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1 Introduction

One of the central developments in mathematical economics is the general equilibrium theory, which provi-
des the foundation for competitive pricing [1, 34]. When specialized to exchange economies, it considers an
exchange market in which there are m traders and n divisible goods, where trader i has an initial endowment
of wi,j ≥ 0 of good j and a utility function ui : R

n
+ → R. The individual goal of trader i is to obtain a new

bundle of goods that maximizes her utility. This new bundle can be specified by a column vector xi ∈ R
n
+,

where the jth entry xi,j is the amount of good j that trader i is able to obtain after the exchange. Naturally,
the exchange should satisfy

∑

i xi,j ≤
∑

i wi,j, for all good j.

The pioneering equilibrium theorem of Arrow and Debreu [1] states that if all the utilities u1, ..., um are
quasi-concave, then under some mild conditions, the market has an equilibrium price p = (p1, ..., pn) ∈ R

n
+:

At this price, independently, each trader can sell her endowment virtually to the market to obtain a budget
and then buys a bundle of goods with this budget from the market — which contains the union of all goods
— that maximizes her utility. The equilibrium condition guarantees that the supply equals the demand and
hence the market clears: Every good is sold and every trader’s budget is completely spent.

The existence proof of Arrow and Debreu, based on Kakutani’s fixed point theorem [27], is non-cons-
tructive in the view of polynomial-time computability. Despite the progress both on algorithms for and
on the complexity-theoretic understanding of market equilibria, several fundamental questions concerning
market equilibria, including some seemingly simple ones, remain unsettled.

Vijay Vazirani [30] wrote:

“Concave utility functions, even if they are additively separable over the goods, are not easy
to deal with algorithmically. In fact, obtaining a polynomial time algorithm for such functions
is a premier open question today.”

A function u(x1, ..., xn) is an additively separable and concave function if there exist n real-valued concave
functions f1, ..., fn such that u(x1, ..., xn) =

∑n
j=1 fj(xj). Noting that every concave function can be appro-

ximated by a piecewise linear and concave (PLC) function, Vazirani [30] further asked whether one can find
an equilibrium in a market with additively separable PLC utility functions in polynomial time; or whether
the problem is PPAD-hard. This open question has been echoed in several work since then [12, 23, 19, 36].

1.1 Our Contribution

In this paper, we settle the complexity of computing an Arrow-Debreu equilibrium in an exchange market
with additively separable PLC utilities. We show that this equilibrium problem is PPAD-complete.

For an integer t > 0, a real-valued function f(·) is t-segment piecewise linear over R+ = [0,+∞) if f
is continuous and R+ can be divided into t sub-intervals such that f is linear over every sub-interval. If
each trader’s utility is an additively separable t-segment PLC function, then we refer to the market as a
t-linear market. Clearly, a market with linear utilities is a 1-linear market. In contrast to the fact that an
Arrow-Debreu market equilibrium of a 1-linear market can be found in polynomial time [17, 29, 11, 13, 24],
we show that even computing an Arrow-Debreu equilibrium in a 2-linear market is PPAD-complete, via a
reduction from Sparse Bimatrix [5]: the problem of finding an approximate Nash equilibrium in a sparse
two-player game (see Section 2.1 for the definition).

Our construction of the PPAD-complete markets has several nice technical elements. First we introduce
a sequence of simple linear markets {Mn} with n goods, which we refer to as the price-regulating markets.
Mn has the following nice price-regulation property : If p is a normalized 1 approximate equilibrium price
vector of Mn, then pk ∈ [1, 2] for all k ∈ [n]. This price-regulation property allows us to encode n free
variables x1, ..., xn between 0 and 1 using the n entries of p by setting xk = pk − 1.

As a key step in our analysis, we show that the price-regulation property is stable with respect to “small
perturbations” to Mn: When new traders are added to Mn (without introducing new goods), this property

1We say a price vector p is normalized if the smallest nonzero entry of p is equal to 1.
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remains hold as long as the total amount of goods these traders carry with them is small compared to those
of the traders in Mn. We then show how to set the initial endowments and utility functions of new traders
so that we can control the flows of goods in the market and set new requirements that every approximate
equilibrium price vector p has to satisfy.

Using the stability of the price-regulating markets {Mn}, we give a reduction from a two-player game

to a 2-linear market M: Given an n×n two-player game (A,B), we construct an additively separable PLC
market by adding new traders — whose initial endowments are relatively small — to M2n+2, the price-re-
gulating market with 2n + 2 goods. We use the first 2n entries of p to encode a pair of probability vectors
(x,y): xk = pk −1 and yk = pn+k −1, k ∈ [n]. We then develop a novel way to enforce the Nash equilibrium
constraints over A, B, x and y by carefully specifying the behaviors of the new traders. In doing so, we get
a market M with the property that from every approximate market equilibrium p of M, the pair (x,y)
obtained above (after normalization) is an approximate Nash equilibrium of (A,B). Moreover, if (A,B) is
a sparse game, then the relation of which traders are interested in which goods in M is also sparse.

In the construction of M, the price-regulation property plays a critical role. It enables us to design the
utility functions of the new traders so that we know exactly their preferences over the goods with respect
to any approximate equilibrium price p, even though we have no idea in advance about the entries of p

when constructing M.

We anticipate that our reduction techniques will help to resolve more complexity questions concerning
other families of exchange markets such as the general CES and the hybrid linear-Leontief markets [6].

1.2 Related Work

The computation of an equilibrium price in an exchange market has been a challenging problem in mathe-
matical economics [30]. The matter is more complex because some markets only have irrational equilibria,
making the computation of exact equilibria with a finite-precision algorithm impossible. One alternative
approach to handle irrationality is to express equilibria in some simple algebraic form. However, it turns
out that finding an exact market equilibrium in general is not computable [32].

To circumvent the irrationality, one usually uses some notion of approximate market equilibria. There
are various notions of approximate equilibria: some require that the approximation solution is within a small
geometric distance from an exact equilibrium, while others only require that the supply-demand condition
and/or the individual optimality condition are approximately satisfied. In this paper, following Scarf [33],
we consider the latter notion of approximate market equilibria.

