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Abstract selection of the examples to be labelled. Typically, such

schemes build upon notions of uncertainty in classification

Scarcity and infeasibility of human supervision for large For example, data points that are most likely to be misclas-
scale multi-class classification problems necessitatésec  sified can be considered to be the most informative and will
learning. Unfortunately, existing active learning meteod be selected for supervision. However, most of the existing
for multi-class problems are inherently binary methods and research in active learning has focused on binary classifica
do not scale up to a large number of classes. In this pa- tion tasks. Relatively few approaches [15, 21, 12, 18, 13]
per, we introduce a probabilistic variant of thi€-Nearest have been proposed for multi-class active learning and are
Neighbor method for classification that can be seamlesslytypically based on extensions of predominantly binary ac-
used for active learning in multi-class scenarios. Given tive learning methods to the multi-class scenario. A ciucia
some labeled training data, our method learns an accu- drawback of such methods is that the underlying classifica-
rate metric/kernel function over the input space that can tion models consist of a collection aidependentbinary
be used for classification and similarity search. Unlike ex- classification subproblems, e.g., 1-vs-all GP. Consedyent
isting metric/kernel learning methods, our scheme is lyighl the model cannot compare the uncertainty in prediction of
scalable for classification problems and provides a natu- an example for two different binary subproblems, implying
ral notion of uncertainty over class labels. Further, we that it cannot identify the classes that require more tngjni
use this measure of uncertainty to actively sample training data. As a result, these methods do not scale-up well with
examples that maximize discriminating capabilities of the the number of classes. Figure 1 shows that for large number
model. Experiments on benchmark datasets show that theof classes, our proposed method (pKNN+AL) consistently
proposed method learns appropriate distance metrics thatoutperforms the existing Gaussian Process (GP) [13] and
lead to state-of-the-art performance for object categmriz  SVM [15] based active learning methods in terms of gain
tion problems. Furthermore, our active learning method over random samplirlg

effectively samples training examples, resulting in digni Ideally, an active learning scheme should be designed
cant accuracy gains over random sampling for multi-class on top of a principled multi-class system that can provide
problems involving a large number of classes. a sound way of comparing classification uncertainty across

) classes. Thé& -nearest neighbor classifier (KNN) is a suit-
1. Introduction able candidate as a principled multi-class classifier.dhis

Collecting data for training a large scale classification of the simplest classification schemes that classifies a data
: . : int based on the labels of its neighbors, and can naturally
system is a potentially expensive process, as most of the exPOn . ' .
y P y exp P handle multi-class problems. But, KNN does not admit a

isting systems rely on human supervision to obtain accuratenatural notion of uncertainty in classification, and heriice
labels. Furthermore, most of the real world applications, . y ' '

such as image search and object recognition, involve hun-S unclear how to estimate the probability of misclassifica-

dreds of labels. Thus, the user needs to select from amongstfOn for.a given data pomt. o ,

a large class of labels in addition to handling a huge data !N this paper, we introduce a probabilistic variant of the

set. Hence, to make the most of scarce human labeling res -nearest neighbor (KNN) method for classification that

sources, it is imperative to carefully select the data oint €@n be further used for active learning in multi-class sce-

that a user labels. narios. Our method defines a probability measure based on
Recent research in the area of active learning have beerin€ pairwise distances between the data points, leading to a

