
Inverse Time Dependency in Convex Regularized Learning

Zeyuan Allen Zhu12*, Weizhu Chen2, Chenguang Zhu23, Gang Wang2, Haixun Wang2, Zheng Chen2

1Fundamental Science Class,

Department of Physics,
Tsinghua University

zhuzeyuan@hotmail.com

2Microsoft Research Asia

{v-zezhu, wzchen, v-chezhu, gawa,
haixunw, zhengc}@microsoft.com

3Department of Computer
Science and Technology,

Tsinghua University
zcg.cs60@gmail.com

Abstract—In the conventional regularized learning, training
time increases as the training set expands. Recent work on L2
linear SVM challenges this common sense by proposing the
inverse time dependency on the training set size. In this paper,
we first put forward a Primal Gradient Solver (PGS) to
effectively solve the convex regularized learning problem. This
solver is based on the stochastic gradient descent method and
the Fenchel conjugate adjustment, employing the well-known
online strongly convex optimization algorithm with logarithmic
regret. We then theoretically prove the inverse dependency
property of our PGS, embracing the previous work of the L2
linear SVM as a special case and enable the 𝓵𝒑 -norm
optimization to run within a bounded sphere, which qualifies
more convex loss functions in PGS. We further illustrate this
solver in three examples: SVM, logistic regression and
regularized least square. Experimental results substantiate the
property of the inverse dependency on training data size.

Keywords – Primal Gradient Solver; inverse time dependency;
Fenchel conjugate; regularized learning; online convex
optimization

I. INTRODUCTION
In the regularized learning theory, in order to minimize

the sum of the regularization part and the loss part, most of
the research works are interested in the generalization
objective rather than the empirical objective [12] [1]. The
generalization objective, also known as the stochastic
objective, is given with respect to a linear predictor 𝒘 ∈ 𝑆,
where 𝑆 ⊂ ℝ௡ is the domain of 𝒘: 𝐹ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙(𝒘)= 𝜎 ∙ 𝑟(𝒘) + 𝔼𝜽~஽௜௦௧[𝑙(〈𝒘, 𝜽〉; 𝜽)] (1)

where 𝑟(𝒘) is the regularizer with a positive weight 𝜎, and 𝑙(〈𝒘, 𝜽〉; 𝜽) is a mapping that calculates the cost or regret by
the linear predicting value 〈𝒘, 𝜽〉. The expectation is based
on a random selection of the sample 𝜽 over the entire sample
distribution 𝐷𝑖𝑠𝑡.

Note that the form 𝜽 is used in order to ensure the
generality. As an example, 𝜽 can be in the form of (𝒙, 𝑦)
where 𝒙 is a vector of features and 𝑦 is the class identity,
adapting (1) to classifications. The loss function 𝑙 can be for
example the SVM hinge loss 𝑙(〈𝒘, 𝒙〉, 𝑦) = max{0,1 − 𝑦〈𝒘, 𝒙〉}

Practically, an optimization approach for this sort of
problem becomes to minimize the empirical objective

𝐹෠ఙ(𝒘)1 instead, where the average loss over a set of 𝑚
training samples is used to approximate the generalization
loss. 𝐹෠ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙መ(𝒘)= 𝜎 ∙ 𝑟(𝒘) + 1𝑚 ෍ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠

௜ୀଵ (2)

The accuracy of a given predictor on some unknown
prediction set is strongly associated with equation (1). This
naturally leads to a two-step research work: connect (1) and
(2) as the step 1, and effectively solve (2) as the step 2.

Step 1. Recently, Léon Bottou et al [1] studied the
correlation between stochastic and empirical but
unregularized objectives and divided the tradeoff into three
parts, namely, the approximation, estimation and
optimization tradeoff. For regularized learning, Karthik
Sridharan et al [12] stated that 𝐹෠ఙ(𝒘) converges with a rate
of 1/𝑚 to 𝐹ఙ(𝒘) for strongly convex objectives.

Step 2. In 2004, T. Zhang [13] introduced the stochastic
gradient descent (SGD) algorithm to solve large scale linear
prediction problems. It proves that a constant learning rate
will numerically achieve some good accuracy, and states the
correlation between SGD and online learning. In 2006,
Hazan et al [3] introduced a framework with logarithmic
regret to solve online strongly convex problems, which is the
tightest known regret bound for online optimization.
Utilizing this result, Shai Shalev-Shwartz et al [10] proposed
an ℓଶ-norm linear SVM algorithm called PEGASOS.

On the basis of the above two steps, Shai Shalev-Shwartz
et al [11] presented a surprising result for PEGASOS:
assuming the endurable accuracy is given and fixed, the
training time has an inverse dependency on the size of the
training data, i.e. the larger the dataset is, the faster the
program runs to achieve this given accuracy. He claimed that,
for example, if we get a predictor with accuracy 95% by
training one thousand samples, we can use the extra nine
thousand samples to train and get a predictor also with
accuracy of 95%, but in less time.

* This work was done when the first author was visiting Microsoft

Research Asia. The first author is supported by the National Innovation
Research Project for Undergraduates (NIRPU).

1 In order to distinguish between the two – generalized and empirical,
throughout this paper we will use ̂ to denote the empirical functions.

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.28

667

TABLE I. SUMMARY OF TERMINOLOGY

Sample 𝜃 Generalization objective 𝐹ఙ(𝑤) = 𝜎 ∙ 𝑟(𝑤) + 𝑙(𝑤)
Training sample space 𝛹 = {𝜃ଵ, … 𝜃௠} Regularizer 𝑟(𝑤)
The domain of predictor 𝑤 𝑆 Generalization loss 𝑙(𝒘) = 𝔼𝜽~஽௜௦௧[𝑙(〈𝒘, 𝜽〉; 𝜽)]
Population optimum 𝒘∗ = argmin𝒘∈ௌ 𝐹ఙ(𝒘) Empirical objective 𝐹෠ఙ(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑙መ(𝒘)
Empirical optimum 𝒘ෝ = argmin୵∈S 𝐹ఙ෢(𝑤) Empirical loss 𝑙መ(𝒘) = ଵ௠ ∑ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠௜ୀଵ

Reference predictor 𝒘𝟎 Temporal objective at iter. 𝑡 𝑐௧(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑔௧(𝒘)

Our generated predictor 𝒘෥ Temporal loss at iter. 𝑡 𝑔௧(𝒘) = ଵ|஺೟| ∑ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟

Average number of non-
zero features per sample is 𝑑 Optimization error 𝜖௔௖௖, satisfies 𝐹෠ఙ(𝐰) ≤ 𝐹෠ఙ(𝒘ෝ) + 𝜖௔௖௖

Dimension of feature space 𝑛 Generalization error 𝜖, satisfies ∀𝒘𝟎 ∈ 𝑆, 𝑙(𝒘෥) − 𝑙(𝒘𝟎) ≤ 𝜖

Notice that Shai focuses solely on the ℓଶ -norm linear
SVM problem, partially because the ℓଶ-norm is naturally a
strongly convex function and the hinge loss in SVM is easy
to be handled. However, applying this inverse dependency
property into more general problems, like ℓ௣ -norm, other
loss functions, or other machine learning algorithms, is very
desirable, but it is an under-explored research problem.

