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Abstract—In the conventional regularized learning, training 
time increases as the training set expands. Recent work on L2 
linear SVM challenges this common sense by proposing the 
inverse time dependency on the training set size. In this paper, 
we first put forward a Primal Gradient Solver (PGS) to 
effectively solve the convex regularized learning problem. This 
solver is based on the stochastic gradient descent method and 
the Fenchel conjugate adjustment, employing the well-known 
online strongly convex optimization algorithm with logarithmic 
regret. We then theoretically prove the inverse dependency 
property of our PGS, embracing the previous work of the L2 
linear SVM as a special case and enable the 𝓵𝒑 -norm 
optimization to run within a bounded sphere, which qualifies 
more convex loss functions in PGS. We further illustrate this 
solver in three examples: SVM, logistic regression and 
regularized least square. Experimental results substantiate the 
property of the inverse dependency on training data size.  

Keywords – Primal Gradient Solver; inverse time dependency; 
Fenchel conjugate; regularized learning; online convex 
optimization 

I. INTRODUCTION 
In the regularized learning theory, in order to minimize 

the sum of the regularization part and the loss part, most of 
the research works are interested in the generalization 
objective rather than the empirical objective [12] [1]. The 
generalization objective, also known as the stochastic 
objective, is given with respect to a linear predictor 𝒘 ∈ 𝑆, 
where 𝑆 ⊂ ℝ௡ is the domain of  𝒘: 𝐹ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙(𝒘)= 𝜎 ∙ 𝑟(𝒘) + 𝔼𝜽~஽௜௦௧[𝑙(〈𝒘, 𝜽〉; 𝜽)] (1)

where 𝑟(𝒘) is the regularizer with a positive weight 𝜎, and 𝑙(〈𝒘, 𝜽〉; 𝜽) is a mapping that calculates the cost or regret by 
the linear predicting value 〈𝒘, 𝜽〉. The expectation is based 
on a random selection of the sample 𝜽 over the entire sample 
distribution 𝐷𝑖𝑠𝑡. 

Note that the form 𝜽  is used in order to ensure the 
generality. As an example, 𝜽 can be in the form of (𝒙, 𝑦) 
where 𝒙 is a vector of features and 𝑦 is the class identity, 
adapting (1) to classifications. The loss function 𝑙 can be for 
example the SVM hinge loss 𝑙(〈𝒘, 𝒙〉, 𝑦) = max{0,1 − 𝑦〈𝒘, 𝒙〉} 

Practically, an optimization approach for this sort of 
problem becomes to minimize the empirical objective 

𝐹෠ఙ(𝒘)1  instead, where the average loss over a set of  𝑚 
training samples is used to approximate the generalization 
loss. 𝐹෠ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙መ(𝒘)= 𝜎 ∙ 𝑟(𝒘) + 1𝑚 ෍ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠

௜ୀଵ  (2)

The accuracy of a given predictor on some unknown 
prediction set is strongly associated with equation (1). This 
naturally leads to a two-step research work: connect (1) and 
(2) as the step 1, and effectively solve (2) as the step 2. 

Step 1. Recently, Léon Bottou et al [1]  studied the 
correlation between stochastic and empirical but 
unregularized objectives and divided the tradeoff into three 
parts, namely, the approximation, estimation and 
optimization tradeoff. For regularized learning, Karthik 
Sridharan et al [12] stated that 𝐹෠ఙ(𝒘) converges with a rate 
of 1/𝑚 to 𝐹ఙ(𝒘) for strongly convex objectives. 

Step 2. In 2004, T. Zhang [13] introduced the stochastic 
gradient descent (SGD) algorithm to solve large scale linear 
prediction problems. It proves that a constant learning rate 
will numerically achieve some good accuracy, and states the 
correlation between SGD and online learning. In 2006, 
Hazan et al [3] introduced a framework with logarithmic 
regret to solve online strongly convex problems, which is the 
tightest known regret bound for online optimization. 
Utilizing this result, Shai Shalev-Shwartz et al [10] proposed 
an ℓଶ-norm linear SVM algorithm called PEGASOS. 

On the basis of the above two steps, Shai Shalev-Shwartz 
et al [11] presented a surprising result for PEGASOS: 
assuming the endurable accuracy is given and fixed, the 
training time has an inverse dependency on the size of the 
training data, i.e. the larger the dataset is, the faster the 
program runs to achieve this given accuracy. He claimed that, 
for example, if we get a predictor with accuracy 95% by 
training one thousand samples, we can use the extra nine 
thousand samples to train and get a predictor also with 
accuracy of 95%, but in less time. 

                                                           
* This work was done when the first author was visiting Microsoft 

Research Asia. The first author is supported by the National Innovation 
Research Project for Undergraduates (NIRPU). 

1 In order to distinguish between the two – generalized and empirical, 
throughout this paper we will use  ̂ to denote the empirical functions.  
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TABLE I.  SUMMARY OF TERMINOLOGY 

Sample 𝜃  Generalization objective 𝐹ఙ(𝑤) = 𝜎 ∙ 𝑟(𝑤) + 𝑙(𝑤)  
Training sample space 𝛹 = {𝜃ଵ, … 𝜃௠}  Regularizer 𝑟(𝑤)  
The domain of predictor 𝑤 𝑆  Generalization loss 𝑙(𝒘) = 𝔼𝜽~஽௜௦௧[𝑙(〈𝒘, 𝜽〉; 𝜽)]  
Population optimum 𝒘∗ = argmin𝒘∈ௌ 𝐹ఙ(𝒘)  Empirical objective 𝐹෠ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙መ(𝒘)  
Empirical optimum 𝒘ෝ = argmin୵∈S 𝐹ఙ෢(𝑤)  Empirical loss 𝑙መ(𝒘) = ଵ௠ ∑ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠௜ୀଵ   

Reference predictor 𝒘𝟎  Temporal objective at iter. 𝑡 𝑐௧(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑔௧(𝒘)  

Our generated predictor 𝒘෥   Temporal loss at iter. 𝑡 𝑔௧(𝒘) = ଵ|஺೟| ∑ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟   

Average number of non-
zero features per sample is  𝑑  Optimization error 𝜖௔௖௖, satisfies  𝐹෠ఙ(𝐰) ≤ 𝐹෠ఙ(𝒘ෝ) + 𝜖௔௖௖  

Dimension of feature space 𝑛  Generalization error 𝜖, satisfies ∀𝒘𝟎 ∈ 𝑆, 𝑙(𝒘෥) − 𝑙(𝒘𝟎) ≤ 𝜖  
 

Notice that Shai focuses solely on the ℓଶ -norm linear 
SVM problem, partially because the ℓଶ-norm is naturally a 
strongly convex function and the hinge loss in SVM is easy 
to be handled.  However, applying this inverse dependency 
property into more general problems, like ℓ௣ -norm, other 
loss functions, or other machine learning algorithms, is very 
desirable, but it is an under-explored research problem.  

