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Abstract

Scarcity and infeasibility of human supervision for large
scale multi-class classification problems necessitates active
learning. Unfortunately, existing active learning methods
for multi-class problems are inherently binary methods and
do not scale up to a large number of classes. In this pa-
per, we introduce a probabilistic variant of theK-Nearest
Neighbor method for classification that can be seamlessly
used for active learning in multi-class scenarios. Given
some labeled training data, our method learns an accu-
rate metric/kernel function over the input space that can
be used for classification and similarity search. Unlike ex-
isting metric/kernel learning methods, our scheme is highly
scalable for classification problems and provides a natu-
ral notion of uncertainty over class labels. Further, we
use this measure of uncertainty to actively sample training
examples that maximize discriminating capabilities of the
model. Experiments on benchmark datasets show that the
proposed method learns appropriate distance metrics that
lead to state-of-the-art performance for object categoriza-
tion problems. Furthermore, our active learning method
effectively samples training examples, resulting in signifi-
cant accuracy gains over random sampling for multi-class
problems involving a large number of classes.

1. Introduction

Collecting data for training a large scale classification
system is a potentially expensive process, as most of the ex-
isting systems rely on human supervision to obtain accurate
labels. Furthermore, most of the real world applications,
such as image search and object recognition, involve hun-
dreds of labels. Thus, the user needs to select from amongst
a large class of labels in addition to handling a huge data
set. Hence, to make the most of scarce human labeling re-
sources, it is imperative to carefully select the data points
that a user labels.

Recent research in the area of active learning have been
reasonably successful in handling the problem of active
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selection of the examples to be labelled. Typically, such
schemes build upon notions of uncertainty in classification.
For example, data points that are most likely to be misclas-
sified can be considered to be the most informative and will
be selected for supervision. However, most of the existing
research in active learning has focused on binary classifica-
tion tasks. Relatively few approaches [15, 21, 12, 18, 13]
have been proposed for multi-class active learning and are
typically based on extensions of predominantly binary ac-
tive learning methods to the multi-class scenario. A crucial
drawback of such methods is that the underlying classifica-
tion models consist of a collection ofindependentbinary
classification subproblems, e.g., 1-vs-all GP. Consequently,
the model cannot compare the uncertainty in prediction of
an example for two different binary subproblems, implying
that it cannot identify the classes that require more training
data. As a result, these methods do not scale-up well with
the number of classes. Figure 1 shows that for large number
of classes, our proposed method (pKNN+AL) consistently
outperforms the existing Gaussian Process (GP) [13] and
SVM [15] based active learning methods in terms of gain
over random sampling1.

Ideally, an active learning scheme should be designed
on top of a principled multi-class system that can provide
a sound way of comparing classification uncertainty across
classes. TheK-nearest neighbor classifier (KNN) is a suit-
able candidate as a principled multi-class classifier. It isone
of the simplest classification schemes that classifies a data
point based on the labels of its neighbors, and can naturally
handle multi-class problems. But, KNN does not admit a
natural notion of uncertainty in classification, and hence,it
is unclear how to estimate the probability of misclassifica-
tion for a given data point.

In this paper, we introduce a probabilistic variant of the
K-nearest neighbor (KNN) method for classification that
can be further used for active learning in multi-class sce-
narios. Our method defines a probability measure based on
the pairwise distances between the data points, leading to a

1Throughout this paper,random samplingwill refer to the strategy of
choosing a random selection of examples to label.
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Figure 1. Accuracy gained by various active learning methods over
random sampling after 10 rounds of active learning for different
subsets of the Caltech101 dataset. Proposed method (pKNN+AL)
has significant gains even for a large number of classes, and con-
sistently outperforms both GP and SVM based active learning.