1.2.1 Algorithms for Market Equilibria

Scarf pioneered the algorithmic development of computing general competitive equilibria [33]. His approach
combined numerical approximation with combinatorial insights used in Sperner’s lemma [35] for fixed points
and in Lemke and Howson’s algorithm for two-player games. Although his algorithm may not always run
in polynomial time, Scarf’s work has profound impact to computational economics.

Building on the success of convex programming [17], polynomial-time algorithms have been developed
for special markets whose sets of equilibria enjoy some degree of convexity. For Arrow-Debreu markets
with linear utility functions, Nenakov and Primak gave a polynomial-time algorithm [29], and there are now
several polynomial-time algorithms for computing or approximating market equilibria with linear utility
functions [11, 13, 24, 18, 25, 14, 38]. Other polynomial-time algorithms for special markets include Eaves’s
algorithm for Cobb-Douglas markets [16] and Devanur and Vazirani’s algorithm for markets with spending
constraint utilities [15] (also see [36]). The convex programming based approach has been extended to all
markets whose utilities satisfy weak gross substitutability (WGS) by Codenotti, Pemmaraju, and Varadara-
jan [9]. In [8], Codenotti, McCune, and Varadarajan showed that for markets that satisfy WGS, there is a
price-adjustment mechanism called tâonnement that converges to an approximate equilibrium efficiently.

A closely related market model is Fisher’s model [2]. In this model, there are two types of traders in the
market: producers and consumers. Each consumer comes to the market with a budget and a utility function.
Each producer comes to the market with an endowment of goods, and will sell them to the consumers for

2



money. A market equilibrium is then a price vector for goods so that if each consumer spends all her budget
to maximize her utility, then the market clears. An (approximate) market equilibrium in a Fisher’s market
with CES (constant elasticity of substitution) utility functions [17, 38, 37, 13, 26] or with piecewise linear
utility functions [37] can be found in polynomial time.

However, progress on Arrow-Debreu exchange markets whose sets of equilibria do not enjoy convexity
has been relatively slow. There are only a few algorithms in this category. Devanur and Kannan [12] gave
a polynomial-time algorithm for PLC markets with a constant number of goods. Codenotti et. al. [7] gave
a polynomial-time algorithm for CES markets when the elasticity of substitution s ≥ 1/2.

1.2.2 The Complexity of Equilibrium Problems

Papadimitriou initiated the complexity-theoretic study of fixed-point computations [31]. He introduced the
complexity class PPAD, and proved that the problem of finding a Nash equilibrium in a two-player game,
the computational version of Sperner’s Lemma, and the problem of computing an approximate fixed point
are members of PPAD.

Recently, there was a series of developments that characterized the computational complexity of several
equilibrium problems in game theory. Daskalakis, Goldberg and Papadimitriou [21] proved that the problem
of finding an exponentially-precise Nash equilibrium of a four-player game is PPAD-complete. Chen and
Deng [3] then proved that finding a two-player Nash equilibrium is also PPAD-complete. Chen and Deng’s
result, together with an earlier reduction of [10], implies that computing a market equilibrium in an Arrow-
Debreu market with Leontief utilities is PPAD-hard. On the approximation front, Chen, Deng, and Teng
[4] proved that it is PPAD-complete to find a polynomially-precise approximate equilibrium in two-player
or multi-player games. Huang and Teng [23] then extended this approximation result to Leontief market
equilibria. Their approximation result also implies that the market equilibrium problem with CES utility
functions is PPAD-hard, if the elasticity of substitution s is sufficiently small.

2 Preliminaries

2.1 Complexity of Nash Equilibria in Sparse Two-Player Games

A two-player game is defined by the payoff matrices (A,B) of its two players. In this paper, we assume that
both players have n choices of actions and hence A and B are square matrices with n rows and columns.
We use ∆n ⊂ R

n to denote the set of probability distributions of n dimensions.
A pair of probability vectors (x,y) (i.e., x ∈ ∆n and y ∈ ∆n) is a Nash equilibrium of (A,B), if for all

i and j in [n] = {1, 2, ..., n}, Aiy
T < Ajy

T ⇒ xi = 0 and xBi < xBj ⇒ yi = 0, where we use Ai and Bi to
denote the ith row vector of A and the ith column vector of B, respectively.

Definition 1 (Well-Supported Nash Equilibria). For ǫ > 0, (x,y) is an ǫ-well-supported Nash equilibrium
of (A,B), if x,y ∈ ∆n and for all i, j ∈ [n],

Aiy
T + ǫ < Ajy

T =⇒ xi = 0, and xBi + ǫ < xBj =⇒ yi = 0. (1)

Definition 2 (Sparse Normalized Two-Player Games). A two-player game (A,B) is normalized if every
entry of A and B is between −1 and 1. We say a two-player game (A,B) is sparse if every row and every
column of A and B have at most 10 nonzero entries.

Let Sparse Bimatrix denote the search problem of finding an n−6-well-supported Nash equilibrium in
an n × n sparse normalized two-player game, then by [5], Sparse Bimatrix is PPAD-complete.

2.2 Markets with Additively Separable PLC Utilities

Let G = {G1, ..., Gn} denote a set of n divisible goods and T = {T1, ..., Tm} denote a set of traders. For each
trader Ti, we use wi ∈ R

n
+ to denote her initial endowment and ui : R

n
+ → R+ to denote her utility function.

In this paper, we will focus on markets with additively separable piecewise linear and concave utilities.
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A continuous function r(·) over R+ is said to be t-segment piecewise linear and concave (PLC), if r(0)
= 0 and there exists a tuple [θ0 > θ1 > ... > θt ≥ 0; 0 < a1 < a2 < ... < at] of length 2t + 1, such that

1. For any i ∈ [0 : t − 1], the restriction of f over [ai, ai+1] (a0 = 0) is a segment of slope θi;

2. The restriction of f over [at,+∞) is a ray of slope θt.

The (2t + 1)-tuple [θ0, θ1, ..., θt; a1, a2, ..., at] is also called the representation of r(·). Moreover, we say r(·) is
strictly monotone if θt > 0, and is α-bounded for some α ≥ 1 if α ≥ θ0 > θ1 > ... > θt ≥ 1.