reasonably successful in handling the problem of active

IThroughout this paperandom samplingyill refer to the strategy of
*Work done while at Microsoft Research, Redmond. choosing a random selection of examples to label.
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Recent work in the area of active learning has yielded
a variety of heuristics based on the variance in prediction
[13], version space of SVMs [19, 4], disagreement among
classifiers [7] and expected informativeness [14, 17]. Most
of these heuristics are designed for binary classificati@h a
‘ ‘ ‘ ‘ ‘ are applicable primarily to the classifiers such as SVMs and
20 umbest Labeled Eoamples Add2 100 GPs. Extension'_s to the _multi-class_gcenario are typ_icqlly
Figure 1. Accuracy gained by various active learning mestar based on extensions of binary classification using pairwise
random sampling after 10 rounds of active learning for défe comparisons or 1-vs-all strategy. Representative researc
subsets of the Caltech101 dataset. Proposed method (pKNN+A  includes methods based on functions of margin loss [15, 21]
has significant gains even for a large number of classes,@md ¢ Or entropy [13, 12]. However, all of these methods have
sistently outperforms both GP and SVM based active learning  been demonstrated on problems that have fewer than 15
classes, and as shown in Figure 1, typically do not scale well
with increasing number of classes. This is because, these
multi-class extensions consist ofdependenbinary sub-
natural notion of uncertainty over the class labels, and canproblems and it is not clear that how uncertainty of a data
be used for active sampling of examples to be labelled sopoint w.r.t. different binary subproblems can be compared.
as to maximize the discriminating capabilities of the model Specifically, let point; be the most uncertain point accord-
The performance of a nearest neighbor method is critically ing to the binary subproblem “class p-vs-all” for clasand
dependent on the distance/similarity measure that it oper-let z; be the most uncertain point according to the binary
ates on. While general purpose measures likenorms subproblem “class g-vs-all” for clags then it is not clear
or standard image kernels are reasonably accurate for simhow the uncertainty in the points; and x; can be com-
ple problems, they typically fail to reflect the correct dis- pared. In contrast, our method is designed specifically for
tance measure for complex large scale problems involvingmulti-class problems and provides a natural notion of com-
a large number of classes and data points in high dimen-paring uncertainty in classification over all the classes.
sions. Recent advances in metric/kernel learning make it  The K -Nearest Neighbor (KNN) method and its variants
possible to learn more effective data driven distance (of si  provide a natural way of handling multi-class problems [6].
ilarity) functions for a given problem using partially ldbd But, these methods depend heavily on the provided distance
data or pairwise distance constraints. Typically, thesthme or similarity measure to compare two data points. Recent
ods learn a Mahalanobis metric (or a kernel matrix) that methods in metric learning learns a distance metric param-
accurately reflects the pairwise distances. Consequentlyeterized by a Mahalanobis metric that is consistent with the
most of the metric learning methods involve optimizing training data [1, 5, 20, 8]. Although these methods pro-
over quadratic (either in the dimensionality of the feature vide a principled way for handling multi-class problems,
space or the number of data points) number of parametersfor large scale problems these methods are prohibitively ex
thus making them prohibitively expensive for large scale pensive. Furthermore, there have been only a few attempts
classification problems. However, classification problems to perform active learning with nearest neighbor methods
should require smaller number of parameters as they re{16, 10, 22, 11] and mostly, have been limited to a small
quire accurate distances to “classes” only, rather than-acc number of classes. Closely related to our work are the ac-
rate pairwise distances. In this paper, we present a methodive distance learning approaches proposed by Yang et. al.
that provides a scheme that learns an accurate distance t{p2], and Hoi & Jin [11]. Both of these methods aims to
each class and is parameterized by just linear number of paimprove pairwise distances using pairwise constraints, bu
rameters, leading to a highly scalable and robust distanceeither do not have a kernelized version [22] or are designed
learning method for classification and active learning. for the transductive setting [11]. In contrast, our method
is designed for classification problems and can be used to

Our contributions are twofold: 1) an efficient distance actively learn kernel matrices in the inductive setting.

function learner along with a probabilistic variant of the 3. Problem Formulation