natural notion of uncertainty over the class labels, and can
be used for active sampling of examples to be labelled so
as to maximize the discriminating capabilities of the model.
The performance of a nearest neighbor method is critically
dependent on the distance/similarity measure that it oper-
ates on. While general purpose measures likeLp norms
or standard image kernels are reasonably accurate for sim-
ple problems, they typically fail to reflect the correct dis-
tance measure for complex large scale problems involving
a large number of classes and data points in high dimen-
sions. Recent advances in metric/kernel learning make it
possible to learn more effective data driven distance (or sim-
ilarity) functions for a given problem using partially labeled
data or pairwise distance constraints. Typically, these meth-
ods learn a Mahalanobis metric (or a kernel matrix) that
accurately reflects the pairwise distances. Consequently,
most of the metric learning methods involve optimizing
over quadratic (either in the dimensionality of the feature
space or the number of data points) number of parameters,
thus making them prohibitively expensive for large scale
classification problems. However, classification problems
should require smaller number of parameters as they re-
quire accurate distances to “classes” only, rather than accu-
rate pairwise distances. In this paper, we present a method
that provides a scheme that learns an accurate distance to
each class and is parameterized by just linear number of pa-
rameters, leading to a highly scalable and robust distance
learning method for classification and active learning.

Our contributions are twofold: 1) an efficient distance
function learner along with a probabilistic variant of the
K-nearest neighbor classifier for accurate classification in
the multi-class scenario, and 2) an active learning paradigm
based on the proposed classifier that can handle a large num-
ber of classes. We empirically demonstrate the effective-
ness of the proposed classification framework and the ac-
tive learning method on a variety of problems including an
object recognition task.

2. Related Work

Recent work in the area of active learning has yielded
a variety of heuristics based on the variance in prediction
[13], version space of SVMs [19, 4], disagreement among
classifiers [7] and expected informativeness [14, 17]. Most
of these heuristics are designed for binary classification and
are applicable primarily to the classifiers such as SVMs and
GPs. Extensions to the multi-class scenario are typically
based on extensions of binary classification using pairwise
comparisons or 1-vs-all strategy. Representative research
includes methods based on functions of margin loss [15, 21]
or entropy [13, 12]. However, all of these methods have
been demonstrated on problems that have fewer than 15
classes, and as shown in Figure 1, typically do not scale well
with increasing number of classes. This is because, these
multi-class extensions consist ofindependentbinary sub-
problems and it is not clear that how uncertainty of a data
point w.r.t. different binary subproblems can be compared.
Specifically, let pointxi be the most uncertain point accord-
ing to the binary subproblem “class p-vs-all” for classp and
let xj be the most uncertain point according to the binary
subproblem “class q-vs-all” for classq, then it is not clear
how the uncertainty in the pointsxi andxj can be com-
pared. In contrast, our method is designed specifically for
multi-class problems and provides a natural notion of com-
paring uncertainty in classification over all the classes.

TheK-Nearest Neighbor (KNN) method and its variants
provide a natural way of handling multi-class problems [6].
But, these methods depend heavily on the provided distance
or similarity measure to compare two data points. Recent
methods in metric learning learns a distance metric param-
eterized by a Mahalanobis metric that is consistent with the
training data [1, 5, 20, 8]. Although these methods pro-
vide a principled way for handling multi-class problems,
for large scale problems these methods are prohibitively ex-
pensive. Furthermore, there have been only a few attempts
to perform active learning with nearest neighbor methods
[16, 10, 22, 11] and mostly, have been limited to a small
number of classes. Closely related to our work are the ac-
tive distance learning approaches proposed by Yang et. al.
[22], and Hoi & Jin [11]. Both of these methods aims to
improve pairwise distances using pairwise constraints, but
either do not have a kernelized version [22] or are designed
for the transductive setting [11]. In contrast, our method
is designed for classification problems and can be used to
actively learn kernel matrices in the inductive setting.