In this paper, we introduce the Primal Gradient Solver
(PGS), which employs the following regularizer: 𝑟(𝒘) = 12(𝑝 − 1) ‖𝒘‖௣ଶ, 𝑝 ∈ (1,2] (3)

where the coefficient of 1 2(𝑝 − 1)⁄ is to maintain the strong
convexity of 𝑟(𝒘) . At the same time, we consider the
arbitrary Lipschitz continuous and convex loss function 𝑙(〈𝒘, 𝜽〉; 𝜽). We prove that for a fixed accuracy, our Primal
Gradient Solver algorithm can achieve the inverse time
dependency on the training data size. This conclusion is also
verified in the experiments. We summarize the contributions
of this paper as below:

• It proposes a Primal Gradient Solver (PGS) and
proves its inverse dependency property. This work
generalizes the state-of-the-art ℓଶ-SVM result [11]
to ℓ௣-norm and convex loss functions. Notice that
the generalization is non-trivial, since the
mathematical analysis utilizes a Fenchel conjugate
of the regularizer, which lacks an explicit
expression in most circumstances.

• By bounding S (the domain of 𝒘), PGS is able to
support more loss functions. For example, Least
Square Loss is ineligible for 𝑆 = ℝ௡ because of its
unbounded gradient, but is proved to be acceptable
for 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ, where 𝐵 is a constant large
enough to embrace the optimal solution of 𝒘∗ in 𝑆.

• It firstly demonstrates that both logistic loss and
least square loss can be adopted into the proposed
solver and achieve the inverse dependency property.
Extensive experimental results on two machine
learning algorithms, logistic regression and
regularized least square, substantiate the conclusion.

The reminder of this paper is organized as follows. We
first provide mathematical backgrounds on convex
optimization theory in Section II. Next in Section III, we
propose our main result by introducing our Primal Gradient
Solver, and analyzing its inverse dependency property. We
further demonstrate our solver in SVM, logistic regression
and regularized least square in Section IV, and present
experimental results in Section V to substantiate our findings.
We provide the theoretical proofs of our main theorems in
Section VI. We then raise some discussions in Section VII,
and conclude the paper in Section VIII.

II. MATH BACKGROUND AND TERMINOLOGY
Throughout this paper we assume norms to be 𝑝-norms,

where 𝑝 ∈ [1, ∞) ∪ {∞}. We also summarize the notations
used in this paper in TABLE I. Considering the boundedness
of some vector 𝑥, we will stick to the expression “‖𝑥‖௣ is
bounded” instead of “𝑥 is bounded” for some explicit 𝑝.2
Next in this section, we introduce some definitions
frequently used in convex optimization, and a proposition to
be used later.

Definition 1: A function 𝑓: 𝑆 → ℝ is called 𝐿 -Lipschitz
continuous w.r.t a norm ‖. ‖ if ∀𝒘𝟏, 𝒘𝟐 ∈ 𝑆, |𝑓(𝒘𝟏) − 𝑓(𝒘𝟐)| ≤ 𝐿 ∙ ‖𝒘𝟏 − 𝒘𝟐‖ (4)

Definition 2: A function 𝑓: 𝑆 → 𝑅 is called σ-strongly
convex w.r.t a norm ‖. ‖ if ∀𝒘𝟏, 𝒘𝟐 ∈ 𝑆, 𝛼 ∈ [0,1], 𝑓(𝛼𝒘𝟏 + (1 − 𝛼)𝒘𝟐) ≤ 𝛼𝑓(𝒘𝟏) + (1 − 𝛼)𝐹(𝒘𝟐)− 𝜎2 𝛼(1 − 𝛼)‖𝒘𝟏 − 𝒘𝟐‖

(5)

Definition 3: The Fenchel conjugate of a function 𝑓: 𝑆 → 𝑅
is defined as:

2 This is because although in finite dimension, norms are pair-wise

bounded ∀𝑝, 𝑞 ∈ [1, ∞) ∪ {∞}, ∃𝐶 ∈ ℝା, ∀𝑥, ‖𝑥‖௣ ≤ 𝐶 ∙ ‖𝑥‖௤
however, the bounding 𝐶 may hide a constant up to 𝑛.

668

 𝑓∗(𝜽) = 𝑠𝑢𝑝𝒘∈ௌ 〈𝒘, 𝜽〉 − 𝑓(𝒘) (6)

Example 1: When 𝑆 = ℝ௡ , for 𝑝 ∈ (1,2] , the function 𝑓(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ is 1-strongly convex w.r.t the ℓ௣ norm,

and its Fenchel conjugate 𝑓∗(𝜽) = ଵଶ(௤ିଵ) ‖𝜽‖௤ଶ . Here ଵ௣ + ଵ௤ = 1 . Proofs can be found in [8] [2]. The strong
convexity does not hold for 𝑝 > 2.

Definition 4: The dual norm of the ℓ௣ -norm ‖𝒙‖௣ =(∑ |𝑥|௣௜)ଵ/୮ is the ℓ௤ -norm ‖𝒙‖௤ = (∑ |𝑥|௤௜)ଵ/୯ if 1/p +1/q = 1 . As a special case, ‖𝒙‖ଵ = ∑ |𝑥௜|௜ is dual to ‖𝒙‖ஶ = max௜|𝑥௜|.
Definition 5: A vector 𝝀 is a sub-gradient of a function 𝑓 at 𝒘 if for all 𝒘ᇱ ∈ 𝑆 we have 𝑓(𝒘ᇱ) − 𝑓(𝒘) ≥ 〈𝒘ᇱ − 𝒘, 𝝀〉.
The differential set of 𝑓 at 𝒘 consists of all the sub-gradients
and is denoted by ∂𝑓(𝒘) . When 𝑓 is differentiable at 𝒘 , ∂𝑓(𝒘) contains exactly one element ∂𝑓(𝒘) = {∇𝑓(𝒘)}.

Proposition 1: If a function 𝑓: 𝑆 → ℝ is L-Lipschitz
continuous w.r.t norm ‖. ‖௣, then ∀𝒘 ∈ 𝑆, the sub- gradient
at 𝒘 is bounded: ‖𝝀‖௤ ≤ 𝐿, ∀𝝀 ∈ 𝜕𝑓(𝒘) , where 1/p +1/q = 1.
Proof: By the definition of differential set and Lipschitz
continuity, we have for any 𝒘ᇱ ∈ 𝑆, 〈𝒘ᇱ − 𝒘, 𝝀〉 ≤ 𝑓(𝒘ᇱ) − 𝑓(𝒘) ≤ 𝐿 ∙ ‖𝒘ᇱ − 𝒘‖௣
By the knowledge of Hölder inequality there exists a 𝒘ᇱ ∈ 𝑆
such that 〈𝒘ᇱ − 𝒘, 𝝀〉 = ‖𝒘ᇱ − 𝒘‖௣‖𝝀‖௤ , and combining
the above two we arrive at ‖𝝀‖௤ ≤ 𝐿. ∎

III. MAIN RESULT
In this section we first propose a Primal Gradient Solver

and state the requirements for the regularizer and the loss
function; we then use two theorems to reveal the inverse time
dependency, that is, the required running time decreases as
the number of samples increases, when achieving a fixed
generalization error.

