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Abstract

Higher order energy functions have the ability to encode
high level structural dependencies between pixels, which
have been shown to be extremely powerful for image label-
ing problems. Their use, however, is severely hampered in
practice by the intractable complexity of representing and
minimizing such functions. We observed that higher or-
der functions encountered in computer vision are very often
“sparse”, i.e. many labelings of a higher order clique are
equally unlikely and hence have the same high cost. In this
paper, we address the problem of minimizing such sparse
higher order energy functions. Our method works by trans-
forming the problem into an equivalent quadratic function
minimization problem. The resulting quadratic function can
be minimized using popular message passing or graph cut
based algorithms for MAP inference. Although this is pri-
marily a theoretical paper, it also shows how higher order
functions can be used to obtain impressive results for the
binary texture restoration problem.

1. Introduction
Many computer vision problems such as object segmen-

tation, disparity estimation, and 3D reconstruction can be
formulated as pixel or voxel labeling problems. The con-
ventional methods for solving these problems use pairwise
Conditional and Markov Random Field (CRF/MRF) formu-
lations [20], which allow for the exact or approximate in-
ference of Maximum a Posteriori (MAP) solutions using
extremely efficient algorithms such as Belief Propagation
(BP) [4, 15, 22], graph cuts [2] and Tree-Reweighted (TRW)
[9, 21] message passing. Although pairwise random field
models permit efficient inference, they have restricted ex-
pressive power as they can only model interactions between
pairs of random variables. They are unable to enforce the
high level structural dependencies between pixels which
have been shown to be extremely powerful for image la-
beling problems.

The last few years have seen the successful application of
higher order CRFs and MRFs to some low level vision prob-
lems such as image restoration, disparity estimation and ob-
ject segmentation [7, 14, 16, 23, 24]. In spite of these en-
couraging results, the use of such models have not spread
to other labeling problems. We believe that this is primarily
due to the lack of efficient algorithms for performing in-

ference in such models. This paper proposes a method for
minimizing general higher order functions that can be used
to perform MAP inference in higher order random fields.

We follow the classical approach for minimizing higher
order functions which can be broken down into two es-
sential steps [1]: (a) Transformation of the higher order
energy into a quadratic function, and (b) Minimization of
the resulting function using efficient inference algorithms.
The first step in this approach is also the most crucial one.
Transformation of a general m-order function to an equiva-
lent quadratic function involves the addition of exponential
number of auxiliary variables [1, 5]. Alternatively, the ad-
dition of a single random variable with an exponential label
space is needed. Both these approaches make the resulting
quadratic function minimization problem intractable. Re-
cent work on solving higher order functions in vision have
side-stepped the problem of minimizing general higher or-
der functions. Instead they have focused on specific fami-
lies of potential functions (such as the Pn Potts model [7])
which can be transformed to quadratic ones by the addition
of a few auxiliary variables.

In this paper, we address the problem of minimizing gen-
eral higher order functions. This is intrinsically a computa-
tionally expensive problem since even the parametrization
of a general m order function of k-state variables requires
km parameters. However, the higher order functions used
in computer vision have certain properties like sparseness
which makes them easy to handle. A typical example would
be the patch based potentials used for image restoration.
It is well-known that the set of 5 × 5 patches of natural
images is a small subset of the set of all possible 5 × 5
patches. Higher order potentials used for image restoration
enforce that patches in the restored image come from the set
of natural image patches. In other words, these functions
assign a low cost (or energy) to only a few label assign-
ments (natural patches). The rest of the labelings (artificial
patches) are given a high (almost constant) cost (see sec-
tion 5 for more details). We show how such sparse higher
order functions can be transformed to quadratic ones with
the addition of only a small number of auxiliary variables
and edges. It should be noted that our method allows for
the exact transformation of general higher order functions
to quadratic functions albeit with an addition of exponential
number of auxiliary variables in the worst case.