K-nearest neighbor classifier for accurate classification in . _ L :
the multi-class scenario, and 2) an active learning paradig Givena s_et of points{ws, 3, ..., xn} mR and their
based on the proposed classifier that can handle a large numc_orr(_aspondlr_lg class labefgy, yo, .- ’.y"} with 1 S Yi S_
ber of classes. We empirically demonstrate the effective- C, Vi, we define the class labglof a given data point as:
ness of the proposed classification framework and the ac- . 1 Z K ) (1)
tive learning method on a variety of problems including an v= arginax (@, ),

object recognition task.
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the probability of classifying a point; as its true class label
¢ = y; is at leastw. Similarly, the constrainp.(x;) < (
requires that the probability of assigning a paintto an
incorrect class: # y; is at mosts. Note that, if the simi-
larity measured(© are all not positive thep..(x) does not
define a valid probability distribution. But, the problen) (3
still is well defined because then the constrairite;) > «
requires the average similarity of a pointto its true class
y; to be greater than times average similarity of; to all
the classes. Similarly, the constrajnf{x;) <  can be
interpreted appropriately.

wheren,. is the number of data points with class labeC”’

is the total number of classes, aff{a, b) denotes some
similarity measure between data pointsand b. Thus,
n% > isty—c K (x, ;) denotes average similarity af to
the class. If K is a non-negative similarity measure then
(1) can be equivalently written as:

y = argmax p.(x), 2)
_ e sty —e K (@)

T X ay Disiy— K@)
preted as the probability of pointbelonging to the class The objective functionDy(K||K,) = tr(KK;"') —

Also, note that this formulation is closely related to kdrne 1 . :
density estimation using Parzen Windozvs and can be de-1Og d?t(KKO ) —nisthe Logpetdwergence between the
rived by considering a uniform prior probability over the ma_trlxK andKo, and_has prewous_ly been s_hown to be use-
class labels. Furthermore, this formulation is betteresbit fulin the conte>_<t of_d|stance Iearr_nng [5]. Itis ag_eneradj_z .
for learning more accurate kernels, and extends naturally t Breg_man ma‘.”x d|yergence defined over positive deflnlte_
the problem of active learning for large number of classes. m?t”ces and s defined only when the range space of_matrlx
Success of the above defined classifier (Equation (2)) isK. 'S the same as that @f,. Thu_s the constraln_Ko = 01s
critically dependent on the similarity measut€)(that is tr|V|aIIy. sat|§f|_ed and comp_uta‘glonally expensive progedu
used to compare data points. A good distance/similarity of sLJeml-d;ﬁngefpr_?gramml?hg IS nottrequwed. <
measure should accurately reflect the true underlying rela—be wsrli[[lgn aes aeIli?wlelgrnc(g)r%traeini?gsarlf?lm ;((Qm i) 2 ;‘(g?”
tionships, i.e., data points in the same category should hav C T 1 . N
higher similarity measure than data points in different cat (=1 K ei(v))7) < 7 tr(K%;(v%)7), wherev' de-
egories. Unfortunately, for most of the practical applica- NOtes the indicator vector for clagsie. v'(i) = 1 if
tions, the data points are high dimensional vectors (as in%: = . Vectore; denotes the-th standard basis vec-
the case of images) and it might be non-trivial to know the tor- Similarly, constraint,(x;) < (4 can be written as
distance/similarity function beforehand. An alternate ap tr(>;_; Klei(v))” > 5 tr(K¢e;(v)T). Thus, (3) can
proach is to learn a similarity measure from the data di- be equivalently written as:
rectly. However, a single similarity measure might not be .
powerful enough for multi-class problems involving a large ™ e > Dea(K'|[Ko),

number of classes. Instead, we devise a method that learns =1

wherep..(x) and can be inter-

a similarity measure for each of tkiéclasses using the pro-
vided training data and the associated label information.
Given an initialn x n positive definite similarity ma-

trix K that reflects the prior domain knowledge about the

similarity measure, we learn a new positive definite similar
ity measure per clask ¢ that is “close” to K, but is also

consistent with the labeled training data. We pose the prob-

lem of learning the kernel§K', K2,... K¢} as an op-
timization problem that minimizes thieogDetdivergence
between the learned matricé&!, K2,..., K¢} and K,

such that the learned kerne{d(!, K2,... K¢} satisfy
specified class-label constraints. Formally, the optitiora
problem is:

c
P ZX:DM(KIHK()),
=1
st. pe(i) > o, c=y; Vi,
pC(mZ)Sﬁv C#y’hlSCSOvvz’v
K¢+ 0, Ve, Q)

where« and 5 are positive constants, apd(x) is as de-
fined earlier. Thus, the constraint(x;) > « requires that

c
1
S.t. tr <—Kcei(vC)T — E Klei('vl)T) >0,c =y, Vi,
a
=1

c
tr (%Kcei('vc)T - ZKlei(vl)T> <0,
=1

Ve s.t. ¢ # yi, Vi. (4)

