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ABSTRACT
Current C to gates synthesis tools do not support programs
that make non-trivial use of dynamically-allocated heap (e.g.
linked-list C programs that call malloc and free). The
problem is that its difficult to determine an a priori bound
on the amount of heap used during the program’s execu-
tion, if a bound even exists. In this paper we develop a
new method of synthesizing symbolic bounds expressed over
generic parameters, thus leading to a C to gates synthesis
flow for programs using dynamic allocation and dealloca-
tion.

1. INTRODUCTION
C to gates synthesis promises to bring the power of hard-

ware based acceleration to mainstream programmers, as well
as to radically increase the productivity of digital design-
ers [10]. C to gates synthesis tools can produce competitive
quality of results for systems modeled with an appropriate
subset of C. However, several of C’s commonly used pro-
gramming abstractions remain unsupported [17]. For exam-
ple, we cannot simply take off-the-shelf C-based implemen-
tations of queues or trees and synthesize them to gates, as
dynamic heap allocation is largely unsupported by current
tools.

This paper advances the state-of-the-art in C to gates syn-
thesis with support for programs that dynamically allocate,
deallocate, and manipulate heap-based data structures. Our
technical contribution is a method of synthesizing a symbolic
bound on the maximum heap size at compile time; this sym-
bolic bound is expressed as a function on the generic param-
eters (in the HDL sense) to the circuit description. With our
symbolic bounds we can then automatically translate C pro-
grams with dynamic heap usage into equivalent programs
that modify a pre-allocated array. That is, when circuit
descriptions are instantiated in larger designs, the symbolic
bounds can then be used to compute concrete bounds for use
during synthesis. This significantly increases the expressive
power available to the users of C to gates synthesis systems.
For example, with our C to gates synthesis flow, a designer
can think in terms of a tree-based data structure (e.g. a
Huffman encoder), yet generate hardware that operates on
a flat fixed sized array. Furthermore, off-the-shelf libraries
can now be used as subroutines by digital designers, whereas
in the past custom array-based re-implementations had to
be developed.

Related work. C to gates synthesis is a maturing field with
notable systems including Catapult-C [23], CleanC [12], Co-
Centric [1], SA-C [18], ROCCC [2], SPARK [11], Streams-
C [7] and DWARF[24]. Support for C pointers in synthesis
systems is not new, e.g. [22]. The distinction here is one
of dynamic heap versus pointers and aliasing—systems such
as [22] support pointer and aliasing, but not dynamic allo-
cation and deallocation. Thus, current tools cannot support
off-the-shelf list or tree libraries without first radically mod-
ifying the C code to operate over pre-allocated structures.
This is due to the fact that typical software libraries are
not written with hard memory constraints in mind. Instead,
they usually preserve bounds (e.g. procedures that take lists
and return lists of the same length). Our solution here is to
synthesize symbolic bounds expressed in terms of generic pa-
rameters that can later be used when circuit parameters are
known in order to instantiate finite-state implementations
from infinite-state code. Our support for dynamic alloca-
tion and deallocation allows us to handle the forthcoming
examples described in this paper whereas existing systems
cannot.

Our approach for finding symbolic bounds uses several
known methods and tools as sub-procedures, such as shape
analysis (e.g. [4, 8, 14, 16]) and abstraction methods based
on the introduction of new variables (e.g. [13, 15]). We also
draw influence from the constraint-based invariant genera-
tion and rank function synthesis tools (e.g. [19, 21]).

2. EXAMPLE
Imagine that we would like to build an n-size priority

queue that reads integers from an input signal and returns
every n input integers on an output signal in sorted order.
See the function prio in Figure 1 for an example of how we
might wish to write a specification of the desired hardware
in C. Our intention is that the variable n in Figure 1 is a
generic parameter, whereas i and o should be thought of as
signal names (C, of course, does not make this distinction).
In this example we assume that the circuit uses input() and
output() as primitives for I/O on the signal variables i and
o. LINK is a C struct used to represent singly-linked lists
(with fields data and next). We make use of an existing
off-the-shelf insertion-sort implementation, sorted_insert.
See Figure 2 for the source code of sorted_insert.

Note that in order to convert this program into hardware
we must first find an a priori bound on the amount of heap
during the execution of prio, for any input or parameter.
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Figure 1: Priority queue circuit specification in C, using off-
the-shelf implementation of sorted_insert.

