
Multi-Class Poisson Disk Sampling
Li-Yi Wei

Abstract

Sampling has been a core process for a variety of graphics ap-
plications including rendering, imaging, and geometry processing.
Among the plethora of sampling patterns, Poisson disk distribution
remains one of the most popular thanks to its spatial uniformity and
blue noise spectrum. However, research so far has been mainly
focused on Poisson disk distribution with one class of samples.
This could be insufficient for common natural as well as man-made
phenomenon requiring multiple classes of samples, such as ob-
ject placement, imaging sensors, and stippling patterns. We extend
Poisson disk sampling to multiple classes of samples where each in-
dividual class as well as their union exhibit Poisson disk properties.
We propose algorithms to generate such multi-class Poisson disk
samples, study their statistical characteristics, and demonstrate ap-
plications in object placement, sensor layout, and color stippling.

Keywords: Poisson disk, blue noise, sampling, multi-class

1 Introduction

Sampling is important for a variety of graphics applications, include
rendering, imaging, and geometry processing. Although different
applications may favor different sampling patterns, Poisson disk
sampling [Cook 1986] remains one of the most popular and widely
adopted. Inspired by the distribution of primate retina cells [Yellott
1983], a Poisson disk distribution contains samples that are ran-
domly located but remain at least a minimum distance r away from
each other. The resulting sample set has a blue noise power spec-
trum, replacing low frequency aliasing with high frequency noise,
a visually less annoying artifact.

Figure 1: Retina mosaic. The fovea region is packed with cone cells (single
class, left case). Further away from the fovea the cones become larger and
sparser, with in-between space filled by rods (multiple class, right case).

Despite the nice properties of Poisson disk sampling, existing re-
search has so far concerned about a single class of samples, i.e. all
the samples are utilized together in the applications [Cook 1986;
Mitchell 1987; McCool and Fiume 1992; Ostromoukhov et al.
2004; Jones 2006; Dunbar and Humphreys 2006; Kopf et al. 2006;
Ostromoukhov 2007; Bridson 2007; White et al. 2007; Wei 2008;
Fu and Zhou 2008]. However, a variety of natural or man-made
phenomenon may contain multiple classes of samples, such as the
distribution of cone and rod cells in human retinas (Figure 1),
the placement of multiple categories of objects, and the usage of
multiple-colored dots for dithering or stippling. In these situations,
it is often desirable to have each individual class of samples as well
as their union to exhibit Poisson disk distribution. Unfortunately,
previous methods for single-class Poisson disk sampling are not
suitable for generating multiple classes of samples. Let us illustrate

this issue via a simple 2-class example as in Figure 3. If we gen-
erate the individual classes separately via single-class Poisson disk
sampling, their union might be highly non-uniform (top row in Fig-
ure 3). This can be undesirable for a variety of reasons depending
on the specific applications, e.g. non-uniform distribution for object
placement or under-packing for sensor layout. On the other hand, if
we generate the entire collection via single-class Poisson disk sam-
pling, the individual sets might be highly non-uniform (middle row
in Figure 3). This can produce sub-optimal sampling quality for
each individual class of samples.

r0all samplesr0 class 0, r0 = 0.08

class 1, r1 = 0.04 class 2, r2 = 0.02

Figure 2: Multi-class Poisson disk sampling. Here we generate 3 classes
of samples and visualize them in different colors. Each class could have its
own density (controlled by class specific parameter ri). Note that each indi-
vidual class as well as their union exhibit Poisson disk sample distribution.

We present multi-class Poisson disk sampling, a technique to gener-
ate multiple classes of samples so that each individual class as well
as their unions exhibit Poisson disk properties (Figure 2 & 3). Our
technique is inspired by dart throwing [Cook 1986], but we propose
algorithmic innovations so that it can generate multiple classes of
Poisson disk samples. Our algorithm also provides a mechanism to
control the relative number of samples across different classes, an
issue non-existing in traditional single class sampling. Even though
achieving these goals is challenging, we have strived to come up
with an algorithm that is simple and elegant (as summarized in
Program 1). As added benefits, our method also works in arbi-
trary dimensions [Bridson 2007; Wei 2008] and can be extended
for adaptive sampling [Ostromoukhov et al. 2004; Kopf et al. 2006;
Ostromoukhov 2007; Wei 2008].

We demonstrate a variety of applications of our technique, include
object distribution [Cohen et al. 2003; Lagae and Dutré 2005; Kopf
et al. 2006], sensor layout [Ben Ezra et al. 2007], and color stippling
[Ostromoukhov and Hersch 1999; Pang et al. 2008].

un
if

or
m

pe
rc

la
ss

un
if

or
m

to
ta

ls
et

ou
rm

et
ho

d

total set class 0 class 1

Figure 3: Comparisons between single- and multi-class Poisson disk sam-
pling. The top case is produced by applying single-class Poisson disk sam-
pling to individual classes, but the total set is highly non-uniform. The mid-
dle case is produced by applying single-class Poisson disk sampling to the
total set, but the individual classes are highly non-uniform. Our approach
produces samples that exhibit Poisson disk distribution for each class as well
as the total set. Each class contains ∼650 samples generated with r = 0.02.

2 Uniform Sampling

The input to our algorithm consists of the sampling domain Ω as
well as a set of user-specified intra-class distances {ri}i=0:c−1 for
the c classes. Our goal is to produce c classes of samples so that
each class has a similar statistical distribution to a single-class Pois-
son disk sample set with parameter ri, whilst the total sample set
exhibits Poisson disk distribution as well. In addition, the algorithm
should be able to control the relative number of samples across dif-
ferent classes throughout the entire process. We summarize our
algorithm in Program 1.

Our basic algorithm is an extension from traditional (single-class)
dart throwing [Cook 1986]. In [Cook 1986], a trial sample is drawn
uniformly from the entire domain. If the sample is not within a user-
specified distance r from any other existing samples, it is accepted
and added to the existing sample set. Otherwise, it is rejected. This
process is repeated until a target number of samples are produced
or a maximum number of trials are reached. Our algorithm also
follows a similar approach, with the major difference being that we
have to deal with multiple classes of samples. Specifically, for each
trial sample, we need to decide: (1) which class to sample from,
and (2) how to determine whether to accept or reject the sample.
Details are as follows.

2.1 Sample class

For multi-class sampling, we have to decide which class to sample
from for the next trial. To ensure that each class is well sampled
throughout the entire process, we always pick the next trial sample
from the class that is currently most under-filled. We measure the
under-filled-ness via FillRate (Program 1), defined as the number
of existing samples for a particular class over the target number of
samples for that class. To maintain an equal fill rate across dif-

function S←MultiClassDartThrowing(Ω, {ri}i=0:c−1)

// Ω: sampling domain
// {ri}: user specified parameters for intra-class sample spacing
// c: number of classes
// r: c× c matrix controlling inter-class sample spacing
r← BuildRMatrix({ri}i=0:c−1) // see Program 2
S← ∅ // final set of samples
while not enough trials attempted and not enough samples in S
s← new sample uniform-random drawn from Ω
cs← arg minc FillRate (c) // choose the most under-filled class
if ∀s′ ∈ S |s− s′| ≥ r(cs, cs′)

add s to S
else if impossible to add another sample to cs

// try to remove the set of conflicting samples Ns

Ns←
⋃
s′ ∈ S where |s− s′| < r(cs, cs′)

if Removable(Ns, s, r)
remove Ns from S
add s to S

end
end

end
return S

function float FillRate(c)

return # of existing samples∈c
target # of samples for c // see Equation 1

function bool Removable(Ns, s, r)

foreach s′ ∈ Ns

if r(cs′ , cs′) ≥ r(cs, cs) or FillRate(cs′) < FillRate(cs)
return false

return true

Program 1: Multi-class dart throwing for uniform sampling.

ferent classes, the target number of samples of class i, N i, can be
computed as follows:

N i = N

1
rn

i∑c−1
j=0

1
rn

j

(1)

where N is the total number of target samples, n the sample space
dimension, and {ri} the specified per-class minimum distances.