A. Primal Gradient Solver
We first introduce the Primal Gradient Solver for the ℓ୮

regularized convex optimization problem, assuming 𝑝 ∈ (1,2]. By substituting the regularizer (3) into (2), we
have:

𝐹෠ఙ(𝒘) = 𝜎2(𝑝 − 1) ‖𝒘‖௣ଶ + 1𝑚 ෍ 𝑙(〈𝒘, 𝜽𝒊〉; 𝜽𝒊)௠
௜ୀଵ (7)

In this paper, we concentrate on the loss function that
satisfies the following two assumptions:

• Convexity: 𝑙(〈𝒘, 𝜽〉; 𝜽) satisfies the convexity w.r.t. 𝒘 in 𝑆 . Pay attention that we do not require the
strong convexity here.

• Lipschitz Continuity: 𝑙(〈𝒘, 𝜽〉; 𝜽) satisfies 𝐿 -
Lipschitz continuity w.r.t. 𝒘 and ‖. ‖௣ norm in 𝑆 ,
where 𝐿 is a constant.

We notice that with the help of Proposition 1, the sub-
gradient 𝜕𝒘𝑙(〈𝒘, 𝜽〉; 𝜽) is bounded w.r.t. ‖. ‖௤. This property
will be used later.

Inspired by the work of PEGASOS [10], we propose a
Primal Gradient Solver (Figure 1). We take four parameters:
the norm parameter 𝑝, the weight of the regularizer σ, the
number of iterations 𝑇, and a given positive integer 𝑘 .
Initially we set 𝒘𝟎 = 0 and a working vector 𝝀 = 0 . At
iteration t we randomly choose a set 𝐴௧ ⊂ Ψ, |𝐴௧| = 𝑘, and
consider a temporal loss function 𝑔௧(𝒘) to approximate the
empirical loss 𝑙መ(𝒘): 𝑔௧(𝒘) = 1|𝐴௧| ෍ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟ (8)

The solver then picks up an arbitrary sub-gradient 𝝀𝒕 ∈ 𝜕𝑔𝑡(𝒘𝒕−𝟏), and subtract it from 𝝀 by 𝝀 ← 𝝀 − 𝝀𝒕. The
next 𝒘𝒕 is calculated according to the gradient of the
Fenchel conjugate (see Section II for definition): 𝒘𝒕 = 𝛻𝑟∗ ൬ 𝝀(𝑡 + 1)𝜎൰ (9)

1. INPUT: 𝝀, 𝑝, 𝑆. Let 𝑛 be the feature dimension.
2. FOR 𝑖 = 1,2, … , 𝑛

3. 𝑤௧(௜) ← ଵ௤ିଵ ൬∑ ቚ ఒ(ೕ)(௧ାଵ)ఙቚ௤௝ ൰మ೜ିଵ ∙ ቚ ఒ(ೕ)(௧ାଵ)ఙቚ௤ିଵ ∙ sgn 𝜆(௝)
4. IF 𝑆 = ℝ௡, RETURN 𝒘𝒕
5. IF 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ
6. IF ‖𝒘𝒕‖௣ > 𝐵 THEN, 𝒘𝒕 ← ஻‖𝒘𝒕‖೜ 𝒘𝒕
7. RETURN 𝒘𝒕

Figure 2: Explicit calculation for 𝒘𝒕 = ∇r∗(𝛌 (t + 1)σ⁄). We use the
superscript of the form (j) to denote the jth coordinate of a vector

1. INPUT: training sample space 𝛹 = {𝜃ଵ, … 𝜃௠}
 𝑝, 𝜎, 𝑇, 𝑘

2. INITIALIZE: 𝒘𝟎 ← 0, 𝝀 ← 0, 𝑞 ← 1/(1 − 1/𝑝)
3. FOR 𝑡 = 1,2, … , 𝑇
4. Choose 𝐴௧ ⊂ 𝛹 satisfying |𝐴௧| = 𝑘
5. Set 𝑔௧(𝒘) ← ଵ|஺೟| ∑ 𝑙(〈𝒘, 𝜽〉; 𝜽)𝜽∈஺೟
6. Choose 𝝀𝒕 ∈ 𝜕𝑔௧(𝒘𝒕ି𝟏)
7. Let 𝝀 ← 𝝀 − 𝝀𝒕
8. Define 𝒘𝒕 ← 𝛻𝑟∗ ቀ 𝝀(௧ାଵ)ఙቁ

 where 𝑟(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ
9. Return a random 𝒘𝒊 ∈ {𝒘𝟏, … 𝒘𝑻} as linear

predictor

Figure 1: The Primal Gradient Solver.

669

The above process is organized in Figure 1. In Figure 2,
we write the explicit formula of Equation (9) for the two
cases 𝑆 = ℝ௡ and 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ. We will show that
these two cases cover most of the circumstances in the
applications.

• If 𝑆 = ℝ௡, we recall Example 1 in Section II, and
calculate the gradient of 𝑟∗(𝜽) = ‖𝜽‖௤ଶ 2(𝑞 − 1)⁄
directly. The explicit form is shown on Line 3 in
Figure 2.

• If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ is bounded, we actually
calculate 𝒘𝒕 in the same way, but project it back to
the 𝑝-norm sphere 𝑆 if it lies outside 𝑆 (Line 6 of
Figure 2). The proof of this can be found in the
Appendix, by comparing the results of Corollary 2
and Corollary 3.

Assume the dimension of the feature space, i.e., the
dimension of 𝒘, is 𝑛, and the average number of non- zero
features per sample is 𝑑. If the sub-gradient 𝜕𝑔௧(𝒘) can be
computed efficiently in 𝑂(𝑑𝑘), the time complexity for the
Primal Gradient Solver is 𝑂൫𝑇(𝑑𝑘 + 𝑛)൯ since calculating
the gradient of 𝑟∗ costs 𝑂(𝑛), as shown in in Figure 2.

Notice that the calculation in Figure 2 gains a speed-up in

the special case of 𝑝 = 2 , since the term ൫∑ …௝ ൯మ೜ିଵ

degenerates to 1: 𝑤௧(୧) = ฬ ఒ(ೕ)(௧ାଵ)ఙฬ௤ିଵ ∙ sgn 𝜆(௝) ⇒ 𝒘𝒕 = 𝝀(௧ାଵ)ఙ (10)

In this case we no longer need 𝑂(𝑛) to calculate ∇𝑟∗, as
we can use a variable to store the coefficient in front of 𝝀 and
update it in 𝑂(1) time, leaving the overall complexity 𝑂(𝑇𝑑𝑘).

B. Inverse Dependency on Training Data Size
In the previous sub-section, we introduced a Primal

Gradient Solver for ℓ୮ regularized convex optimization, and
estimated the running time in terms of the number of
iterations. Now we state the correlation between the
optimization error and the number of iterations 𝑇, which will
give us a running time in terms of the optimization error (see
Figure 3).