The problem is that sorted_insert doesn’t guarantee a con-
crete bound on the amount of heap allocate while its exe-
cuting, instead it preserves a bound (it takes a state where k

heap cells have been allocated and returns a state in which
k + 1 have been allocated). Thus we must hope to find a
bound on the amount of heap used by sorted_insert from
states limited to those reachable from prio.

If we can find this bound, then we can convert the pro-
gram’s operations on the heap into operations on arrays,
thus facilitating synthesis. We aim to find a bound that
holds across the entire program, but is expressed symboli-
cally using only the generic parameters to the top-level func-
tion (i.e. the parameter n of the circuit prio). This allows
us to pre-allocate a shared array when creating instances of
the circuit prio.

The synthesis procedure given later in §3 is designed to
find a function f such that it is a program invariant that
f(n) is larger than the number of heap cells allocated at any
given time. In this case the procedure described later will
find the function f(n) = n ∗ 8, assuming that sizeof(LINK)
= 8 in the encoding. This symbolic bound is synthesized by
our tool in 4.3s.

With f we can now re-encode the program using a pre-
allocated array. In essence, when we know the valuations
to the input parameters we can then pre-allocate an array
using f . We then convert dereferences like *c into a[c].
Field offsets are explicitly encoded: c->data is encoded as
a[c+0], and c->next is encoded as a[c+4]. See Figure 3 for
an example. In this case we assume that n= 7.

From this program (and via a translation into VHDL) we
then used the Xilinx ISE 10.1.3 tools to construct an imple-
mentation for the Virtex-5 XC5VLX110T-2FF1136 FPGA.
Using default synthesis and implementation options and with
n = 7, the generated circuit uses 1,058 slices with the mem-
ory implemented in distributed RAM with a critical path of
7.024ns.

Local heaps and custom allocation management. Note
that we can use general purpose implementations of malloc
and free, but we may be able to do better. Many Separa-
tion Logic [20] based shape analysis tools (e.g. [4, 8, 16])
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Figure 2: Off-the-shelf implementation of incremental inser-
tion sort procedure.

are capable of determining a symbolic representation of the
memory footprint of each command in the program. Using
this information we can potentially determine that no com-
mand beyond those in prio and sorted_insert access the
heap encoded in the shared array a. Thus, when prio is used
in a larger design (as we will do later when discussing Huff-
man encodings) we are able to make a local only to the gates
implementing prio, thus improving clock speed. In the case
of a Xilinx Virtex-5 XC5VLX110T FPGA (which is used on
the proto-type RAMP BEE3 board and is the target plat-
form for our experiments), we have 148 36Kb dual-ported
memories distributed across the circuit, thus one near the
gates implementing an instance of prio can be dedicated to
the array a.

3. BOUND SYNTHESIS
In this section we describe the analysis that automatically

synthesizes symbolic bounds on the heap usage. We will as-
sume that the size parameters passed to malloc are fixed
constants. Through the use of static analysis, we annotate
each call to free with the amount of memory the call is free-
ing. For example, we would transform the call free(tmp)
from Figure 1 to free(tmp,sizeof(LINK)). For simplicity
of presentation we will assume that programs allocate and
free heap cells of a single fixed size. We can support multi-
ple size allocations through the use of compile-time partial
evaluation, but at the cost of complexity in the notation in
this section. We currently do not support arbitrary DAGs
or hash-tables, due to the limitations of current separation
logic based shape analysis tools [3, 4, 8, 14, 16] (of which
we are descendant). Finally, note that our procedure is de-
signed to try and solve an undecidable problem. Thus, like
property verification tools for infinite-state systems, our tool
must necessarily fail to find bounds in some cases. The ul-
timate goal can only be to make it succeed in all practical
cases.

Our procedure is divided into the following the three steps:

Shape analysis: We use an off-the-shelf shape analysis to
determine the shape of the data structures used dur-
ing the program’s execution. As a by-product of the
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Figure 3: Re-encoding of example from Figure 1 without
heap. We assume that the value of parameter n = 7. The
procedure sorted_insert_a_7 is like sorted_insert but
specialized to work over the array a instead of the heap.

shape-analysis, we prove the program’s memory safety—
meaning that invalid memory is never dereferenced and
allocated memory cells are never leaked.

Instrumentation: Using abstraction techniques from [15]
we use the output of the shape analysis to produce a
new program without heap that is a sound abstraction
with respect to the original program. Thus, bounds
synthesized on the abstraction imply bounds for the
original program. Note that the new program has vari-
ables that range over integers of arbitrary size (i.e.
they cannot be represented in 32 or 64 bits). These
new variables are used to track the sizes of data struc-
tures pointed to by stack variables in the original pro-
gram. We also instrument the abstraction with an
extra variable (over unbounded integers) to track the
amount of heap currently allocated.