3. Problem Formulation

Given a set ofn points{x1, x2, . . . , xn} in R
d and their

corresponding class labels{y1, y2, . . . , yn} with 1 ≤ yi ≤
C, ∀i, we define the class labely of a given data pointx as:

y = argmax
c

1

nc

∑

i s.t.yi=c

K(x, xi), (1)



wherenc is the number of data points with class labelc, C

is the total number of classes, andK(a, b) denotes some
similarity measure between data pointsa and b. Thus,
1
nc

∑

i s.t.yi=c K(x, xi) denotes average similarity ofx to
the classc. If K is a non-negative similarity measure then
(1) can be equivalently written as:

y = argmax
c

pc(x), (2)

wherepc(x) =
1

nc

P

i s.t.yi=c K(x,xi)
P

C
t=1

1

nt

P

i s.t.yi=t
K(x,xi)

, and can be inter-

preted as the probability of pointx belonging to the classc.
Also, note that this formulation is closely related to kernel
density estimation using Parzen windows and can be de-
rived by considering a uniform prior probability over the
class labels. Furthermore, this formulation is better suited
for learning more accurate kernels, and extends naturally to
the problem of active learning for large number of classes.

Success of the above defined classifier (Equation (2)) is
critically dependent on the similarity measure (K) that is
used to compare data points. A good distance/similarity
measure should accurately reflect the true underlying rela-
tionships, i.e., data points in the same category should have
higher similarity measure than data points in different cat-
egories. Unfortunately, for most of the practical applica-
tions, the data points are high dimensional vectors (as in
the case of images) and it might be non-trivial to know the
distance/similarity function beforehand. An alternate ap-
proach is to learn a similarity measure from the data di-
rectly. However, a single similarity measure might not be
powerful enough for multi-class problems involving a large
number of classes. Instead, we devise a method that learns
a similarity measure for each of theC classes using the pro-
vided training data and the associated label information.

Given an initialn × n positive definite similarity ma-
trix K0 that reflects the prior domain knowledge about the
similarity measure, we learn a new positive definite similar-
ity measure per classKc that is “close” toK0 but is also
consistent with the labeled training data. We pose the prob-
lem of learning the kernels{K1, K2, . . . , KC} as an op-
timization problem that minimizes theLogDetdivergence
between the learned matrices{K1, K2, . . . , KC} andK0

such that the learned kernels{K1, K2, . . . , KC} satisfy
specified class-label constraints. Formally, the optimization
problem is:

min
K1,...,KC

C
∑

l=1

Dℓd(K
l‖K0),

s.t. pc(xi) ≥ α, c = yi, ∀i,

pc(xi) ≤ β, c 6= yi, 1 ≤ c ≤ C, ∀i,

Kc � 0, ∀c, (3)

whereα andβ are positive constants, andpc(x) is as de-
fined earlier. Thus, the constraintpc(xi) ≥ α requires that

the probability of classifying a pointxi as its true class label
c = yi is at leastα. Similarly, the constraintpc(xj) ≤ β

requires that the probability of assigning a pointxj to an
incorrect classc 6= yj is at mostβ. Note that, if the simi-
larity measuresKc are all not positive thenpc(x) does not
define a valid probability distribution. But, the problem (3)
still is well defined because then the constraintpc(xi) ≥ α

requires the average similarity of a pointxi to its true class
yi to be greater thanα times average similarity ofxi to all
the classes. Similarly, the constraintpc(xj) ≤ β can be
interpreted appropriately.

The objective functionDℓd(K‖K0) = tr(KK−1
0 ) −

log det(KK−1
0 ) − n is the LogDet divergence between the

matrixK andK0, and has previously been shown to be use-
ful in the context of distance learning [5]. It is a generalized
Bregman matrix divergence defined over positive definite
matrices and is defined only when the range space of matrix
K is the same as that ofK0. Thus the constraintK0 � 0 is
trivially satisfied and computationally expensive procedure
of semi-definite programming is not required.