Theorem 1 (To be proved in Section VI.A): If 𝑟(𝑤) = ఙଶ(௣ିଵ) ‖𝒘‖௣ଶ , 𝑔௧(𝑤) = ଵ௠ ∑ 𝑙(〈𝒘, 𝜙(𝜽𝒊)〉; 𝜽𝒊)௠௜ୀଵ , the loss
satisfies the convexity and Lipschitz continuity, then

∀𝛿 ∈ (0,1) , with probability of at least 1 − 𝛿 over the
choices of 𝐴ଵ, … 𝐴் and the index 𝑖, we have: 𝐹෠ఙ(𝒘𝒊) ≤ 𝐹෠ఙ(𝒘ෝ) + 𝐶 log 𝑇𝜎𝑇𝛿 (11)

Based on the above theorem, if the endurable
optimization error is 𝜖௔௖௖ , and satisfies 𝐹෠ఙ(𝒘𝒊) ≤ 𝐹෠ఙ(𝒘ෝ) +𝜖௔௖௖, the algorithm needs 𝑇 = 𝑂෨ ቀ ଵఙఋఢೌ೎೎ቁ iterations ignoring
logarithmic factors.

The optimization error 𝜖௔௖௖ functions as a bridge to the
study of the generalization error. We state that if 𝒘෥ is some
predictor, optimized by our Primal Gradient Solver, the most
immediate reflection of its accuracy is the generalization
error 𝜖 . In some other words,∀𝒘𝟎 ∈ 𝑆, 𝑙(𝒘෥) − 𝑙(𝒘𝟎) ≤ 𝜖 .
The following theorem actually bases on Theorem 1 to
further give us a correlation between the generalization error
and the number of iterations.

Theorem 2 (To be proved in Section VI.B): Suppose 𝒘෥ is
the predictor optimized by the Primal Gradient Solver. If the
desired error rate 𝜖 obeys 𝑙(𝒘෥) ≤ 𝑙(𝒘𝟎) + 𝜖 , ∀𝒘𝟎 ∈ 𝑆, then
the required number of iterations satisfies:

𝑇 = 𝑂 ൮ 1/𝛿ଶఢమ(௣ିଵ)‖𝒘𝟎‖೛మ − 𝑂෨ ቀ ଵ௠ቁ൲ (12)

Choosing3 𝑘 = 1 and integrating (12) into the complexity
of the Primal Gradient Solver, we conclude that:

• 𝑝 = 2, the time complexity is 𝑂 ൮ ௗ/ఋమചమ(೛షభ)ฮ𝒘𝟎ฮ೛మ ିை෨ቀ భ೘ቁ൲

• 𝑝 ∈ (1,2), the time complexity is 𝑂 ൮ ௡/ఋమചమ(೛షభ)ฮ𝒘𝟎ฮ೛మ ିை෨ቀ భ೘ቁ൲

As illustrated in Figure 4, the time complexity derived
from above, decreases as the sample count 𝑚 increases. This
is called the property of inverse time dependency on the
training data size. This conclusion confirms the theoretical
result in [11] which proves the inverse dependency in the
special case of 𝑝 = 2 with the SVM hinge loss.

3 We will discuss how to choose the best 𝑘 in the Section VII.

Figure 4: Inverse time dependency with fixed generalization loss

Running time 𝑇

Optimization errorGeneralization error

Section III.A

Theorem 1Theorem 2

Figure 3: Outline of the proof.

670

We state that this result comes from the perfect wedding
of the following two: when the number of training samples
increases

• We expect a smaller gap between the empirical
objective and the generalization objective.

• We approximate the loss function more accurately
using the random sampling.

IV. APPLICATIONS
In this section we utilize the Primal Gradient Solver on

three specific loss functions. We first consider the binary
classification problem with instance-label pairs 𝜽 = (𝒙, 𝑦)
where 𝑦 ∈ {−1,1} , we have the following two famous
demonstrations of the loss functions.

• The SVM hinge loss: 𝑙(〈𝒘, 𝜽〉; 𝜽) = max{0, 1 − 𝑦〈𝒘, 𝒙〉}
• The Logistic loss: 𝑙(〈𝒘, 𝜽〉; 𝜽) = log൫1 + 𝑒ି௬〈𝒘,𝒙〉൯
If we consider the regression problem with instance-

value pairs 𝜽 = (𝒙, 𝑦) where 𝑦 ∈ ℝ, we have
• The Least Square loss: 𝑙(〈𝒘, 𝜽〉; 𝜽) = (〈𝒘, 𝒙〉 − 𝑦)ଶ
The convexity of the three loss functions above and the

Lipschitz continuity of first two loss functions can be easily
verified mathematically, w.r.t the entire space 𝑆 = ℝ௡. Now
we consider the Lipschitz continuity of the Least Square loss.
It can be checked this property does not hold in the entire
space 𝑆 = ℝ௡ , but we may constrain the space to 𝑆 =൛𝑤: ‖𝑤‖௣ ≤ 𝐶ൟ . For any 𝒘𝟏, 𝒘𝟐 ∈ 𝑆 , using Hölder's
inequality we deduce that 𝑙(〈𝒘𝟏, 𝜽〉; 𝜽) − 𝑙(〈𝒘𝟐, 𝜽〉; 𝜽)= 〈𝒘𝟏 − 𝒘𝟐, 𝒙〉(〈𝒘𝟏, 𝒙〉 + 〈𝒘𝟐, 𝒙〉 − 2𝑦)≤ ‖𝒘𝟏 − 𝒘𝟐‖௣‖𝒙‖௤൫2𝐶‖𝒙‖௤ + 2|𝑦|൯ ≤ ‖𝒘𝟏 − 𝒘𝟐‖௣ ∙ 𝐿

the last inequality holds for the reason that the sample space
is fixed and thus ‖𝒙‖௤ and |𝑦| are naturally bounded. All we
left to do is to further verify the empirical optimum solution 𝒘ෝ must lie in 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ. This is because 𝑟(𝒘∗) ≤𝐹ఙ(𝒘∗) ≤ 𝐹ఙ(0) ≤ (max|y|)ଶ is bounded, where max|y| is
the upper bound for |𝑦|.

Considering the algorithmic framework in Figure 1, we
write down 𝝀𝒕:

• SVM hinge loss: 𝜆௧ = ଵ|஺೟| ∑ 𝑦 ∙ 𝒙(𝒙,௬)∈஺೟,௬〈𝒙,𝒘𝒕〉ழଵ
• Logistic loss: 𝜆௧ = ଵ|஺೟| ∑ ି௬∙௘ష೤〈𝒙,𝒘𝒕〉ଵା௘ష೤〈𝒙,𝒘𝒕〉(𝒙,௬)∈஺೟ 𝒙
• Least Square loss: 𝜆௧ = ଵ|஺೟| ∑ 2(〈𝒘, 𝒙〉 − 𝑦௜)𝒙(𝒙,௬)∈஺೟

Therefore, our solver can be properly adapted to these three
loss functions. Note that the Lipschitz continuity of the loss
function is an important requirement in the deduction (see

Section VI). If this requirement is not met, we need to
restrict 𝑆 to some bounded sphere just like we did for the
Least Square loss. We emphasize that the introduction of

Figure 5: Running time required to achieve given accuracy on CCAT for

optimal σ.

bounded 𝑆 enables more kinds of convex and continuous
functions to be included as loss functions.

Taking the SVM loss with 𝑝 = 2 and 𝑆 = ൛𝒘: ‖𝒘‖ ≤1/√𝜎} as an example, our solver immediately gives the
algorithm called PEGASOS [10]. In that paper the proof of the
accuracy bound depends on the boundedness of 𝑆. However,
we used a slightly different Lemma 1 which tells us that even
in 𝑆 = ℝ୬ case our algorithm can still run efficiently. It
answers the question in footnote 2 of [11] on why the
projection step can be skipped.