Note that the problem (4) is a strictly convex, constrained
optimization program, and any standard convex optimiza-
tion toolbox can be used to obtain the optimal solution. But,
a naive method would require optimizing ovetC' vari-
ables which is prohibitively large. Instead, we show below
that the dual formulation of the problem can be solved by
optimizing overnC' parameters only. That is, the number
of parameters is linear in bothandC, and is of the same
order as those of 1-vs-all SVM or 1-vs-all GP. We further
propose an optimization algorithm for this problem that re-
quires onlyO(nC') computational operations per iteration.

By setting the gradient of the Lagrangian of (4) witt
to be zero and using the Sherman-Morrison-Woodbury for-
mula, we get: INT

K' = Ky — Ko[w' v'] S [&’}%4 Ko, (5)



where )\l > 0,1 <i <n,1 <[ < C arethe dual variables,

(-50) (-9

(6)
T l T 17\ 1
St = <I2x2 + [((,:]l))T[[((zZl ng))T[;%Zl}) ; (7)

andd,(b) = 1iff a = b, and0 elsewhere. Thus, each of
the learned kernek’’ is a two rank update to the original

kernel Ky. Furthermore, given the optimal dual variable
values, each of the kernel matd&’ can be computed in the

closed form using just(n?) operations.
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3.1. Optimization Algorithm

Next, we describe our proposed algorithm for optimizing
(4). Similar to [5], we use the Bregman'’s cyclic projection
method where the current solution is cyclically projected
onto all the constraints till convergence. But rather thiam p
jecting the currentkernelsk}, K2, ..., KE} onto asingle
constraint, our approach projects the current kernelsalhto

Algorithm 1 ProbabilisticK -Nearest Neighbor (pKNN)
Input:  Kjy: inputn x n kernel matrix,
{y1,v2,...,yn}: labels for each training point
Output: Parameters = {S',1 <1 < C},
W ={w',1<1<C}(See(6), (7))

1: Intialize S' = 0, w! = 0, V]

2: repeat

3:  Pick a data point;

4:  Solve the dual problem (9) fox¢, Ve, and apply the
correction term (See supplementary material)
Updatew', VI using (6)

UpdateS’, VI using (10)
Update(v')" Ki, w',(w')" K w!, (v))TKi o'

; l 1, 0al (Ul)T 1
usingK; , = K; — Ki[w' v']S (w)T K

8: until convergence

where,

(vl)TK,fwl

’Ul TKl,Ul
st = (1w [(Wheidfer (i

(wl>TKévl] > _1('10)

of the C constraints associated with the current data point The dual problem (9) is a non-negative, non-linear con-

x;. Thatis, given current kernelsk}, K2, ..., KE}, the

vex program and can be solved using standard optimization

following sub-problem is solved at each step to obtain the tools. In our implementation, we use Matlab’s projected

next set of kernel$ K7, ,,
c

> Dea(K'[|Ko),
=1

2 C -
Ki o, .. .,KtH}.
min
K1..KC

1
s.t. tr (—Kcei(vc)T — Klei(vl)T> >0,¢c =y, Vi,
o

=1

1 c

tr <BKcei(vc)T - ZKlei(vl)T> <0,
=1

Ve s.t. c# yi, Vi. (8)

Note that the above given sub-problem involves con-
straints only for thei-th data point, i.e. solving
this sub-problem implies projecting the current ker-
nel matrices{ K}, K?,..., KX} onto the constraints for
the i-th data point only.  Updating the” kernels
{K} ., K2, ...,KZ,} at each step is prohibitively ex-
pensive, as it requires @{C) operations. However, as
shown in the previous section, by solving for the dual prob-
lem of (8) we can implicitly update the kernel matrices in
O(nC) operations only. The dual problem of (8) is given

by:

C
: l
N l§_1 —logdet (S, 1)
sit. Ay >0, Ve, 9

gradient procedure, but for faster implementation more so-
phisticated tools can be used.