Using the definition ofpc, the constraintpc(xi) ≥ α can
be written as a linear constraint in all{K1, K2, . . . , KC}:
tr(
∑C

l=1 K l
ei(v

l)T ) ≤ 1
α

tr(Kc
ei(v

c)T ), wherev
l de-

notes the indicator vector for classl, i.e. v
l(i) = 1 if

yi = l. Vector ei denotes thei-th standard basis vec-
tor. Similarly, constraintpc(xi) ≤ β can be written as
tr(
∑C

l=1 K l
ei(v

l)T ≥ 1
β

tr(Kc
ei(v

c)T ). Thus, (3) can
be equivalently written as:

min
K1..KC

C
∑

l=1

Dℓd(K
l‖K0),

s.t. tr

(

1

α
Kc

ei(v
c)T −

C
∑

l=1

K l
ei(v

l)T

)

≥ 0, c = yi, ∀i,

tr

(

1

β
Kc

ei(v
c)T −

C
∑

l=1

K l
ei(v

l)T

)

≤ 0,

∀c s.t. c 6= yi, ∀i. (4)

Note that the problem (4) is a strictly convex, constrained
optimization program, and any standard convex optimiza-
tion toolbox can be used to obtain the optimal solution. But,
a naı̈ve method would require optimizing overn2C vari-
ables which is prohibitively large. Instead, we show below
that the dual formulation of the problem can be solved by
optimizing overnC parameters only. That is, the number
of parameters is linear in bothn andC, and is of the same
order as those of 1-vs-all SVM or 1-vs-all GP. We further
propose an optimization algorithm for this problem that re-
quires onlyO(nC) computational operations per iteration.

By setting the gradient of the Lagrangian of (4) w.r.tK l

to be zero and using the Sherman-Morrison-Woodbury for-
mula, we get:

K l = K0 − K0[w
l
v

l]Sl

[

(vl)T

(wl)T

]

K0, (5)



where,λl
i ≥ 0, 1 ≤ i ≤ n, 1 ≤ l ≤ C are the dual variables,

w
l =

n
∑

i=1



λ
yi

i

(

1 −
δl(yi)

α

)

−
∑

c 6=yi

λc
i

(

1 −
δl(c)

β

)



 ei,

(6)

Sl =

(

I2×2 +

[

(vl)T K0w
l (vl)T K0v

l

(wl)T K0w
l (wl)T K0v

l

])−1

, (7)

andδa(b) = 1 iff a = b, and0 elsewhere. Thus, each of
the learned kernelK l is a two rank update to the original
kernelK0. Furthermore, given the optimal dual variable
values, each of the kernel matrixK l can be computed in the
closed form using justO(n2) operations.

3.1. Optimization Algorithm

Next, we describe our proposed algorithm for optimizing
(4). Similar to [5], we use the Bregman’s cyclic projection
method where the current solution is cyclically projected
onto all the constraints till convergence. But rather than pro-
jecting the current kernels{K1

t , K2
t , . . . , KC

t } onto a single
constraint, our approach projects the current kernels ontoall
of theC constraints associated with the current data point
xi. That is, given current kernels{K1

t , K2
t , . . . , KC

t }, the
following sub-problem is solved at each step to obtain the
next set of kernels{K1

t+1, K
2
t+1, . . . , K

C
t+1}:

min
K1...KC

C
∑

l=1

Dℓd(K
l‖K0),

s.t. tr

(

1

α
Kc

ei(v
c)T −

C
∑

l=1

K l
ei(v

l)T

)

≥ 0, c = yi, ∀i,

tr

(

1

β
Kc

ei(v
c)T −

C
∑

l=1

K l
ei(v

l)T

)

≤ 0,

∀c s.t. c 6= yi, ∀i. (8)

Note that the above given sub-problem involves con-
straints only for the i-th data point, i.e. solving
this sub-problem implies projecting the current ker-
nel matrices{K1

t , K2
t , . . . , KC

t } onto the constraints for
the i-th data point only. Updating theC kernels
{K1

t+1, K
2
t+1, . . . , K

C
t+1} at each step is prohibitively ex-

pensive, as it requires O(n2C) operations. However, as
shown in the previous section, by solving for the dual prob-
lem of (8) we can implicitly update the kernel matrices in
O(nC) operations only. The dual problem of (8) is given
by:

min
λ1

i
,...,λC

i

C
∑

l=1

− log det(Sl
t+1)

s.t. λc
i ≥ 0, ∀c, (9)