V. EXPERIMENTS
In this section we further strengthen our theoretical result

proposed in the previous section by presenting the
experimental results. We test our solver in three regularizer-
loss pairs: ℓଶ-Logistic, ℓଵ.଼-Logistic and ℓଶ-LeastSquare. We
do not use the SVM loss here since its ℓଶ-norm counterpart
has been well-tested in [11]. All the following works are
conducted on a computer with 2.4 GHz AMD Opteron
Processor 852 and 32G RAM. We first introduce the dataset
in the experiments:

• The binary classification set CCAT retrieved from
RCV1 collection [5]. We used 781,265 samples in
training and performed prediction on 23,149 testing
samples. A total of 47,236 features are in this
dataset and with sparsity 0.16%.

• Three toy binary classification sets with 200,000
samples are used where the number of features is 10,
20, and 40 separately. The samples with positive
label and with negative label are generated from two
Gaussian distributions with different means but the
same covariance. Thus, the optimal separating plane
is a linear function characterized by a unit vector 𝒘∗,
and can be pre-calculated. Assume the program
returns a unit predictor 𝒘 , we will use the error ‖𝒘∗ − 𝒘‖ଶ to verify its correctness.

Throughout this section, for a given training sample
count 𝑚, we first choose an optimal σ(𝑚) according to the
maximal achievable accuracy on the testing set, and then re-
run the program to retrieve the required running time to
obtain some benchmark accuracies, like 93%, 94%, etc. We

0

10

20

30

40

50

60

70

80

0 2 4 6 8

Se
co

nd
s i

n
tra

in
in

g

Number of training samples

x 100000

Acc>93% QN-LR
Acc>94% PGS-LR
Acc>94.5% PGS-LR
Acc>94% PGS-1.8LR

671

Figure 6: Inverse dependency experiment of 2-norm logistic regression, on

CCAT dataset

Figure 7: Inverse dependency experiment of 2-norm regularized least

square, on CCAT dataset

Figure 8: Inverse dependency experiment of 1.8-norm logistic regression,

on CCAT dataset

Figure 9: Inverse dependency experiment of 2-norm logistic regression, on

toy dataset

remark here that choosing a best 𝜎 according to the test data
is not scientific [4]. See further discussion in Section VII for
details.

In the first experiment we compare our Primal Gradient
Solver (PGS) for ℓଶ and ℓଵ.଼ -regularized Logistic
Regression (LR) against the L-BFGS Quasi-Newton (QN)
method [7] for LR. The latter has been proved to be superior
in training large-scale ℓଶ-regularized Logistic Regression by
[6]. In PGS, we choose 𝑘 = 1 for 𝑝 = 2 and 𝑘 = 300 for 𝑝 = 1.8 ∈ (1,2). The reason for this selection is discussed
in Section VII.

As one can see from Figure 5, except for the Quasi-
Newton algorithm, the running time of our Primal Gradient
Solver does not increase as the sample size 𝑚 increases, for
both 𝑝 = 2 and 𝑝 = 1.8 ∈ (1,2). Although QN can achieve
an accuracy of the same level as PGS, namely, higher than 94.5%, its running time is above 600 seconds and we ignore
it in Figure 5 for the sake of simplicity. It is worth noting
that, in the experiment of QN, we also discover the number
of iterations inversely dependent on 𝑚. However, because
each iteration in QN has a time complexity related to 𝑚, the
total running time of QN still increases. On the contrary,
PGS is profited by its stochastic behavior. Not only its
number of iterations inversely dependent on 𝑚 , the time
complexity of a single iteration in PGS is also independent
on 𝑚 . It is the combination of these two properties that
contributes to the final inverse time dependency.

In the second experiment we check the inverse time
dependency for different sets of regularizer-loss pairs
against both CCAT data and our toy data. We run our
program against a set of distinct sample sizes and record the
number of seconds required to reach each accuracy
benchmark. Due to the randomness of our Primal Gradient
Solver we test our program at least 20 times and choose the
median. Notice that although Equation (12) theoretically
studies an upper bound in the training time, the decreasing
of upper bound does not directly suggest the real-time
inverse dependency. Nevertheless, the experimental results
in Figure 6, Figure 7, Figure 8 and Figure 9 all confirm the
property in (12).

Similar to the first experiment, we set for ℓଶ-norm 𝑘 = 1
and for ℓଵ.଼ -norm 𝑘 = 300. The median of 20 runs are used
for Figure 6, Figure 7 and Figure 8. Figure 9 demonstrates
the number of iterations required for PGS of ℓଶ Logistic
Regression to train our toy data to achieve an error ‖𝒘∗ −𝒘‖𝟐 of 0.05. The median of 150 runs are used. We state that
the time complexity at each iteration is constant and
independent on the number of training samples 𝑚, so we use
the number of iterations to be the y-axis for a better
illustration in Figure 9.

In the third experiment, we test our program in CCAT
dataset against the optimal solution generated by Quasi-
Newton algorithm. We run the QN program with sufficient

0

50

100

150

200

2 3 4 5 6 7

Se
co

nd
s i

n
tra

in
in

g

Number of training samples x 100000

Acc>94.525%
Acc>94.55%
Acc>94.575%
Acc>94.6%
Acc>94.625%
Acc>94.65%

0

50

100

150

200

1.5 2.5 3.5 4.5 5.5 6.5 7.5

N
um

be
r o

f s
ec

on
ds

 in
 tr

ai
ni

ng

Number of training samples x 100000

Acc>94.525%
Acc>94.55%
Acc>94.575%
Acc>94.6%
Acc>94.625%
Acc>94.65%

0

150

300

450

600

1.5 2.5 3.5 4.5 5.5 6.5 7.5

Se
co

nd
s i

n
tra

in
in

g

Number of training samples
x 100000

Acc>94.525%
Acc>94.55%
Acc>94.575%
Acc>94.6%
Acc>94.625%
Acc>94.65%

0

2.5

5

7.5

10

0 0.5 1 1.5 2

N
um

be
r o

f i
te

ra
tio

ns
x

10
00

0

Number of training samples
x 100000

Toy10
Toy20
Toy40

672

TABLE II. THE RUNNING TIME AND ACCURACY OF OUR PRIMAL GRADIENT SOLVER USING AN OPTIMAL 𝝈 ON CCAT.

Regularizer Loss Optimal 𝝈 QN Accuracy PGS Accuracy PGS Training Timeℓଶ LogisticRegression 1E-6 0.94799 0.94735±0.00042 55sec ℓଵ.଼ LogisticRegression 4E-7 0.94808 0.94763±0.00035 576sec ℓଶ Least Square 2E-5 0.94687 0.94615±0.00060 22sec
The program has been run 20 times and the accuracy is given by “median ± standard” deviation in the table.

number of iterations to reach the convergent solution that
minimizes the objective (it takes more than 2 hours). Results
in TABLE II. indicate that our Primal Gradient Solver can
obtain the accuracy on the same level as Quasi-Newton,
while the training time is within 1 minute for ℓଶ regularized
ones, and within 10 minutes for the ℓଵ.଼ regularized one.