By optimizing (9) for the dual variables
LA 09}, we can implicitly update the kernel
matrices by updating the inner products’)” Klw',
(wHT Klw', and (v!)T Klv! that are required for solving
the dual problem (9) for the next set of constraints. We it-
erate through all the constraints cyclically till convenge.
Since, problem (4) is a convex optimization problem, the
cyclic projection algorithm is guaranteed to converge & th
global optima. Algorithm 1 provides a pseudo code for our
optimization algorithm. Note that, in step 7 of Algorithm 1,
rather than computing each kernkl explicitly, we just
update the inner produc@')” K/, w', (w")TK}  w',
and (v')T K/, v efficiently. We can show that this step
can be performed in just @(C') computational operations.
Please refer to the longer version for further details about
the optimization procedure.

3.2. Classifying a Test Point

The optimization procedure described above learns a set
of kernel matricesk'', K2, ..., K® over the input data
points, that takes into account the provided label informa-
tion. Interestingly, our method not only learns a set of ker-
nel matrices, but also learns a set of kernel functions that
can be used to compute the kernel function value between
two unseen data points. Recall that the learned kernels are



given by (5), or equivalently: e 21:”"'“:6 K (mt’w ) — is a valid probability distribution
P o Eis,t.yi:t K (@)

()T over the class labels for the given data paint
K'(a,b) = Ko(a,b)—Ko(a, ) [w'v']S" (w))? Ko(b,-)', As in many existing active learning methods [13, 18], we
(11) assume that an uncertain data point (in terms of classifica-
where S is given by (10), Ko(a,-) _ tio_n)_should sir_engthen the discriminative c_apabilityhﬂt _
[Ko(a,z1) Kola,x2) ... Ko(a,zn). Thus given existing classifier. A standard active learning approach is

the initial kernel functionk,, the input points, and the 0 use the Shannon entropyd{a) = — 5 pclog p.—as

learned parameter matrig’, kernel functionk! can be the measure of uncertainty in classification. Note that the

evaluated at any two points and b in O(n) operations. Ie_arned kerneii(c are guaranteed to pe pqsitive ser_riidefi-
Consequently, given a new data paintits similarity value ~ Mt€, but there is no guarantee that all individual entrids w
K'(z,-) can be computed with respect to all the training be positive. In such cases it is non-trivial to use Shannon
data points. Label of the test pointz can be computed ~ €N{ropy @s an uncertainty measure. However, we can use
using three different schemes: mode of the probability density fae, i.e. max. p.(x), as

) - ] the measure of certainty. Note that a higher mode of prob-
1. y can be computed using our classifier defined by (2), apjlity densityp. () corresponds to more certainty in clas-

i _ 1 i ) :
Le.,y = argmax, -3¢, . K°(x,®;). Werefer  gification. Consequently we can select the points according

to this method as pKNN. to the criterion:

2. Since we compute more accurate similarity measures .
K for each clasg, we can use the learned similarity argmin max pe(x)
measure for KNN classification. To compare an un- ) _ ) ) ) o
seen point: to a pointz; in the training set, we use the This results in selecting data points with minimum
learned kernel matri¥¥: along with (11) to compute ~ @mount of certainty over class labels. Note that this scheme
the distancel(x, z;) = KY (z,x) + KY (x;, x;) — can be easily implemented evenif is negative for some

