source Language

The source language is a simple object-oriented language that supports object
creation, field fetch, and virtual method invocation. The semantics of the source
language is trivial and thus omitted here.

τ ::= C | Int
e ::= n | x | e.f
s ::= e1.f := e2 | x := e | e.m(e1, . . . , en) | s1; s2 | if (e) s1 else s2

mdecl ::= m(x1 : τ1, . . . , xn : τn){s}
cdecl ::= C : B{l1 : τ1, . . . , ln : τn, mdecl1, . . . , mdeclm}
H ::= ` 7→ ins(C){{v1, . . . , vn}}
P ::= (cdecl1, . . . , cdecln; H; s)

B Translation from Source to iTal

Assume the target language has an infinite set of registers. For each source
language variable x, there is a unique correponding register rx. Different source
language variables will not map to the same register in the target language.

Translation of Types. |τ | means translation of types. A source class name C is
translated to an existential type in iTal ∃α¿C. Ins(α).

|Int| = Int
|C| = ∃α¿C. Ins(α)

Translation of Programs. The translation of a source program translates each
class declaration in the program, builds on the heap functions for the methods
and vtables for the classes, and translates the “main” statement. We assume
there exist a frame sequence

−→
F where “main” returns, which are often provided

by the operating system.

|cdecli| = (cdecl′i,Hi) ∀1 ≤ i ≤ n H ′
0 = H0; H1, . . . , Hn

|(s, •, `main, •)| = (
−→
b , `,−→ιs)

−→
b ′ =

−→
b ; (` : −→ιs ; ret)

H = H ′
0, `main 7→ ∃•.•{−→b ′}

|(cdecl1, . . . , cdecln; H0; s)| = (H, (•; jmp `main) ::
−→
F)

Translation of Class Declarations. The translation of a source class declaration
returns a class declaration in iTal and a heap that contains functions for the
methods and the vtable for the class. The source class declaration includes the
method body for each method, whereas the iTal class declaration includes only
method signatures. The method bodies are translated to functions on the heap.

|mdecli| = (`i, Φi,Hi)∀1 ≤ i ≤ m H = H1, . . . ,Hm, `C 7→ vtable(C){`1, . . . , `m}
|C : B{{li : τi}n

i=1,mdecl1, . . . , mdeclm}| = C : B{{|τi|}n
i=1, Φ1, . . . , Φm},H)

Translation of Methods. The translation of a source method returns a label that
points to the beginning of the corresponding function on the heap, the method
signature, and a heap that maps the label to the function.

|(s, •, `m, •)| = (
−→
b , `,−→ιs) H = `m 7→ {xi : |τi|}n

i=1{
−→
b , ` : (−→ιs ; ret)}

|m({xi : τi}n
i=1){s}| = (`m, {xi : |τi|}n

i=1,H)

Translation of Statements. The translation of a statement takes four inputs:
the statement, the collection of basic blocks so far, the label of the current ba-
sic block, and the instruction sequence for the current block. It produces three
outputs: the new collection of basic blocks, the label for the new current block,
and the instruction sequence for the new current block. The translation of most
statements simply adds new instructions to the current basic block. The trans-
lation of the “if” statement finishes the current block with a branch instruction,
creates two blocks for the true branch and the false branch respectively, and
creates a block for the merge point, which becomes the new current block.

|e1|r1 = −→ιs1 |e2|r2 = −→ιs2

|(e1.f := e2,
−→
b , `,−→ιs)| = (

−→
b , `, (−→ιs1;−→ιs2;mov [r1 + nf], r2))

|e|rx = −→ιs
|(x := e,

−→
b , `,−→ιs)| = (

−→
b , `,−→ιs)

|e|r = −→ιs |ei|ri = −→ιs i ∀1 ≤ i ≤ n −→ιs ′ = −→ιs ;−→ιs1; . . . ;−→ιsn; call r

|(e.m(e1, . . . , en),
−→
b , `,−→ιs)| = (

−→
b , `,−→ιs ′)