In this paper, we introduce the Primal Gradient Solver 
(PGS), which employs the following regularizer: 𝑟(𝒘) = 12(𝑝 − 1) ‖𝒘‖௣ଶ, 𝑝 ∈ (1,2] (3)

where the coefficient of 1 2(𝑝 − 1)⁄  is to maintain the strong 
convexity of 𝑟(𝒘) . At the same time, we consider the 
arbitrary Lipschitz continuous and convex loss function 𝑙(〈𝒘, 𝜽〉; 𝜽). We prove that for a fixed accuracy, our Primal 
Gradient Solver algorithm can achieve the inverse time 
dependency on the training data size. This conclusion is also 
verified in the experiments. We summarize the contributions 
of this paper as below: 

• It proposes a Primal Gradient Solver (PGS) and 
proves its inverse dependency property. This work 
generalizes the state-of-the-art ℓଶ-SVM result [11] 
to ℓ௣-norm and convex loss functions. Notice that 
the generalization is non-trivial, since the 
mathematical analysis utilizes a Fenchel conjugate 
of the regularizer, which lacks an explicit 
expression in most circumstances. 

• By bounding S (the domain of 𝒘), PGS is able to 
support more loss functions. For example, Least 
Square Loss is ineligible for 𝑆 = ℝ௡ because of its 
unbounded gradient, but is proved to be acceptable 
for 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ, where 𝐵 is a constant large 
enough to embrace the optimal solution of 𝒘∗ in 𝑆. 

• It firstly demonstrates that both logistic loss and 
least square loss can be adopted into the proposed 
solver and achieve the inverse dependency property. 
Extensive experimental results on two machine 
learning algorithms, logistic regression and 
regularized least square, substantiate the conclusion.  

The reminder of this paper is organized as follows. We 
first provide mathematical backgrounds on convex 
optimization theory in Section II. Next in Section III, we 
propose our main result by introducing our Primal Gradient 
Solver, and analyzing its inverse dependency property. We 
further demonstrate our solver in SVM, logistic regression 
and regularized least square in Section IV, and present 
experimental results in Section V to substantiate our findings. 
We provide the theoretical proofs of our main theorems in 
Section VI. We then raise some discussions in Section VII, 
and conclude the paper in Section VIII. 

II. MATH BACKGROUND AND TERMINOLOGY 
Throughout this paper we assume norms to be 𝑝-norms, 

where 𝑝 ∈ [1, ∞) ∪ {∞}. We also summarize the notations 
used in this paper in TABLE I. Considering the boundedness 
of some vector 𝑥, we will stick to the expression “‖𝑥‖௣ is 
bounded” instead of “𝑥  is bounded” for some explicit 𝑝.2 
Next in this section, we introduce some definitions 
frequently used in convex optimization, and a proposition to 
be used later. 

Definition 1: A function 𝑓: 𝑆 → ℝ  is called 𝐿 -Lipschitz 
continuous w.r.t a norm ‖. ‖ if ∀𝒘𝟏, 𝒘𝟐 ∈ 𝑆, |𝑓(𝒘𝟏) − 𝑓(𝒘𝟐)| ≤ 𝐿 ∙ ‖𝒘𝟏 − 𝒘𝟐‖ (4)

Definition 2: A function 𝑓: 𝑆 → 𝑅  is called σ-strongly 
convex w.r.t a norm ‖. ‖ if ∀𝒘𝟏, 𝒘𝟐 ∈ 𝑆, 𝛼 ∈ [0,1], 𝑓(𝛼𝒘𝟏 + (1 − 𝛼)𝒘𝟐) ≤ 𝛼𝑓(𝒘𝟏) + (1 − 𝛼)𝐹(𝒘𝟐)− 𝜎2 𝛼(1 − 𝛼)‖𝒘𝟏 − 𝒘𝟐‖ 

(5)

Definition 3: The Fenchel conjugate of a function 𝑓: 𝑆 → 𝑅 
is defined as: 

                                                           
2  This is because although in finite dimension, norms are pair-wise 

bounded ∀𝑝, 𝑞 ∈ [1, ∞) ∪ {∞}, ∃𝐶 ∈ ℝା, ∀𝑥, ‖𝑥‖௣ ≤ 𝐶 ∙ ‖𝑥‖௤ 
however, the bounding 𝐶 may hide a constant up to 𝑛. 
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      𝑓∗(𝜽) = 𝑠𝑢𝑝𝒘∈ௌ 〈𝒘, 𝜽〉 − 𝑓(𝒘) (6)

Example 1: When 𝑆 = ℝ௡ , for 𝑝 ∈ (1,2] , the function 𝑓(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ  is 1-strongly convex w.r.t the ℓ௣ norm, 

and its Fenchel conjugate 𝑓∗(𝜽) = ଵଶ(௤ିଵ) ‖𝜽‖௤ଶ . Here ଵ௣ + ଵ௤ = 1 . Proofs can be found in [8] [2]. The strong 
convexity does not hold for 𝑝 > 2. 

Definition 4: The dual norm of the ℓ௣ -norm ‖𝒙‖௣ =(∑ |𝑥|௣௜ )ଵ/୮  is the ℓ௤ -norm ‖𝒙‖௤ = (∑ |𝑥|௤௜ )ଵ/୯  if 1/p +1/q = 1 . As a special case, ‖𝒙‖ଵ = ∑ |𝑥௜|௜  is dual to ‖𝒙‖ஶ = max௜|𝑥௜|. 
Definition 5: A vector 𝝀 is a sub-gradient of a function 𝑓 at 𝒘 if for all 𝒘ᇱ ∈ 𝑆  we have 𝑓(𝒘ᇱ) − 𝑓(𝒘) ≥ 〈𝒘ᇱ − 𝒘, 𝝀〉. 
The differential set of 𝑓 at 𝒘 consists of all the sub-gradients 
and is denoted by ∂𝑓(𝒘) . When 𝑓  is differentiable at 𝒘 , ∂𝑓(𝒘) contains exactly one element ∂𝑓(𝒘) = {∇𝑓(𝒘)}.  

Proposition 1: If a function 𝑓: 𝑆 → ℝ  is L-Lipschitz 
continuous w.r.t norm ‖. ‖௣, then ∀𝒘 ∈ 𝑆, the sub- gradient 
at 𝒘  is bounded: ‖𝝀‖௤ ≤ 𝐿, ∀𝝀 ∈ 𝜕𝑓(𝒘) , where 1/p +1/q = 1. 
Proof: By the definition of differential set and Lipschitz 
continuity, we have for any 𝒘ᇱ ∈ 𝑆,  〈𝒘ᇱ − 𝒘, 𝝀〉 ≤ 𝑓(𝒘ᇱ) − 𝑓(𝒘) ≤ 𝐿 ∙ ‖𝒘ᇱ − 𝒘‖௣  
By the knowledge of Hölder inequality there exists a 𝒘ᇱ ∈ 𝑆 
such that 〈𝒘ᇱ − 𝒘, 𝝀〉 = ‖𝒘ᇱ − 𝒘‖௣‖𝝀‖௤ , and combining 
the above two we arrive at ‖𝝀‖௤ ≤ 𝐿. ∎ 

III. MAIN RESULT 
In this section we first propose a Primal Gradient Solver 

and state the requirements for the regularizer and the loss 
function; we then use two theorems to reveal the inverse time 
dependency, that is, the required running time decreases as 
the number of samples increases, when achieving a fixed 
generalization error. 