Outline of the Paper We provide our notation and review
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discrete energy minimization in Section 2. In Section 3,
we show how higher order energy functions can be trans-
formed to quadratic ones using a multi-state auxiliary vari-
able. Section 4 explains how higher order pseudo-boolean
functions can be transformed to quadratic pseudo-boolean
functions by the addition of boolean variables, and specifi-
cally presents two types of such transformations. Section 5
describes the experimental evaluation of our transformation
schemes on the binary texture restoration problem.

2. Notation and Preliminaries
Consider a random field defined over a set of latent vari-

ables x = {xi|i ∈ V} where V = {1, 2, ..., n}. Each
random variable xi can take a label from the label set
L = {l1, l2, ..., lk}. Let C represent a set of subsets of V
(i.e., cliques), over which the higher order random field is
defined. The MAP solution of a random field can be found
by minimizing an energy function E : Ln → R . Energy
functions corresponding to higher order random fields can
be written as a sum of higher order potential functions as:
E(x) =

∑
c∈C ψc(xc), where xc represents the set of ran-

dom variables included in any clique c ∈ C. The higher
order potential ψc : L|c| → R is defined over this clique
assigns a cost to each possible configurations (or labelings)
of xc. Here |c| represents the number of variables included
in the clique (also called the clique order) .
Minimizing Quadratic Functions Before proceeding fur-
ther, we review the basics of discrete energy minimization
algorithms in computer vision. As we mentioned earlier, the
problem of MAP inference in a pairwise random field can be
solved by minimizing a quadratic function of discrete vari-
ables. Algorithms for MAP inference can be classified into
two broad categories: (a) message passing (BP/TRW) and
(b) combinatorial algorithms such as graph cuts. The read-
ers should refer to [9, 21, 22] and [2] for more information
on message passing and graph cut based algorithms respec-
tively. In their classical form, these algorithms allow for
the exact or approximate minimization of quadratic energy
functions with certain computation time and solution qual-
ity guarantees. We will next look at the minimization of
functions of boolean variables.
Quadratic Pseudo-boolean Function Minimization An
energy function is called a pseudo-boolean function if the
label set L contains only two labels i.e. L = {0, 1}. For-
mally, the energy is now defined as: E : {0, 1}n → R
and can also be written as a set function. The minimization
of pseudo-boolean functions is a well studied problem in
combinatorial optimization [6] and operations research [1].
It is known that certain classes of pseudo-boolean func-
tions such as submodular functions can be minimized ex-
actly in polynomial time. Another important characteris-
tic is that any Quadratic Pseudo-boolean Function (QPBF)
can be minimized by solving an st minimum cut prob-

lem (st-mincut) [1]. Further, if the QPF is submodular,
all edges in the equivalent st-mincut problem have non-
negative weights, which allows it to be solved exactly in
polynomial time using maximum flow algorithms [1].

In what follows, we will assume that we have algo-
rithms for approximate minimization of arbitrary multi-
label quadratic energy functions, and mainly focus our at-
tention on converting a general higher order energy function
to a quadratic one.

3. Transforming Multi-label Functions
We will now describe how to transform arbitrary higher

order potential functions to equivalent quadratic ones. We
start with a simple example to motivate our transformation.
Consider a higher order potential function which assigns a
cost θ0 if the variables xc take a particular labeling X0 ∈
L|c|, and θ1 otherwise. More formally,

ψc(xc) =
{

θ0 if xc = X0

θ1 otherwise. (1)

where θ0 ≤ θ1, and X0 denotes a particular labeling of
the variables xc. The potential is illustrated in figure 1(b).
The minimization of this higher order function can be trans-
formed to the minimization of a quadratic function using
one additional switching variable z as:

min
xc

ψc(xc) = min
xc,z∈{0,1}

f(z) +
∑

i∈c

gi(z, xi) (2)

where the selection function f is defined as: f(0) = θ0 and
f(1) = θ1, while the consistency function gi is defined as:

gi(z, xi) =





0 if z = 1
0 if z = 0 and xi = X0(i)

inf otherwise.
(3)

where X0(i) denotes the label of variable xi in labeling X0.