2.2 Conflict metric

In traditional single-class Poisson disk sampling, we can easily de-
cide whether to accept or reject a trial sample based on whether it
is at least distance r away from all existing samples. For multi-
class sampling, the user would supply a set of intra-class distances
{ri}i=0:c−1 for the c classes. This set of parameters are analogous
to the r parameter in traditional single-class sampling, controlling
the density of the resulting sample set. However, specifying the
intra-class distances is not enough, as we need more information
to decide whether two samples from different classes are too close
to each other. To achieve this goal, we use a (symmetric) matrix
r where r(k, j) specifies the minimum distance between samples
from class k and j and r(i, i) = ri for the diagnonal (intra-class)
entries. Specifically, two samples s and s′ may co-exist if their Eu-
clidean distance |s−s′| ≥ r(cs, cs′) where cs/cs′ indicate the class
for sample s/s′. We describe how to construct r in Section 2.4.

2.3 Sample removal

It is usually desirable to maintain a consistent fill rate among dif-
ferent classes throughout the sampling process, as this allows us to

terminate the process at any time. However, drawing the next trial
sample from the most under-filled class (Section 2.1) alone is not
enough to achieve this goal. (See discussion below for details).

To overcome this issue, we allow the removal of existing sam-
ples Ns that are in conflict with a new trial sample s if (1) it is
impossible to add another sample to class cs (this can be figured
out by tracking the still available spaces in the merit of [Dunbar
and Humphreys 2006] or a simple timeout mechanism), (2) each
s′ ∈ Ns belongs to a class cs′ with a smaller r than the class cs
for s and (3) each cs′ is at least as filled as cs. (See Removable()
in Program 1.) Intuitively, this means that we only remove samples
from classes that are easier to sample from (i.e. having a smaller
r value) and are already as filled as the current class we sample
from. (It can be easily shown that this sample removal process will
never introduce infinite loops as it treats the classes hierarchically
according to the r values.) Although it may sound unusual to al-
low removal of existing samples, we have found this essential to
maintain an equal fill-rate across all classes at all times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

240310.5 trials
0 killed

229944.5 rejected
10366 accepted

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

247810.7 trials
0 killed

237444.7 rejected
10366 accepted

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

157388.3 trials
1023.7 killed

145998.6 rejected
11389.7 accepted

Figure 4: Sampling history comparison. Here, we plot the fill-rates for two
classes throughout the sampling process (with the number of trials normal-
ized to [0 1]). r0 = 0.02 and r1 = 0.00756. The left case is generated
with a constant class probability p0 = 0.425 and p1 = 0.575, the middle case
by always drawing a new sample from the most under-filled class, and the
right case by our final algorithm that allows removal of samples. We also
measure # of trials as well as # of accepted, rejected, and killed samples
(averaged over 10 runs). Notice that all 3 cases have the same final number
of samples 10366 (= 11389.7 accepted - 1023.7 killed for the right case).

Discussion Here, we offer more detailed discussions on why
we conclude that it is unavoidable to remove samples. We use a
simple 2-class example as in Figure 4. In our first attempt (left
case), we tried to control the relative probability to sample from
each class, without considering their relative fill-rate and without
removing samples. When the relative class probability is perfectly
chosen, it will be possible to achieve the desired fill rates at the
end of the sampling process (notice the two curves meet together
at the end). However, there are two problems here. First, it is very
tricky to come up with the right class probabilities (we estimated
the numbers for Figure 4 left case by exhaustively trying a vast
number of possible combinations until the two curves meet in the
end). Second, even though the two classes achieve the same fill-rate
at the end, it is not so during the middle of the process; this makes
it hard to terminate the computation at any time.

In our second attempt, as shown in the middle case of Figure 4, we
try to draw a sample from the most under-filled class (as described
in Section 2.1) but still without removing samples. (To avoid dead-
lock, we accepts a trial sample s if it fails to be accepted for the
most under-filled class but succeeds for another one.) As shown,
even though the two classes maintain consistent fill-rates through-
out the early stage of the process, eventually it becomes difficult for
the class with a larger r value to compete with the other one.

In the final version of our algorithm, we allow samples to be re-
moved. As shown in the right case of Figure 4, the two classes
maintain consistent fill-rate throughout the sampling process. Fur-
thermore, even though killing samples may in theory increase the
computation, in practice we have found that the number of killed
samples is usually far below the number of accepted and (espe-
cially) rejected samples. In fact, as shown in Figure 4, the effi-
ciency brought by the sample removal may actually reduce the total
number of trials, making the process even more efficient.

2.4 r-matrix construction

As discussed above, we fill the diagonal entries r(i, i) of r as ri,
the user specified intra-class minimum distance. But how should
we compute the off-diagonal entries of r? If we fill the off-diagonal
entries with 0, our algorithm will reduce to decoupled single-class
sampling (i.e. the top row in Figure 3). On the other hand, if we
treat the samples as geometric disks and define the off-diagonal en-
tries r(k, j) as rk+rj

2
, we will get results as in the middle row of

Figure 3, where the individual classes can be highly non-uniform
caused by samples in other classes “getting in the way”.

function r← BuildRMatrix({ri}i=0:c−1)

// {ri}: user specified per-class values
// c: number of classes
for i = 0 to c-1

r(i, i)← ri // initialize diagonal entries
end
sort the c classes into priority groups {Pk}k=0:p−1 with decreasing ri
// classes in the same priority group have identical r values
C ← ∅ // the set of classes already processed
D← 0 // the density of the classes already processed
for k = 0 to p-1
C ← C

⋃
Pk

foreach class i ∈ Pk
D←D + 1

rn
i

// n is the dimensionality of the sample space

end
foreach class i ∈ Pk

foreach class j ∈ C
if i 6= j

r(i, j)← r(j, i)← 1
n√
D

// r is symmetric
end

end
end
return r

Program 2: r-matrix construction for uniform sampling.

Our algorithm for computing r is shown in Program 2. To under-
stand how it works, let’s start with two classes c = 2 only. Since
each class i will have expected sample density proportional to 1

rn
i

in a n-dimensional sample space, the off-diagonal entries ro of r
should be computed via the following formula so that the total set
has the expected density

∑c−1
i=0

1
rn

i
:

1

ron
=

c−1∑
i=0

1

rni
(2)

The bottom row in Figure 3 is produced by r constructed in this
fashion. It can be seen, both experimentally and intuitively, that a ro
value deviating from the one computed via Equation 2 will produce
worse results, i.e. a smaller value will produce a less uniform total
set as in the top row of Figure 3, whereas a larger value will produce
less uniform individual classes as in the middle row of Figure 3.

The method described above could also be applied to compute a
uniform off-diagonal r matrix entry value for c > 2 classes if they
share an identical r value.

However, for c > 2 classes with different r values, computing a
uniform off-diagonal entry value via Equation 2 will produce sub-
optimal results. The details are discussed in Section 3 (Figure 10),
but here is a high level, intuitive explanation (Figure 5). Recall
that a Poisson disk sample set possesses a blue noise power spec-
trum, with an inner ring radius 1

r
within which the power spec-

trum have very low energy. This is a main desirable feature for
blue noise, pushing low frequency aliasing towards high frequency
noise. However, in multi-class Poisson disk sampling, the power
spectrum of a class ci with parameter ri could be intefered by any
other class cj with rj > ri, as the noise/energy outside frequency
1
rj

of class cj would fall within the inner ring 1
ri

of class ci. Thus,

to minimize the pollution inside its inner ring 1
ri

, each class ci
would need to ensure that the union of all classes {cj}with rj > ri
has as uniform a joint distribution as possible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

f0

f1 class 0
class 1

Figure 5: Inter-class spectrum inteference.
Here we show the radial mean plots for 2
classes with different r values. Each class
has its energy peak around frequency f = 1

r
.

Note that the peak energy of c0 falls into the
inner ring of c1, since f0 < f1 (r0 > r1).