Algorithm 1 ProbabilisticK-Nearest Neighbor (pKNN)
Input: K0: inputn × n kernel matrix,

{y1, y2, . . . , yn}: labels for each training point
Output: ParametersS = {Sl, 1 ≤ l ≤ C},

W = {wl, 1 ≤ l ≤ C} (See (6), (7))
1: IntializeSl = 0, wl = 0, ∀l

2: repeat
3: Pick a data pointxi

4: Solve the dual problem (9) forλc
i , ∀c, and apply the

correction term (See supplementary material)
5: Updatewl, ∀l using (6)
6: UpdateSl, ∀l using (10)
7: Update(vl)T K l

t+1w
l,(wl)T K l

t+1w
l, (vl)T K l

t+1v
l

usingK l
t+1 = Kt − Kt[w

l
v

l]Sl

[

(vl)T

(wl)T

]

K l
t+1

8: until convergence

where,

Sl
t+1 =

(

I2×2 +

[

(vl)T K l
tw

l (vl)T K l
tv

l

(wl)T K l
tw

l (wl)T K l
tv

l

])−1

.

(10)
The dual problem (9) is a non-negative, non-linear con-
vex program and can be solved using standard optimization
tools. In our implementation, we use Matlab’s projected
gradient procedure, but for faster implementation more so-
phisticated tools can be used.

By optimizing (9) for the dual variables
{λ1

i , λ
2
i , . . . , λ

C
i }, we can implicitly update the kernel

matrices by updating the inner products(vl)T K l
tw

l,
(wl)T K l

tw
l, and(vl)T K l

tv
l that are required for solving

the dual problem (9) for the next set of constraints. We it-
erate through all the constraints cyclically till convergence.
Since, problem (4) is a convex optimization problem, the
cyclic projection algorithm is guaranteed to converge to the
global optima. Algorithm 1 provides a pseudo code for our
optimization algorithm. Note that, in step 7 of Algorithm 1,
rather than computing each kernelK l

t explicitly, we just
update the inner products(vl)T K l

t+1w
l, (wl)T K l

t+1w
l,

and (vl)T K l
t+1v

l efficiently. We can show that this step
can be performed in just O(nC) computational operations.
Please refer to the longer version for further details about
the optimization procedure.

3.2. Classifying a Test Point

The optimization procedure described above learns a set
of kernel matricesK1, K2, . . . , KC over the input data
points, that takes into account the provided label informa-
tion. Interestingly, our method not only learns a set of ker-
nel matrices, but also learns a set of kernel functions that
can be used to compute the kernel function value between
two unseen data points. Recall that the learned kernels are



given by (5), or equivalently:

K l(a, b) = K0(a, b)−K0(a, ·)[wl
v

l]Sl

[

(vl)T

(wl)T

]

K0(b, ·)′,

(11)
where Sl is given by (10), K0(a, ·) =
[K0(a, x1) K0(a, x2) . . . K0(a, xn)]. Thus given
the initial kernel functionK0, the input points, and the
learned parameter matrixSl, kernel functionK l can be
evaluated at any two pointsa and b in O(n) operations.
Consequently, given a new data pointx, its similarity value
K l(x, ·) can be computed with respect to all the training
data points. Labely of the test pointx can be computed
using three different schemes:

1. y can be computed using our classifier defined by (2),
i.e., y = argmaxc

1
nc

∑

i s.t.yi=c Kc(x, xi). We refer
to this method as pKNN.

2. Since we compute more accurate similarity measures
K l for each classl, we can use the learned similarity
measure for KNN classification. To compare an un-
seen pointx to a pointxi in the training set, we use the
learned kernel matrixKyi along with (11) to compute
the distanced(x, xi) = Kyi(x, x) + Kyi(xi, xi) −
2Kyi(x, xi). We refer to this method as pKNN-n.