VI. PROOF OF THE MAIN THEOREMS
In this section we put forward the detailed proofs of the

two theorems in Section III.B, using the best known
logarithmic regret [4] for online convex optimization [15],
and the Oracle inequality in decomposing generalization loss
[12].

A. Proof of Theorem 1
According to (8), our temporal objective at iteration 𝑡 is

given by 𝑐௧(𝒘) = 𝜎 ∙ 𝑟(𝒘) + 𝑔௧(𝒘) (13)

We state that 𝑟(𝒘) = ‖w‖୮ଶ/2(p − 1) is 1-strongly
convex (Example 1) and a 𝑔௧(𝒘) is convex according to our
requirement to 𝑙. This suggests 𝑐௧(𝒘) be σ-strongly convex,
based on the additivity in [8].

We next examine the counterpart of our problem in
online convex optimization, introduced by [15]. In such
problem, the ultimate purpose is to minimize the regret

𝑟𝑒𝑔𝑟𝑒𝑡 ≔ ෍ 𝑐௧(𝒘𝒕)்
௧ୀଵ − min୵∈S ෍ 𝑐௧(𝒘)்

௧ୀଵ (14)

The following lemma gives a bound for the regret of our
Primal Gradient Solver (Figure 1). Its proof can be seen in
Theorem 2 in [4].

Lemma 1: Let 𝑐ଵ, … 𝑐் be a sequence of σ-strongly convex
functions over some convex domain 𝑆 w.r.t the some norm ‖. ‖௣ . Assume ‖. ‖௤ is the dual norm of ‖. ‖௣ , then the
algorithm defined in Figure 1 satisfies:

෍ 𝑐௧(𝒘𝒕)்
௧ୀଵ − min𝒘∈ௌ ෍ 𝑐௧(𝒘)்

௧ୀଵ ≤ 12 ෍ ‖𝝀𝒕‖௤ଶ𝑡𝜎்
௧ୀଵ (15)

Corollary 1: If 𝑐௧ is defined according the requisites of the
Primal Gradient Solver, the above regret is further bounded
by ஼ ୪୭୥ ்ఙ , where 𝐶 is a constant.
Proof: This boundedness is ensured if ‖𝝀𝒕‖௤ଶ is bounded by
constant. Recall the Lipschitz continuity for 𝑙(〈𝒘, 𝜽〉; 𝜽) ,
which infers the Lipschitz continuity for 𝑔௧ . Based on

Proposition 1, the ℓ௤ -norm of 𝝀𝒕 ∈ 𝜕𝑔௧(𝒘𝒕ି𝟏) is bounded,
arriving at our conclusion. ∎

We now start to calculate the expected optimization error,
based on the i.i.d. selection of subsets 𝐴ଵ, … 𝐴் and the 𝒘𝒊 in
Line 9 of Figure 1. 𝔼[𝜖௔௖௖] = 𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்ൣ𝐹෠ఙ(𝒘𝒊)൧ − 𝐹෠ఙ(𝒘ෝ) (16)

where the empirical optimum 𝒘ෝ = argmin𝐰∈S 𝐹ఙ෡ (𝒘)
Using a similar technique from [10], we state that 𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்ൣ𝐹෠ఙ(𝒘𝒊)൧ = 𝔼஺భ,…,஺೅𝔼ଵஸ௜ஸ்[𝑐௜(𝒘𝒊)]

and 𝐹෠ఙ(𝒘ෝ) = 𝔼஺భ,…,஺೅ ൥1𝑇 min𝒘∈ௌ ෍ 𝑐௧(𝒘)்
௧ୀଵ ൩

substituting them into (16) and using the result of Lemma 1
we have 𝔼[𝜖௔௖௖] ≤ 𝐶 log 𝑇𝜎𝑇 (17)

Now incorporating the Markov inequality, we provide
the proof of theorem 1.

Proof of Theorem 1: The random variable 𝜖௔௖௖ = 𝐹ఙ෡ (𝒘𝒊) −𝐹ఙ෡ (𝒘ෝ) ≥ 0 is non-negative, and we have 𝔼[𝜖௔௖௖] ≤ ஼ ୪୭୥ ்ఙ் ,
then using the Markov inequality Pr ቈ𝜖௔௖௖ ≥ 𝔼[𝜖௔௖௖]𝛿 ቉ ∙ 𝔼[𝜖௔௖௖]𝛿 ≤ 𝔼[𝜖௔௖௖]⇒ Pr ൤𝜖௔௖௖ ≤ 𝐶 log 𝑇𝜎𝑇𝛿 ൨ ≥ 1 − 𝛿

(18)

The above inequality shows that with probability at least 1 − 𝛿, we have 𝜖௔௖௖ ≤ ஼ ୪୭୥ ்ఙ்ఋ . This immediately gives us the
statement. ∎

B. Proof of Theorem 2

Proof of Theorem 2: Following [12], we decompose the
generalization loss into four parts: 𝑙(𝒘෥) − 𝑙(𝒘𝟎)= ൫𝐹ఙ(𝒘෥) − 𝐹ఙ(𝒘∗)൯ + ൫𝐹ఙ(𝒘∗) − 𝐹ఙ(𝒘𝟎)൯− 𝜎2(𝑝 − 1) ‖𝒘෥‖௣ଶ + 𝜎2(𝑝 − 1) ‖𝒘𝟎‖௣ଶ

(19)

here 𝒘෥ is the solution given by our Primal Gradient Solver,
population optimum 𝒘∗ = argmin𝒘∈ௌ 𝐹ఙ(𝒘) , and
generalization loss 𝑙(𝒘) = 𝔼𝜽~஽[𝑙(〈𝒘, 𝜽〉; 𝜽)].

673

The second and third term of equation (19) is non-
positive, while the first term, the generalization objective
difference, can be further bounded by the empirical objective
difference according to the main result in [12]. Combining
the results along with the optimization accuracy studied in
the previous section (Theorem 1), we arrive at the following
inequality 𝑙(𝒘෥) − 𝑙(𝒘𝟎)≤ 𝑂෨ ൬ 1𝜎𝑇𝛿൰ + 𝜎2(𝑝 − 1) ‖𝒘𝟎‖௣ଶ + 𝑂෨ ൬ 1𝜎𝑚൰ (20)

If we choose 𝜎 = Θ෩ ቆටଶ(௣ିଵ)‖𝒘𝟎‖೛మ ൬ ଵ்ఋ + 𝑂෨ ቀ ଵ௠ቁ൰ቇ, the right

hand side is bounded as following: 𝑙(𝒘෥) − 𝑙(𝒘𝟎)≤ 𝑂෨ ቌ‖𝒘𝟎‖௣ඨ 12(𝑝 − 1) ቆ 1𝑇𝛿 + 𝑂෨ ൬ 1𝑚൰ቇቍ (21)

Let 𝜖 equal to the right side of this inequality, we
immediately arrive at Theorem 2. ∎

VII. FURTHER DISCUSSION
In this section we dialectically analyze the limitation of

our Primal Gradient Solver and propose some enhancements.
We also discuss some problems raised in the previous
sections.