3.1. General Higher-order Potentials

The method used to transform the simple potential func-
tion (1) can also be used to transform any higher order func-
tion into a quadratic one. We observed that higher order
potentials for many vision problems assign a low cost (or
energy) to only a few label assignments. The rest of the
labelings are given a high (almost constant) cost (see fig-
ure 1(a)). This motivated to develop a parameterization of
higher order potentials which exploits this sparsity. We pa-
rameterize higher order potentials by a list of possible la-
belings X = {X1,X2, ...,Xt} of the clique variables xc,
and their corresponding costs Θ = {θ1, θ2, ..., θt}. We also
include a high constant cost θmax for all other labelings.
Formally, the potential functions can be defined as:

ψc(xc) =
{

θq if xc = Xq ∈ X
θmax otherwise. (4)



Figure 1. Different parameterizations of higher order potentials.
(a) The original higher order potential function. (b) The higher
order basis function defined in equation (1). (c) Approximating
function (a) using the functional form defined in equation (4). It
can be seen that this representation requires the definition of 7 la-
belings (t=7), and thus would require the addition of a t + 1 = 8-
state auxiliary variable for its transformation to a quadratic func-
tion (as described in equation 5). (d) The compact representation
of the higher function using the functional form defined in equa-
tion (7). This representation (7) requires only t = 3 deviation
functions, and thus needs only a t + 1 = 4-state label to yield a
quadratic transformation.

where θq ≤ θmax,∀θq ∈ Θ. The higher order potential is
illustrated in Figure 1(c).

The minimization of the above defined higher order
function can be transformed to a quadratic function using
a (t + 1)-state switching variable as:

min
xc

ψc(xc) = min
xc,z∈{1,2,...,t+1}

f(z) +
∑

i∈c

g(z, xi) (5)

where f(z) =
{

θq if z = q ∈ {1, .., t}
θmax if z = t + 1,

(6)

and gi(z, xi) =

{
0 if z = q ∈ {1, .., t} and xi = Xq(i)
0 if z = t + 1

inf otherwise.

where Xq(i) denotes the label of variable xi in labeling Xq .
The reader should observe that the last i.e. (t + 1)th state
of the switching variable z does not penalize any labeling
of the clique variables xc. It should also be noted that the
transformation method described above can handle the Pn

model potentials proposed in [7]. In fact it can be used to
transform any general higher order potential. However, in
the worst case, the addition of a switching variable with
|L||c| states is required, which makes minimization of even
moderate order functions infeasible.

3.2. Compact Parameterization

The above defined parametrization significantly reduces
the complexity of performing inference in higher order

cliques. However, the computation cost is still quite high for
potentials which assign a low cost to many labelings. No-
tice, that the representation defined in equation (5) requires
a t + 1-state auxiliary variable for representing a higher or-
der function where t labelings are assigned a low cost (less
than the constant cost θmax). This would make the use
of this representation infeasible for higher order potentials
where a large number of labelings of the clique variables
are assigned low weights (< θmax).

We observed that many low cost label assignments tend
to be close to each other in term of the difference between
labelings of pixels. For instance, consider the case of the
two label foreground (f ) / background (b) image segmenta-
tion problem. It is conceivable that the cost of a segmenta-
tion labeling (fffb) for 4 adjacent pixels on a line would
be close to the cost of the labeling (ffbb). We can encode
the cost of such groups of similar labelings in the higher
order potential in such a way that their transformation to
quadratic functions does not require increasing the number
of states of the switching variable z. The differences of the
representations are illustrated in figure 1(c) and (d).