Definition 3. A function u(·) : R
n
+ → R+ is said to be an additively separable PLC function if there exist

a set of n PLC functions r1(·), ..., rn(·) : R+ → R+ such that u(x) =
∑

j∈[n] rj(xj), for all x ∈ R
n
+.

In such a market, we use, for each trader Ti, ri,j(·) : R+ → R+ to denote her PLC function with respect
to good Gj ∈ G. In another word, we have ui(x) =

∑

j∈[n] ri,j(xj), for all x ∈ R
n
+. We use p ∈ R

n
+ to denote

a price vector, where p 6= 0 and pj is the price of Gj (we always assume that p is normalized : the smallest
nonzero entry of p equals 1). Given p, we let OPT(i,p) denote the set of allocations that maximize ui(·):

OPT(i,p) = argmax
x∈R

n

+
, x·p≤wi·p

ui(x).

We use X = {xi ∈ R
n
+ : i ∈ [m]} to denote an allocation of the market: For each trader Ti ∈ T , xi ∈ R

n
+

is the amount of goods that Ti receives. In particular, the amount of Gj that Ti receives in X is xi,j.

Definition 4 (Arrow-Debreu [1]). A market equilibrium is a non-zero price vector p ∈ R
n
+ such that there

exists an allocation X which has the following properties: 1). Every trader gets an optimal bundle: For every
Ti ∈ T , we have xi ∈ OPT(i,p); and 2). The market clears:

For every good Gj ∈ G,
∑

i∈[m] xi,j ≤
∑

i∈[m] wi,j; If pj > 0, then
∑

i∈[m] xi,j =
∑

i∈[m] wi,j.

In general, not every market has an equilibrium price vector. For the additively separable PLC markets
considered here, the following condition guarantees the existence of an equilibrium. Theorem 1 is a corollary
of Maxfield [28], and the proof can be found in Appendix A.

Definition 5 (Economy Graphs [28]). Given an additively separable PLC market, we define a directed graph
G = (T , E) as follows. The vertex set of the graph is exactly T , the set of traders in the market. For every
two traders Ti 6= Tj ∈ T , we have an edge from Ti to Tj if there exists an integer k ∈ [n] such that wi,k > 0
and rj,k(·) is strictly monotone. In another word, trader Ti possesses a good that Tj wants. G is called the
economy graph of the market [28, 7]. We say the market is strongly connected if G is strongly connected.

Theorem 1. Let M be a market with additively separable PLC utilities. If it is strongly connected, then a
market equilibrium p exists. Moreover, if all the parameters of M are rational numbers, then it must have
a rational market equilibrium p. The number of bits we need to describe p is polynomial in the input size of
M (that is, the number of bits we need to describe the market M).

2.3 Definition of the Sparse Market Equilibrium Problem

By Theorem 1, the following problem Market is well defined: The input of the problem is an additively
separable PLC market M that is both rational and strongly connected; and the output is a rational market
equilibrium of M. In the rest of the section, we define a much more restricted version of Market: Sparse

Market. The main result of the paper is that Sparse Market is PPAD-complete.

First, the input of Sparse Market is an additively separable PLC market which not only is strongly
connected, but also satisfies the following three conditions:

Definition 6 (α-Bounded Markets). We say an additively separable PLC market is α-bounded, for some
α ≥ 1, if for all Ti and Gj , ri,j(·) is either the zero function (ri,j(x) = 0 for all x) or α-bounded.
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Definition 7 (2-Linear Markets). We call an additively separable PLC market M a 2-linear market, if for
all Ti ∈ T and Gj ∈ G, ri,j(·) has at most two segments.

Definition 8 (t-Sparse Markets). We say an additively separable PLC market is t-sparse, for some integer
t > 0, if 1) For every Ti ∈ T , |supp(wi)| ≤ t; and 2) For every Ti ∈ T , the number of j ∈ [n] such that ri,j(·)
is not the zero function is at most t. In another word, every trader owns at most t goods at the beginning
and is interested in at most t goods.

We use the following definition of approximate market equilibria:

Definition 9 (ǫ-Approximate Market Equilibrium). Given an additively separable PLC market M, we say
p is an ǫ-approximate market equilibrium of M, for some ǫ ≥ 0, if there is an allocation X = {xi ∈ R

n
+ : i ∈

[m]} such that every trader gets an optimal bundle with respect to p: xi ∈ OPT(i,p) for all i ∈ [m]; and

The market clears approximately: For every Gj ∈ G,
∣

∣

∣

∑

i∈[m] xi,j −
∑

i∈[m] wi,j

∣

∣

∣ ≤ ǫ ·
∑

i∈[m] wi,j.

We remark that there are various notions of approximate market equilibria. The reason we adopted the
one above is to simplify the analysis. The construction in Section 4 actually works for some other notions of
approximate equilibria, e.g., the one that allows the allocation to be approximately optimal for each trader.

Finally, we let Sparse Market denote the following search problem:

The input of the problem is a 2-linear market M that is strongly connected, 27-bounded,
and 23-sparse; and the output is an n−13-approximate market equilibrium of M, where n
is the number of goods in the market.

It is tedious but not hard to show that Sparse Market is a problem in PPAD2. One can actually replace
the constant 27 here by any constant larger than 1 and our main result, Theorem 2, below still holds. The
constant 23, however, is related to the constant 10 in Definition 2. The main result of the paper is

Theorem 2 (Main). Sparse Market is PPAD-complete.

3 A Price-Regulating Market

We now construct the family of price-regulating market {Mn}. For each positive integer n ≥ 2, Mn has n
goods and satisfies the following strong price regulation property.

Property 1 (Price Regulation). A price vector p is a normalized n−1-approximate equilibrium of Mn if
and only if 1 ≤ pk ≤ 2, for all k ∈ [n].

We start with some notation. The goods in Mn are G = {G1, ..., Gn}, and the traders in Mn are

T =
{

Ts : s ∈ S
}

, where S =
{

s = (i, j) : 1 ≤ i 6= j ≤ n
}

.