We achieve this goal by the algorithm described in Program 2. We
begin by assigning the diagonal entries of r from the user speci-
fied parameters {ri}. To compute the off-diagonal entries, we first
sort the classes into priority groups {Pk}k=0:p−1 with decreasing
r values, where each group Pk contains classes with identical r.
We then visit these priority groups one by one as follows. We add
each group Pk to the current aggregate group C, as well as the cor-
responding r values to the current aggregate accumulated density
D via Equation 2. We then assign each off-diagonal entry r(i, j)
with 1

n√
D

, where i 6= j with i ∈ Pk and j ∈ C (or vice versa);
this essentially applies Equation 2 to the off-diagonal entries in a
sequential fashion so that each accumulated group C so far would
be as uniform as possible as dedicated by our algorithm.

Discussion We are fortunate that a class ci with ri does not
need to worry about any other class cj with rj ≤ ri, as cj would
impact ci power spectrum outside its inner ring 1

ri
. This allows us

to sort all classes into a hierarchy according to their decreasing r
value and construct r-matrix accordingly (Program 2). Otherwise,
we will have an impossible task of building an r-matrix so that an
arbitrary union of different classes has to be uniform.

Also note that even though we build r-matrix in a priority order
according to the r values of the classes, we generate samples across
all classes together instead of in a prioritized order (as described
above). See Section 3 (Figure 10) for a more detailed analysis.

3 Analysis

Here, we analyze the spectrum properties [Lagae and Dutré 2008]
of the sample sets produced by our method. We also provide addi-
tional justifications for the design of our algorithm.

Number of classes We start our analysis with the simplest case
where all the classes have the same parameters, including r as well
as the target number of samples. Since samples in each class have to
“get around” samples in other classes, one might concern that each

individual class of samples produced by our approach might be less
uniform than the one produced with traditional dart throwing [Cook
1986]. However, empirically we have found that this is not an issue,
as long as we stick to Program 2 for computing the r matrix. As
shown in Figure 6, we use a uniform value for the diagonal entries
{ri} of the r matrix, produce sample sets with different number of
classes c, and measure the mean and variance of the averaged power
spectrum for one of the classes (the others have similar statistics).
As shown, the sample statistics remain similar to traditional single-
class dart throwing across a variety of c numbers.

Non-uniformity So far we have only analyzed situations where
each class has the same r values. Here, we examine what happens if
the classes have different r values. We start with the simplest case
of only two classes as shown in Figure 7. We produce several sets of
2-class sample sets with different r0 and r1 values so that the total
is a sample set with the same r value (where 1

rn = 1
rn
0

+ 1
rn
1

). We
start with similar r0 and r1 values on the left with increasing dis-
parity towards the right of Figure 7. Here, we can observe several
interesting facts:

• Class 0 remains indistinguishable from single-class dart
throwing. However, class 1 might deviate from the single-
class results, as manifested by the small “humps” between
their radial mean curves. These humps are obviously caused
by the spectrum peaks of class 0, as they are centered around
frequency 1

r0
. The existence of these humps could be ex-

plained by inter-class interference as illustrated in Figure 5.

• The deviation between class 1 and ground truth is less obvi-
ous when r0 and r1 are either very similar or very dissimilar.
When r0 and r1 are similar, the hump will happen around the
existing peak of class 1, making it non-obvious. When r0 and
r1 are dissimilar, class 0 simply has too few samples to have
a major impact on the power spectrum of class 1. The hump
could be visualized as a “traveling wave” across the 5 pairs
of cases in Figure 7. The hump becomes most obvious at the
center pair (r0 = 0.02 and r1 = 0.0076), but even there the de-
viation from the ground truth is not all that major. Our spatial
sampling results also confirm this; see Figure 8.

Optimality Given a set of 2-class samples produced by our
method, we would like to know how optimal the distribution of
each class is. Specifically, we would like to know if there is a better
way to partition the set of all samples into 2 classes with desig-
nated densities to reduce the humps in Figure 7. Here we com-
pare our results with two extreme cases: (1) each class is randomly
distributed among all samples and (2) each class is uniformly dis-
tributed by running a discrete version of the Lloyd relaxation over
the total sample sets. (Note that we use a discrete instead of a con-
tinuous relaxation. The latter could settle into a regular tiling with
highly biased spectrums, as reported in prior studies, e.g. [Lagae
and Dutré 2008]. The discrete relaxation has no such issue as the
output is constrained to lie on a set of Poisson disk samples.)

As shown in Figure 9, the random case shifts energy towards lower
frequencies; this is undesirable since it would make the sampling
noisier. The relaxation case does shift some energy away from the
low frequency range compared to our results, but on the other hand
the uniformity of the samples would cause a more spiky energy pro-
file around frequency 1

r0
. Even though this might be desirable for

class 0, this may not be so for class 1 as a spikier hump is introduced
within its inner ring 1

r1
. This example illustrates one important dif-

ference between single- and multi-class sampling; for the former,
we just need to optimize for one class but for the latter, an optimally
uniform distribution of one class might actually harm another one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 1

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 2

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 4

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 9

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 13

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 17

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 32

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 64

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 128

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 256

Figure 6: Spectrum results for different number of classes. From top to bottom: power spectrum averaged over 10 runs, radial mean power, and radial
variance/anisotropy. Each column is produced with a different number of classes c as indicated. r = 0.02, # samples ' 1300 per class for all cases. For easy
comparison, we overlay the ground truth mean curve (c = 1) in green color with all other cases (c > 1).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.011

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0092

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.0141

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0082

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0076

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0071

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.08

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0071

Figure 7: Spectrum results for two classes with different r values. From top to bottom: power spectrum averaged over 10 runs, radial mean power, and radial
variance/anisotropy. Each pair of column is produced together with different r0 and r1 values so that their total is a sample set with r = 0.01√

2
. For the radial

mean plots, we also overlay the ground truth produced by single-class dart throwing as green curves for easy comparison.

In general, we believe it is geometrically impossible to remove the
small hump in the radial mean plot of the class with a smaller r
value, and we have found that our approach distributes these extra
energy better than other alternatives.

Another issue with discrete relaxation is that it will not necessarily
produce a set of multi-class Poisson disk samples satisfying the set
of user specified per-class parameters {ri}i=0:c−1. Specifically,
there is no guarantee that two samples s and s′ will satisfy the
Poisson-disk requirement |s− s′| ≥ r(cs, cs′).

Similar to the discrete randomization and relaxation methods, we
could also entertain the notion of discrete dart throwing, where
we let our algorithm draw samples from a pre-existing sample set
rather than a continuous domain. In general, this is a problematic
approach, as the it tends to overshoot the r parameters (due to con-
straints imposed by discrete source), causing the output sample sets
to be overly sparse.

r-matrix computation Figure 10 demonstrates the effects of
the r-matrix on sample quality for a 3-class scenario. In the left
case, we compute the off-diagonal entries of r uniformly via Equa-
tion 2. In the middle case, we compute r via Program 2. (We have

to use more than 2 classes because otherwise these two cases would
be equivalent.) Note that in both cases class c0 have very similar re-
sults to the ground truth; this is to be expected as c0 has the largest
r value, causing it to have the smallest inner ring in the power spec-
trum and thus immune from contaminations from other two classes.
However, for classes c1 and c2, the results are quite different. Since
the r is computed in a prioritized order in the middle case, it clearly
has a better distribution for c2 than the left case. The middle case
does have a slightly worse class c1 than the left case (because c1 is
more constrained), but the difference is quite minor.