We parameterize the compact higher order potentials
by a list of labeling deviation cost functions D =
{d1, d2, ..., dt}, and a list of associated costs θ =
{θ1, θ2, ..., θt}. We also maintain a parameter for the maxi-
mum cost θmax that the potential can assign to any labeling.
The deviation cost functions encode how the cost changes as
the labeling moves away from some desired labeling. For-
mally, the potential functions can be defined as:

ψc(xc) = min{ min
q∈{1,2,...,t}

θq + dq(xc), θmax} (7)

where deviation functions dq : L|c| → R are defined
as: dq(xc) =

∑
i∈c;l∈L wq

ilδ(xi = l), where wq
il is the cost

added to the deviation function if variable xi of the clique c
is assigned label l. The function δ(xi = l) is the Kronecker
delta function that returns value 1 if xi = l and returns 0
for all assignments of xi. This higher order potential is il-
lustrated in Figure 1(d). It should be noted that the higher
order potential (7) is a generalization of the potential de-
fined in (4). Setting weights wq

il as:

wq
il =

{
0 if Xq(i) = l

θmax otherwise (8)

makes potential (7) equivalent to (4).
The minimization of the above defined higher order

function can be transformed to that a quadratic function us-
ing a (t + 1)-state switching variable as:

min
xc

ψc(xc) = min
xc,z∈{1,2,...,t+1}

f(z) +
∑

i∈c

g(z, xi) (9)

where f(z) =
{

θq if z = q ∈ {1, .., t}
θmax if z = t + 1,

(10)



Figure 2. Transformation of higher order pseudo-boolean func-
tions to equivalent quadratic functions. A higher order pseudo-
boolean function (a) represented by its truth table. Type-I graph
construction (b) and Type-II graph construction (c) for minimiz-
ing its equivalent quadratic function. In graph (c), m denotes the
number of variables included in the clique (in this case m = 3).

gi(z, xi) =
{

wq
il if z = q and xi = l ∈ L
0 if z = t + 1.

(11)

The role of the switching variable in the above men-
tioned transformation can be seen as that of finding which
deviation function will assign the lowest cost to any particu-
lar labeling. The final higher order function generated using
the parametrization (7) is a lower envelop of the linear devi-
ation cost functions θq + dq(xc). For instance, the function
shown in figure 4(c) is a lower envelop of the higher order
functions shown in figure 4(b). This transformation method
can be seen as a generalization of the method proposed in
[8] for transforming the Robust Pn model potentials.

4. Transforming Pseudo-Boolean Functions
In the previous section, we discussed how to transform

multi-label higher order functions to quadratic ones by
the addition of a multi-state auxiliary variable. The same
method can also be applied to transforming higher order
pseudo-boolean functions. However, the resulting quadratic
function is not pseudo-boolean as it contains multi-state
switching variables. In this section, we discuss two alter-
native transformation approaches for transforming higher
order pseudo-boolean functions which works by adding
boolean auxiliary variables. These methods will produce
a quadratic pseudo-boolean function (QPBF) which can be
minimized using algorithms for quadratic pseudo-boolean
optimization (QPBO) [1, 5].

In what follows, we assume binary labels, i.e.,
L = {0, 1}. Consider a higher order potential which as-
signs a cost θ ≥ 0 if the variables xc take the labeling
X0 ∈ {0, 1}|c|, and θmax ≥ θ otherwise. More formally,

ψc(xc) =
{

θ0 if xc = X0

θmax otherwise, (12)

where X0 denotes the preferred labeling of the variables xc.

We will call this higher order potential a δ basis function
since it assigns a low cost to only one single labelling. A
constant θ0 can be subtracted from this potential to yield:

ψc(xc) =
{

0 if xc = X0

θ otherwise, (13)

where θ = θmax − θ0 > 0.
Type-I Transformation The minimization of higher order
potential function (13) can be transformed to the minimiza-
tion of a quadratic function using two additional switching
variables z0, z1 ∈ {0, 1} as: minxc ψc(xc) =

min
xc;z0,z1∈{0,1}

θz0 + θ(1− z1)− θz0(1− z1) +

θ
∑

i∈S0(X0)

(1− z0)xi + θ
∑

i∈S1(X0)

z1(1− xi). (14)

Here, S0(X0) is the set of indices of random variables
which were assigned the labels 0 in the assignment X0.
Similarly, S1(X0) represents the set of variables which
were assigned the label 1 in X0. The minimization problem
(14) involves a quadratic function with at most one non-
submodular term (i.e., −θz0(1 − z1)) 1. It can be easily
verified that the transformed QPBF in (14) is equivalent to
(13). The transformation is illustrated for a particular higher
order function in Figure 2(b).
Type-II Transformation We now describe an alternative
method to transform higher order pseudo-boolean functions
which requires the addition of only one auxiliary variable,
but results in a slightly complex transformation.