For every trader Ts ∈ T , we use ws ∈ R
n
+ to denote her initial endowment, us : R

n
+ → R+ to denote her

utility function, rs,k(·) to denote her PLC function with respect to Gk, and OPT(s,p) to denote the set of
bundles that maximize her utility with respect to p.

Mn is linear, in which for all s ∈ S and k ∈ [n], rs,k(·) is a ray starting at (0, 0). In the construction
below, we use rs,k(·) ⇐ [θ] to denote the action of setting rs,k(·) to be the linear function of slope θ ≥ 0.

2In [20], the author showed how to construct a continuous map from any market with quasi-concave utilities such that the set
of fixed points of the map is precisely the set of equilibria of the market. When the market is additively separable PLC, one can
show that the continuous map is indeed Lipschitz continuous. As a result, one can reduce the problem of finding an approximate
market equilibrium to the problem of finding an approximate fixed point in a Lipschitz continuous map. This implies a reduction
from Sparse Market to the discrete fixed point problem studied in [22] (also see [4] for the high-dimensional version) which
is in PPAD, and thus, the former is also in PPAD.
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Construction of Mn: First, we set the initial endowment vectors ws: For every s = (i, j) ∈ S, we have
ws,k = 1/n if k = i; and ws,k = 0 otherwise. Second, we set the PLC functions rs,k(·): For all s = (i, j) ∈ S
and k ∈ [n], we set rs,k(·) ⇐ [θ] and θ = 0 if k 6= i, j; θ = 1 if k = j; and θ = 2 if k = i.

It is easy to check that Mn constructed above is strongly connected, 2-bounded, and 2-sparse.

Proof of Property 1. The first direction is trivial. If 1 ≤ pk ≤ 2 for all k ∈ [n], then X =
{

xs = ws : s ∈ S
}

is a market clearing allocation that provides an optimal bundle of goods for each trader at price p.

The second direction is less trivial. Let p be a normalized n−1-approximate market equilibrium of Mn,
and X be an optimal allocation that clears the market. First, it is easy to check that pk must be positive
for all k ∈ [n] since otherwise, we have xs,k = +∞ for all s = (i, j) such that k = i or j, which contradicts
the assumption that p is an approximate equilibrium.

Since p is normalized, we have pk ≥ 1 for all k ∈ [n]. Now assume for contradiction that Property 1 is
not true, then without loss of generality, we may assume that p1 = maxk pk > 2 and p2 = mink pk = 1. To
reach a contradiction, we focus on the amount of G1 each trader gets in the allocation X . First, if 1 /∈ {i, j}
where s = (i, j), then we have xs,1 = 0; Second, if i = 1 and j = 2, then xs,1 = 0 since 2/p1 < 1/p2 and Ts

likes G2 better than G1 with respect to the price vector p; Third, if j = 1, then xs,1 = 0 since 1/p1 < 2/pi

and Ts likes Gi better than G1; Finally, for all s = (i, j) such that i = 1 and j 6= 2, we have xs,1 ≤ 1/n since
the budget of Ts is exactly (1/n) · p1. As a result, we have

∑

s∈S

xs,1 ≤ (n − 2)/n while
∑

s∈S

ws,1 = (n − 1)/n, but

∣

∣

∣

∣

n − 2

n
−

n − 1

n

∣

∣

∣

∣

>
1

n
·
n − 1

n
,

which contradicts the assumption that p is an n−1-approximate market equilibrium.

4 Reduction from Sparse Bimatrix to Sparse Market

In this section, we give a polynomial-time reduction from Sparse Bimatrix to Sparse Market. Given
an n × n sparse two-player game (A,B), where A,B ∈ [−1, 1]n×n, we build an additively separable PLC
market M by adding more traders to the price-regulating market M2n+2. There are 2n + 2 goods G = {G1,
..., G2n, G2n+1, G2n+2} in M, and the traders T in M are

T =
{

Ts, Tu, Tv, Ti : s ∈ S,u ∈ U,v ∈ V, i ∈ [2n]
}

,

where S = {(i, j) : 1 ≤ i 6= j ≤ 2n + 2}, U = {(i, j, 1) : 1 ≤ i 6= j ≤ n} and V = {(i, j, 2) : 1 ≤ i 6= j ≤ n}.
The traders Ts, where s ∈ S, have almost the same initial endowments ws and PLC functions rs,k(·) as in
M2n+2. We only slightly modify the parameters to ease the analysis.

For each agent T ∈ T , we will set her PLC function r(·) with respect to Gk, k ∈ [2n + 2], to one of the
following functions: 1). r(·) is the zero function: r(x) = 0 for all x ≥ 0 (denoted by r(·) ⇐ [0]); or 2). r(·)
is a ray: r(x) = θ · x for all x ≥ 0 (denoted by r(·) ⇐ [θ]); or 3). r(·) is a 2-segment PLC function with
representation [θ0, θ1; a1] (denoted by r(·) ⇐ [θ0, θ1; a1]).

4.1 Setting up the Market

4.1.1 Traders Ts, where s ∈ S

For each trader Ts ∈ T , where s = (i, j) ∈ S, we set her initial endowment ws and her PLC functions rs,k(·)
almost the same as hers in M2n+2. The initial endowment ws is set as: ws,k = 1/n if k = i; and ws,k = 0
otherwise, where k ∈ [2n + 2]. The PLC function rs,k(·) is set as: rs,k(·) ⇐ [θ] and θ = 0 if k /∈ {i, j}; θ = 1

if k = j; and θ = 2 if k = i, where k ∈ [2n + 2].

4.1.2 Traders Tu, where u ∈ U

Now let u = (i, j, 1) be a triple in U with 1 ≤ i 6= j ≤ n. We use Ai and Aj to denote the ith and jth row
vectors of A, respectively. We define C and D to be the following two n-dimensional vectors: For k ∈ [n],
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(Ck,Dk) = (Ai,k − Aj,k, 0) if Ai,k − Aj,k ≥ 0; and (Ck,Dk) = (0, Aj,k − Ai,k) otherwise.