A. Primal Gradient Solver 
We first introduce the Primal Gradient Solver for the ℓ୮ 

regularized convex optimization problem, assuming 𝑝 ∈ (1,2]. By substituting the regularizer (3) into (2), we 
have: 

𝐹෠ఙ(𝒘) = 𝜎2(𝑝 − 1) ‖𝒘‖௣ଶ + 1𝑚 ෍ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠
௜ୀଵ  (7)

In this paper, we concentrate on the loss function that 
satisfies the following two assumptions: 

• Convexity: 𝑙(〈𝒘, 𝜽〉; 𝜽) satisfies the convexity w.r.t. 𝒘  in 𝑆 . Pay attention that we do not require the 
strong convexity here. 

• Lipschitz Continuity: 𝑙(〈𝒘, 𝜽〉; 𝜽)  satisfies 𝐿 -
Lipschitz continuity w.r.t. 𝒘  and ‖. ‖௣  norm in 𝑆 , 
where 𝐿 is a constant. 

We notice that with the help of Proposition 1, the sub-
gradient 𝜕𝒘𝑙(〈𝒘, 𝜽〉; 𝜽) is bounded w.r.t. ‖. ‖௤. This property 
will be used later. 

Inspired by the work of PEGASOS [10], we propose a 
Primal Gradient Solver (Figure 1). We take four parameters: 
the norm parameter 𝑝, the weight of the regularizer σ, the 
number of iterations 𝑇,  and a given positive integer 𝑘 . 
Initially we set 𝒘𝟎 = 0  and a working vector 𝝀 = 0 . At 
iteration t we randomly choose a set 𝐴௧ ⊂ Ψ, |𝐴௧| = 𝑘, and 
consider a temporal loss function 𝑔௧(𝒘) to approximate the 
empirical loss 𝑙መ(𝒘): 𝑔௧(𝒘) = 1|𝐴௧| ෍ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟  (8)

The solver then picks up an arbitrary sub-gradient 𝝀𝒕 ∈ 𝜕𝑔𝑡(𝒘𝒕−𝟏), and  subtract it from 𝝀 by 𝝀 ← 𝝀 − 𝝀𝒕. The 
next 𝒘𝒕  is calculated according to the gradient of the 
Fenchel conjugate (see Section II for definition):  𝒘𝒕 = 𝛻𝑟∗ ൬ 𝝀(𝑡 + 1)𝜎൰ (9)

1. INPUT: 𝝀, 𝑝, 𝑆. Let 𝑛 be the feature dimension.  
2. FOR 𝑖 = 1,2, … , 𝑛 

3.   𝑤௧(௜) ← ଵ௤ିଵ ൬∑ ቚ ఒ(ೕ)(௧ାଵ)ఙቚ௤௝ ൰మ೜ିଵ ∙ ቚ ఒ(ೕ)(௧ାଵ)ఙቚ௤ିଵ ∙ sgn 𝜆(௝)
4. IF 𝑆 = ℝ௡, RETURN 𝒘𝒕 
5. IF 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ 
6.  IF ‖𝒘𝒕‖௣ > 𝐵 THEN, 𝒘𝒕 ← ஻‖𝒘𝒕‖೜ 𝒘𝒕 
7.  RETURN 𝒘𝒕 

Figure 2: Explicit calculation for 𝒘𝒕 = ∇r∗(𝛌 (t + 1)σ⁄ ). We use the 
superscript of the form (j) to denote the jth coordinate of a vector 

1. INPUT: training sample space 𝛹 = {𝜃ଵ, … 𝜃௠} 
       𝑝, 𝜎, 𝑇, 𝑘  

2. INITIALIZE: 𝒘𝟎 ← 0, 𝝀 ← 0, 𝑞 ← 1/(1 − 1/𝑝) 
3. FOR 𝑡 =  1,2, … , 𝑇 
4.  Choose 𝐴௧ ⊂ 𝛹 satisfying |𝐴௧| = 𝑘 
5.  Set 𝑔௧(𝒘) ← ଵ|஺೟| ∑ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟  
6.  Choose 𝝀𝒕 ∈ 𝜕𝑔௧(𝒘𝒕ି𝟏) 
7.  Let 𝝀 ← 𝝀 − 𝝀𝒕 
8.  Define 𝒘𝒕 ← 𝛻𝑟∗ ቀ 𝝀(௧ାଵ)ఙቁ 

  where 𝑟(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ  
9. Return a random 𝒘𝒊 ∈ {𝒘𝟏, … 𝒘𝑻}  as linear 

predictor 

Figure 1: The Primal Gradient Solver. 
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The above process is organized in Figure 1. In Figure 2, 
we write the explicit formula of  Equation (9) for the two 
cases 𝑆 = ℝ௡  and 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ. We will show that 
these two cases cover most of the circumstances in the 
applications. 

• If 𝑆 = ℝ௡, we recall Example 1 in Section II, and 
calculate the gradient of 𝑟∗(𝜽) = ‖𝜽‖௤ଶ 2(𝑞 − 1)⁄  
directly. The explicit form is shown on Line 3 in 
Figure 2. 

• If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ  is bounded, we actually 
calculate 𝒘𝒕 in the same way, but project it back to 
the 𝑝-norm sphere 𝑆 if it lies outside 𝑆 (Line 6 of 
Figure 2). The proof of this can be found in the 
Appendix, by comparing the results of Corollary 2 
and Corollary 3. 

Assume the dimension of the feature space, i.e., the 
dimension of 𝒘, is 𝑛, and the average number of non- zero 
features per sample is 𝑑. If the sub-gradient 𝜕𝑔௧(𝒘) can be 
computed efficiently in 𝑂(𝑑𝑘), the time complexity for the 
Primal Gradient Solver is  𝑂൫𝑇(𝑑𝑘 + 𝑛)൯  since calculating 
the gradient of 𝑟∗ costs 𝑂(𝑛), as shown in in Figure 2. 