Theorem 1. The minimization of the higher or-
der pseudo-boolean function (13) is equivalent
to the following QPBF minimization problem:
ψc(xc) = θ + θ

2 minz∈{0,1} f(z,xc), where the QPBF
function f is defined as:

f(z,xc) = z(m− 2)

+ z(
∑

i∈S1(X0)

(1− xi)−
∑

i∈S0(X0)

(1− xi))

+ (1− z)(
∑

i∈S1(X0)

xi −
∑

i∈S0(X0)

xi)

+
∑

i∈S0(X0)

xi −
∑

i∈S1(X0)

xi (15)

where m = |c| is the order of the clique2. The transforma-
tion is illustrated for a particular higher order function in
Figure 2(c). Proof in [17].

1This is independent of the clique size |c| or the enforced labeling X0.
2Note that the coefficient of each monomial in (15) exactly corresponds

to an edge capacity in Type-II graph construction.



Figure 3. Composing higher order pseudo-boolean functions by
adding basis functions of the form 13.(a) and (b) are two δ basis
functions. (c) The potential obtained by summing the basis func-
tions shown in (a) and (b). (d) The potential function obtained
after subtracting a constant θmax from (c) (this doesn’t change the
labeling with the minimal energy).

4.1. Composing General Pseudo-boolean Functions

Multiple instances of the δ basis higher order pseudo-
boolean potentials (13) can be used to compose general
higher order energy functions. The composition method
works by summing these pseudo-boolean potential. The
equivalent QPBF of the target higher order pseudo-boolean
function is obtained by summing the QPBFs correspond-
ing to the individual basis pseudo-boolean potentials of the
form (12) (see Figure 3 for illustration). The composition
scheme requires the selection of θmax which is the high-
est possible energy that can be assigned to any labeling.
A different method for transforming higher order pseudo-
boolean functions into QPBFs has been proposed in [5].

The reader should observe that this way of obtain-
ing equivalent quadratic functions for general higher order
functions is fundamentally different from the strategy em-
ployed in Section 3.1. There, we use a multi-state switching
variable to select among different constituent higher order
functions; in contrast, here we sum the constituent higher
order functions.

4.2. Compact Representation for Higher-order
Pseudo-boolean Potentials

The composition method described above would in the
worst case require the addition of 2|c|+1 auxiliary variables
for Type-I transformation and 2|c| auxiliary variables for
Type-II transformation 3. To reduce the number of auxil-
iary variables, we use a scheme similar to the one discussed
in Section 3.2 to model the cost of multiple labelings using

3There are 2|c| possible labelings of the variables in the clique c.

only two auxiliary variables for Type-I transformation and
one auxiliary variable for Type-II transformation.

We define the deviation basis higher order potential ψf
c

which assigns the minimum of a deviation cost function
f(xc) and a constant threshold cost θ. Formally,

ψf
c (xc) = min{f(xc), θ}. (16)

where the deviation function f : {0, 1}|c| → R specifies the
penalty for deviating from the favored labeling X0, and is
written as:

f(xc) = θ
∑

i∈c

abs(wi)(xi 6= X0(i)) (17)

where the absolute value of the weights wi control the cost
of different labelings deviating from X0. The function f
can also be seen as assigning a cost equal to a weighted
hamming distance of a labelling from X0.