Why p-norm? In the Primal Gradient Solver, the strong
convexity is a core requisite to ensure the convergence rate
of 𝟏/𝑻. However, few strongly convex functions found up to
now are also suitable to be regularizers. In this paper we
examined the squared 𝒑 ∈ (𝟏, 𝟐] norms, and experimental
results show that 𝒑 = 𝟏. 𝟖 does slightly better than others
(for instance, TABLE II.). The reason is still unknown and
the choice of 𝒑 may open an interesting field to study, for
example: multiple-regularizer learning.

We notice that 𝒑 = 𝟏 is not included in this paper for the
reason that 1-norm itself has a poor convexity. However, 1-
norm has the often desired property of reducing the number
of active features. In [8] [9], Shai proposed a substitute 𝒓(𝒘) = ∑ |𝒘𝒊| 𝐥𝐨𝐠|𝒘𝒊|𝒏𝒊ୀ𝟏 that is strongly convex, which
also works well in Primal Gradient Solver with advantages in
feature selection.

The adoption of Kernel. All the works above are verified
under the assumption that 𝒘 is a linear predictor. When 𝑝 = 2, a common technique is to construct a mapping 𝜙 that
maps from the feature space to the Reproducing Kernel
Hilbert Space (RKHS) space, availing us a non-linear
separator. We emphasize that our Primal Gradient Solver can
be slightly adjusted to cater for this assumption, as the
calculation of 〈𝒘, 𝜙(𝒙)〉 needs a traverse on the support
vector by〈𝒘, 𝜙(𝒙)〉 = ∑ ൫𝛼௜𝒦(𝒙𝒊, 𝒙)൯௜ . However, due to the
complexity cost for this inner product, the inverse time
dependency property no longer holds. In a counterpart of this
paper [14] we studied the performance of such kernel PGS,

and the result shows that even without the inverse time
dependency, the algorithm overwhelms the state-of-the-art in
both efficiency and accuracy.

Incorporate with a biased term. In our algorithm defined
above, we have ignored the biased term in the general loss 𝑙.
The most efficient way to compensate for it is to add this
biased term to the loss function like log൫1 + 𝑒ି௬〈𝒘,థ(𝒙)〉ା௕൯,
and at the same time modify the regularizer to 12(𝑝 − 1) ൫‖𝑤‖௣௣ + 𝑏௣൯ଵ/௣

Doing this allows us to preserve the strong convexity of the
regularizer, but runs into a different way as the normal
regularizer without this bias term. If we consistently ignore
this term in the regularizer, the convergence rate of our
solver will reduce to 𝑂൫1/√𝑇൯ like a generalized convex
optimization problem [4].

The selection of parameter 𝒌. From the above discussion
we can see the number of selected samples 𝑘 = |𝐴௧| is never
used within the analysis. Actually, in each iteration we may
use the Chernoff bound to boost the confidence and give a
better bound than 𝑇 = 𝑂෨ ቀ ଵఙఋఢቁ. Both theoretical analysis and
experimental results show that in the 𝑝 = 2 case it is
worthless to set 𝑘 > 1; as an alternative, we may choose one
single sample each iteration and do 𝑘 ∙ 𝑇 iterations in total
while the time complexity remains the same and the
accuracy is raised.

However, for 𝑝 ∈ (1,2) it is not the case. As mentioned
in Section III.A, if the complexity of Primal Gradient Solver
is 𝑂൫𝑇(𝑑𝑘 + 𝑛)൯, we had better choose 𝑘 = 𝑂(𝑛/𝑑) which
keeps the complexity unchanged but boosts the confidence
significantly. For the RCV1 dataset where 𝑛 = 47,236 and 𝐷 ≈ 40, we may choose 𝑘 = 300, which greatly reduces the
number of required iterations. Experimental results in
Section V have confirmed this analysis and we will
investigate the influence of 𝑘 more theoretically in the future.

The selection of weight 𝝈 . According to Eq.(12), the
running time depends on an unknown vector 𝒘𝟎 that is the
optimal predictor in training. Similarly, the choice of 𝜎 also
depends on 𝒘𝟎 and we never have such a priori knowledge
on how to choose it. A validation set does not work because
we are optimizing the running speed and not until we
actually know 𝜎 we cannot run the program at all. Due to
this reason, we are currently working on a modified version
of the Primal Gradient Solver that will make 𝜎 self-adapted.

VIII. SUMMARY
In this paper we analyzed a Primal Gradient Solver for

the ℓ௣-norm regularized convex learning problems that can
deal with any loss satisfying the convexity and Lipschitz
continuity, including the famous SVM loss, Logistic loss and
Least Square loss. For all of them the expected running time
is proved to be 𝑂(𝑑/𝜖௔௖௖𝛿𝜎) for 𝑝 = 2 and 𝑂(𝑛/𝜖௔௖௖𝛿𝜎)
for 𝑝 ∈ (1,2), where 𝛿 is the confidence parameter, 𝜎 is the
regularization parameter, 𝑑 is the average number of non-

674

zero features for a sample, 𝑛 is the dimension size of the
feature space, and 𝜖௔௖௖ is the desired optimization error.

Experimental results on CCAT dataset in Reuters Corpus
Volume 1 (RCV1) show that our Primal Gradient Solver, for
all of the three loss functions, approaches an accuracy of 94%
within 10 seconds for 𝑝 = 2, and 20 seconds for 𝑝 = 1.8,
while the L-BFGS Quasi-Newton method needs 600 seconds
to obtain the same accuracy.

The most important contribution of this paper is that,
based on this Primal Gradient Solver, we proved it is not
only more efficient than the traditional algorithms, but also
endowed with inverse time dependency property on the
number of training samples, for a fixed accuracy.

This result, confirmed by the dataset of RCV1 and three
toy sets, reminds us that even a linear time algorithm might
not theoretically meet the best efficiency. There might exist
some algorithm, like our Primal Gradient Solver, whose time
complexity is independent on the number of samples 𝑚, and
even inversely dependent on 𝑚.

ACKNOWLEDGMENT
Zeyuan Allen Zhu wants to thank Shai Shalev-Shwartz of

Hebrew University for his valuable discussions. The authors
also acknowledge Matt Callcut and all four anonymous
reviewers for their fruitful comments.

REFERENCE
[1] Léon Bottou and Olivier Bousquet, "The Tradeoffs of Large Scale

Learning," in NIPS, 2007.
[2] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, 6th

ed.: Cambridge University Press, 2008.
[3] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal,

"Logarithmic Regret Algorithms for Online Convex Optimization," in
COLT, 2006.

[4] Sham Kakade and Shai Shalev-Shwartz, "Mind the Duality Gap:
Logarithmic regret algorithms for online optimization," in NIPS, 2009.

[5] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li, "RCV1: A
New Benchmark Collection for Text Categorization Research,"
Journal of Machine Learning Research, vol. 5, pp. 361-397, 2004.

[6] Thomas P. Minka, "A comparison of numerical optimizers for logistic
regression," Microsoft Research, Technical Report 2003.

[7] Jorge Nocedal and Stephen J. Wright, Numerical Optimization,
Chapter 6-7, 2nd ed.: Springer.

[8] Shai Shalev-Shwartz, "Online Learning: Theory, Algorithms, and
applications," The Hebrew University, PhD Thesis 2007.

[9] Shai Shalev-Shwartz and Yoram Singer, "Logarithmic Regret
Algorithms for Strongly Convex Repeated Games," The Hebrew
University, Technical Report 2007.