By definition, we have C−D = Ai −Aj while both vectors C and D are non-negative. Moreover, because
A is sparse, the number of nonzero entries in either C or D is at most 20, and each entry is between 0 and
2. We also let E,F be the following non-negative numbers: Let C =

∑

k∈[n] Ck and D =
∑

k∈[n] Dk, then

(E,F ) = (D − C, 0) if D ≥ C; and (E,F ) = (0, C − D) otherwise. (2)

Accordingly we have E,F ≥ 0 and E + C = F + D. Moreover, since C,D are sparse, we have E,F ≤ 20 · 2.

Using C and E, we set the initial endowment wu = (wu,1, ..., wu,2n+1, wu,2n+2) of Tu as follows:

1. wu,i = 1/n4; wu,k = wu,2n+2 = 0 for all other k ∈ [n];

2. wu,n+k = Ck/n
5 for all k ∈ [n]; and wu,2n+1 = E/n5.

It is easy to verify that the number of nonzero entries in wu is at most 22.

Using D and F , we set the PLC utility functions ru,k(·), where k ∈ [2n + 2], of Tu as follows:

1. ru,i(·) ⇐ [9, 1; 1/n4]; and ru,k(·) ⇐ [0] for all other k ∈ [n]; 2. ru,2n+2(·) ⇐ [3];

3. ru,n+k(·) ⇐ [0] for all k ∈ [n] such that Dk = 0;

4. ru,n+k(·) ⇐ [27, 1;Dk/n5] for all k ∈ [n] such that Dk > 0; and

5. ru,2n+1(·) ⇐ [0] if F = 0; and ru,2n+1(·) ⇐ [27, 1;F/n5] if F > 0.

Note that the number of k ∈ [2n + 2] such that ru,k(·) is not the zero function is at most 23.

The constants 1, 3, 9 and 27 in the construction may look strange at first sight. The motivation is that,
if the price regulation property still holds for the new market M (which turns out to be true), then we know
exactly the preference of Tu over the goods since 3 > 2. See the proof of Lemma 4 for more details.

4.1.3 Traders Tv, where v ∈ V

The behavior of Tv, v ∈ V , is very similar to that of Tu except that it works on the second matrix B.

Let v = (i, j, 2) be a triple in V with 1 ≤ i 6= j ≤ n. We let Bi and Bj denote the ith and jth column
vectors of B, respectively. Similarly, we define the following n-dimensional vectors C and D: For k ∈ [n],

(Ck,Dk) = (Bk,i − Bk,j, 0) if Bk,i − Bk,j ≥ 0; and (Ck,Dk) = (0, Bk,j − Bk,i) otherwise.

As a result, we have C−D = Bi −Bj , while C,D are non-negative and sparse. We also define E,F ≥ 0 in
a similar way so that E +

∑

k∈[n] Ck = F +
∑

k∈[n] Dk and 0 ≤ E,F ≤ 40.

Using C and E, we set the initial endowment vector wv = (wv,1, ..., wv,2n+1, wv,2n+2) of Tv to be

1. wv,n+i = 1/n4; wv,n+k = wv,2n+2 = 0 for all other k ∈ [n];

2. wv,k = Ck/n
5 for all k ∈ [n]; and wv,2n+1 = E/n5.

Using D and F , we set the PLC utility functions rv,k(·), where k ∈ [2n + 2], of Tv as follows:

1. rv,n+i(·) ⇐ [9, 1; 1/n4]; and rv,n+k(·) ⇐ [0] for all other k ∈ [n]; 2. rv,2n+2(·) ⇐ [3];

3. rv,k(·) ⇐ [0] for all k ∈ [n] such that Dk = 0;

4. rv,k(·) ⇐ [27, 1;Dk/n5] for all k ∈ [n] such that Dk > 0; and

5. rv,2n+1(·) ⇐ [0] if F = 0; and rv,2n+1(·) ⇐ [27, 1;F/n5] if F > 0.

Again, |supp(wv)| ≤ 22 and the number of indices k such that rv,k(·) is not the zero function is at most 23.
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4.1.4 Traders Ti, where i ∈ [2n]

Finally for each i ∈ [2n] we set the initial endowment vector wi = (wi,1, ..., wi,2n+1, wi,2n+2) of Ti as follows:

wi,2n+1 = 1/n12; and wi,k = 0 for all other k ∈ [2n + 2]. We set the PLC functions ri,k(·), k ∈ [2n + 2], of Ti

as follows: ri,i(·) ⇐ [1]; and ri,k(·) ⇐ [0] for all other k ∈ [2n + 2].

4.2 From Approximate Market Equilibria to Approximate Nash Equilibria

By definition, it is easy to verify that M constructed above is a 2-linear additively separable PLC market
which is strongly connected, 27-bounded and 23-sparse. Let N = 2n + 2, the number of goods in M. Then
to prove Theorem 2, we only need to show that from every N−13-approximate market equilibrium p of M,
one can construct an n−6-well-supported Nash equilibrium (x,y) of (A,B) in polynomial time.

To this end, let (x′,y′) denote the following two n-dimensional vectors: x′
k = pk − 1 and y′k = pn+k − 1,

for all k ∈ [n]. Then, we normalize (x′,y′) to get a pair (x,y) (we will show later that x′,y′ 6= 0):

xk = x′
k

/

∑

i∈[n]

x′
i and yk = y′k

/

∑

i∈[n]

y′i, for all k ∈ [n]. (3)

Theorem then 2 follows directly from Theorem 3 below, which we will prove in the next section (Note that
if p is a N−13-approximate equilibrium, then it is also an n−13-approximate equilibrium by definition).

Theorem 3. If p is an n−13-approximate market equilibrium of M, then (x,y) constructed above must be
an n−6-well-supported Nash equilibrium of (A,B).

5 Correctness of the Reduction

In this section, we prove Theorem 3. Let p = (p1, ..., p2n+2) be a normalized n−13-approximate equilibrium
of M. By the same argument used earlier, we can show that pk > 0 for all k ∈ [2n + 2]. Therefore, we have
pk ≥ 1 for all k and mink pk = 1. Let X be an optimal allocation with respect to p that clears the market
approximately: X = {as,au,av,ai : s ∈ S,u ∈ U,v ∈ V, i ∈ [2n]}.