Class priority One might also question why we have to gener-
ate all classes together instead of producing them sequentially. As
we discussed in Section 2.3, generating all classes together (while
maintaining the consistency of their fill rates) allows us the flexibil-
ity to terminate the computation at any time. Generating the classes
sequentially certainly does not allow us to do this, as we will have
to specify a certain criteria to stop the generation of one class and
start another one. This might not be easy as it is very hard to pre-
dict if an earlier class would over-constrain the generation of a later
one. Furthermore, generating the classes sequentially might actu-
ally harm the distribution quality; as illustrated in the right case of

ground truth our method

Figure 8: Spatial sampling quality comparison via the zone plate pattern
sin(x2 + y2). Each image is produced with 166400 samples (roughly 1
sample per pixel) and filtering with a 3 pixel wide Gaussian kernel. The left
image is produced from the single-class ground truth and the right image
from our method as shown in the r1 = 0.0076 case in Figure 7 where the
two distributions deviate the most.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

randomized discrete relaxation

Figure 9: Optimality of our sample distribution. There are many possi-
bilities for distributing 2 classes over a sample set; the two extreme cases
are randomized (left) and discrete relaxation (right). Here we take the total
sample sets from the third case (r0 = 0.02 and r1 = 0.0076) in Figure 7
where our sample distribution exhibits the most visible hump. For the radial
mean plots, we also overlay our results as green curves for easy comparison.

Figure 10, since classes c0 and c1 are produced prior to c2, it might
have little rooms left and thus forced to distribute in a non-optimal
way. This can be clearly seen by comparing the radial mean plot
for c2 between the middle and right cases.

Total sample set So far we have only shown the power spec-
trums of the individual classes but not the entire sample set. Since
the entire set is not directly utilized for sampling, they just need to
remain reasonably uniform to allow the maximum possible packing
of samples. Figure 11 shows the power spectrums for a selected set
of results from Figure 6 and Figure 7. As shown, the power spec-
trums of the entire sets stay pretty close to the ground truth blue
noise profile, even though not identical. In particular, the maxi-
mum deviations on the radial mean curves happen around { 1

ri
} of

the underlying classes. The deviation is most obvious when there
are a small number of classes and/or when the classes have similar
(but different) r values. When there are a larger number of classes,
each individual sample would have a higher chance of being neigh-
bor with a sample from a different class, thus geometrically making

the entire sample set more similar to a single-class Poisson disk
distribution; see the progression of the left five cases of Figure 11.
When the classes have dissimilar r values, the class with larger r
would have less samples to impact the overall power spectrum; see
the progression of the right five cases of Figure 11.

Performance Using a simple grid-based data structure [Bridson
2007; Wei 2008] for storing samples and checking conflicts, our
current implementation is able to achieve reasonable performance,
as tabulated in Table 1. The performance decreases with the in-
creasing number of classes since the sample placement is more
constrained, resulting in more potential rejections during the gen-
eration process. We wish to emphasize that we have not attempted
any further speed optimizations beyond the basic grid data struc-
ture (our current implementation is fast enough to produce results
shown in the paper), and the performance is likely to increase sig-
nificantly via more advanced sequential [Dunbar and Humphreys
2006; White et al. 2007] or parallel [Wei 2008] techniques.

classes 1 2 3 4 5 6 7 8
performance 9.85 3.80 2.74 2.24 1.36 1.15 0.99 0.65

Table 1: Performance of our algorithm. All performance numbers are in
K-samples/second, and measured on a laptop with a 2.50 GHz CPU + 2 GB
RAM. The 1-class case serves as a reference for others.

4 Adaptive Sampling

So far we have described multi-class dart throwing only for uniform
sampling. Here we describe how to extend it for adaptive sam-
pling. As summarized in Program 3, the main difference between
uniform and adaptive sampling is that the user-specified constants
{ri}i=0:c−1 for the former could be general spatially-varying func-
tions {ri(.)}i=0:c−1 for the latter. This requires us to extend the
definition of the r-matrix to be spatially varying, as well as the con-
flict check metric in dart throwing and the hierarchy in determining
if a sample s′ is removable relative to s. See colored portions in
Program 3:

• For building r-matrix, we simply apply the algorithm in
Program 2 for every sample location s, i.e. r(s) =
BuildRMatrix({ri(s)}i=0:c−1).

• For conflict check, we use r(s,cs,cs′)+r(s′,cs′ ,cs)

2
instead of

r(cs, cs′). This is analogous to the use of r(s)+r(s′)
2

instead
of r for single-class adaptive sampling.

• For hierarchizing the samples in Removable(), we use the
sample location s in addition to its class number cs utilized
in Program 1. Similar to our uniform sampling algorithm, it
can be easily shown that the tuples (s, cs) are strictly ordered
and thus will not introduce infinite loops for our algorithm.

Discussion Our adaptive sampling algorithm in Program 3 will
reduce to our uniform sampling algorithm in Program 1 if the input
parameters {ri(.)}i=0:c−1 happen to be constants.

One might also question why not simply treat each individual sam-
ple as a separate class and apply our uniform sampling algorithm.
This is not doable not only from a computation point of view (e.g.
a huge r-matrix) but also it fundamentally makes no sense: in our
definition, samples of each class could be used independently from
other classes but this certainly does not apply to individual samples
of an adaptive sampling.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

classes thrown together
r has uniform off-diagonal entries via Eq 2

classes thrown together
r computed via Program 2

classes thrown in priority order (c0 ≺ c1 ≺ c2)
r computed via Program 2

Figure 10: r-matrix computation and class priority. From top to bottom: power spectrum averaged over 10 runs, radial mean power, and radial vari-
ance/anisotropy. In the radial mean plots, the red curves correspond to results produced in each case, and the green curves the ground truth produced by
single-class dart throwing with the same number of samples. Note that a r-matrix with uniform off-diagonal entries would cause noiser power spectrum for c2
(compare the radial mean plots between the left and middle cases for c2 in frequency range [25 50]). Generating the clases separately would introduce low
frequency noise for the classes generated latter (compare the middle and right cases).

function S←MultiClassDartThrowing(Ω, {ri(.)}i=0:c−1)

// Ω: sampling domain
// {ri(.)}: spatially-varying parameters for intra-class sample spacing
// c: number of classes
// r(.): c× c spatially-varying matrix controlling inter-class sample spacing
r(.)← BuildRMatrix({ri(.)}i=0:c−1) // see Program 2
S← ∅ // final set of samples
while not enough trials attempted and not enough samples in S
s← new sample uniform-random drawn from Ω
cs← arg minc FillRate (c) // choose the most under-filled class

if ∀s′ ∈ S |s− s′| ≥ r(s,cs,cs′)+r(s′,cs′ ,cs)

2
add s to S

else if impossible to add another sample to cs
// try to remove the set of conflicting samples Ns

Ns←
⋃
s′ ∈ S where |s− s′| < r(s,cs,cs′)+r(s′,cs′ ,cs)

2
if Removable(Ns, s, r(.))

remove Ns from S
add s to S

end
end

end
return S

function float FillRate(c)

return # of existing samples∈c
target # of samples for c // see Equation 1

function bool Removable(Ns, s, r(.))

foreach s′ ∈ Ns

if r(s′, cs′ , cs′) ≥ r(s, cs, cs) or FillRate(cs′) < FillRate(cs)
return false

return true

Program 3: Multi-class dart throwing for adaptive sampling. The colored
portions highlight the differences from the uniform sampling in Program 1.

5 Application

5.1 Object distribution

Uniform object placement is often desirable for both scientific (e.g.
biological distribution) and artistic applications. Such a uniform

distribution could be achieved by either geometry packing [Kim and
Pellacini 2002] or Poisson disk sampling [Cohen et al. 2003; Lagae
and Dutré 2005; Kopf et al. 2006]. We could apply our approach
to place multiple classes of objects so that each individual class as
well as their union exhibit Poisson disk distribution. An example is
shown Figure 12 for placing two classes of objects: red and yellow
flowers. Our approach can be applied for both uniform and adaptive
object distribution.