Bounds synthesis: We then apply our constraint-based
synthesis approach to find a symbolic bound f on the
maximum value of heap cells allocated during the pro-
gram’s execution.

Array conversion and synthesis: Once we have computed
a symbolic bound (assuming that a bound can be found)
we throw away the abstraction and then convert the
original program into an array-based program oper-
ating over a pre-allocated shared array and then ap-
ply off-the-shelf synthesis tools to produce a gate-level
design. Note that, although we may sometimes com-
pute a conservative over-approximation for a bound on
memory usage, it is often the case that a downstream
synthesis tool can perform further pruning to yield a
gate level implementation that does indeed have a bet-
ter (or even perhaps ideal) bound. A simple case of this
scenario is when a list is used to represent a bit-vector
which is used in arithmetic expressions which have a
known range at synthesis time allowing some of the
upper bits to be pruned.

In the remainder of this section will we define some pre-
liminary terminology and then discuss the above procedures
in more technical detail.

Terminology. We represent a program P as a tuple P =
(X,L, T , l0), consisting of a set X of variables, a set L of
program locations, an initial location l0 ∈ L and a set T of
transitions. Each transition τ ∈ T is a tuple (l, ρ, l′) where
l, l′ ∈ L and ρ is constraints over X ∪ X ′ (In this notation,
adding ’ to any object means that the program variables
appearing in the object are renamed by adding ’ in their
name.). A valuation of variables X is said to be a state of the
program P. An execution of P is a sequence of location and
state pairs (l0, s0), (l1, s1)... such that l0 is initial location
and for each consecutive pair (li, si) and (li+1, si+1) there is
a (li, ρ, li+1) ∈ T such that (si, si+1) |= ρ.

An invariant at a program location l ∈ L is a superset of
all reachable states at l, which is represented by an assertion
over X. A map Φ of invariants over each program location
is inductive invariant map if Φ(l0) is superset of all initial
states and ∀(l, ρ, l′) ∈ T . ∀(X ∪ X ′). Φ(l) ∧ ρ ⇒ Φ′(l′).

The variables X of an input program will contain a spe-
cial variable H denoting the heap (a partial function from
memory addresses to values).

Shape analysis. The first step in our bounds synthesis
procedure is to run an off-the-shelf separation logic based
shape analysis (e.g. [3, 4, 8, 16]) on the program P. Shape
analysis is designed to take a program and compute an in-
variant for each program location describing the shape of
the heap. The invariant describes the data structures stored
in the heap during the program’s execution. Shape analysis
is based on symbolic simulation together with abstraction
techniques. It begins execution using the initial state and
symbolically executes the program to calculate an assertion
about the resulting state. Loops are handled by executing
the body of the loop multiple times until a fixpoint is found.
After each loop iteration, various abstraction heuristics are
applied to ensure that the fixpoint calculation converges.
These fixpoints are loop invariants: assertions that hold at
the beginning of the loop, and that are preserved by each
loop iteration.

As an example, consider Figure 1. When performing shape
analysis on this code, at the beginning of prio, we assume
that no data structures are allocated. In other words, the
heap is empty. We then enter the infinite while loop, and
record that buffer==0. Next, the shape analysis tool consid-
ers the for loop. After the first iteration, symbolic execution
works out that the heap consists of a single memory cell at
address buffer whose next field is NULL. After the second
iteration, we can similarly work out that buffer points to
a linked list of length 2. At this point, abstraction notices
the repeated pattern and weakens the assertion to say that
buffer points to a linked list of arbitrary length. After sym-
bolically executing the loop another time, the heap again
consists of a linked list starting at buffer: we have reached
a fixpoint, and thus have calculated a loop invariant.

Similarly, the loop invariant of the next loop of prio is
that the heap consists of a singly-linked list from c to NULL.
Hence, when we exit the loop, since c==NULL, we known
that the heap is empty. Thus, the assertion that the heap is
empty is a loop invariant for the outer loop of prio.
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a(n>0);

h=0; kb=0;

k=0;

a(kc==0);

a(k>=n);

kc=kb;

a(k<n); k++;

kb++; h++;

a(kc>0); kc--;

h--;

Figure 4: Arithmetic abstraction of procedure prio shown
from Figure 1. Commands of the form a(e) have special
meaning similar to a conditional check: executions through
the command in which the Boolean condition e does not
hold are simply ignored. In this case the problem of bound
synthesis is to find a function f over the input parameters
to prio such that f(n) > h is a program invariant.