The function f can alternatively be defined as:

f(xc) = θ
∑

i∈c

wixi + θK (18)

where the constant K =
∑

i|wi<0 wi, and the weight wi

specifies what is the cost of assigning the label 1 to vari-
able xi. Naturally, the weights would be negative for pixels
which have been assigned the label 1 in the favored labeling
X0. Similarly, variables labeled 0 will be assigned a posi-
tive weight. On substituting the value of K, f becomes:

f(xc) = θ
∑

i∈c;wi>0

wixi + θ
∑

i∈c;wi<0

(−wi)(1− xi) (19)

We now show how the higher order pseudo-boolean func-
tion defined in equation (16) can be transformed to a QPBF.

Theorem 2. Using Type-I transformation, the minimization
of higher order pseudo-boolean potential function (16) can
be transformed to the following QPBF minimization prob-
lem: minxc ψf (xc) =

min
xc;z0,z1∈{0,1}

θz0 + θ(1− z1)− θz0(1− z1) +

θ
∑

i|wi≥0

wi(1− z0)xi + θ
∑

i|wi<0

(−wi)z1(1− xi) (20)

Theorem 3. Using Type-II transformation, the mini-
mization of higher order function (16) can be writ-
ten as the result of the following QPBF minimization
problem: ψc(xc) = θ + θ

2 minz∈{0,1} F (z,xc)), where the



Figure 4. Difference between the min and sum composition
schemes.(a) Original function to be represented. (b) Two devi-
ation basis functions (16). (c) The composition of the functions
shown in (b) by taking their lower envelope (by minimizing over
a multi-state variable as explained in section 3.2). (d) The com-
position of the functions shown in (b) by summing them (causes
misrepresentations in regions where the basis functions overlap).

QPBF function F is defined as:

F (z,xc) = z(
∑

i∈c

abs(wi)− 2)

+ z(
∑

i|wi<0

(−wi)(1− xi)−
∑

i|wi≥0

wi(1− xi))

+ (1− z)(
∑

i|wi<0

(−wi)xi −
∑

i|wi≥0

wixi)

+
∑

i|wi≥0

wixi −
∑

i|wi<0

(−wi)xi (21)

where abs(wi) is the absolute value of the weight wi. Proof
in [17].

Behavior of the Summation Composition Scheme The
method of composing higher order potentials using the sum-
mation scheme described in the previous sub-sections suf-
fers from a problem when using compact representations of
higher order potentials. This occurs when there is signifi-
cant overlap in the subset of labelings which are assigned
a non-threshold cost θ by multiple higher order potentials.
This problem is illustrated in figure 4.

5. Experiments
We evaluated our theoretical contributions on the prob-

lem of binary texture restoration, which is a popular test-bed
for energy minimization methods [3, 11, 18]. We first intro-
duce our formulation of the texture restoration problem. We
will then proceed to compare the performance of the three
transformation schemes proposed in sections 3 and 4. Our
experiments show that the multi-label construction (sec. 3)
is empirically superior for this problem. Thus, in the rest of
the experiments, we will use it to demonstrate the power of

Figure 5. Binary Texture restoration for Brodatz texture D101. (a)
Training image (86 × 86 pixels). (b) Test image. (c) Test image
with 60% noise used as input. (d) Three (out of 10) patterns of size
10× 10pixels (top row) with their deviation cost (bottom row). (e-
i) Results of various different models.

the higher-order texture model. In this work we only com-
pare to results of the non-submodular pairwise model, as
reported in [11]. A direct comparison to other higher-order
models, such as the submodular triple-clique model of [3] or
the FRAME model [25] would be interesting future work.

Training and Test procedure. In this work we have ex-
actly followed the procedure outlined in [11]4. Our model is
based on that of [3] but with additional higher-order terms.
We constrain our higher-order cliques to be patches of a
fixed size. In brief, given a training image (e.g. fig. 5(a)),
we first compute the joint histogram of all pixel pairs with
the same shift (sx, sy), where we constrained the maximum
shift length, i.e. max{|sx|, |sy|} ≤ 30. The pairwise po-
tentials are then defined as θi,j(xi, xj) = − log Pr(xi, xj),
with xi, xj being the output labeling at the two pixels i, j.
The unary potential is given as

∑
i∈V −λ/(1 + |Ti − xi|),

where Ti is the value of the pixel i in the noisy test image
(e.g. fig. 5(c)). To obtain good result, it is important to
select those pairwise potentials which best describe the tex-
ture, and to learn the optimal value for λ, i.e. the trade-off
between unary and pairwise terms. As in [11], we used the
discriminative learning procedure on a validation dataset,
which resulted in e.g. 9 pairwise terms (7 sub- and 2 non-

4We also used their data, which is available online.