5.2 Color stippling

In addition to object placement, Poisson disk sampling could also
be employed for stippling with visually pleasing results (see e.g.
[Kopf et al. 2006]). However, existing stippling results are mostly
black-and-white since traditional Poisson disk sampling can handle
only a single class of samples. We could apply our algorithm for
multi-color stippling by using a color image as the input importance
field, and simply treating each color channel as a separate class and
producing a multi-class output sample set accordingly. As shown
in Figure 13, our method can produce reasonably complex color
stippling, and the colored dots not only follow the input importance
field but also maintain a Poisson disk distribution. Note that since
Poisson disk sampling forbids samples to overlap each other, it fol-
lows that on average each class can occupy no more than 1

c
of the

total sample area for a c-color input. This could limit our stippling
result to achieve at most 1

c
total intensity of the original color im-

age under the same display gamut. This issue could be addressed
by allowing the colored dots to overlap (similar to color dithering
[Ostromoukhov and Hersch 1999; Pang et al. 2008]). We leave this
as a potential future work.

5.3 Sensor layout

The layout of a color sensor array determines the quality of the sam-
pling results as well as subsequent reconstruction algorithms such
as super-resolution. The most widely used layouts usually deploy
the RGB sensor elements in a regular grid (or certain variations
from it); as pointed out in [Ben Ezra et al. 2007], such grid layouts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100 200 300 400 500 600 700

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 200 400 600 800 1000

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 500 1000 1500 2000

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 500 1000 1500 2000 2500 3000 3500 4000

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 100 200 300 400 500

a
n
is

o
tr

o
p
y

frequency

c = 4
r = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700

a
n
is

o
tr

o
p
y

frequency

c = 9
r = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 200 400 600 800 1000

a
n
is

o
tr

o
p
y

frequency

c = 13
r = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 500 1000 1500 2000

a
n
is

o
tr

o
p
y

frequency

c = 64
r = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000

a
n
is

o
tr

o
p
y

frequency

c = 256
r = 0.02

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.011
r1 = 0.0092

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.0141
r1 = 0.0082

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.02
r1 = 0.0076

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.04
r1 = 0.0071

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.08
r1 = 0.0071

Figure 11: Total sample set distribution. The left 5 cases are from Figure 6 and the right 5 from Figure 7. For the radial mean plot, we also overlay the ground
truth produced by single-class dart throwing as green curves for easy comparison.

Figure 12: Object placement. Here we apply our algorithm to distribute two classes of objects: red and yellow flowers with inputs shown on the left. The
middle is a case of uniform distribution. The right is a case of adaptive distribution with an input importance field consisting of two Gaussian blobs.

are subject to a variety of sampling and reconstruction issues, and
the authors recommended the use of Penrose pixels. However, as
pointed out in [Kopf et al. 2006; Lagae and Dutré 2008], a Penrose
sample layout, even after quality improvement via jittering [Ostro-
moukhov et al. 2004], would still exhibit spectrum bias compared
to one produced by Poisson disk sampling.

Following an analogous line of thinking, we wonder if it is possi-
ble to further improve the quality of Penrose pixel layout for color
sensors [Ben Ezra et al. 2007] via our approach, treating the RGB
sensors as three classes of samples. The comparison is shown in
Figure 14. For the reference Penrose pixel algorithm, we use the
randomized 3-coloring algorithm in [McClure 2002] to assign the
RGB sensor locations. We have found this randomized algorithm
improves the sampling quality for each individual color set, as their
entire union is even more biased due to a deterministic layout.

Even so, we have found that our approach produces much bet-
ter spectrum quality. Due to the fact that [Ben Ezra et al. 2007]
could achieve 100% area utility (i.e. no gaps between sensor cells)
whereas our approach could not (due to the nature of Poisson disk
sampling), for fair comparison, we have produced two sets of re-
sults via our algorithm: one with similar number of samples to
[Ben Ezra et al. 2007] (with larger total area) and another with
similar total sensor area (with fewer samples). As shown in Fig-

ure 14, our former case has no bias in the power spectrum as well as
no aliasing in a spatial sampling for the zone-plate pattern, a com-
monly used stress test for evaluating sampling quality in prior pub-
lications (e.g. [Kopf et al. 2006; Ostromoukhov 2007; Wei 2008]).
For our latter case, even though it produces a smaller inner ring
in the power spectrum than [Ben Ezra et al. 2007] due to the use
of fewer samples, the absence of aliasing and bias still makes our
approach a potential better choice than [Ben Ezra et al. 2007].

5.4 Color filter array design

Penrose pixels [Ben Ezra et al. 2007] and our method would pro-
duce better spectrum quality than traditional regular grid sensor lay-
out. However, a regular layout is easier to fabricate, especially for
wiring [Ben Ezra et al. 2007]. We have found it possible to main-
tain the regular layout for the sensor cells, but apply our technique
to de-regularize the color filter layer so that the spectrum quality is
still improved. This can be achieved by applying our multi-class
dart throwing algorithm to an existing set of samples (regular cell
layout in this particular case) rather than a continuous domain. (Or,
equivalently, draw each sample from a continuous domain but snap
it to the nearest cell center before drawing another one.)

As shown in Figure 15, even though our method cannot remove the

Figure 13: Color stippling result. Using the famous Lenna image as the
input importance field, our method produces an adaptive sample set con-
sisting of ∼322K RGB color dots. (Note: this image is best viewed on a
computer display as it might not show up well on printing.)

bias caused by the underlying regular grid structure, the sampling
quality is still improved by de-regularizing the color filter elements.
(In this particular example we use the Bayer filter mosaic consisting
of twice the number or G than R/B filters, but our algorithm applies
to other layouts as well.) To ensure that all sensor elements are uti-
lized, we gradually decrease the r parameters throughout the sam-
pling process similar to [McCool and Fiume 1992]. Even though
it is also possible to de-regularize the color filters via discrete ran-
domization or relaxation (discussed in Section 3), we have found
that the former tends to produce more noise while the latter might
degenerate into a regular layout.

6 Limitations and Future Work

In addition to power spectrum analysis (see Section 3), another met-
ric to evaluate Poisson disk sample quality is the relative radius
ρ = r

rmax
as defined in [Lagae and Dutré 2008], where rmax is the

maximum average inter-sample distance computed from the max-
imum packing of a given number of samples. As recommended
by [Lagae and Dutré 2008], ρ should be in the range [0.65 0.85]
for traditional single-class Poisson disk sampling. However, for
multi-class Poisson disk sampling, we have found it more difficult
to achieve the upper end of that range due to the inherent more con-
straints in multi-class sampling; specifically, samples in each class
not only have to keep a distance from peers with the same class but
also from those in other classes. In our experience, we have found
ρ ∈ [0.65 0.70] achievable but beyond that might require excessive
number of trials. Fortunately, this issue does not seem to worsen
progressively with the increasing number of classes; due to our
r-matrix construction algorithm, the inter-class r values decrease
with the increasing number of classes, thus they tend to cancel each
other out in terms of imposing additional constraints. All results
shown in the paper have ρ = 0.67.

We have mainly focused on the basic algorithms for multi-class
sampling and only lightly touched on the issues of acceleration.
Since our algorithm is extended from dart throwing, we believe it
can benefit from a repertoire of previous acceleration techniques,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

-20

-15

-10

-5

 0

 5

 10

 15

 20

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

Penrose pixels
[Ben Ezra et al. 2007]

our method
same # samples

our method
same total area

Figure 14: Comparison with Penrose pixels for RGB sensor layout. From
top to bottom: spatial sensor layout, power spectrum averaged over 10 runs,
radial mean, radial variance/anisotropy, and spatial sampling via the zone-
plate pattern. The spectrum results are produced by one of the classes while
the spatial sampling via all 3 classes. With respect to the left case, the middle
one is produced by our technique with the same number of samples, while
the right one has fewer samples (∼42%) occupying the same total area.

such as [Jones 2006; Dunbar and Humphreys 2006; White et al.
2007; Wei 2008]. Another related future direction is paralleliza-
tion [Wei 2008]; right now our algorithm is not directly paralleliz-
able due to the use of sample removals, but for applications that
do not care about tight sample control, we could forgo both the
fill-rate computation and the sample removal process, and simply
draw samples according to a pre-determined probability (see dis-
cussions surrounding Figure 4); this would allow us to parallelize
our algorithm similar to [Wei 2008]. Our method is also applicable
for constructing multi-class sample tiles [Cohen et al. 2003; Os-
tromoukhov et al. 2004; Kopf et al. 2006; Lagae and Dutré 2006;
Ostromoukhov 2007] as another way to save run-time computation.