Instrumentation. We begin the instrumentation step by
introducing a variable h, which we increment at calls to
malloc and decrement at calls to free. This keeps track
of the amount of memory allocated. (To deal with the case
where memory cells of multiple sizes are allocated and deal-
located, we introduce one such variable for each size.)

Then, using techniques described in [15], we automati-
cally introduce new variables which soundly track the sizes
of data structure shapes inferred by the shape analysis. In
the example of the function prio, we would introduce a vari-
able kb recording the length of the linked list starting from
buffer. At the command buffer = NULL, we initialize kb to
zero. At the lines prev->next = x within sorted_insert,
the length of that linked list is increased; therefore we incre-
ment kb. Similarly, we introduce another variable kc record-
ing the length of the linked list from c. At the assignment
c=buffer, we set kc=kb, and at the assignment c=c->next,
we decrement kc. Also, when we exit the while(c!=NULL)

loop, we know that c==0, and hence also kc=0. After adding
variables to track the sizes of data structures we abstract
the original program—as described in [15]—leaving us with
a program that only manipulates arithmetic variables.

Figure 4 shows the control-flow graph (CFG) of resulting
abstraction of prio. The CFG contains three nodes cor-
responding to the three loops in the prio function. These
nodes are connected by the edges which are annotated with
the code occurs between the locations. The transitions be-
tween locations come in two forms: assignments v=e and
assumption checks a(e). The assumptions prune executions
in which the condition e does not hold.

For brevity, calls to the function �i���+!e2Wfg�h
 �	�52���! in Figure 4
have been summarized as the transition {kb++;h++;} from
location 7 to 7, but our technique is designed to work for a
fully expanded CFG of the code.

Bounds synthesis. We call Xp (which are a subset of X)
the parametric variables. Normally we let Xp be the set of
generic parameters to the top-level function (e.g. n from
prio), but we are free to make other choices. The family
of functions from which we search for a desired bound are

expressed over Xp. Lets assume E is set of all arithmetic
expressions over X. An arithmetic expression e ∈ E is as-
sociated with each program location, which represents the
heap consumption at the program location. A bound specifi-

cation for an arithmetic program P is a pair (E ,Xp), where
E : L → E and Xp ⊂ X . For a given bound specifica-
tion, the objective of bound synthesis analysis is to find an
invariant E(l) ≤ f(Xp), at each location l.

Our method of synthesizing bounds proceeds as follows:

• An invariant template similar to those described in
[19, 21] is assumed with unknown parameters at each
program location, which we call template map Γ. For
example at some program location, we may assume
α1x1 + ... + αnxn ≤ α ∧ β1x1 + ... + βnxn ≤ β

as a template which has a structure of conjunction
of two linear inequality with the unknown parameters
α1, ..., αn, α, β1, ..., βn, β and over the variables xi ∈ X.
We also create extra templates using bound specifica-
tion (E ,Xp). For each location l, we construct a bound

template E(l) ≤ γ1x1+...+γmxm+γ where γ1, ..., γm, γ

are unknown parameters and xi ∈ Xp. We generate a
new template map Γb by conjoining Γ and bound tem-
plates, i.e., Γb(l) = E(l) ≤ γ1x1 + ...+γmxm +γ∧Γ(l).
An invariant can be produced by choosing a value of
unknown parameters. The values of the parameters of
bound template determines the bound expressed over
parametric variables.

• This template map Γb is used to encode inductive in-
variant constraints by replacing invariant map Φ with
Γb, i.e., ∀(l, ρ, l′) ∈ T . ∀(X ∪ X ′). Γb(l) ∧ ρ ⇒ Γ′

b(l
′).

Only the parameters of templates are not quantified
in this formula. In result, it is a constraint over the
parameters.

• Satisfying assignments to the parameters in the con-
straint will give an inductive invariant map. A con-
straint solver is used to find satisfying values. These
values of parameters are placed in templates to com-
pute an inductive invariant map.

For our application we assume a conjunction of linear in-
equality as templates. The choice of the number of conjuncts
is specified as an option to our tool. More conjuncts in the
template may facilitate the finding of more expressive in-
variants, at the cost of performance. Thus, the drawback of
our template-based technique is that if the bounds for the
invariants that are needed to prove the bounds are not ex-
pressible in the given template structure then the tool fails.
Experimentally we have observed that templates with only
2 conjuncts suffice.