Binary Type-I Binary Type-II Multi-label
BP TRW QPBO(P) BP TRW QPBO(P) BP TRW

Toy Text. 86.1; 38.5% 100(-179); 60.8% 100%(100%) 86.0; 38.5% 100(-179); 60.8% 100%(100%) 0; 0% 0(0), 0%
Real Text. 91.8; 19.9% 100(-624); 31.7% 100%(100%) 91.8; 19.9% 100(-624); 31.7% 100%(100%) 91.2; 19.6% 99.9(0); 30.9%

Table 1. Comparing different transformation schemes for two different textures and various optimization methods. We report for BP:
(Energy; error), for TRW Energy(Lower bound); error, and for QPBO(QPBOP) the number of unlabeled nodes. Note, the energy values
are shifted and scaled so that highest energy is 100 and the best lower bound is 0. Best performing methods are shown in bold.

submodular) for the texture in fig. 5. For a test image (fig.
5(b)) with 60% noise (fig. 5(c)) such a pairwise model, op-
timized with QPBO [11], gives a reasonable result shown in
fig. 5(e) with 16.4% error (misclassified pixels).

For higher-order cliques of a fixed patch size we aim to
train a few patterns, which are enforced for each patch in the
image. These patterns should occur frequently in the train-
ing set and are as different as possible in terms of their ham-
ming distance. We achieve this by k-means clustering over
all training patches. Fig. 5(d) depicts three (out of k=10)
such patterns (top row). To compute the deviation functions
of a particular pattern Xp we consider all patterns which
belong to the same cluster as Xp. For each position within
the patch, we record the frequency of having the same value
as Xp. Fig. 5(d - bottom row) shows the associate devia-
tion costs, where a bright value means high frequency (i.e.
high cost). As expected, lower costs are at the edge of the
pattern. As in the case of the pairwise model, the weights
of our higher-order deviation potentials are computed us-
ing the frequency of co-occurring patterns, and the global
weight of the higher-order potentials is learned discrimina-
tively on the validation set.
How sparse is a higher-order function of a binary tex-
ture? To answer this question, we recorded the number
of unique patterns which occur in the training image of the
binary Brodatz texture D101 (i.e. similar to fig. 5(a) but of
size 256 × 85). We observed that the percentage of unique
patterns present in the training image reduces considerably
for larger patch sizes. For instance, roughly 38% (194 out
of 29 = 512) of possible 3×3 pixel patterns were present in
the training image. This number goes down to just 0.014%
(4764 out of 225) for 5×5 pixel patterns. If we cluster these
patterns under the constraint that all patterns are at most 4
hamming distance away from a cluster center, we find that
roughly only 0.0005% (187 out of 225) of 5 × 5 pixel pat-
terns as cluster means would be enough. Obviously, in prac-
tice even with a deviation cost functions, modelling all 187
patterns leads to a computationally expensive optimization
problem. However, our results show that even modelling
only the 25 most frequently occurring patterns already pro-
duces impressive results.

To demonstrate the weakness of the pairwise model, we
measured the frequency of training patterns occurring in the
reconstruction result obtained using the pairwise model (i.e.
similar to fig. 5(e) but of size 256× 86). As expected these
patterns do not occur frequently: Only 10.9% of training

patterns of size 5×5 pixel were found in the pairwise result;
and no training patterns of size 10 × 10 are present in the
pairwise result. This is the result of the pairwise model not
being able to capture the large-scale characteristics of the
texture. We will now see that a higher-order model is able
to fix this.
Comparing our Transformation Schemes. We com-
pared the performance of our three transformations: Multi-
label (sec. 3), binary Type-I and Type-II (sec. 4) on various
real and toy textures. For optimization, we used the top
performing publicly available methods for minimizing non-
submodular binary and multi-label energies: TRW, BP from
[20], and the roof-dual relaxation based approaches (QPBO,
QPBOP) from [1, 18].