|(s1,
−→
b , `,−→ιs)| = (

−→
b 1, `1,

−→ιs1) |(s2,
−→
b 1, `1,

−→ιs1)| = (
−→
b 2, `2,

−→ιs2

|(s1; s2,
−→
b , `,−→ιs)| = (

−→
b 2, `2,

−→ιs2)

|e|r = −→ιs ′ −→
b ′ =

−→
b ; (` : −→ιs ;−→ιs ′; jz r, `t, `f)

|(s1,
−→
b ′, `t, •)| = (

−→
b t, `

′
t,
−→ιst)

−→
b ′t =

−→
b t; (`t : −→ιst; jmp `m)

|(s2,
−→
b ′t, `f , •)| = (

−→
b f , `′f ,−→ιsf)

−→
b ′f =

−→
b f ; (`′f : −→ιsf ; jmp `m)

|(if (e) s1 else s2,
−→
b , `,−→ιs)| = (

−→
b ′f , `m, •)

Translation of Expressions. The translation of an expression takes an expression
and a register and returns a sequence of instructions that move the result of the
expression to the register.

|n|r = mov r, n
|x|r = mov r, rx

|e.f |r = |e|re ;mov r, [re + nf]

C Transitivity of State Type Subtyping

Theorem 1. If Θ ` Σ1 ≤ Σ2 and Θ ` Σ2 ≤ Σ3, then Θ ` Σ1 ≤ Σ3.

Proof. Suppose Σ1 = ∃∆1.Γ1, Σ2 = ∃∆2.Γ2, and Σ3 = ∃∆3.Γ3,
By st-sub, there exists θ1 : dom(∆2) → dom(∆1)∪dom(Θ) such that Γ1(r) =

Γ2(r)[θ1] for all r ∈ dom(Γ2). And Θ; ∆1 ` θ1(α) ¿ C for all α ¿ C ∈ ∆2.
Also by st-sub, there exists θ2 : dom(∆3) → dom(∆2) ∪ dom(Θ) such that

Γ2(r) = Γ3(r)[θ2] for all r ∈ dom(Γ3). And Θ; ∆2 ` θ2(α) ¿ C for all α ¿ C ∈
∆3.

Define θ : dom(∆3) → dom(∆1) ∪ dom(Θ) as

θ(α) = C θ2(α) = C
θ(α) = θ1(θ2(α)) otherwise

For all r ∈ dom(Γ3), Γ2(r) = Γ3(r)[θ2]. Therefore, Γ2(r)[θ1] = Γ3[θ2][θ1].
Then Γ1(r) = Γ2(r)[θ1] = Γ3[θ].

For all α ¿ C ∈ ∆3, Θ;∆2 ` θ2(α) ¿ C. By Lemma 1, Θ;∆1 ` (θ2(α))[θ1] ¿
C, that is, Θ; ∆1 ` θ(α) ¿ C.

By st-sub, Θ ` Σ1 ≤ Σ3.

Lemma 1. If Θ;∆2 ` ω1 ¿ ω2, and θ1 : dom(∆2) → dom(∆1) ∪ Θ such that
Θ; ∆1 ` θ1(α) ¿ C for all α ¿ C ∈ ∆2, then Θ; ∆1 ` ω1[θ1] ¿ ω2[θ1].

Proof. By induction on subclassing rules.

D Soundness of the Target Language

Theorem 2. If Θ; Ψ ` P and P → P ′, then Θ;Ψ ` P ′.

Proof. Let P = (H; (R; ιs) ::
−→
F).

By the program typing rule, ` Θ, and Θ ` H : Ψ , and Θ; Ψ ` R : Γ , and
Θ; Ψ ; •;Γ ` ιs, and Fi = (Ri, ιsi), and Θ; Ψ ` Ri : Γi, and Θ; Ψ ; •; Γi ` ιsi,
∀1 ≤ i ≤ n.

case jmp: ιs = jmp `, and H(`) = ιs`, and P ′ = (H; (R; ιsell) ::
−→
F).