Note that the abstraction’s transition relation is formed
from constraints expressed only over arithmetic. This re-
striction and choice of the structure of template allows us to
reduces the induction condition Γb(l)∧ρ ⇒ Γ′

b(l
′) into poly-

hedral entailment check using techniques based on Farkas
lemma [6] and non-linear constraint solving as described in
[9].

Consider, for example, Figure 4. We aim to compute a
symbolically expressed bound over h using the generic pa-
rameters to prio that holds at all locations. Note that the
variables i and o have been lost in the process of abstrac-
tion, so we do not need to treat them differently in the syn-



thesis process. The bound specification for this example is
({4 → h, 7 → h, 13 → h}, {n}).

We assume a template map Γ for the set of locations that
has structure of conjunction of 2 linear inequalities. For
example, we assume

Γ(7) = αnn + αhh + αkk + αkb
kb + αkc

kc ≤ α ∧

βnn + βhh + βkk + βkb
kb + βkc

kc ≤ β

as template at location 7. We also construct a bound tem-
plate h ≤ γnn + γ at location 7. So, Γb(7) = h ≤ γnn + γ ∧
Γ(7), which has the set of parameters {αn, αh, αk, αkb

, αkc
, α,

βn, βh, βk, βkb
, βkc

, β, γn, γ}.
In the second step, we build the constraint. Lets pick

the loop at location 7 to demonstrate the constraints. The
transition relation ρ for the loop is (k < n ∧ n′ = n ∧ h′ =
h+ 1∧ k′ = k+ 1 ∧ k′

b = kb + 1∧ k′

c = kc). ( Primed version
of variables represents the value of the variable after the
execution of the transition.) The constraint for inductive
invariant for this loop transition is ∀(X ∪ X ′). Γb(7) ∧ ρ ⇒
Γ′

b(7), whose expanded form is

∀{n, h, k, kb, kc, n
′

, h
′

, k
′

, k
′

b, k
′

c}.

( h ≤ γnn + γ ∧ αnn + αhh + αkk + αkb
kb + αkc

kc ≤ α ∧

βnn + βhh + βkk + βkb
kb + βkc

kc ≤ β) ∧ (k < n ∧ n
′ = n ∧

h
′ = h + 1 ∧ k

′ = k + 1 ∧ k
′

b = kb + 1 ∧ k
′

c = kc) ⇒

h
′ ≤ γnn

′ + γ ∧ αnn
′ + αhh

′ + αkk
′ + αkb

k
′

b + αkc
k

′

c ≤ α ∧

βnn
′ + βhh

′ + βkk
′ + βkb

k
′

b + βkc
k

′

c ≤ β.

We build such constraints for all transitions using tem-
plates at all locations. The satisfiability of the conjunction
is checked using a constraint solver. One possible solution
for the parameters of the template at location 7 is

αn = αk = αkc
= α = βn = βh = βkc

= β = γ = 0;

γn = αh = βkb
= 1; αkb

= βk = −1.

Placing above values in the template Γb(7) results invariant
h ≤ n∧ h− kb ≤ 0∧ kb − k ≤ 0 at location 7. This technique
finds following invariant map:

Γb(4) = h ≤ 0 ∧ (h ≤ n)

Γb(7) = h ≤ n ∧ (h ≤ kb ∧ kb ≤ k)

Γb(13) = h ≤ n ∧ (h ≤ kc)

which implies a bound over h at locations 4, 7, and 13 as 0,
n, and n respectively. Note that the tightest bound for h is
found for each location. The other computed invariants are
discovered during the bound search.

Note that algorithms designed to find inductive invariants
can in cases find trivial assignments—e.g. in the context of
templates the solver could assign the value 0 to all of the
parameters resulting in the trivial invariant true. We avoid
this problem here as our bound templates instantiate the
coefficient to h to be 1, thus forcing the solver to find non-
trivial solutions.

Array conversion and synthesis. Having computed a
symbolic bound for the number of dynamically allocated
memory cells, when instantiating a parametrized circuit with
concrete values, we introduce a fixed shared array a whose
size is the computed bound of the dynamically allocated
memory cells. Dynamically allocated pointers are repre-
sented as offsets into this array. Field differences are con-

verted to the respective array operations. For example,
c = c->next (from Figure 1) becomes c = a[c+4] in Fig-
ure 3.