3. Since existing classification methods like SVM and GP
also depend on the underlying similarity measure, we
can use our learned kernels with SVM (or GP) to clas-
sify new data points. Specifically, we use the learned
kernelK l for training thel-vs-all SVM classifier and
use (11) to compute the decision value for a new data
point to be classified. We refer to this classification
method as pKNN-SVM.

Above given schemes are suitable for different problem sce-
narios. Scheme 2 is useful for robust similarity search,
while scheme 3 is useful for fast classification, as the spar-
sity of the SVM classifier can be exploited. Scheme 1 is
useful for robust classification.

4. Active Learning

Let XU = {xn+1, xn+2, . . . , xn+m} be the pool of un-
labeled data points that can be queried to find out the true
label. Then at each step in active learning, an unlabeled data
point is selected from the setXU to label and is incorpo-
rated into the training set to update the classification model.
Thus, the goal is to select the data point that strengthens the
existing classification model the most in terms of its dis-
criminative capabilities.

As described in the previous section, our method learns
a set of kernelsK l, ∀l, which are then used to predict
the label of a new data point according to following cri-
teria: y = argmaxc

1
nc

∑

i s.t.yi=c Kc(x, xi). Now, if
the learned kernelsKc are all non-negative thenpc(x) =

1

nc

P

i s.t. yi=c
Kc(x,xi)

P

C
t=1

1

nt

P

i s.t.yi=t
Kt(x,xi)

is a valid probability distribution

over the class labels for the given data pointx.
As in many existing active learning methods [13, 18], we

assume that an uncertain data point (in terms of classifica-
tion) should strengthen the discriminative capability of the
existing classifier. A standard active learning approach is
to use the Shannon entropy—H(x) = −

∑

c pc log pc—as
the measure of uncertainty in classification. Note that the
learned kernelsKc are guaranteed to be positive semidefi-
nite, but there is no guarantee that all individual entries will
be positive. In such cases it is non-trivial to use Shannon
entropy as an uncertainty measure. However, we can use
mode of the probability density forx, i.e. maxc pc(x), as
the measure of certainty. Note that a higher mode of prob-
ability densitypc(x) corresponds to more certainty in clas-
sification. Consequently we can select the points according
to the criterion:

argmin
x

max
c

pc(x)

This results in selecting data points with minimum
amount of certainty over class labels. Note that this scheme
can be easily implemented even ifKc is negative for some
point.

After selecting a set of highly uncertain data points us-
ing the above given active learning method, we re-train our
classifier to include the selected data point and its label.
This involves solving the optimization problem (4) again
with a new set of constraints. By using the current optimal
dual variables to initialize the dual variables for the new op-
timization problem, the new optimization problem can be
solved efficiently with a small number of iterations. Fur-
thermore, online updates can be derived for the kernelsKc,
so that the addition of a new data point to the training set
can be performed using a small number of operations.

5. Results

In this section, we present empirical results to demon-
strate 1) the effectiveness of the pKNN framework on large
multi-class problems, 2) how active learning can guide the
learning procedure to select critical examples to be labeled,
and 3) the ability of the proposed framework to learn a good
kernel function.

The empirical evaluation is performed on two standard
benchmarks: Caltech101 and UCI datasets. We compare
our active learning method with the baseline random sam-
pling method, and two state-of-the-art methods: 1) an active
learning method based on GP (GP+AL) that uses the poste-
rior distribution of the prediction to select the most uncer-
tain data point [13], 2) an SVM based scheme (SVM+AL)
that tries to minimize approximate version space [15]. Both
of these heuristics are based on the one-vs-all formulation
of binary classifiers to handle multi-class problems.
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Figure 2. Comparison of classification accuracy obtained byvarious methods on three different subsets of Caltech101 containing 20, 40, 60,
70, 90 and 101 classes. Each subplot shows variation in accuracy (averaged over 10 runs) as the actively learned examplesare added. Note
that pKNN+AL is significantly more accurate than GP+AL and SVM+AL, especially for subsets containing a large number of classes.