By rule t-jmp and Θ;Ψ ; •; Γ ` jmp `, Θ ` ∃•.Γ ≤ Ψc(`).
By the heap value typing rule, Θ; Ψ ; ∆`;Γ` ` ιs` if Ψc(`) = ∃∆`.Γ`.
By Lemma 2, Θ; Ψ ; •;Γ ` ιs`.
By t-prog, Θ;Ψ ` P ′.
case jeT: ιs = jz 0, `t, `f , and H(`t) = ιst, and P ′ = (H; (R; ιst) ::

−→
F).

By rule t-je, Θ ` ∃•.Γ ≤ Ψc(`t).
By well-formedness of heap, Θ; Ψ ; ∆t;Γt ` H`t if Ψc(`t) = ∃∆t.Γt.
By Lemma 2, Θ; Ψ ; •;Γ ` ιst.
By t-prog, Θ;Ψ ` P ′.
case jeF: similar to case jeT.
case bop: ιs = (bop r, n), ιs′, and P ′ = (H; (R′; ιs′) ::

−→
F), and R′ = R[r 7→

R(r) bop n].
By rule t-bop, Θ; Ψ ; •; Γ ` r : Int, and Θ; Ψ ; •;Γ ` ιs′.
By operand typing rule, Γ (r) = Int.
By register bank typing rule, Θ; Ψ ` R′ : Γ .
By t-prog, Θ;Ψ ` P ′.
case movR: ιs = (mov r, v), ιs′, and P ′ = (H; (R[r 7→ v]; ιs′) ::

−→
F).

By rule t-movR, Θ; Ψ ; •;Γ ` v : τ , and •; Γ ` {r ← τ}∆′;Γ ′, and Θ; Ψ ; ∆′; Γ ′ `
ιs′.

By the register bank typing rule, Θ; H ` R[r 7→ v] : Γ [r : τ].
By inpsection of value typing rules, τ 6= ∃α¿C. Ins(α). By asgn-e, ∆′ = ∆

and Γ ′ = Γ [r : τ].
By t-prog, Θ;Ψ ` P ′.
case movM: ιs = (mov [` + m], v), ιs′, and P ′ = (H ′; (R; ιs′) ::

−→
F), and

H(`) = ins(C){v1, . . . , vn}, and 1 ≤ m ≤ n, and H ′ = H[` 7→ ins(C){v1, . . . , vm−1, v, vm+1, . . . , vn}].

By t-movM, Θ; Ψ ; •;Γ ` ` : Ins(ω), and Θ; Ψ ; •;Γ ` [` + m] : τm, and
Θ; Ψ ; •;Γ ` v : τ , and Θ; • ` τm ←↩ τ , and Θ; Ψ ; •; Γ ` ιs′.

By the operand typing rule and Θ;Ψ ; •; Γ ` ` : Ins(ω), Θ; • ` ω ¿ B, and
Θ(B) = B : τ1, . . . , τn, and 1 ≤ m ≤ n.

By heap value typing rule, ω = C, and Θ;Ψ ` H ′(`) : Ψ(`).
By t-prog, Θ;Ψ ` P ′.
case call: ιs = call `; ιs′, and P ′ = (H; (R′; ιs1) :: (R; ιs′) ::

−→
F), and H(`) =

Φ {`1 : ιs1, . . . , `n : ιsn}, and R′(r) = R(r), ∀r ∈ dom(Φ).
By t-call, Θ;Ψ ; •; Γ ` ` : Code({ri : τi}n

i=1), and Θ; Ψ ; •; Γ ` ιs′, and Θ; • `
τi ←↩ Γ (ri), ∀1 ≤ i ≤ n.