As discussed in Section 5.2, our color stippling results could be too
dark due to the limitation of non-overlapping color dots. One pos-
sible solution is to enlarge the color dots and allow them to overlap
each other, and it would be interesting to investigate the relationship
between this possibility with multi-color dithering [Ostromoukhov

regular layout our method

Figure 15: Color filter array design. Top: spatial filter array layout. Bot-
tom: zoneplate sampling result. The color filter layout on the right is pro-
duced by applying our multi-class dart throwing technique to the regular
grid on the left instead of a continuous domain. Note that our technique can
remove biases caused by regular color filter layout, but not these caused by
the underlying sensor array (i.e. aliasing near the zoneplate corners).

and Hersch 1999] or error diffusion [Pang et al. 2008].

Even though our algorithm is designed mainly for sampling con-
tinuous domains, it is also applicable to discrete domains such as
color filter layout. We believe this multi-class discrete sample lay-
out could have other interesting applications, such as stochastic ras-
terization [Akenine-Möller et al. 2007] where each group of time
pixels could be considered as a separate class.

Although we have only demonstrated results in 2D, our algorithm
is directly applicable to higher dimensional spaces [Bridson 2007;
Wei 2008]. (The core component of our algorithm, dart throwing,
as well as various grid/tree-based implementations are all applica-
ble to arbitrary dimensions.) This could have potential high dimen-
sional applications, e.g. distribution of 3D objects. It is also in-
teresting to extend our approach to sample non-Euclidean domains
such as manifold surfaces [Turk 1992; Fu and Zhou 2008]; this
could have potential applications in geometry processing. Another
potential future work is extensions for anisotropic sampling [Feng
et al. 2008]. This could be useful for a variety of applications, e.g.
anisotropic stippling [Kim et al. 2008].

References
AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J. 2007.

Stochastic rasterization using time-continuous triangles. In GH ’07: Pro-
ceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, 7–16.

BEN EZRA, M., LIN, Z., AND WILBURN, B. 2007. Penrose pixels super-
resolution in the detector layout domain. In ICCV ’07: Proceedings of
the International Conference on Computer Vision, 1–8.

BRIDSON, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 Sketches & Applications.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang
tiles for image and texture generation. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, 287–294.

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans.
Graph. 5, 1, 51–72.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data structure for fast
poisson-disk sample generation. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, 503–508.

FENG, L., HOTZ, I., HAMANN, B., AND JOY, K. 2008. Anisotropic noise
samples. IEEE Transactions on Visualization and Computer Graphics
14, 2, 342–354.

FU, Y., AND ZHOU, B. 2008. Direct sampling on surfaces for high quality
remeshing. In SPM ’08: Proceedings of the 2008 ACM symposium on
Solid and physical modeling, 115–124.

JONES, T. R. 2006. Efficient generation of poisson-disk sampling patterns.
journal of graphics tools 11, 2, 27–36.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, 657–664.

KIM, D., SON, M., LEE, Y., KANG, H., AND LEE, S. 2008. Feature-
guided image stippling. In Eurographics Symposium on Rendering.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D. 2006.
Recursive wang tiles for real-time blue noise. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, 509–518.

LAGAE, A., AND DUTRÉ, P. 2005. A procedural object distribution func-
tion. ACM Trans. Graph. 24, 4, 1442–1461.

LAGAE, A., AND DUTRÉ, P. 2006. An alternative for wang tiles: colored
edges versus colored corners. ACM Trans. Graph. 25, 4, 1442–1459.

LAGAE, A., AND DUTRÉ, P. 2008. A comparison of methods for gener-
ating Poisson disk distributions. Computer Graphics Forum 21, 1, 114–
129.

MCCLURE, M. 2002. A stochastic cellular automaton for three-coloring
penrose tiles. Computers & Graphics 26, 3, 519–524.

MCCOOL, M., AND FIUME, E. 1992. Hierarchical poisson disk sampling
distributions. In Proceedings of the conference on Graphics interface
’92, 94–105.

MITCHELL, D. P. 1987. Generating antialiased images at low sampling
densities. In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, 65–72.

OSTROMOUKHOV, V., AND HERSCH, R. D. 1999. Multi-color and artistic
dithering. In SIGGRAPH ’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, 425–432.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004. Fast
hierarchical importance sampling with blue noise properties. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers, 488–495.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. In SIGGRAPH
’07: ACM SIGGRAPH 2007 Papers, 78.

PANG, W.-M., QU, Y., WONG, T.-T., COHEN-OR, D., AND HENG, P.-A.
2008. Structure-aware halftoning. In SIGGRAPH ’08: ACM SIGGRAPH
2008 Papers.

TURK, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH ’92: Proceed-
ings of the 19th annual conference on Computer graphics and interactive
techniques, 55–64.

WEI, L.-Y. 2008. Parallel poisson disk sampling. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 Papers.

WHITE, K., CLINE, D., AND EGBERT, P. 2007. Poisson disk point sets
by hierarchical dart throwing. In Symposium on Interactive Ray Tracing,
129–132.

YELLOTT, J. I. J. 1983. Spectral consequences of photoreceptor sampling
in the rhesus retina. Science 221, 382–385.

Supplementary Materials

A Implementation

So far we have only described how our algorithms work in an ab-
stract, high level metaphor of dart throwing. Even though dart
throwing could provide high quality, it is also well known for its
slow computation speed. Here we provide more implementation
details about acceleration and other implementation issues.

A.1 Single-resolution grid

One possibility to accelerate dart throwing is via a grid data struc-
ture as described in [Bridson 2007; White et al. 2007; Wei 2008].
The basic idea there is to subdivide the sample domain Ω into grid
cells so that each cell can contain at most one sample. Thus, for
uniform sampling, one only needs to examine a constant number of
cells surrounding a new trial sample for conflict check. This grid
data structure can be trivially extended for our multi-class uniform
sampling algorithm, and we could also use the grid cells to track
the available remaining space for each class of samples (for the
purpose of estimating impossibility to add samples in Program 1).
However, since the grid has to be built fine enough to accommodate
the minimum value in our r-matrix while the conflict check has
to be conservative enough for the maximum value in the r-matrix,
the computation cost of a single-resolution grid implementation of
our algorithm will increase linearly with respect to the ratio of the
max and min values of r. This situation is further exacerbated in
adaptive sampling.

A.2 Multi-resolution tree

The aforementioned issues for a single-resolution grid could be ad-
dressed by a multi-resolution tree structure as described in [Wei
2008]. The basic idea there is to store larger samples (in terms
of r(.)) at a lower resolution of the tree while the smaller ones at
higher resolutions, so that the conflict check can be performed by
looking at a constant number of tree nodes at each resolution.

The multi-resolution single-class algorithm in [Wei 2008] could be
combined with our single-resolution multi-class algorithm in Pro-
gram 3. The hybrid algorithm for multi-resolution multi-class sam-
pling is summarized in Program 4. Our main idea is to use c indi-
vidual trees to store each class of samples, and for each new trial
sample s we perform conflict check across multiple trees for all
existing samples that have potential for conflict. (The algorithm
could be visualized as the spatial overlay of c individual trees for
each class of samples.) Since the number of samples stored in each
tree can be quite different, we also subdivide the trees on demand
instead of all together. This means that at any time the trees could
have different number of levels. We traverse the lead level nodes of
any tree in a randomized order to avoid bias (as discussed in [Wei
2008]).