2KYi(x,x;). We refer to this method as pKNN-n. point. . . . _
. . . . After selecting a set of highly uncertain data points us-
3. Since existing classification methods like SVM and GP ing the above given active learning method, we re-train our

also depend on the underlying similarity measure, we ¢|5ssifier to include the selected data point and its label.
can use our learned kernels with SVM (or GP) to clas- s inyolves solving the optimization problem (4) again
sify newldata points. Specifically, we use the learned \yith 4 new set of constraints. By using the current optimal
kernel K for training thel-vs-all SVM classifier and 5] variables to initialize the dual variables for the ngw o
use (11) to compute the decision value for a new dataimization problem, the new optimization problem can be
point to be classified. We refer to this classification gqyeq efficiently with a small number of iterations. Fur-
method as pKNN-SVM. thermore, online updates can be derived for the keriiéls
Above given schemes are suitable for different problem sce-so that the addition of a new data point to the training set
narios. Scheme 2 is useful for robust similarity search, can be performed using a small number of operations.
while scheme 3 is useful for fast classification, as the spar-
sity of the SVM classifier can be exploited. Scheme 1 is 5. Results

useful for robust classification. ) ) B
In this section, we present empirical results to demon-

4. Active Learning strate 1) the effectiveness of the pKNN framework on large
multi-class problems, 2) how active learning can guide the
Let Xy = {®n 11, Tns2, .-, Toym ) DE the pool of un-  |earning procedure to select critical examples to be lahele

labeled data points that can be queried to find out the trueand 3) the ability of the proposed framework to learn a good
label. Then at each step in active learning, an unlabeled dat kernel function.
point is selected from the séfy to label and is incorpo- The empirical evaluation is performed on two standard
rated into the training set to update the classification hode penchmarks: Caltech101 and UCI| datasets. We compare
Thus, the goal is to select the data point that strengthens th our active learning method with the baseline random sam-
existing classification model the most in terms of its dis- pling method, and two state-of-the-art methods: 1) an activ
criminative capabilities. learning method based on GP (GP+AL) that uses the poste-
As described in the previous section, our method learnsrior distribution of the prediction to select the most uncer
a set of kernelsk!, VI, which are then used to predict tain data point [13], 2) an SVM based scheme (SVM+AL)
the label of a new data point according to following cri- that tries to minimize approximate version space [15]. Both
teria: y = argmax, - >, ¢, —. Kz, ;). Now, if of these heuristics are based on the one-vs-all formulation
the learned kernel&© are all non-negative thep.(x) = of binary classifiers to handle multi-class problems.



Acc. vs. Number of Labeled Examples (20 classes) Acc. vs. Number of Labeled Examples (40 classes) Acc. vs. Number of Labeled Examples (60 classes)

-©-pKNN+AL
-»-pKNN+Rand
ot ) 60|-+=SVM+AL
g -¢-SVM+Rand
--GP+AL
-A-GP+Rand

-©-pKNN+AL -6-pKNN+AL
-*-pKNN+Rand S -»-pKNN+Rand
-+-SVM+AL . ? 65|-#=SVM+AL
-9-SVM+Rand - -4-SVM+Rand
80|-e-GP+AL -6-GP+AL
-A-GP+Rand -A-GP+Rand

R

Accuracy
~
a
Accuracy
Accuracy

200 0 200 0 200

50 100 150
Number of Labeled Examples Added
Acc. vs. Number of Labeled Examples (101 classes)

50 100 150
Number of Labeled Examples Added
Acc. vs. Number of Labeled Examples (90 classes)

50 100 150
Number of Labeled Examples Added
Acc. vs. Number of Labeled Examples (70 classes)

-6-pKNN+AL -0~ pKNN+AL -e-pKNN+AL
-»-pKNN+Rand 52|~* "PKNN+Rand 1 59|"* -PKNN+Rand
-+SVM+AL PPte 3 -+ SVM+AL —+SVM+AL

55/-9-SvM+Rand
-0-GP+AL

50/~¢-SVM+Rand
--GP+AL

50/-¢-SVM+Rand
-6-GP+AL

§ -A-GP+Rand §48 -A-GP+Rand §43 -A-GP+Rand
350 3 E
2 2461 246
a5 44r 44
42, 42
4OO 200 400 200 4OO 200

50 100 150
Number of Labeled Examples Added

50 100 150 50 100 150
Number of Labeled Examples Added Number of Labeled Examples Added

Figure 2. Comparison of classification accuracy obtainechipus methods on three different subsets of Caltech18thong 20, 40, 60,
70, 90 and 101 classes. Each subplot shows variation inamc(averaged over 10 runs) as the actively learned exarapexided. Note
that pKNN+AL is significantly more accurate than GP+AL and\NBYAL, especially for subsets containing a large number aésés.