Table 1 shows results on two example textures (see [17])
which capture the main conclusions we have drawn from
this experiment. The first toy texture (top row) is a perfectly
repeated texture (30×30pixels) which has only four distinc-
tively different patterns of size 3×3. We encoded these pat-
terns as higher-order cliques, and did not use any pairwise
terms. The second texture (bottom row) is a 30 × 30 crop
of the D103 texture (see [17]) where we trained 25 5 × 5
patterns without deviation cost function.

The first conclusion is that the two binary constructions
(Type-I and -II) perform very similarly. Secondly, the bi-
nary constructions are considerably inferior to the multi-
label construction, for both toy and real texture. For ex-
ample, QPBO and QPBOP could not label any node for the
simple toy texture. (Note, in these binary cases, it is not
surprising that TRW has also a bad lower bound since it
is solving the same LP relaxation as QPBO.) In contrast to
this, for the toy texture the multi-label construction finds the
global minimum with TRW. Unfortunately, the real texture
is more challenging and non of the methods find a global
minimizer. a. The third conclusion is that BP is clearly the
best performing method and hence we used it for all later
experiments. We believe that this is because our graphs are
very densely connected. A similar observation can be found
in empirical studies of e.g. [10, 18].

Given the above results, one might question the useful-
ness of the binary constructions. Two arguments in sup-
port of the binary constructions are (a) we found a few in-
stances where the binary construction slightly outperformed
the multi-label construction using BP, and (b) a lot of ac-
tive research in the optimization community is on pseudo-
boolean optimization which hopefully will yield superior



methods in the future. Finally, we see that low energies
correlate with low reconstruction error which confirms the
quality of our model. In terms of runtime of BP, we see
that multi-label and binary type-II construction have about
the same runtime, e.g. 2.1sec for the real texture, while bi-
nary type-I has slightly higher runtime (2.5sec) since more
auxiliary nodes are used.

Comparing higher-order texture models Given the su-
periority of the multi-label construction and its better mod-
eling power for compact representations (fig. 4), we use it
for the remaining experiments. BP is used for inference.

We tested our method on four different Brodatz textures
D101, D103, D22, and D20, with a noise level of 60%.
The results on D101 are shown in fig.5 (other results can
be seen in [17]). The key conclusion is that higher-order
cliques always manage to capture visually the main char-
acterizes of a texture on a large-scale, see e.g. fig. 5(i).
For most textures this is reflected in an error rate improve-
ment, for D101 even by a big margin (improvement of 36%
- fig. 5(e,i)). Furthermore, as expected modelling more pat-
terns helps (compare fig. 5(g,h)). Also, large cliques give
typically better results (compare fig. 5(f,h)). Finally, the de-
viation functions help to improve results further, especially
visually (see fig. 5(h,i)). In terms of runtime, using more
and large higher-order cliques is obviously more computa-
tionally expensive. The example in fig. 5(i), which is an
image of size 86 × 86, with 88935 patterns, each of size
100, takes 32sec (14 rounds of BP) on a 1.8Ghz CPU. Note
that deviation functions do not increase the runtime.

6. Conclusion and Future Work
This paper provides a method for minimizing sparse en-

ergy functions. We studied the behavior of our methods in
dealing with different energy functions, and showed how it
could be used to obtain impressive results on binary tex-
ture restoration problem. We believe that our sparse higher-
order models will find wide applicability to many research
problems within computer vision.

The transformation methods presented in the paper re-
sult in difficult optimization problems which are NP-hard
to solve. The use of sophisticated optimization algorithms
such the ones proposed recently in [12, 13, 19, 23] in solv-
ing these problems is a interesting direction for future work.
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