The main difference between our algorithm and [Wei 2008] is on
cross conflict check between a trial sample s and a tree T for dif-
ferent classes. Specifically, when s is generated from its own (same
class) tree T s, s must be drawn from a highest resolution leaf cell
2s and thus all the math properties of [Wei 2008] hold. However,
when s is conflict-checked against a different tree T , 2s might not
even have a twin cell in T , or the twin cell exists but is not on
the highest resolution of T . Thus, the math and algorithm in [Wei
2008] cannot be directly applied. To handle these situations, we
extend the approach in [Wei 2008] as follows. Let the trial sample
s be generated at level l from T s. In [Wei 2008], the conflict check
is performed by looking at, for each resolution l′ from l to 0, a set

of cells within 3
√
nµ(l′) distance from the ancestor cell 2(l′) con-

taining s. In our approach, we simply look at cells within the same
vicinity of the ancestor cells not only within the same tree T s but
also at all other tree T . To accommodate for the aforementioned
situations, we make the following modifications: (1) we only ex-
amine cells that actually exist in T and (2) if lmax(T) > l, for any
non-leaf cell 2 at level l of T , we have to examine all samples con-
tained within its sub-tree. (This situation never happens in T s as
lmax(T s) = l.)

To mathematically prove that the algorithm is correct, simply fol-
low the math proofs in [Wei 2008] and take into account the fact that
∀s ∈ Ω, the off-diagonal entries in r(s, ., .) are all smaller than its
diagonal entries according to our r-matrix construction algorithm
in Program 2. See Appendix B for math details.

A.3 Impossibility Estimation

A core component of our algorithm is to estimate when it is im-
possible to add samples to a specific class. For uniform sampling,
this can be precisely estimated by tracking the remaining available
space for each class in the merit of [Dunbar and Humphreys 2006]:
for each newly added sample s in class i, it will strike out a spherical
region centered at s with radius r(i, j) out of the remaining avail-
able space for class j. However, it is not clear how to extend this
strategy for adaptive sampling where r(.) can be spatially-varying.
In addition, it can be quite complex to implement, especially for
high dimensional spaces [Bridson 2007; Wei 2008].

Fortunately, for our algorithm, all we need is a rough estimation
for impossibility rather than a 100% precise measurement. In our
current implementation, we simply use the grid/tree cells to track
available regions: for each newly added sample s in class i, we
strike out cells for class j that are entirely within the spherical re-
gion centered at s with radius r(s, i, j). (Note that this works for
both uniform and adaptive sampling, and we strike out cells only
for the sake of impossibility estimation, not really removing them
from the candidate list {2}l in Program 4.) We have found this
strategy work well in practice.

B Math Details

Claim B.1 The hyper-sphere radius utilized in Program 4 is con-
servative enough to check all potential conflicts (for both the mean
and max metrics).

Proof For clarity, for the discussion below we use the mainly the
max metric (as in [Wei 2008]); the mean metric could be proved
analogously.

Let’s consider the conflict check between a new sample s in class cs
and an existing sample s′ in class cs′ . When cs = cs′ , the situation
reduces to the single-class algorithm in [Wei 2008]. When cs 6=
cs′ , note that (1) Claim A.1 in [Wei 2008], which states that for any
existing sample s generated in tree level l we have r(s, cs, cs) ≤
2
√
nµ(l), still holds true for each individual class, and (2) for each

trial sample s produced in level l, r(s, cs, cs) must be ≤ 2
√
nµ(l′)

for each l′ = 0 to l, to survive the conflict check within its own tree
T cs , as in the last statement of Claim A.2 in [Wei 2008]. These two
properties, together with the fact that for each s′, r(s′, cs′ , cs) <
r(s′, cs′ , cs′), (i.e. the inter-class distances are smaller than intra-
class ones due to our construction algorithm in Program 2), inform
us that to check conflict between a trial sample s and a node 2(l′)
∈ level l′ (≤ l of s) of tree T cs′ of a different class cs′ , the distance
3
√
nµ(l′) would be enough to conflict-check s with all samples ∈

Ω (2(l′)). This, in turn, allows us to check all samples contained

in non-leaf cells at level l as well as all leaf cells at level l′ < l of
tree T cs′ .

C Basic Formulation

Let {pk}k=0 to N−1 be a set of N samples in a n dimensional
space. Their Fourier transform can be computed as follows:

F (f) =
1

N

N−1∑
k=0

e−2πi(f .pk) (3)

where f is the frequency.

For the purpose of analyzing sample patterns, we are usually inter-
ested in the power spectrum F (f) [Lagae and Dutré 2008], which
can be computed as follows:

P (f) = |F (f)|2 = Pr(f) + Pi(f)

Pr(f) =

(
1

N

N−1∑
k=0

cos(2πf .pk)

)2

Pi(f) =

(
1

N

N−1∑
k=0

sin(2πf .pk)

)2

(4)

We can reformulating Equation 4 via basic trigonometry into the
following equivalent form:

P (f) =
1

N2

N−1∑
k=0

N−1∑
j=0

cos
(

2πf .(pk − pj)
)

(5)

=
1

N
+

1

N2

N−1∑
k=0

N−1∑
j=0,j 6=k

cos
(

2πf .(pk − pj)
)

(6)

Note that unlike Equation 4 which depends on explicit sample lo-
cations, Equation 6 depends on only pair-wise sample location dif-
ferences. This property provides us with an intuitive explanation of
the blue noise profile for Poisson disk sampling; see Appendix D.

D Explanation for Blue Noise Shape

We could use Equation 6 to help explain the famous blue noise
profile (i.e. radial mean of the power spectrum P (f)) consisting of
two main signature characteristics: lack of energy in the inner ring
(f < 1

r
) and the undulations. See Figure 16.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

Poisson disk
uniform random

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

d
e
n
s
it
y

|coordinate difference|

Poisson disk
uniform random

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d
e
n
s
it
y

|coordinate difference|

Poisson disk
uniform random

Figure 16: Power spectrum analysis for Poisson disk and uniform
random distributions. Left: average mean power averaged over 10
runs. Middle: probability density functions of the random variable∣∣∣pkx − pjx

∣∣∣ , k 6= j. Right: probability density functions of the random

variable
∣∣pk − pj

∣∣ , k 6= j. Notice the spike at r (and the groove at 0) for
the Poisson disk relative to the uniform distribution. Dimension n = 2 and
r = 0.02.

We start with white noise and use that as a reference to explain
the differences with Poisson disk sampling. For a white noise, the

sample set {pk} is uniformly sampled from [0 1]n, thus by basic
probability analysis we have P (f) = 1.0

N
for all f . The term white

noise comes from the fact that this profile contains roughly equal
energy at all frequencies, as shown in Figure 16. (We normalized
the plots with respect to the number of samples N .)

Compared to the flat white noise radial profile, a Poisson disk sam-
ple set has lower energy for frequency (f < 1

r
as well as the intrigu-

ing undulations. These two main deviations could be explained by
the histogram distribution of the random variable pk − pj . In Fig-
ure 16, we plot the histograms for both

∣∣pk − pj
∣∣ in the original

2D space as well as the 1D projection
∣∣pkx − pjx

∣∣. As shown, the
white noise has the standard linear profile while the Poisson disk
sample set has higher concentration around r as well as a lack of
values < r. This is to be expected as

∣∣pk − pj
∣∣ < r is completely

forbidden by the sample generation process. However, the 1D pro-
file will have some values < r due to the nature of projection. We
can use the histogram profiles combined with Equation 6 to explain
the formation of the signature blue noise profile as follows:

Reduced low frequency energy For a small f , removing a small
distance pair pk − pj from Equation 6 is going to reduce its
energy, as these small values will tend to concentrate around
the 0 argument for cos. This removal of smaller distance pairs
is a nature consequence of Poisson disk sampling, as evident
from the histograms in Figure 16. However, as f increases,
the removal of energy will start to spread across all ranges
(and possibly multiple lobes) of cos, diminishing the effect.
(Try to imagine a sequence starting with f = 1 and gradually
increases to 2, 3, etc.)