By vt-lbl, t-heap, and hv-func, Φ = {ri : τi}n
i=1, and Ψc(`1) = unpack(Φ),

and Ψc(`1) = ∃∆1.Γ1, and Θ; Ψ ; ∆1; Γ1 ` ιs1.
By the definition of R′, Θ;Ψ ` R′ : Γ ′ where Γ ′(ri) = Γ (ri)∀1 ≤ i ≤ n.
By Lemma 3 Θ ` ∃•.Γ ′ ≤ Ψc(`1).
By Lemma 2, Θ; Ψ ; •;Γ ′ ` ιs1. By t-prog, Θ;Ψ ` P ′.
case ret: instrs = ret, and P ′ = (H;

−→
F).

By t-prog, Θ;Ψ ` P ′.

Lemma 2. If Θ; Ψ ; ∆′; Γ ′ ` ιs and Θ ` ∃•.Γ ≤ ∃∆′.Γ ′, then Θ;Ψ ; •; Γ ` ιs.

Proof. By induction on the instruction typing rules.
case t-ret: trivial.
case t-jmp: ιs = jmp `, and Θ ` ∃∆′.Γ ′ ≤ Ψc(`).
By Theorem 1, Θ ` ∃•.Γ ≤ Ψc(`).
By t-jmp, Θ; Ψ ; •;Γ ` ιs.
case t-je: ιs = jz o, `t, `f , and Θ; Ψ ; kenv′; Γ ′ ` o : Int, and Θ ` ∃∆′.Γ ′ ≤

Ψc(`t), and Θ ` ∃∆′.Γ ′ ≤ Ψc(`f).
By Lemma 4, Θ; Ψ ; •;Γ ` o : Int.
By Theorem 1, Θ ` ∃•.Γ ≤ Ψc(`t) and Θ ` ∃•.Γ ≤ Ψc(`f).
By t-je, Θ; Ψ ; •; Γ ` ιs.
case t-call: ιs = call o; ιs′, and Θ;Ψ ;∆′;Γ ′ ` o : Code({ri : τi}n

i=1), and
Θ; Ψ ; ∆;Γ ′ ` ιs′, and cdecls; ∆ ` τi ←↩ Γ ′(ri),∀1 ≤ i ≤ n.

By Lemma 4, Θ; Ψ ; •; Γ ` o : Code({ri : τi}n
i=1)[θ]. Code({ri : τi}n

i=1)[θ] =
Code({ri : τi[θ]}n

i=1).
By the induction hypothesis, Θ; Ψ ; •;Γ ` ιs′.
By Lemma 5, Θ; Ψ ; • ` τi[θ] ←↩ Γ ′(ri)[θ] ∀1 ≤ i ≤ n. By st-sub, Γ ′(ri)[θ] =

Γ (ri).
By t-call, Θ; Ψ ; •; Γ ` ιs.
case t-bop: ιs = bop r, o; ιs′, and Θ; Ψ ; ∆′; Γ ′ ` r : Int, and Θ; Ψ ; ∆′; Γ ′ `

o : Int, and Θ;Ψ ;∆′; Γ ′ ` ιs′.
By Lemma 4, Θ; Ψ ; •;Γ ` r : Int, and Θ;Ψ ; •; Γ ` o : Int.
By the induction hypothesis, Θ; Ψ ; •;Γ ` ιs′.
By t-bop, Θ;Ψ ; •; Γ ` ιs.
case t-movR: ιs = mov r, o; ιs′, and Θ;Ψ ;∆′;Γ ′ ` o : τ , and ∆′; Γ ′ ` {r ←

τ}(∆′′; Γ ′′), and Θ; Ψ ; ∆′′;Γ ′′ ` ιs′.
By Lemma 4, Θ; Ψ ; •;Γ ` o : τ [θ].

By Lemma 6, suppose •; Γ ` {r ← τ [θ]}(∆1; Γ1), then Θ ` ∃∆1.Γ1 ≤
∃∆′′.Γ ′′.