Notice that the calculation in Figure 2 gains a speed-up in 

the special case of 𝑝 = 2 , since the term ൫∑ …௝ ൯మ೜ିଵ
 

degenerates to 1: 𝑤௧(୧) = ฬ ఒ(ೕ)(௧ାଵ)ఙฬ௤ିଵ ∙ sgn 𝜆(௝) ⇒ 𝒘𝒕 = 𝝀(௧ାଵ)ఙ  (10)

In this case we no longer need 𝑂(𝑛) to calculate  ∇𝑟∗, as 
we can use a variable to store the coefficient in front of 𝝀 and 
update it in 𝑂(1)  time, leaving the overall complexity 𝑂(𝑇𝑑𝑘). 

B. Inverse Dependency on Training Data Size 
In the previous sub-section, we introduced a Primal 

Gradient Solver for ℓ୮ regularized convex optimization, and 
estimated the running time in terms of the number of 
iterations. Now we state the correlation between the 
optimization error and the number of iterations 𝑇, which will 
give us a running time in terms of the optimization error (see 
Figure 3). 

Theorem 1 (To be proved in Section VI.A): If 𝑟(𝑤) = ఙଶ(௣ିଵ) ‖𝒘‖௣ଶ , 𝑔௧(𝑤) = ଵ௠ ∑ 𝑙(〈𝒘, 𝜙(𝜽𝒊)〉; 𝜽𝒊)௠௜ୀଵ  , the loss 
satisfies the convexity and Lipschitz continuity, then 

∀𝛿 ∈ (0,1) , with probability of at least 1 − 𝛿  over the 
choices of 𝐴ଵ, … 𝐴் and the index 𝑖, we have: 𝐹෠ఙ(𝒘𝒊) ≤ 𝐹෠ఙ(𝒘ෝ) + 𝐶 log 𝑇𝜎𝑇𝛿  (11)

Based on the above theorem, if the endurable 
optimization error is 𝜖௔௖௖ , and satisfies 𝐹෠ఙ(𝒘𝒊) ≤ 𝐹෠ఙ(𝒘ෝ) +𝜖௔௖௖, the algorithm needs 𝑇 = 𝑂෨ ቀ ଵఙఋఢೌ೎೎ቁ iterations ignoring 
logarithmic factors. 

The optimization error 𝜖௔௖௖ functions as a bridge to the 
study of the generalization error. We state that if 𝒘෥  is some 
predictor, optimized by our Primal Gradient Solver, the most 
immediate reflection of its accuracy is the generalization 
error 𝜖 . In some other words,∀𝒘𝟎 ∈ 𝑆, 𝑙(𝒘෥) − 𝑙(𝒘𝟎) ≤ 𝜖 . 
The following theorem actually bases on Theorem 1 to 
further give us a correlation between the generalization error 
and the number of iterations. 

Theorem 2 (To be proved in Section VI.B): Suppose 𝒘෥  is 
the predictor optimized by the Primal Gradient Solver. If the 
desired error rate 𝜖 obeys 𝑙(𝒘෥) ≤ 𝑙(𝒘𝟎) + 𝜖 , ∀𝒘𝟎 ∈ 𝑆, then 
the required number of iterations satisfies: 

𝑇 = 𝑂 ൮ 1/𝛿ଶఢమ(௣ିଵ)‖𝒘𝟎‖೛మ − 𝑂෨ ቀ ଵ௠ቁ൲ (12)

Choosing3 𝑘 = 1 and integrating (12) into the complexity 
of the Primal Gradient Solver, we conclude that: 

• 𝑝 = 2, the time complexity is 𝑂 ൮ ௗ/ఋమചమ(೛షభ)ฮ𝒘𝟎ฮ೛మ ିை෨ቀ భ೘ቁ൲ 

• 𝑝 ∈ (1,2), the time complexity is 𝑂 ൮ ௡/ఋమചమ(೛షభ)ฮ𝒘𝟎ฮ೛మ ିை෨ቀ భ೘ቁ൲ 

As illustrated in Figure 4, the time complexity derived 
from above, decreases as the sample count 𝑚 increases. This 
is called the property of inverse time dependency on the 
training data size. This conclusion confirms the theoretical 
result in [11] which proves the inverse dependency in the 
special case of 𝑝 = 2 with the SVM hinge loss. 

                                                           
3 We will discuss how to choose the best 𝑘 in the Section VII. 

Figure 4: Inverse time dependency with fixed generalization loss

Running time 𝑇 

Optimization errorGeneralization error 

Section III.A 

Theorem 1Theorem 2 

Figure 3: Outline of the proof. 
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We state that this result comes from the perfect wedding 
of the following two: when the number of training samples 
increases 

• We expect a smaller gap between the empirical 
objective and the generalization objective. 

• We approximate the loss function more accurately 
using the random sampling. 

IV. APPLICATIONS 
In this section we utilize the Primal Gradient Solver on 

three specific loss functions. We first consider the binary 
classification problem with instance-label pairs 𝜽 = (𝒙, 𝑦) 
where 𝑦 ∈ {−1,1} , we have the following two famous 
demonstrations of the loss functions. 

• The SVM hinge loss:  𝑙(〈𝒘, 𝜽〉; 𝜽) = max{0, 1 − 𝑦〈𝒘, 𝒙〉} 
• The Logistic loss:  𝑙(〈𝒘, 𝜽〉; 𝜽) = log൫1 + 𝑒ି௬〈𝒘,𝒙〉൯ 
If we consider the regression problem with instance-

value pairs 𝜽 = (𝒙, 𝑦) where 𝑦 ∈ ℝ, we have 
• The Least Square loss: 𝑙(〈𝒘, 𝜽〉; 𝜽) = (〈𝒘, 𝒙〉 − 𝑦)ଶ 
The convexity of the three loss functions above and the 

Lipschitz continuity of first two loss functions can be easily 
verified mathematically, w.r.t the entire space 𝑆 = ℝ௡. Now 
we consider the Lipschitz continuity of the Least Square loss. 
It can be checked this property does not hold in the entire 
space 𝑆 = ℝ௡ , but we may constrain the space to 𝑆 =൛𝑤: ‖𝑤‖௣ ≤ 𝐶ൟ . For any 𝒘𝟏, 𝒘𝟐 ∈ 𝑆 , using Hölder's 
inequality we deduce that 𝑙(〈𝒘𝟏, 𝜽〉; 𝜽) − 𝑙(〈𝒘𝟐, 𝜽〉; 𝜽)= 〈𝒘𝟏 − 𝒘𝟐, 𝒙〉(〈𝒘𝟏, 𝒙〉 + 〈𝒘𝟐, 𝒙〉 − 2𝑦)≤ ‖𝒘𝟏 − 𝒘𝟐‖௣‖𝒙‖௤൫2𝐶‖𝒙‖௤ + 2|𝑦|൯ ≤ ‖𝒘𝟏 − 𝒘𝟐‖௣ ∙ 𝐿 

the last inequality holds for the reason that the sample space 
is fixed and thus ‖𝒙‖௤ and |𝑦| are naturally bounded. All we 
left to do is to further verify the empirical optimum solution 𝒘ෝ  must lie in 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ. This is because 𝑟(𝒘∗) ≤𝐹ఙ(𝒘∗) ≤ 𝐹ఙ(0) ≤ (max|y|)ଶ  is bounded, where max|y| is 
the upper bound for |𝑦|. 