For the experiments, we consider a randomly initialized both SVM and GP.
training set, a test set and a query set containing unlabeled
examples Ky7). The active learning scheme queries for
the labels of examples contained in the queryX$gtonly,
while the recognition performance is reported on the test
set. For every method, we report the mean classification ac
curacy per class (averaged ouvérruns). Similar to [13],
we uses = 10~° for noise model variance for the Gaus-
sian Process models and fix constraint pen@lty 10° for

First, we evaluate accuracy of various active learning
schemes with the number of classes. We randomly se-
lect a subset of classes from the Caltech101 dataset and
consider all the images from those classes to generate a
‘classification subproblem. Figure 2 shows results on ran-
domly chosen subproblems with 20, 40, 60, 70, 90, and
101 classes. It is clear from the Figure 2 that the proposed

he S h hod h h pKNN+AL method outperforms all the other schemes in-
the SVMs. For the pKNN method, we choose the param- ,,jing GP+AL and SVM+AL. Also, pKNN+AL is sig-
etersa and 8 to be z and ==, where(C' is the number

. c o _ nificantly better than the random sampling (pKNN+Rand)
of classes. Sllghtly better accuracies can be expected Wlti“tor all the different subproblems including the fulb1
cross-validation. class case. However, that is not the case with GP+AL, for

. . which the active learning versions provide little advaetag
Caltech101: Caltech101 is a benchmark dataset for object ¢, large number of classes. Figure 1 summarizes the gain

recognition, where given a test image, the goal is to predict

the correct category out of tH@1 classes. Our experiments  cajaction. As the number of classes increases, pKNN-+AL

use a pool of 30 images per class of which 15 randomly Cho'gains up t2.9% of accuracy and is significantly more ac-
sen images per class forms the test set. The initial training ;- ate than other methods.

set is seeded randomly by selecting 2 training examples per

achieved by various active learning methods over random

class and the remaining images form the queryget For Next, to demonstrate the effectiveness of the pKNN clas-
each round of active learning() images selected from the sification algorithm, we compare the accuracy obtained by
query setXy; are labeled and added to the training set. pKNN+AL for the Caltech101 dataset with that of the state-
For the proposed pKNN method (Algorithm 1), the ini- of-the-art methods. Figure 3 (left plot) shows that except
tial kernel K, is set to be the average ¢fvell-known ker- for GP based Multi-kernel method [13], our method outper-

nels. Specifically, we use two kernels based on the geo-10rms the existing methods by a significant margin. Also,
metric blur descriptors [2] and two kernels—the Pyramid the accuracies for pKNN+AL are generated using the ac-
Match Kernel (PMK) and the Spatial PMK—based on the tive learning scheme, that is at each step we add 101 data

SIFT features [9, 3] We use the same kern&l, to train points. In contrast, the GP-Multi-Kernel method assumes
’ knowledge of all the labels to form a balanced training set

2\We obtained each kernel from the respective authors. consisting of an equal number of examples per class.