By the induction hypothesis, Θ; Ψ ; ∆1; Γ1 ` ιs′.
By t-movR, Θ; Ψ ; •; Γ ` ιs.
case t-movM: ιs = mov [r1 + m], r2; ιs′, and Θ;Ψ ;∆′;Γ ′ ` r1 : Ins(ω), and

Θ; Ψ ; ∆′; Γ ′ ` [r1 + m] : τm, and Θ;Ψ ;∆′; Γ ′ ` r2 : τ , and Θ;∆′ ` τm ←↩ τ , and
Θ; Ψ ; ∆′; Γ ′ ` ιs′.

By Lemma 4, Θ; Ψ ; •; Γ ` r1 : Ins(ω)[θ], and Θ; Ψ ; •;Γ ` [r1 + m] : τm[θ],
and Θ;Ψ ; •; Γ ` r2 : τ [θ].

By Lemma 5, Θ; • ` τm[θ] ←↩ τ [θ].
By the induction hypothesis, Θ; Ψ ; •;Γ ` ιs′.
By t-movM, Θ; Ψ ; •;Γ ` ιs.

Lemma 3. If Φ = {ri : τi}n
i=1, and Γ ′ = r1 : τ ′1, . . . , rn : τ ′n, and Θ; • ` τi ←↩ τ ′i ,

then Θ ` ∃•.Γ ′ ≤ unpack(Φ).

Proof. We build a substitution θ : dom(unpack(Φ)) → dom(Θ) as follows: For all
1 ≤ i ≤ n, if τi = ∃α¿C. Ins(α) and τ ′i = Ins(ω) and Θ; • ` ω ¿ C (rule at-ref),
then ω should be a class D. Suppose unpack(Φ) = ∃∆.Γ . By the definition of
unpack, ∆ has a fresh type variable β ¿ C and Γ (ri) = Ins(()β). Let θ(β) = D.
Then Γ (ri)[θ] = Γ ′(ri) and Θ; • ` β[θ] ¿ C.

By st-sub, Θ ` ∃•.Γ ′ ≤ unpack(Φ).

Lemma 4. If Θ ` ∃•.Γ ≤ ∃∆′.Γ ′, and θ is the mapping from dom(∆′) to
dom(Θ) such that ∀r ∈ dom(Γ ′), Γ (r) = Γ ′(r)[θ], and ∀α ¿ C ∈ ∆′, Θ; • `
θ(α) ¿ C, and Θ; Ψ ; ∆′; Γ ′ ` o : τ , then Θ; Ψ ; •;Γ ` o : τ [θ].

Proof. By induction on operand typing rules.
case ot-v: trivial.
case ot-r: o = r and τ = Γ ′(r).
By ot-r, Θ; Ψ ; •; Γ ` r : Γ (r).
By Γ (r) = Γ ′(r)[θ], Θ; Ψ ; •; Γ ` o : τ [θ].
case ot-vtable: o = [r + 0], τ = Vtable(ω), and Θ; Ψ ; ∆′; Γ ′ ` r : Ins(ω).
By the induction hypothesis, Θ; Ψ ; •;Γ ` r : Ins(ω)[θ]. Ins(ω)[θ] = Ins(ω[θ]).
By ot-vtable, Θ; Ψ ; •;Γ ` o : Vtable(ω[θ]).
τ [θ] = Vtable(ω[θ]). Therefore, Θ; Ψ ; •;Γ ` o : τ [θ].
case ot-field: o = [r + j], and τ = τj , and Θ; Ψ ; ∆′; Γ ′ ` r : Ins(ω), and

Θ; Ψ ; ∆′ ` ω ¿ C, and Θ(C) = C : B{τ1, . . . , τn, . . .}, and 1 ≤ j ≤ n.
By the induction hypothesis, Θ; Ψ ; •;Γ ` r : Ins(ω)[θ]. Ins(ω)[θ] = Ins(ω[θ]).
By Lemma 1 and Θ; Ψ ; ∆′ ` ω ¿ C, Θ; Ψ ; • ` ω[θ] ¿ C.
By ot-field, Θ; Ψ ; •; Γ ` [r + j] : τj .
τj [θ] = τj because τj does not have free type variables. Therefore, Θ; Ψ ; •;Γ `

o : τ [θ].
case ot-meth: similar to ot-field.