Considering the algorithmic framework in Figure 1, we 
write down 𝝀𝒕: 

• SVM hinge loss: 𝜆௧ = ଵ|஺೟| ∑ 𝑦 ∙ 𝒙(𝒙,௬)∈஺೟,௬〈𝒙,𝒘𝒕〉ழଵ   
• Logistic loss: 𝜆௧ = ଵ|஺೟| ∑ ି௬∙௘ష೤〈𝒙,𝒘𝒕〉ଵା௘ష೤〈𝒙,𝒘𝒕〉(𝒙,௬)∈஺೟ 𝒙  
• Least Square loss: 𝜆௧ = ଵ|஺೟| ∑ 2(〈𝒘, 𝒙〉 − 𝑦௜)𝒙(𝒙,௬)∈஺೟   

Therefore, our solver can be properly adapted to these three 
loss functions. Note that the Lipschitz continuity of the loss 
function is an important requirement in the deduction (see 

Section VI). If this requirement is not met, we need to 
restrict 𝑆 to some bounded sphere just like we did for the 
Least Square loss. We emphasize that the introduction of 

  
Figure 5: Running time required to achieve given accuracy on CCAT for 

optimal σ. 

 
bounded 𝑆  enables more kinds of convex and continuous 
functions to be included as loss functions. 

Taking the SVM loss with 𝑝 = 2  and 𝑆 = ൛𝒘: ‖𝒘‖ ≤1/√𝜎} as an example, our solver immediately gives the 
algorithm called PEGASOS [10]. In that paper the proof of the 
accuracy bound depends on the boundedness of 𝑆. However, 
we used a slightly different Lemma 1 which tells us that even 
in 𝑆 = ℝ୬  case our algorithm can still run efficiently. It 
answers the question in footnote 2 of [11] on why the 
projection step can be skipped.  

V. EXPERIMENTS 
In this section we further strengthen our theoretical result 

proposed in the previous section by presenting the 
experimental results. We test our solver in three regularizer-
loss pairs: ℓଶ-Logistic, ℓଵ.଼-Logistic and ℓଶ-LeastSquare. We 
do not use the SVM loss here since its ℓଶ-norm counterpart 
has been well-tested in [11]. All the following works are 
conducted on a computer with 2.4 GHz AMD Opteron 
Processor 852 and 32G RAM. We first introduce the dataset 
in the experiments: 

• The binary classification set CCAT retrieved from 
RCV1 collection [5].  We used 781,265 samples in 
training and performed prediction on 23,149 testing 
samples. A total of 47,236 features are in this 
dataset and with sparsity 0.16%. 

• Three toy binary classification sets with 200,000 
samples are used where the number of features is 10, 
20, and 40 separately. The samples with positive 
label and with negative label are generated from two 
Gaussian distributions with different means but the 
same covariance. Thus, the optimal separating plane 
is a linear function characterized by a unit vector 𝒘∗, 
and can be pre-calculated. Assume the program 
returns a unit predictor 𝒘 , we will use the error ‖𝒘∗ − 𝒘‖ଶ to verify its correctness. 

Throughout this section, for a given training sample 
count 𝑚, we first choose an optimal σ(𝑚) according to the 
maximal achievable accuracy on the testing set, and then re-
run the program to retrieve the required running time to 
obtain some benchmark accuracies, like 93%, 94%, etc. We  
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Figure 6: Inverse dependency experiment of 2-norm logistic regression, on 

CCAT dataset 

 
Figure 7: Inverse dependency experiment of 2-norm regularized least 

square, on CCAT dataset 

 

 
Figure 8: Inverse dependency experiment of 1.8-norm logistic regression, 

on CCAT dataset 

 
Figure 9: Inverse dependency experiment of 2-norm logistic regression, on 

toy dataset 

remark here that choosing a best 𝜎 according to the test data 
is not scientific [4]. See further discussion in Section VII for 
details. 

In the first experiment we compare our Primal Gradient 
Solver (PGS) for ℓଶ  and ℓଵ.଼ -regularized Logistic 
Regression (LR) against the L-BFGS Quasi-Newton (QN) 
method [7] for LR. The latter has been proved to be superior 
in training large-scale ℓଶ-regularized Logistic Regression by 
[6]. In PGS, we choose 𝑘 = 1 for 𝑝 = 2 and 𝑘 = 300 for 𝑝 = 1.8 ∈ (1,2). The reason for this selection is discussed 
in Section VII. 

As one can see from Figure 5, except for the Quasi-
Newton algorithm, the running time of our Primal Gradient 
Solver does not increase as the sample size 𝑚 increases, for 
both 𝑝 = 2 and 𝑝 = 1.8 ∈ (1,2). Although QN can achieve 
an accuracy of the same level as PGS, namely, higher than 94.5%, its running time is above 600 seconds and we ignore 
it in Figure 5 for the sake of simplicity. It is worth noting 
that, in the experiment of QN, we also discover the number 
of iterations inversely dependent on 𝑚. However, because 
each iteration in QN has a time complexity related to 𝑚, the 
total running time of QN still increases. On the contrary, 
PGS is profited by its stochastic behavior. Not only its 
number of iterations inversely dependent on 𝑚 , the time 
complexity of a single iteration in PGS is also independent 
on 𝑚 . It is the combination of these two properties that 
contributes to the final inverse time dependency. 

In the second experiment we check the inverse time 
dependency for different sets of regularizer-loss pairs 
against both CCAT data and our toy data. We run our 
program against a set of distinct sample sizes and record the 
number of seconds required to reach each accuracy 
benchmark. Due to the randomness of our Primal Gradient 
Solver we test our program at least 20 times and choose the 
median. Notice that although Equation (12) theoretically 
studies an upper bound in the training time, the decreasing 
of upper bound does not directly suggest the real-time 
inverse dependency. Nevertheless, the experimental results 
in Figure 6, Figure 7, Figure 8 and Figure 9 all confirm the 
property in (12). 

Similar to the first experiment, we set for ℓଶ-norm 𝑘 = 1 
and for ℓଵ.଼ -norm 𝑘 = 300. The median of 20 runs are used 
for Figure 6, Figure 7 and Figure 8. Figure 9 demonstrates 
the number of iterations required for PGS of ℓଶ  Logistic 
Regression to train our toy data to achieve an error ‖𝒘∗ −𝒘‖𝟐 of 0.05. The median of 150 runs are used. We state that 
the time complexity at each iteration is constant and 
independent on the number of training samples 𝑚, so we use 
the number of iterations to be the y-axis for a better 
illustration in Figure 9.  