Caltech 101 Categories Data Set No. of examples selected from each class (GP+AL) No. of examples selected from each class ()KNN+AL)
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Figure 3.Left: Caltech 101 results. Comparison of classification acguvéth the state-of-the-art methods. Our classificationhoét
is competitive with the existing methodé&4iddle: Number of examples added per class by the GP+AL method.rl¢l¢he GP+AL

samples all the classes fairly uniformliRight:Number of examples added per class by the pKNN+AL metho@ar@l, the proposed

pKNN method samples classes unevenly, depending on tHiggudtyy.
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Figure 4. Images from the Caltech101 dataset that are Bctetected by the GP+AL method. Each row of the plot showsn2égies
selected in a single active learning round. Due to the 1h®@anulation, GP+AL is restricted to selecting one imagenfi each binary
subproblem and thus selects images from many easy to poadégories, e.dg=ace dollar bill, car sideetc.

in terms of background, or size and shape of the object—

Discussion: Next, we analyze and highlight the reasons be- e.g.,starfish, mayfly, dolphinategory —or are very similar
hind significantly higher accuracy achieved by the proposedto some other category—e.g., thés category which is sim-
active learning method compared to the other methods. Fig-ilar to the flamingoandflamingo heaccategory, thdotus
ure 3 (middle and rightmost plot) compares the frequency category which is similar to theunflowerand water lily,
distribution of examples selected per class by pKNN+AL and thecrocodilecategory which is similar to therocodile
to that of GP+AL. Note that the distribution of samples se- bodycategory.
lected by pKNN+AL is much more skewed than the ones
selected by GP+AL. This suggests that sampling uniformly Table 1. Accuracy obtaine_d by standard metric _Iearning ouith
across all the classes is not helpful as there mightdsy (LMNN [20], ITML [5]) against the accuracy obtained by theopr
classes and sampling from those classes amounts to wastadp)é)sedeNN’ andpkNN-n. Note that bothpKNN and pkNN-n

. . . . performs comparable to the state-of-the-art methods.
of supervision. By design one-vs-all extensions of the bi-
nary methods to multi-class problems consisirafepen- Datasef Method | LMNN | ITML | pKNN | pKNN-n
dentbinary subproblems; consequently, it is not clear how lonosphere 86.1 855 | 857 81.1

such designs can compare thifficulty of the sub-problems Sc.ale 88.4 904 | 889 920
across all the classes and thus, might end up selecting sam Iris 9.1 95.7 94.3 7.1
» Mg p 9 Soybean %3 | 921 | 919 | 893

ples that correspond to easy classes as well. This observa
tion is illustrated by Figures 4 and 5, that show the différen
images selected by pKNN+AL and GP+AL during 3 dif- . ) . o o
ferent rounds of active learning. We note that pKNN+AL tion frame\(vork|sthat_alt_)ng_W|th raining a classifier, Bal

tends to select more images from a hard class for which thelearns an improved similarity measure. Thus, our method

current classifier requires more training data (for example C?.n atllso bwszd for S|rtnll?r|?r/].search '? tf;?hcon'ltext.(t); clabs-
wild cat). But, GP+AL ends up selecting a number of im- stfication. Ve demonstrate this aspect ot the algorithm by

f | that miaht b " &ace dollar bill applying it for the nearest neighbor search problem on a
2?:5 rom classes that might be easy, &gcg doflar bl variety of standard UCI datasets. We compare our method

with existing distance learning methods. We evaluate the

Next, we analyze the classes that were maximally sam-results for the nearest neighbor search problem using 1-
pled by the pKNN+AL method. Figure 6 shows the top nearest neighbor classification with 2-fold cross valiiati

five classes sampled by pKNN+AL. Note that these classesTable 1 compares accuracies obtained by various metric

are particularly hard as they contain images that are ddvers learning methods on 4 standard UCI datasets. Note that

UCI Datasets: A key feature of our pKNN classifica-



Figure 5. Images from the Caltech101 dataset that are acﬂekacted by the pKNN+AL method. Each row of the plot sho@sriages
selected in a single active learning round. Note that, féiicdit categories like thélamingocategory, multiple images are selected in a
single round itself. In contrast, GP+AL typically selectsriage per category only (See Figure 4).

active learning strategy into our framework. We demon-
strated empirically that for large multi-class problemst o
proposed active learning method (pKNN+AL) is signifi-
cantly more accurate than the existing active learning meth
ods. Future directions for this research include non-myopi
active learning, exploration of other active learning lsur
tics and application of this method to even larger problems.
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