We start with the following notation. Let T ′ ⊆ T be a subset of traders and k ∈ [2n + 2]. Then we use
wk[T

′] to denote the amount of good Gk that traders in T ′ possess at the beginning; and ak[T
′] to denote

the amount of good Gk that T ′ receives in the final allocation X .

According to our construction, wk[T ] ∈ [2, 3] for any k ∈ [2n + 2]. We further divide the traders T into
two groups: T1 = {Ts : s ∈ S} and T2 = T − T1. Then by the definition of approximate market equilibria,

∣

∣wk[T1] − ak[T1] + wk[T2] − ak[T2]
∣

∣ ≤ 3/n13, for all k ∈ [2n + 2]. (4)

First, we prove that, the price vector p must still satisfy the price-regulation property as in the price-
regulating market M2n+2. The proof can be found in Appendix B which is similar to the proof of Property
1 and mainly uses the fact that traders in T1 possess almost all the goods in M.

Lemma 1 (Price Regulation). For all k ∈ [2n + 2], 1 ≤ pk ≤ 2.

Next, we prove two useful relations between pk and wk[T2] − ak[T2], k ∈ [2n + 2].

Lemma 2. Let p be a normalized n−13-approximate market equilibrium and X be an optimal allocation that
clears the market approximately. If wk[T2] − ak[T2] > 3/n13 for some k ∈ [2n + 2], then pk = 1.

Proof Sketch. Without loss of generality, we prove the lemma for the case when k = 1.
By (4), w1[T1]−a1[T1] < 0. This means that, in the market participated by traders Ts, the amount of G1

that they would like to buy is strictly more than the amount of G1 they possess at the beginning. Intuitively
this implies that the price p1 of G1 is lower than what it should be. See Appendix C for details.
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Lemma 3. Let p be a normalized n−13-approximate market equilibrium and X be an optimal allocation that
clears the market approximately. If wk[T2] − ak[T2] < −3/n13 for some k ∈ [2n + 2], then pk = 2.

The proof of Lemma 3 is similar and can be found in Appendix D. We also need the following lemma.

Lemma 4. Let u = (i, j, 1) ∈ U and u′ = (j, i, 1) ∈ U , then wu,k + wu′,k ≥ au,k + au′,k for all k ∈ [2n + 1].

Let v = (i, j, 2) ∈ V and v′ = (j, i, 2) ∈ V , then wv,k + wv′,k ≥ av,k + av′,k for all k ∈ [2n + 1].

Proof. Without loss of generality, we only prove the first part of Lemma 4 for the case when u = (1, 2, 1)
and u′ = (2, 1, 1). Let C and D denote the following two n-dimensional vectors: For k ∈ [n],

(Ck,Dk) = (A1,k − A2,k, 0) if A1,k − A2,k ≥ 0; and (Ck,Dk) = (0, A2,k − A1,k) otherwise. (5)

We also define E and F as in (2). By the construction, wu,n+k = Ck/n
5, wu′,n+k = Dk/n

5 for all k ∈ [n],

wu,1 = wu′,2 = 1/n4, wu,2n+1 = E/n5, wu′,2n+1 = F/n5,

and all other entries of wu and wu′ are 0.

We now focus on the preference of Tu. After selling its initial endowment, the budget of Tu is Θ(1/n4)
by Lemma 1, since the total amount of goods she possesses is Θ(1/n4). The PLC utility functions ru,k(·) of
Tu are designed carefully, so that even though we do not know what exactly p is, we know the behavior of
Tu due to the price-regulation property: Tu first buys the following bundle of goods from the market

{

Dk/n
5 amount of Gn+k and F/n5 amount of G2n+1 : k ∈ [n]

}

. (6)

As D has at most 20 nonzero entries and each entry is between 0 and 2, the cost of this bundle is O(1/n5).
Tu then buys as much G1 as it can up to 1/n4, and spends all the money left, if any, on G2n+2.

The behavior of Tu′ is similar. It first buys the following bundle of goods from the market:

{

Ck/n
5 amount of Gn+k and E/n5 amount of G2n+1 : k ∈ [n]

}

. (7)

It then buys as much G2 as it can up to 1/n4, and spends all the money left, if any, on G2n+2.

Now we are ready to prove the lemma. The case when k ∈ [n] but k 6= 1, 2 is trivial because wu,k = wu′,k

= au,k = au′,k = 0. When k = 1, we have wu,1 + wu′,1 = 1/n4, au′,1 = 0, au,1 ≤ 1/n4 and thus, Lemma 4
follows. k = 2 can be proved similarly. For the case of n + k, k ∈ [n], and for the case of 2n + 1, we have

wu,n+k = Ck/n
5, wu′,n+k = Dk/n

5, au,n+k = Dk/n
5, and au′,n+k = Ck/n

5,

wu,2n+1 = E/n5, wu′,2n+1 = F/n5, au,2n+1 = F/n5, and au′,2n+1 = E/n5,

and Lemma 4 follows. This finishes the proof of the lemma.

By Lemma 4 and Lemma 2, we immediately get the following important corollary concerning p2n+1.

Corollary 1. p2n+1 = 1.

Proof. By Lemma 4, we have w2n+1[Tu, Tv : u ∈ U,v ∈ V ] − a2n+1[Tu, Tv : u ∈ U,v ∈ V ] ≥ 0. However,

w2n+1

[

Ti : i ∈ [2n]
]

= 2n · (1/n12) = 2/n11 and a2n+1

[

Ti : i ∈ [2n]
]

= 0.

Thus, w2n+1[T2] − a2n+1[T2] > 3/n13. It then follows from Lemma 2 that p2n+1 = 1.