In the third experiment, we test our program in CCAT 
dataset against the optimal solution generated by Quasi-
Newton algorithm. We run the QN program with sufficient  
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TABLE II.  THE RUNNING TIME AND ACCURACY OF OUR PRIMAL GRADIENT SOLVER USING AN OPTIMAL 𝝈 ON CCAT. 

Regularizer Loss Optimal 𝝈 QN Accuracy PGS Accuracy PGS Training Timeℓଶ LogisticRegression 1E-6 0.94799 0.94735±0.00042 55sec ℓଵ.଼ LogisticRegression 4E-7 0.94808 0.94763±0.00035 576sec ℓଶ Least Square 2E-5 0.94687 0.94615±0.00060 22sec 
The program has been run 20 times and the accuracy is given by “median ± standard” deviation in the table. 

number of iterations to reach the convergent solution that 
minimizes the objective (it takes more than 2 hours). Results 
in TABLE II. indicate that our Primal Gradient Solver can 
obtain the accuracy on the same level as Quasi-Newton, 
while the training time is within 1 minute for ℓଶ regularized 
ones, and within 10 minutes for the ℓଵ.଼ regularized one. 

VI. PROOF OF THE MAIN THEOREMS 
In this section we put forward the detailed proofs of the 

two theorems in Section III.B, using the best known 
logarithmic regret [4] for online convex optimization [15], 
and the Oracle inequality in decomposing generalization loss 
[12]. 

A. Proof of Theorem 1 
According to (8), our temporal objective at iteration 𝑡 is 

given by 𝑐௧(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑔௧(𝒘) (13)

We state that 𝑟(𝒘) = ‖w‖୮ଶ/2(p − 1)  is 1-strongly 
convex (Example 1) and a 𝑔௧(𝒘) is convex according to our 
requirement to 𝑙. This suggests 𝑐௧(𝒘) be σ-strongly convex, 
based on the additivity in [8]. 

We next examine the counterpart of our problem in 
online convex optimization, introduced by [15]. In such 
problem, the ultimate purpose is to minimize the regret 

𝑟𝑒𝑔𝑟𝑒𝑡 ≔ ෍ 𝑐௧(𝒘𝒕)்
௧ୀଵ − min୵∈S ෍ 𝑐௧(𝒘)்

௧ୀଵ  (14)

The following lemma gives a bound for the regret of our 
Primal Gradient Solver (Figure 1). Its proof can be seen in 
Theorem 2 in [4]. 

Lemma 1: Let 𝑐ଵ, … 𝑐் be a sequence of σ-strongly convex 
functions over some convex domain 𝑆 w.r.t the some norm ‖. ‖௣ . Assume ‖. ‖௤  is the dual norm of ‖. ‖௣ , then the 
algorithm defined in Figure 1 satisfies: 

෍ 𝑐௧(𝒘𝒕)்
௧ୀଵ − min𝒘∈ௌ ෍ 𝑐௧(𝒘)்

௧ୀଵ ≤ 12 ෍ ‖𝝀𝒕‖௤ଶ𝑡𝜎்
௧ୀଵ  (15)

Corollary 1: If 𝑐௧ is defined according the requisites of the 
Primal Gradient Solver, the above regret is further bounded 
by ஼ ୪୭୥ ்ఙ , where 𝐶 is a constant. 
Proof: This boundedness is ensured if ‖𝝀𝒕‖௤ଶ is bounded by 
constant. Recall the Lipschitz continuity for 𝑙(〈𝒘, 𝜽〉; 𝜽) , 
which infers the Lipschitz continuity for 𝑔௧ . Based on 

Proposition 1, the ℓ௤ -norm of 𝝀𝒕 ∈ 𝜕𝑔௧(𝒘𝒕ି𝟏) is bounded, 
arriving at our conclusion. ∎ 

We now start to calculate the expected optimization error, 
based on the i.i.d. selection of subsets 𝐴ଵ, … 𝐴் and the 𝒘𝒊 in 
Line 9 of Figure 1.  𝔼[𝜖௔௖௖] = 𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்ൣ𝐹෠ఙ(𝒘𝒊)൧ − 𝐹෠ఙ(𝒘ෝ) (16)

where the empirical optimum 𝒘ෝ = argmin𝐰∈S 𝐹ఙ෡ (𝒘) 
Using a similar technique from [10], we state that  𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்ൣ𝐹෠ఙ(𝒘𝒊)൧ = 𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்[𝑐௜(𝒘𝒊)] 

and 𝐹෠ఙ(𝒘ෝ) = 𝔼஺భ,…,஺೅ ൥1𝑇 min𝒘∈ௌ ෍ 𝑐௧(𝒘)்
௧ୀଵ ൩ 

substituting them into (16) and using the result of Lemma 1 
we have  𝔼[𝜖௔௖௖] ≤ 𝐶 log 𝑇𝜎𝑇  (17)

Now incorporating the Markov inequality, we provide 
the proof of theorem 1.  

Proof of Theorem 1: The random variable 𝜖௔௖௖ = 𝐹ఙ෡ (𝒘𝒊) −𝐹ఙ෡ (𝒘ෝ) ≥ 0 is non-negative, and we have 𝔼[𝜖௔௖௖] ≤ ஼ ୪୭୥ ்ఙ் , 
then using the Markov inequality Pr ቈ𝜖௔௖௖ ≥ 𝔼[𝜖௔௖௖]𝛿 ቉ ∙ 𝔼[𝜖௔௖௖]𝛿 ≤ 𝔼[𝜖௔௖௖]⇒ Pr ൤𝜖௔௖௖ ≤ 𝐶 log 𝑇𝜎𝑇𝛿 ൨ ≥ 1 − 𝛿 

(18)

The above inequality shows that with probability at least 1 − 𝛿, we have 𝜖௔௖௖ ≤ ஼ ୪୭୥ ்ఙ்ఋ . This immediately gives us the 
statement. ∎ 

B. Proof of Theorem 2 

Proof of Theorem 2: Following [12], we decompose the 
generalization loss into four parts: 𝑙(𝒘෥) − 𝑙(𝒘𝟎)= ൫𝐹ఙ(𝒘෥) − 𝐹ఙ(𝒘∗)൯ + ൫𝐹ఙ(𝒘∗) − 𝐹ఙ(𝒘𝟎)൯− 𝜎2(𝑝 − 1) ‖𝒘෥‖௣ଶ + 𝜎2(𝑝 − 1) ‖𝒘𝟎‖௣ଶ  