[10] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro, "Pegasos:
Primal Estimated sub-GrAdient SOlver for SVM," in ICML, 2007.

[11] Shai Shalev-Shwartz and Nathan Srebro, "SVM Optimization: Inverse
Dependence on Training Set Size," in ICML, 2008.

[12] Karthik Sridharan, Nathan Srebro, and Shai Shalev-Shwartz, "Fast
Rates for Regularized Objectives," in NIPS, 2008.

[13] Tong Zhang, "Solving Large Scale Linear Prediction Problems Using
Stochastic Gradient Descent Algorithms," in ICML, 2004.

[14] Zeyuan Allen Zhu, Weizhu Chen, Gang Wang, Chenguang Zhu, and
Zheng Chen, "P-packSVM: Parallel Primal grAdient desCent Kernel
SVM," in ICDM, 2009.

[15] Martin Zinkevich, "Online convex programming and generalized
infinitesimal gradient ascent," in ICML, 2003, pp. 928-936.

APPENDIX

Lemma 2: Let 𝑓 be a closed and strongly convex function
over 𝑆 ⊂ ℝ௡ with respect to norm ‖. ‖ , then 𝑓∗ is
differentiable and ∇𝑓∗(𝜽) = argmax𝒘∈ௌ 〈𝒘, 𝜽〉 − 𝑓(𝒘) (22)

Its proof can be seen from Lemma 6 of [9].

Theorem 3: If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ and 𝑓(𝒘) = ଵଶ ‖𝒘‖௣ଶ , let ଵ௣ + ଵ௤ = 1, then

𝑓∗(𝜽) = ൞ 12 ‖𝜽‖௤ଶ, ‖𝜽‖௤ ≤ 𝐵12 ‖𝜽‖௤ଶ − 12 ൫𝐵 − ‖𝜽‖௤൯ଶ, ‖𝜽‖௤ > 𝐵 (23)

and ൫∇𝑓∗(𝜽)൯௜ = min{𝐵, ‖𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣ (24)

Proof: For any given 𝜽, using the Hölder's inequality we
have 〈𝒘, 𝜽〉 ≤ ‖𝒘‖௣ ∙ ‖𝜽‖௤. Subtracting both sides of them
by ଵଶ ‖𝒘‖௣ଶ , we have 〈𝒘, 𝜽〉 − 12 ‖𝒘‖௣ଶ ≤ ‖𝒘‖௣ ∙ ‖𝜽‖௤ − 12 ‖𝒘‖௣ଶ= − 12 ൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ + 12 ‖𝜽‖௤ଶ

(25)

and substituting the definition of 𝑓∗, i.e. Eq. (6): 𝑓∗(𝜽) = 𝑠𝑢𝑝𝒘∈ௌ 〈𝒘, 𝜽〉 − 12 ‖𝒘‖௣ଶ≤ 𝑠𝑢𝑝𝒘∈ௌ ൬− 12 ൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ + 12 ‖𝜽‖௤ଶ൰
= ൞ 12 ‖𝜽‖௤ଶ, ‖𝜽‖௤ ≤ 𝐵12 ‖𝜽‖௤ଶ − 12 ൫𝐵 − ‖𝜽‖௤൯ଶ, ‖𝜽‖௤ > 𝐵

(26)

Actually, the equality of Eq. (26) holds, because of an
explicit construction of 𝒘 that satisfies the equality sign in
Hölder's inequality. For a given norm 𝐶 = min{𝐵, ‖𝜽‖௤} ,
we construct 𝒘∗ by letting 𝑤௜∗ = ஼‖ఏ‖೜೜/೛ 𝜃௜௤/௣ . It can be easily

checked that ‖𝒘∗‖௣ = 𝐶 and 〈𝒘∗, 𝜽〉 = ‖𝒘∗‖௣ ∙ ‖𝜽‖௤ , and
the latter holds because ((𝑤ଵ∗)௣, … (𝑤௡∗)௣) and ൫𝜃ଵ௤, … 𝜃௡௤൯
are linear dependent. We remark here that we use 𝑥௣ for the
abbreviation of |𝑥|௣ ∙ sgn 𝑥 . This suffices to prove the
equality of Eq. (26), i.e. Eq. (23).

675

Regarding Eq. (24), we adopt Lemma 2 and see that ∇𝑓∗(𝜽) = argmin𝐰∈S൫‖𝒘‖௣ − ‖𝜽‖௤൯ଶ = 𝒘∗. ∎

Corollary 2: If 𝑆 = ൛𝒘: ‖𝒘‖௣ ≤ 𝐵ൟ and 𝑓(𝒘) =ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ , let ଵ௣ + ଵ௤ = 1, then 𝑓∗(𝜽)
=

⎩⎪⎪⎨
⎪⎪⎧ 12(𝑞 − 1) ‖𝜽‖௤ଶ, ‖(𝑝 − 1)𝜽‖௤ ≤ 𝐵12(𝑞 − 1) ‖𝜽‖௤ଶ −12(𝑝 − 1) ൫𝐵 − ‖(𝑝 − 1)𝜽‖௤൯ଶ, ‖(𝑝 − 1)𝜽‖௤ > 𝐵 (27)

and ൫∇𝑓∗(𝜽)൯௜ = min{𝐵, ‖(𝑝 − 1)𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣ (28)

Proof: Assume 𝑔(𝒘) = ଵଶ ‖𝒘‖௣ଶ and we have known 𝑔∗
according to Theorem 3. Now we calculate 𝑓∗ using 𝑔∗: 𝑓∗(𝜽) = sup𝒘∈ 〈𝒘, 𝜽〉 − 1𝑝 − 1 𝑔(𝒘)

= 1𝑝 − 1 ൬sup𝒘∈ௌ〈𝒘, (𝑝 − 1)𝜽〉 − 𝑔(𝒘)൰= 1𝑝 − 1 𝑔∗൫(𝑝 − 1)𝜽൯

This immediately gives us Eq. (27) after substituting Eq.
(23) and noticing that 𝑝 − 1 = ଵ௤ିଵ. Next, regarding Eq. (28),
we make the calculation: ൫∇𝑓∗(𝜽)൯௜ = 1𝑝 − 1 ቀ∇𝜽𝑔∗൫(𝑝 − 1)𝜽൯ቁ௜= ቀ∇(௣ିଵ)𝜽 𝑔∗൫(𝑝 − 1)𝜽൯ቁ௜= min൛𝐵, ‖(𝑝 − 1)𝜽‖௤ൟ‖(𝑝 − 1)𝜽‖௤௤/௣ (𝑝 − 1)௤/௣𝜃௜௤/௣

= min{𝐵, ‖(𝑝 − 1)𝜽‖௤}‖𝜽‖௤௤/௣ 𝜃௜௤/௣

where the third equality is according to Eq. (24). This
completes the proof. ∎

Corollary 3: If 𝑆 = ℝ௡ and 𝑓(𝒘) = ଵଶ(௣ିଵ) ‖𝒘‖௣ଶ , then 𝑓∗(𝜽) = ଵଶ(௤ିଵ) ‖𝜽‖௤ଶ and ൫∇𝑓∗(𝜽)൯௜ = ଵ௤ିଵ ‖𝜽‖௤ଵି௤/௣ ∙ 𝜃௜௤/௣

676