Now let x′ and y′ denote the vectors where x′
k = pk − 1 and y′k = pn+k − 1. By Lemma 1, x′

k, y
′
k ∈ [0, 1]

for all k ∈ [n]. We prove the following two properties of (x′,y′) and use them to prove Theorem 3.
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Property 2. For all 1 ≤ i 6= j ≤ n, we have

(Ai −Aj)y
′T < −ǫ =⇒ x′

i = 0 and x′(Bi − Bj) < −ǫ =⇒ y′i = 0, (8)

where ǫ = n−6, Ai denotes the ith row vector of A, and Bi denotes the ith column vector of B.

Property 3. There exist i and j ∈ [n] such that x′
i = 1 and y′j = 1.

Now assume that x′ and y′ satisfy both properties. In particular, Property 3 implies that x′,y′ 6= 0.
As a result, we can normalize them to get two probability distribution x and y using (3). Theorem 3 then
follows, and the proof can be found in Appendix E. Finally, we prove Property 2 and Property 3.

Proof of Property 2. We only prove the first part of (8) for the case when i = 1 and j = 2. The other part
can be proved similarly. Let u = (1, 2, 1) and u′ = (2, 1, 1). Let C and D be the two nonnegative vectors
defined in (5), and E and F be the two nonnegative numbers defined in (2). Assume (A1 − A2)y

′T < −ǫ.
Then the money of Tu left after purchasing the bundle in (6) is

p1 ·
1

n4
+

∑

k∈[n]

pn+k ·
Ck

n5
+ p2n+1 ·

E

n5
−

∑

k∈[n]

pn+k ·
Dk

n5
− p2n+1 ·

F

n5
. (9)

By Corollary 1, p2n+1 = 1. Using C− D = A1 − A2 and E +
∑

k Ck = F +
∑

k Dk, we simplify (9) to be

p1 ·
1

n4
+

1

n5

∑

k∈[n]

y′k · (Ck − Dk) = p1 ·
1

n4
+

1

n5
(A1 − A2)y

′T < p1 ·
1

n4
−

ǫ

n5
. (10)

This implies that the amount au,1 of G1 that Tu buys is smaller than 1/n4 − ǫ/(p1n
5) ≤ 1/n4 − 1/(2n11),

since ǫ = n−6. However, we have wu,1 = 1/n4 and thus, wu,1 − au,1 > 1/(2n11).

On the other hand, it is easy to check that wu′,1 = 0 and au′,1 = 0. By Lemma 4, we have

w1[Tu, Tv : u ∈ U,v ∈ V ] − a1[Tu, Tv : u ∈ U,v ∈ V ] > 1
/

(2n11). (11)

Next we bound w1

[

Ti : i ∈ [2n]
]

− a1

[

Ti : i ∈ [2n]
]

. By the construction, we have a1

[

Ti : i ∈ [2n], i 6= 1
]

= 0,

a1,1 = 1 · w1,2n+1

/

p1 ≤ 1
/

n12 and thus, w1

[

Ti : i ∈ [2n]
]

− a1

[

Ti : i ∈ [2n]
]

≥ −1/n12.

Combining (11), we have w1[T2] − a1[T2] ≫ 3/n13. It then follows from Lemma 2 that x′
1 = 0.

Proof of Property 3. Let ℓ ∈ [n] be one of the indices that maximizes Aℓy
′T , then we prove Property 3 by

showing that x′
ℓ = 1. Without loss of generality, we may assume that ℓ = 1.

First, we consider a pair v = (i, j, 2), v′ = (j, i, 2) in V . In the proof of Lemma 4, we actually showed
that wu,n+k + wu′,n+k = au,n+k + au′,n+k, for all pairs u = (i, j, 1) and u′ = (j, i, 1) in U , and all k ∈ [n].
Similarly, we can prove that wv,1 + wv′,1 = av,1 + av′,1. Second, for every u = (i, j, 1) ∈ U , we always have
wu,1 = au,1. This is because: If i 6= 1, then wu,1 = au,1 = 0; and if i = 1, then by (10), the money of Tu left
after purchasing the bundle of goods in (6) is at least p1/n

4, so wu,1 = au,1 = 1/n4. As a result, we have

w1[Tu, Tv : u ∈ U,v ∈ V ] = a1[Tu, Tv : u ∈ U,v ∈ V ].

However, the amount of G1 that T1 buys is p2n+1 · w1,2n+1/p1 ≥ 1/(2n12). As a result,

w1

[

Ti, i ∈ [2n]
]

− a1

[

Ti, i ∈ [2n]
]

≤ −1/(2n12).

Finally, we have w1[T2] − a1[T2] ≪ −3/n13. By Lemma 3, we conclude that p1 = 2 and thus, x′
1 = 1.
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A Proof of Theorem 1

In this section, we prove Theorem 1. To this end, we first show that under the conditions of Theorem 1, M
has at least one quasi-equilibrium (see the definition below). Then we show that any quasi-equilibrium of
M is indeed a market equilibrium.

Definition 10. A quasi-equilibrium of M is a (normalized) price vector p ∈ R
n
+ such that there exists an

allocation X = {xi ∈ R
n
+ : i ∈ [m]} which has the following properties:

1. The market clears: For every good Gj ∈ G,

∑

i∈[m]

xi,j ≤
∑

i∈[m]

wi,j;

In particular, if pj > 0, then
∑

i∈[m]

xi,j =
∑

i∈[m]

wi,j;

2. For every trader Ti ∈ T , at least one of the following is true:

(a) xi ∈ OPT(i,p);

(b) p · xi = p ·wi = 0 (zero income).

The difference between market equilibria and quasi-equilibria is that in the latter, we do not require the
optimality of allocations for traders with a zero income: If a trader has a zero income, then we can assign
her any bundle of zero cost. However, if p is a quasi-equilibrium and the income of every trader is positive
with respect to p, then by definition p must be a market equilibrium.

In [28] Maxfield gave a set of conditions that are sufficient for the existence of a quasi-equilibrium in an
exchange market. We use the following simplified version:

Theorem 4 ([28]). An exchange market M has a quasi-equilibrium p if

1. For each trader Ti ∈ T , its utility function ui : R
n
+ → R is both continuous and quasi-concave; and

2. For each trader Ti ∈ T , ui is non-satiable, i.e., for any x ∈ R
n
+, there exists a vector y ∈ R

n
+ such that

ui(y) > ui(x).