To implement malloc and free, we can use a singly-linked
free list. We introduce shared variable m containing the offset
of the first free location, which contains the offset of the next
free location, and so on. We initialize the array so that the
free list contains all the available memory cells. Calls to
malloc() just pop an element off the free list. In other
words, x = malloc() is implemented as x = m; m = a[m].
Note that we do not need to check whether the free list
empty because the bound synthesis guarantees that it will
always be non-empty. Similarly, free(x) pushes x onto the
free list: i.e., a[x] = m; m = x.

4. ADDITIONAL EXAMPLES
In this section we discuss some of the other example cir-

cuits that we have synthesized from heap-based C programs.
Note that, as no previously known tool supports these pro-
grams, a comparative evaluation is not possible.

Huffman encoder. Consider a an implementation of Huff-
man encoding using binary trees: The component of a Huff-
man encoder that builds up the code-tree is naturally ex-
pressed as a loop which takes two items out of a priority
queue (as discussed in §2) and replaces it with one combined
tree. This is could be written as:�  "1�-q�����b�	�%f%2
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There are several data-structures in the Huffman encoding
example that are easier to express as dynamic data struc-
tures which for a given symbol size N can be automatically
transformed into fixed size array-based code:

• The Huffman trees are expressed as a tree data struc-
ture which can be automatically transformed into an
array representation with 2N − 1 elements.

• The priority queue is expressed as a list data structure
which can be automatically transformed into an array
of size N .

• The Huffman codes themselves are variable length bit-
strings which are expressed as lists of bits. The overall
data-structure has a maximum size N for the worst
case code-word of all 0s or all 1s.

These symbolic bounds were synthesized in under 300s (~280s
for the shape analysis and instrumentation, and ~1s for the
bounds synthesis). The bounds synthesis in this case is for
the reason that only a few of branches in the Huffman tree
manipulation code actually allocate new memory—the ma-
jority simply modify existing heap-based data structures and
thus do not have effect on the instrumented variable tracking
heap allocation in the abstraction.

SAT learned clauses. We are currently investigating the
use of C to gates synthesis to produce hardware versions
of compute intensive algorithms typically implemented only
in software, such as SAT solvers. However, the average



SAT-solver’s use of dynamic data structures and control-
oriented computations leads to difficulty when developing
custom VHDL or Verilog. Our technique allows us to syn-
thesize hardware implementations of some of these key data
structures. Consider, for example, the set of learned clauses.
A linked structure is desirable because it allows us to easily
append and remove learned clauses as the SAT solver learns
from conflicts. Although a linked structure in software does
not produce the best performance (C++ implementations
typically uses resizable vectors) our technique allows the pro-
grammer to think more directly in terms of a list of clauses
and then the system can automatically transform the linked-
list implementation into a fixed-array version. In the case of
learned clauses we can add a simple case-split depending on
the size of the list and thus use a hardware implementation
in the common case—note that the same source code would
be used in the software and hardware versions. In the case
of MiniSAT [5], if we add an explicit case split to the clause
simplification code then the bound is easily propagated (in
2s), and a symbolic heap usage bound is discovered.

Examples of failure. Our approach for symbolic bounds
synthesis can fail in many ways. For example, as mentioned
before, the input program might operate over DAGs (e.g.
BDDs) or hash tables, in which case we would currently fail
to produce an arithmetic abstraction. Note that—even in
the case of programs with simple linked data structures—
improving the scalability and accuracy of shape analysis is
an area of active research. When we successfully generate
arithmetic abstractions, our constraint-based synthesis algo-
rithm can also fail. The abstraction may be too coarse, or
the problem may be too complex (e.g. highly non-linear).
Consider the case of a “watcher list” for a literal ` in a SAT
solver, which tracks the clauses in the clause database in
which ` appears. A bound on the size of this lists certainly
exists, but our tool cannot work out what this bound is.

5. CONCLUSION
C to gates synthesis aims to bring together the ease of soft-

ware development with the speed of raw gates. However,
current C to gates synthesis systems are lacking support
for some important software abstractions, including non-
trivial dynamic allocation/deallocation on the heap. This
paper has introduced a new method that synthesizes sym-
bolic bounds expressed on generic parameters. The method
uses computed shape invariants and abstractions together
with a constraint solving based approach to find a symbolic
expression representing the bound. Our system facilitates
the use of common software abstractions and libraries (po-
tentially with no memory bounds) within C to gates syn-
thesis systems. Thus, designers can potentially use high-
level abstractions (e.g. dynamically allocated trees and lists)
when designing circuits.
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