(19)

here 𝒘෥  is the solution given by our Primal Gradient Solver, 
population optimum 𝒘∗ = argmin𝒘∈ௌ 𝐹ఙ(𝒘) , and 
generalization loss 𝑙(𝒘) = 𝔼𝜽~஽[𝑙(〈𝒘, 𝜽〉; 𝜽)]. 
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The second and third term of equation (19) is non-
positive, while the first term, the generalization objective 
difference, can be further bounded by the empirical objective 
difference according to the main result in [12]. Combining 
the results along with the optimization accuracy studied in 
the previous section (Theorem 1), we arrive at the following 
inequality 𝑙(𝒘෥) − 𝑙(𝒘𝟎)≤ 𝑂෨ ൬ 1𝜎𝑇𝛿൰ + 𝜎2(𝑝 − 1) ‖𝒘𝟎‖௣ଶ + 𝑂෨ ൬ 1𝜎𝑚൰ (20)

If we choose 𝜎 = Θ෩ ቆටଶ(௣ିଵ)‖𝒘𝟎‖೛మ ൬ ଵ்ఋ + 𝑂෨ ቀ ଵ௠ቁ൰ቇ, the right 

hand side is bounded as following: 𝑙(𝒘෥) − 𝑙(𝒘𝟎)≤ 𝑂෨ ቌ‖𝒘𝟎‖௣ඨ 12(𝑝 − 1) ቆ 1𝑇𝛿 + 𝑂෨ ൬ 1𝑚൰ቇቍ (21)

Let 𝜖  equal to the right side of this inequality, we 
immediately arrive at Theorem 2. ∎ 

VII. FURTHER DISCUSSION 
In this section we dialectically analyze the limitation of 

our Primal Gradient Solver and propose some enhancements. 
We also discuss some problems raised in the previous 
sections. 

Why p-norm? In the Primal Gradient Solver, the strong 
convexity is a core requisite to ensure the convergence rate 
of 𝟏/𝑻. However, few strongly convex functions found up to 
now are also suitable to be regularizers. In this paper we 
examined the squared 𝒑 ∈ (𝟏, 𝟐]  norms, and experimental 
results show that 𝒑 = 𝟏. 𝟖  does slightly better than others 
(for instance, TABLE II. ). The reason is still unknown and 
the choice of 𝒑 may open an interesting field to study, for 
example: multiple-regularizer learning. 

We notice that 𝒑 = 𝟏 is not included in this paper for the 
reason that 1-norm itself has a poor convexity. However, 1-
norm has the often desired property of reducing the number 
of active features. In [8] [9], Shai proposed a substitute 𝒓(𝒘) = ∑ |𝒘𝒊| 𝐥𝐨𝐠|𝒘𝒊|𝒏𝒊ୀ𝟏  that is strongly convex, which 
also works well in Primal Gradient Solver with advantages in 
feature selection. 

The adoption of Kernel. All the works above are verified 
under the assumption that 𝒘  is a linear predictor. When 𝑝 = 2, a common technique is to construct a mapping 𝜙 that 
maps from the feature space to the Reproducing Kernel 
Hilbert Space (RKHS) space, availing us a non-linear 
separator. We emphasize that our Primal Gradient Solver can 
be slightly adjusted to cater for this assumption, as the 
calculation of 〈𝒘, 𝜙(𝒙)〉  needs a traverse on the support 
vector by〈𝒘, 𝜙(𝒙)〉 = ∑ ൫𝛼௜𝒦(𝒙𝒊, 𝒙)൯௜ . However, due to the 
complexity cost for this inner product, the inverse time 
dependency property no longer holds. In a counterpart of this 
paper [14] we studied the performance of such kernel PGS, 

and the result shows that even without the inverse time 
dependency, the algorithm overwhelms the state-of-the-art in 
both efficiency and accuracy. 

Incorporate with a biased term. In our algorithm defined 
above, we have ignored the biased term in the general loss 𝑙. 
The most efficient way to compensate for it is to add this 
biased term to the loss function like log൫1 + 𝑒ି௬〈𝒘,థ(𝒙)〉ା௕൯, 
and at the same time modify the regularizer to 12(𝑝 − 1) ൫‖𝑤‖௣௣ + 𝑏௣൯ଵ/௣

 

Doing this allows us to preserve the strong convexity of the 
regularizer, but runs into a different way as the normal 
regularizer without this bias term. If we consistently ignore 
this term in the regularizer, the convergence rate of our 
solver will reduce to 𝑂൫1/√𝑇൯  like a generalized convex 
optimization problem [4]. 

The selection of parameter 𝒌. From the above discussion 
we can see the number of selected samples 𝑘 = |𝐴௧| is never 
used within the analysis. Actually, in each iteration we may 
use the Chernoff bound to boost the confidence and give a 
better bound than 𝑇 = 𝑂෨ ቀ ଵఙఋఢቁ. Both theoretical analysis and 
experimental results show that in the 𝑝 = 2  case it is 
worthless to set 𝑘 > 1; as an alternative, we may choose one 
single sample each iteration and do 𝑘 ∙ 𝑇 iterations in total 
while the time complexity remains the same and the 
accuracy is raised. 

However, for 𝑝 ∈ (1,2) it is not the case. As mentioned 
in Section III.A, if the complexity of Primal Gradient Solver 
is 𝑂൫𝑇(𝑑𝑘 + 𝑛)൯, we had better choose 𝑘 = 𝑂(𝑛/𝑑) which 
keeps the complexity unchanged but boosts the confidence 
significantly. For the RCV1 dataset where 𝑛 = 47,236 and 𝐷 ≈ 40, we may choose 𝑘 = 300, which greatly reduces the 
number of required iterations. Experimental results in 
Section V have confirmed this analysis and we will 
investigate the influence of 𝑘 more theoretically in the future. 

The selection of weight 𝝈 . According to Eq.(12), the 
running time depends on an unknown vector 𝒘𝟎 that is the 
optimal predictor in training. Similarly, the choice of 𝜎 also 
depends on 𝒘𝟎 and we never have such a priori knowledge 
on how to choose it. A validation set does not work because 
we are optimizing the running speed and not until we 
actually know 𝜎 we cannot run the program at all. Due to 
this reason, we are currently working on a modified version 
of the Primal Gradient Solver that will make 𝜎 self-adapted. 

VIII. SUMMARY 
In this paper we analyzed a Primal Gradient Solver for 

the ℓ௣-norm regularized convex learning problems that can 
deal with any loss satisfying the convexity and Lipschitz 
continuity, including the famous SVM loss, Logistic loss and 
Least Square loss. For all of them the expected running time 
is proved to be 𝑂(𝑑/𝜖௔௖௖𝛿𝜎)  for 𝑝 = 2  and 𝑂(𝑛/𝜖௔௖௖𝛿𝜎) 
for 𝑝 ∈ (1,2), where 𝛿 is the confidence parameter, 𝜎 is the 
regularization parameter, 𝑑  is the average number of non-
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zero features for a sample, 𝑛 is the dimension size of the 
feature space, and 𝜖௔௖௖ is the desired optimization error. 