Now we use Theorem 4 to prove Theorem 1.

Proof of Theorem 1. First, it is not hard to check that if M is an additively separable PLC market that is
strongly connected, then it satisfies both conditions in Theorem 4. In particular, ui is non-satiable since
the economy graph of M is strongly connected and thus, there exists a j ∈ [n] such that ri,j(·) is strictly
monotone. As a result, M must have a quasi-equilibrium p. We use X = {xi ∈ R

n
+ : i ∈ [m]} to denote an
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allocation that clears the market. Since p 6= 0, there is at least one trader in T , say T1 ∈ T , has a positive
income.

Second, we show that for every trader, its income is positive and thus, p is indeed an equilibrium of M.
Suppose this is not true, then there is at least one trader T2 whose income is zero. Since the economy graph
is strongly connected, there is a directed path from T2 to T1. As a result, there must be a directed edge
T3T4 on the path such that the income of T3 is zero and the income of T4 is positive. By definition, there
exists a j ∈ [n] such that the amount of Gj that T3 owns at the beginning is positive and the PLC utility
function of T4 with respect to Gj is strictly monotone. However, since the income of T3 is zero, we have
pj = 0 and thus, the amount of Gj that T4 wants to buy is +∞, contradicting the assumption that p is a
quasi-equilibrium of M (since the income of T4 is positive but the bundle she receives is not optimal).

Now we have proved the existence of a market equilibrium p. The second part of Theorem 1 follows
from the work of Devanur and Kannan [12]. In [12], the authors proposed an algorithm for computing a
market equilibrium in an additively separable PLC market3. They divide the whole search space R

n
+ of p

into “cells” C ⊂ R
n
+ using hyperplanes. Then for each cell C, there is a rational linear program LPC that

characterizes the set of market equilibria in C: p ∈ C is an equilibrium of M if and only if it is a feasible
solution to LPC (In particular, if LPC has no feasible solution then there is no equilibrium in C). Moreover,
the size of LPC , for any cell C, is polynomial in the input size of M.

Now let p be a market equilibrium of M, which is not necessarily rational. We let C∗ denote the cell
that p lies in, then p must be a feasible solution to LPC∗ . Since LPC∗ is rational, it must have a rational
solution p∗ and the number of bits one needs to describe p∗ is polynomial in the size of LPC∗ and thus, is
polynomial in the input size of M. Theorem 1 then follows since p∗ is also an equilibrium of M.

B Proof of Lemma 1: The Price-Regulation Property

Proof. Assume for contradiction that p does not satisfies the price-regulation property. Then without loss
of generality, we assume that p1 = maxk pk > 2 and p2 = 1.

By the same argument used in the proof of Property 1, we have

w1[T1] = (2n + 1) ·
1

n
, a1[T1] ≤ 2n ·

1

n
, and thus, w1[T1] − a1[T1] ≥

1

n
.

By (4), we have

w1[T2] − a1[T2] ≤ −
1

n
+

3

n13
=⇒ a1[T2] ≥ w1[T2] +

1

n
−

3

n13
≥

1

n
−

3

n13
(12)

because w1[T2] ≥ 0. However, this cannot be true since the amount of goods the traders in T2 possess at the
beginning is much smaller compared to 1/n. Even if they spend all the money on G1, we still have

a1[T2] ≤

∑

k∈[2n+2] pk · wk[T2]

p1
≤

∑

k∈[2n+2]

wk[T2] = O(n−2) ≪
1

n
,

since we assumed that p1 = maxk pk. This contradicts with (12).

C Proof of Lemma 2

Proof. Without loss of generality, we prove the lemma for the case when k = 1. By (4), we have w1[T1] −
a1[T1] < 0. This means that, in the market participated by traders Ts, the amount of G1 which they would
like to buy is strictly more than the amount of G1 they possess at the beginning. Intuitively, this implies
that the price p1 of G1 is lower than what it should be, and indeed we show below that p1 = mink pk = 1.

3When the number of goods is constant, the algorithm is polynomial-time.
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On one hand, by the construction, only the following traders Ts are interested in G1:

S1 = {s = (1, j) : j 6= 1} and S2 = {s = (i, 1) : i 6= 1}.

On the other hand, we have
a1[Ts, s ∈ S1] ≤ w1[Ts, s ∈ S1] = w1[T1]

due to the budget limitation. As a result, there must exist an s = (i, 1) ∈ S2 such that as,1 > 0. Since as is
an optimal bundle for Ts with respect to p, we have

1

p1
≥

2

pi

=⇒ p1 ≤
pi

2
.

By Lemma 1, the price-regulation property, we conclude that p1 = 1 and the lemma is proved.

D Proof of Lemma 3

Proof. Without loss of generality, we prove the lemma for the case when k = 1. By (4), we have w1[T1] −
a1[T1] > 0. This means that, in the market participated by traders Ts, the amount of G1 which they would
like to buy is strictly less than the amount of G1 they possess at the beginning. Intuitively this implies that
the price p1 of G1 is higher than what it should be, and indeed we show below that p1 = 2 = maxk pk.

Since a1[T1] < w1[T1], there must exist a j ∈ [2n + 2] with j 6= 1 such that s = (1, j) and

as,1 < ws,1.

(Otherwise a1[T1] ≥ w1[T1]). This means that Ts spends some of its money to buy Gj and thus,

1

pj

≥
2

p1
=⇒ p1 ≥ 2pj .

By Lemma 1, the price-regulation property, we conclude that p1 = 2 and the lemma is proved.

E Proof of Theorem 3

Proof of Theorem 3. Since both x and y are probability distributions, we only need to prove that (x,y)
satisfies (1) for all 1 ≤ i 6= j ≤ n. We only prove the first part of (1) here. Assume Aiy

T + ǫ < Ajy
T , then

(Ai −Aj)y
′T = (Ai − Aj)y

T ·





∑

k∈[n]

y′k



 < −ǫ

since
∑

k∈[n] y
′
k ≥ 1 by Property 3. As a result, by Property 2 we have x′

i = 0 and thus, xi = 0.
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