Undulations The cos terms in Equation 6 serve essentially as de-
tectors for any particular value of pair-wise sample differences
pk − pj . For Poisson disk sampling, since the differences
have an usual higher concentration around r (again due to the
nature of Poisson disk sampling process; see histograms in
Figure 16), it will cause excessive undulations for multiples
of f = 1

r
. Specifically, for f = m

r
where m is any integer,

P (f) will have local maximums as these matches the peaks
of the cos. Conversely, for f = m+0.5

r
, P (f) will have local

minimums as these matches the valleys of the cos. And the
undulation amplitudes diminishes with respect to increasing
frequency as the clustering around r essentially get dispersed.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d
e
n
s
it
y

|coordinate difference|

synth
truth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d
e
n
s
it
y

|coordinate difference|

synth
truth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d
e
n
s
it
y

|coordinate difference|

synth
truth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d
e
n
s
it
y

|coordinate difference|

synth
truth

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 20 40 60 80 100 120

p
o
w

e
r

frequency

synth
truth

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 20 40 60 80 100 120

p
o
w

e
r

frequency

synth
truth

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 20 40 60 80 100 120

p
o
w

e
r

frequency

synth
truth

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 20 40 60 80 100 120

p
o
w

e
r

frequency

synth
truth

-dig -pile -dig +pile +dig -pile +dig +pile

Figure 17: Synthetic sample differences. Here, we generate the random
variables pk −pj directly instead of from real sample sets. The red curves
are our synthetic results while the green curves ground truth from real Pois-
son disk sample sets. Our baseline generator is a white noise, and we pro-
vide 2 orthogonal twists, dig and pile.

To further verify these observations, we have performed more ex-
periments as in Figure 17. There, instead of from real sample sets,
we directly manipulate the pair-wise difference random variable
pk − pj ; this flexibility allows us to gain further insights. Our

baseline generator is a white noise, and on top of that we provide
2 orthogonal twists, dig and pile. The former option allows us to
remove pairs with distance < r, while the latter allows us to spawn
any pair < r into a pair with identical direction but length ∼ r.
These two orthogonal options allow four possible combinations.
As shown in Figure 17, the no-dig-no-pile option is essentially the
baseline white noise, while the yes-dig-yes-pile option essentially
simulates a Poisson disk sampling. The other two options have no
physical counter parts in real sample distributions but allow us to
explore further insights. In particular, the yes-dig-no-pile option
clearly shows that, after the removal of pairs < r, the power spec-
trum radial profile has the expected reduction of low frequency en-
ergy. However, when the pile option is turned on (second and fourth
case), we get enhanced undulations and also higher low frequency
energy due to the spillover effects caused by projection from 2D
onto the 1D profile where the produce 2πf .(pk −pj) inside Equa-
tion 6 occurs.

E Analysis for Multi-class Sampling

Once we appreciate the reasons behind the signature blue noise pro-
file shape for single-class sampling (Appendix D), we could apply
similar machineries for multi-class sampling. Essentially, the cen-
tral mystery for multi-class sampling beyond single-class sampling
is the fact that a class with a larger r value could affect another with
a smaller r, as the spectrum peak of the former could fall into the
inner ring of the latter (Figure 5). Specifically, consider the 2-class
scenario where r0 > r1. For class 0/1, the sample location dif-
ferences will cluster around r0/r1 just as analyzed in Appendix D.
However, a strange phenomenon is that for class 1, the location
difference histogram also has a higher value around r0. (See Fig-
ure 18.) We have yet any theoretical explanation for this, but the
effect of this secondary peak is manifested in the spectrum peaks
around frequency 1

r0
. And as shown in Figure 9, the spikiness of

the power spectrum radial mean around 1
r0

for class 1 is propor-
tional to the one in class 0. Our algorithm mitigates this inter-class
spike interference by generating all classes together.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 50 100 150 200 250

p
o
w

e
r

frequency

Poisson disk

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

Poisson disk

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

Poisson disk

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

Poisson disk

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 50 100 150 200 250

p
o
w

e
r

frequency

discrete randomization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

discrete randomization

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

discrete randomization

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

discrete randomization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250

p
o
w

e
r

frequency

discrete relaxation

r0 = 0.04

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

discrete relaxation

r1 = 0.0151

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

discrete relaxation

r0 = 0.04

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

n
o
rm

a
liz

e
d
 d

e
n
s
it
y

|coordinate difference|

discrete relaxation

r1 = 0.0151

Figure 18: Histogram analysis for 2-class distributions. From top to bot-
tom: our method, discrete randomization over our results, and discrete re-
laxation over our results. From left to right: radial mean plots, and his-
togram of the random variable

∣∣pk − pj
∣∣ , k 6= j, normalized with re-

spect to a white noise (values between [1 1.4] are noiser due to reduced
sampling density constrained around the domain corners). The hump effect
is most pronounced for the discrete relaxation case; notice the peaks around
frequency 19 in the radial mean plots for both classes. This corresponds to
higher 1D histogram (not shown) value of 1

19
as a result of the projection

from the 2D histogram (shown on the right).

function MultiClassAdaptiveSampling(Ω, r(.), k)
// Ω: sampling domain in n-dimension
// r(.): c× c r-matrix defined over Ω; see Program 3
// k: maximum number of trials per node
// use separate trees to track each class of samples
{T i(0)}i=0:c−1← BuildNDTreeRoots(Ω) // hypercubes covering Ω
foreach class i li← 0 // track the leaf level number for each T i
foreach class i {2}lii ← randomized list of (leaf) nodes ∈ T i(li)
while not enough trials attempted and not enough samples in {T i}
← arg minc FillRate (c) // choose the most under-filled class
if {2}l = ∅ // no more leaf nodes to sample from; try subidivide T 
T (l + 1)← Subdivide(Ω, r(.), T (l))
if T (l + 1) = ∅ break // impossible to add another sample
l← l + 1

{2}l ← randomized list of (leaf) nodes ∈ T (l)
end
2← PopFront({2}l) // take the head of the randomized list
s← ThrowSample({T i}, Ω(2), r(.), k, l)
if s is not null

add s to 2

else if impossible to add another sample to class 
// try to remove the set of conflicting samples Ns

Ns←
⋃
s′ ∈ S where s and s′ are in conflict

if Removable(Ns, s, r(.)) // see Program 3
remove Ns from {T i}
add s to 2

end
end

end

function T (l + 1)← Subdivide(Ω, r(.), T (l))
i← class number for T
foreach node 2 of T (l)

if ∃s ∈ 2 and
√
nµ(2) > r(s, i, i)

// subdivide 2 only if likely to add another sample
// µ(2) is the cell size of 2

subdivide 2 into 2n child nodes // n is the dimension of Ω
migrate s into the child 2′ where s ∈ Ω(2′)

end
end
T (l + 1)← newly created nodes
return T (l + 1)

function s← ThrowSample({T i}, Ω(2), r(.), k, l)
foreach trial = 1 to k
s← sample uniformly drawn from Ω(2)
if ∀s′ ∈ T |s− s′| ≥ max (r(s, cs, cs′), r(s′, cs′ , cs))
// this can be done by examining only s′ ∈ neighbor nodes in T cs′
// within hyper-sphere of radius 3

√
nµ(l′) at level l′ = 0 to l

// for each node in level l of T cs′ look at samples under its subtree

// can also use the mean metric r(s,cs,cs′)+r(s′,cs′ ,cs)

2
in Program 3

// in this case, use hyper-sphere radius 5
√
nµ(l′) above

// and 1
2
r(s, i, i) in Subdivide()

return s
end
return null

function bool Removable(Ns, s, r(.))

foreach s′ ∈ Ns

if r(s′, cs′ , cs′) ≥ r(s, cs, cs) or FillRate(cs′) < FillRate(cs)
if or level(s’) < level(s) // add on beyond Program 3

return false
return true

Program 4: Multi-resolution adaptive sampling using separate trees to
track each class of samples. The main code is a hybrid of the multi-
resolution algorithm in [Wei 2008] and our adaptive sampling algorithm
in Program 3. The functions Subdivide() and ThrowSample() resemble the
ones in [Wei 2008]; for easy comparison, we highlight the main differences.