Experimental results on CCAT dataset in Reuters Corpus 
Volume 1 (RCV1) show that our Primal Gradient Solver, for 
all of the three loss functions, approaches an accuracy of 94% 
within 10 seconds for 𝑝 = 2, and 20 seconds for 𝑝 = 1.8, 
while the L-BFGS Quasi-Newton method needs 600 seconds 
to obtain the same accuracy. 

The most important contribution of this paper is that, 
based on this Primal Gradient Solver, we proved it is not 
only more efficient than the traditional algorithms, but also 
endowed with inverse time dependency property on the 
number of training samples, for a fixed accuracy. 

This result, confirmed by the dataset of RCV1 and three 
toy sets, reminds us that even a linear time algorithm might 
not theoretically meet the best efficiency. There might exist 
some algorithm, like our Primal Gradient Solver, whose time 
complexity is independent on the number of samples 𝑚, and 
even inversely dependent on 𝑚. 
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APPENDIX 

Lemma 2: Let 𝑓 be a closed and strongly convex function 
over 𝑆 ⊂ ℝ௡  with respect to norm ‖. ‖ , then 𝑓∗  is 
differentiable and  ∇𝑓∗(𝜽) = argmax𝒘∈ௌ 〈𝒘, 𝜽〉 − 𝑓(𝒘) (22)

Its proof can be seen from Lemma 6 of [9]. 

Theorem 3: If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ and 𝑓(𝒘) = ଵଶ ‖𝒘‖௣ଶ , let ଵ௣ + ଵ௤ = 1, then 

𝑓∗(𝜽) = ൞ 12 ‖𝜽‖௤ଶ, ‖𝜽‖௤ ≤ 𝐵12 ‖𝜽‖௤ଶ − 12 ൫𝐵 − ‖𝜽‖௤൯ଶ, ‖𝜽‖௤ > 𝐵 (23)

and ൫∇𝑓∗(𝜽)൯௜ = min{𝐵, ‖𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣ (24)

Proof: For any given 𝜽, using the Hölder's inequality we 
have 〈𝒘, 𝜽〉 ≤ ‖𝒘‖௣ ∙ ‖𝜽‖௤. Subtracting both sides of them 
by ଵଶ ‖𝒘‖௣ଶ , we have 〈𝒘, 𝜽〉 − 12 ‖𝒘‖௣ଶ ≤ ‖𝒘‖௣ ∙ ‖𝜽‖௤ − 12 ‖𝒘‖௣ଶ= − 12 ൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ + 12 ‖𝜽‖௤ଶ 

(25)

and substituting the definition of 𝑓∗, i.e. Eq. (6): 𝑓∗(𝜽) = 𝑠𝑢𝑝𝒘∈ௌ 〈𝒘, 𝜽〉 − 12 ‖𝒘‖௣ଶ≤ 𝑠𝑢𝑝𝒘∈ௌ ൬− 12 ൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ + 12 ‖𝜽‖௤ଶ൰
= ൞ 12 ‖𝜽‖௤ଶ, ‖𝜽‖௤ ≤ 𝐵12 ‖𝜽‖௤ଶ − 12 ൫𝐵 − ‖𝜽‖௤൯ଶ, ‖𝜽‖௤ > 𝐵 

(26)

Actually, the equality of Eq. (26) holds, because of an 
explicit construction of 𝒘 that satisfies the equality sign in 
Hölder's inequality. For a given norm 𝐶 = min{𝐵, ‖𝜽‖௤} , 
we construct 𝒘∗ by letting 𝑤௜∗ = ஼‖ఏ‖೜೜/೛ 𝜃௜௤/௣ . It can be easily 

checked that ‖𝒘∗‖௣ = 𝐶  and 〈𝒘∗, 𝜽〉 = ‖𝒘∗‖௣ ∙ ‖𝜽‖௤ , and 
the latter holds because ((𝑤ଵ∗)௣, … (𝑤௡∗)௣)  and ൫𝜃ଵ௤, … 𝜃௡௤൯ 
are linear dependent. We remark here that we use 𝑥௣ for the 
abbreviation of |𝑥|௣ ∙ sgn 𝑥 . This suffices to prove the 
equality of Eq. (26), i.e. Eq. (23). 
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Regarding Eq. (24), we adopt Lemma 2 and see that ∇𝑓∗(𝜽) = argmin𝐰∈S൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ = 𝒘∗. ∎ 
 

Corollary 2: If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ  and 𝑓(𝒘) =ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ , let ଵ௣ + ଵ௤ = 1, then  𝑓∗(𝜽)
=

⎩⎪⎪⎨
⎪⎪⎧ 12(𝑞 − 1) ‖𝜽‖௤ଶ,   ‖(𝑝 − 1)𝜽‖௤ ≤ 𝐵12(𝑞 − 1) ‖𝜽‖௤ଶ −12(𝑝 − 1) ൫𝐵 − ‖(𝑝 − 1)𝜽‖௤൯ଶ,   ‖(𝑝 − 1)𝜽‖௤ > 𝐵 (27)

and ൫∇𝑓∗(𝜽)൯௜ = min{𝐵, ‖(𝑝 − 1)𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣ (28)

Proof: Assume 𝑔(𝒘) = ଵଶ ‖𝒘‖௣ଶ  and we have known 𝑔∗ 
according to  Theorem 3. Now we calculate 𝑓∗ using 𝑔∗: 𝑓∗(𝜽) = sup𝒘∈ 〈𝒘, 𝜽〉 − 1𝑝 − 1 𝑔(𝒘) 

= 1𝑝 − 1 ൬sup𝒘∈ௌ〈𝒘, (𝑝 − 1)𝜽〉 − 𝑔(𝒘)൰= 1𝑝 − 1 𝑔∗൫(𝑝 − 1)𝜽൯ 

This immediately gives us Eq. (27) after substituting Eq. 
(23) and noticing that 𝑝 − 1 = ଵ௤ିଵ. Next, regarding Eq. (28), 
we make the calculation: ൫∇𝑓∗(𝜽)൯௜ = 1𝑝 − 1 ቀ∇𝜽𝑔∗൫(𝑝 − 1)𝜽൯ቁ௜= ቀ∇(௣ିଵ)𝜽 𝑔∗൫(𝑝 − 1)𝜽൯ቁ௜= min൛𝐵, ‖(𝑝 − 1)𝜽‖௤ൟ‖(𝑝 − 1)𝜽‖௤௤/௣ (𝑝 − 1)௤/௣𝜃௜௤/௣

= min{𝐵, ‖(𝑝 − 1)𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣ 

where the third equality is according to Eq. (24). This 
completes the proof. ∎ 

Corollary 3: If 𝑆 = ℝ௡  and 𝑓(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ , then 𝑓∗(𝜽) = ଵଶ(௤ିଵ) ‖𝜽‖௤ଶ and ൫∇𝑓∗(𝜽)൯௜ = ଵ௤ିଵ ‖𝜽‖௤ଵି௤/௣ ∙ 𝜃௜௤/௣ 
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