Lemma 5. If Θ ` ∃•.Γ ≤ ∃∆′.Γ ′, and θ is the mapping from dom(∆′) to
dom(Θ) such that ∀r ∈ dom(Γ ′), Γ (r) = Γ ′(r)[θ], and ∀α ¿ C ∈ ∆′, Θ; • `
θ(α) ¿ C, and Θ; ∆′ ` τ ←↩ τ ′, then Θ; • ` τ [θ] ←↩ τ ′[θ].

Proof. If τ = τ ′ (rule at-ref), then Θ; • ` τ [θ] ←↩ τ ′[θ].
If τ = ∃α¿C. Ins(α) and τ ′ = Ins(ω) and Θ; ∆′ ` ω ¿ C (rule at-pack),

then by Lemma 1, Θ; • ` ω[θ] ¿ C. τ [θ] = τ and τ ′[θ] = Ins(ω[θ]). By at-pack,
Θ; • ` τ [θ] ←↩ τ ′[θ].

Lemma 6. If Θ ` ∃•.Γ ≤ ∃∆′.Γ ′, and θ is the mapping from dom(∆′) to
dom(Θ) such that ∀r ∈ dom(Γ ′), Γ (r) = Γ ′(r)[θ], and ∀α ¿ C ∈ ∆′, Θ; • `
θ(α) ¿ C, and ∆′; Γ ′ ` {r ← τ}(∆′′; Γ ′′), and •;Γ ` {r ← τ [θ]}(∆1;Γ1), then
Θ ` ∃∆1.Γ1 ≤ ∃∆′′.Γ ′′.

Proof. If τ = ∃α¿C. Ins(α), then ∆′′ = ∆′;β ¿ C and Γ ′′ = Γ ′[r : Ins(β)]
where β is a fresh type variable , and ∆1 = γ ¿ C and Γ1 = Γ [r : Ins(γ)] where
γ is a fresh type variable (rule asgn-e).

Define θ′ : dom(∆′′) → dom(∆1) ∪Θ as:
θ′(β) = γ and θ′(α) = θ(α) for all α ∈ dom(∆′).
Then Γ1(r′) = Γ ′′(r′)[θ′] for all r′ ∈ dom(Γ ′′). Θ;∆1 ` α[θ′] ¿ B for all

α ¿ B ∈ ∆′′.
By st-sub, Θ ` ∃∆1.Γ1 ≤ ∃∆′′.Γ ′′.
If τ 6= ∃α¿C. Ins(α), then ∆′′ = ∆′ and Γ ′′ = Γ ′[r : τ], and ∆1 = • and

Γ1 = Γ [r : τ [θ]] (rule asgn).
Then Γ1(r′) = Γ ′′(r′)[θ] for all r′ ∈ dom(Γ ′′) and Θ; • ` α[θ] ¿ B for all

α ¿ B ∈ ∆′′.
By st-sub, Θ ` ∃∆1.Γ1 ≤ ∃∆′′.Γ ′′.

Theorem 3. If Θ; Ψ ` P , then ∃P ′ such that P → P ′.

Proof. By induction on the instruction typing rules and Lemma 7.

Lemma 7. If Θ; Ψ ; •;Γ ` v : int, then v is an integer.
If Θ;Ψ ; •; Γ ` v : Code(Φ), then v is a label and H(v) = Φ{`1 : ιs1, . . . , `n :

ιsn}.
If Θ; Ψ ; •;Γ ` v : Ins(ω), then v is a label and H(v) = ins(ω){v1, . . . , vn}.

Proof. By inspection of value typing rules and heap value typing rules.

Theorem 4. The iTal type system is sound.

Proof. By Theorems 2 and 3.