For the experiments, we consider a randomly initialized
training set, a test set and a query set containing unlabeled
examples (XU ). The active learning scheme queries for
the labels of examples contained in the query setXU only,
while the recognition performance is reported on the test
set. For every method, we report the mean classification ac-
curacy per class (averaged over10 runs). Similar to [13],
we useσ = 10−5 for noise model variance for the Gaus-
sian Process models and fix constraint penaltyC = 105 for
the SVMs. For the pKNN method, we choose the param-
etersα and β to be 2

C
and 0.99

C
, whereC is the number

of classes. Slightly better accuracies can be expected with
cross-validation.

Caltech101: Caltech101 is a benchmark dataset for object
recognition, where given a test image, the goal is to predict
the correct category out of the101 classes. Our experiments
use a pool of 30 images per class of which 15 randomly cho-
sen images per class forms the test set. The initial training
set is seeded randomly by selecting 2 training examples per
class and the remaining images form the query setXU . For
each round of active learning,20 images selected from the
query setXU are labeled and added to the training set.

For the proposed pKNN method (Algorithm 1), the ini-
tial kernelK0 is set to be the average of4 well-known ker-
nels. Specifically, we use two kernels based on the geo-
metric blur descriptors [2] and two kernels—the Pyramid
Match Kernel (PMK) and the Spatial PMK—based on the
SIFT features [9, 3]2. We use the same kernelK0 to train

2We obtained each kernel from the respective authors.

both SVM and GP.

First, we evaluate accuracy of various active learning
schemes with the number of classes. We randomly se-
lect a subset of classes from the Caltech101 dataset and
consider all the images from those classes to generate a
classification subproblem. Figure 2 shows results on ran-
domly chosen subproblems with 20, 40, 60, 70, 90, and
101 classes. It is clear from the Figure 2 that the proposed
pKNN+AL method outperforms all the other schemes in-
cluding GP+AL and SVM+AL. Also, pKNN+AL is sig-
nificantly better than the random sampling (pKNN+Rand)
for all the different subproblems including the full101
class case. However, that is not the case with GP+AL, for
which the active learning versions provide little advantage
for large number of classes. Figure 1 summarizes the gain
achieved by various active learning methods over random
selection. As the number of classes increases, pKNN+AL
gains up to2.9% of accuracy and is significantly more ac-
curate than other methods.

Next, to demonstrate the effectiveness of the pKNN clas-
sification algorithm, we compare the accuracy obtained by
pKNN+AL for the Caltech101 dataset with that of the state-
of-the-art methods. Figure 3 (left plot) shows that except
for GP based Multi-kernel method [13], our method outper-
forms the existing methods by a significant margin. Also,
the accuracies for pKNN+AL are generated using the ac-
tive learning scheme, that is at each step we add 101 data
points. In contrast, the GP-Multi-Kernel method assumes
knowledge of all the labels to form a balanced training set
consisting of an equal number of examples per class.
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Figure 3.Left: Caltech 101 results. Comparison of classification accuracy with the state-of-the-art methods. Our classification method
is competitive with the existing methods.Middle: Number of examples added per class by the GP+AL method. Clearly, the GP+AL
samples all the classes fairly uniformly.Right:Number of examples added per class by the pKNN+AL method. Clearly, the proposed
pKNN method samples classes unevenly, depending on their difficulty.

Figure 4. Images from the Caltech101 dataset that are actively selected by the GP+AL method. Each row of the plot shows 20 images
selected in a single active learning round. Due to the 1-vs-all formulation, GP+AL is restricted to selecting one image from each binary
subproblem and thus selects images from many easy to predictcategories, e.g.Face, dollar bill , car sideetc.

Discussion: Next, we analyze and highlight the reasons be-
hind significantly higher accuracy achieved by the proposed
active learning method compared to the other methods. Fig-
ure 3 (middle and rightmost plot) compares the frequency
distribution of examples selected per class by pKNN+AL
to that of GP+AL. Note that the distribution of samples se-
lected by pKNN+AL is much more skewed than the ones
selected by GP+AL. This suggests that sampling uniformly
across all the classes is not helpful as there might beeasy
classes and sampling from those classes amounts to wastage
of supervision. By design one-vs-all extensions of the bi-
nary methods to multi-class problems consist ofindepen-
dentbinary subproblems; consequently, it is not clear how
such designs can compare thedifficultyof the sub-problems
across all the classes and thus, might end up selecting sam-
ples that correspond to easy classes as well. This observa-
tion is illustrated by Figures 4 and 5, that show the different
images selected by pKNN+AL and GP+AL during 3 dif-
ferent rounds of active learning. We note that pKNN+AL
tends to select more images from a hard class for which the
current classifier requires more training data (for example
wild cat). But, GP+AL ends up selecting a number of im-
ages from classes that might be easy, e.g.,Face, dollar bill
etc.

Next, we analyze the classes that were maximally sam-
pled by the pKNN+AL method. Figure 6 shows the top
five classes sampled by pKNN+AL. Note that these classes
are particularly hard as they contain images that are diverse

in terms of background, or size and shape of the object–
e.g.,starfish, mayfly, dolphincategory –or are very similar
to some other category–e.g., theibis category which is sim-
ilar to theflamingoandflamingo headcategory, thelotus
category which is similar to thesunflowerandwater lily,
and thecrocodilecategory which is similar to thecrocodile
bodycategory.

Table 1. Accuracy obtained by standard metric learning methods
(LMNN [20], ITML [5]) against the accuracy obtained by the pro-
posedpKNN, andpKNN-n. Note that bothpKNN andpKNN-n
performs comparable to the state-of-the-art methods.

Dataset\ Method LMNN ITML pKNN pKNN-n
Ionosphere 86.1 85.5 85.7 81.1

Scale 88.4 90.4 88.9 92.0
Iris 95.1 95.7 94.3 97.1

Soybean 92.3 92.1 91.9 89.3

UCI Datasets: A key feature of our pKNN classifica-
tion framework is that along with training a classifier, it also
learns an improved similarity measure. Thus, our method
can also be used for similarity search in the context of clas-
sification. We demonstrate this aspect of the algorithm by
applying it for the nearest neighbor search problem on a
variety of standard UCI datasets. We compare our method
with existing distance learning methods. We evaluate the
results for the nearest neighbor search problem using 1-
nearest neighbor classification with 2-fold cross validation.
Table 1 compares accuracies obtained by various metric
learning methods on 4 standard UCI datasets. Note that



Figure 5. Images from the Caltech101 dataset that are actively selected by the pKNN+AL method. Each row of the plot shows 20 images
selected in a single active learning round. Note that, for difficult categories like theflamingocategory, multiple images are selected in a
single round itself. In contrast, GP+AL typically selects 1image per category only (See Figure 4).

Figure 6. Figure shows the selected images from the six most sam-
pled classes by the pKNN+AL method.

our method involves learning fewest number of parameters
of all the existing metric learning algorithms; our method
requires O(nC) parameters while most of the existing met-
ric learning methods require O(n2) parameters. Still, our
method is able to achieve competitive accuracy for a variety
of classification problems (Table 1).

6. Conclusions

We have presented a probabilistic classification frame-
work that we further use for active learning in multi-class
scenarios along with learning an accurate similarity mea-
sure. Based on the proposed classification framework, we
formulated a kernel learning algorithm that learns accurate
kernel functions and is efficient. The probabilistic nature
of the formulation allowed us to seamlessly incorporate an

active learning strategy into our framework. We demon-
strated empirically that for large multi-class problems, our
proposed active learning method (pKNN+AL) is signifi-
cantly more accurate than the existing active learning meth-
ods. Future directions for this research include non-myopic
active learning, exploration of other active learning heuris-
tics and application of this method to even larger problems.
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