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ABSTRACT
Many tasks that leverage web search users’ implicit feed-
back rely on a proper and unbiased interpretation of user
clicks. Previous eye-tracking experiments and studies on
explaining position-bias of user clicks provide a spectrum of
hypotheses and models on how an average user examines
and possibly clicks web documents returned by a search en-
gine with respect to the submitted query. In this paper, we
attempt to close the gap between previous work, which stud-
ied how to model a single click, and the reality that multiple
clicks on web documents in a single result page are not un-
common. Specifically, we present two multiple-click models:
the independent click model (ICM) which is reformulated
from previous work, and the dependent click model (DCM)
which takes into consideration dependencies between multi-
ple clicks. Both models can be efficiently learned with linear
time and space complexities. More importantly, they can be
incrementally updated as new click logs flow in. These are
well-demanded properties in reality.

We systematically evaluate the two models on click logs
obtained in July 2008 from a major commercial search en-
gine. The data set, after preprocessing, contains over 110
thousand distinct queries and 8.8 million query sessions. Ex-
tensive experimental studies demonstrate the gain of model-
ing multiple clicks and their dependencies. Finally, we note
that since our experimental setup does not rely on tweaking
search result rankings, it can be easily adopted by future
studies.

Categories and Subject Descriptors
H.4 [Information Search and Retrieval]: Retrieval mod-
els

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The constantly growing web search traffic makes search

activity logs a valuable source of information for understand-
ing user preferences, which can be leveraged for many prac-
tical tasks including personalization (e.g., [18, 20]) and opti-
mization of search ranker (e.g., [1, 11]). As one of the most
direct and reliable evidence of user experience, clicks in the
search result page can be easily logged and aggregated. One
of the most challenging problems in click log analysis is to
model the underlying mechanism that gives rise to clicks.
Because of its importance, many researchers have investi-
gated how to model user clicks (e.g., [6, 12, 14]) and make
use of developed models for downstream applications such
as click log generation [9] and search engine evaluation [7].
A key trade-off in click model design is making reasonable
user behavior assumptions for good predictive power, while
preserving model efficiencies and robustness so that it can
be applied to millions and billions of queries which is the
typical in reality.

An important piece of work by Craswell et al. [6] proposed
a cascade model and compared it with four basic models for
user clicks. Specifically, the cascade model abstracts user
clicks by taking two premise assumptions, both of which
were supported by existing user studies ([12, 13]) and were
adopted by other click model studies (e.g., [9, 17]). The first
assumption is the examination hypothesis, which states that
a document must be examined before being clicked. It de-
couples the randomness of a click into a position-dependent
probability of being viewed and a document-dependent prob-
ability of being clicked. This, to some extent, neutralizes
the position-bias that is inherent in user clicks [14]. The
second assumption is the linear traversal hypothesis, which
suggests that users examine document abstracts by travers-
ing the search result page from top to the bottom. Based
on these two assumptions, the cascade model depicts how
the first click arises: a web user examines documents one-
by-one in order until the first click; after that the user never
comes back. The capability of the cascade model is demon-
strated with a controlled experiment based on real web users,
which shows significant improvement over competing mod-
els. However, it assumes that a user abandons examination
of web documents upon the first click. This unfortunately
restricts the modeling power to query sessions with at most
one click, which leaves the gap open for real-world appli-
cations where multiple clicks are possible, especially for in-



formational queries [4] which have a relatively large average
number of clicks per query session.

Therefore, in this study, we investigate how to model
query sessions with multiple clicks. We find that some pre-
vious work already shed lights on how to model multiple
clicks, e.g., [6, 7]. By gleaning their ideas we reformulate
them as the independent click model (ICM), because it as-
sumes (1) each web document in the search result is exam-
ined with probability one regardless of where it appears, and
(2)click probabilities at different positions are independent.
As our experiments suggest, despite its simplicity, ICM ac-
tually performs very well for some tasks, e.g., predicting the
first clicked position, but falls short for other challenging
tasks like predicting where the last click happens.

Because clicks are inherently dependent, we propose to
incorporate dependencies in modeling user clicks. We there-
fore propose the dependent click model (DCM) which gen-
eralizes the cascade model to multiple clicks by including a
set of position-dependent parameters to model probabilities
that an average user returns to the search result page and
resumes the examination after a click. In return, it offers
uniformly better performance than ICM, and does very well
on the challenging task of predicting last clicked position.

Although DCM models dependencies between clicks as
well as examination at different positions, it turns out to
be efficient as well. Its worst time and space complexities
are linear to the number of distinct web documents. Fur-
thermore, DCM as well as ICM can be incrementally up-
dated, which is a nice property for click log analysis in web
search, considering click logs flow in as a data stream con-
stantly. This will help propel its applications to handle the
overwhelming web traffic nowadays. In comparison, a com-
plicated model with sophisticated approximate inference al-
gorithms generally does not scale well and incrementally up-
date would be a non-trivial task for it.

In summary, we make the following contributions in this
study:

• We investigate how to model user searches with multi-
ple clicks, which closes the gap between previous work
and reality. Specifically, two models (ICM and DCM)
are put forward, with the former one gleaned from pre-
vious studies and the latter one developed by ourselves.

• We propose a set of experiments that can be easily
adopted by future studies. The experiments presented
in [6] for the cascade model, though good and convinc-
ing, is quite difficult to reproduce; it relies on tweaking
the ranking algorithm in search engine implementation
and presenting these results to real web search users.

• We present an extensive experimental study based on a
data set containing over 8.8 million query sessions. Re-
sults demonstrate the gain of modeling multiple clicks
and their dependencies in between.

The rest of this paper is organized as follows. We first
elaborate on the two models in Section 2, and then present
experimental studies in Section 3. Section 4 discusses related
work, and this paper is concluded in Section 5.

2. MODEL
A web search user initializes a query session by submitting

to the search engine a query string, or a query. Any resub-
mission or reformulation of the same query are regarded as

distinct query sessions. The user may decide to click some
or none of the web documents returned by the search en-
gine. Search engine click logs then contain the submitted
query, a ranked list of returned documents, whether each of
them is clicked or not, and other information that might be
useful. Here we focus on the first search result page, and
discard any other elements in this page, e.g., sponsored ads
and related search. We use document impression to indi-
cate appearance of web documents in search result pages at
certain positions, or ranks. Documents in higher positions
appear before those in lower positions.

Click models learn from user clicks to help understand and
incorporate users’ implicit feedback. In this paper, we follow
a probabilistic approach which treats user clicks as random
events, and the goal is to design generative models which are
able to approximate underlying probabilities of clicks with
high accuracy. Furthermore, we expect that distribution and
statistics of samples generated from these models will match
those of the empirical data closely.

For a given query, we assume that each document d is as-
sociated with a document relevance rd ∈ [0, 1], which is the
probability that it is considered to be relevant to the query.
Document impression in the query session of interest is de-
noted by {d1, . . . , dM}, where M is the number of documents
shown in the first page. Click models that adopt the exam-
ination hypothesis specify examination probabilities edi,i =
P(examination at position i | document impression d) for 1 ≤
i ≤ M as well as click probabilities edi,i defined in a similar
fashion.

2.1 Modeling A Single Click
Single-click models are adopted from previous work in [6],

which focused on modeling click position-bias. The simplest
approach includes a universal click probability r, such that

cdi,i = r, (1)

whereas a more reasonable assumption is that when there
is no position-bias, clicks only depend on document impres-
sion:

cdi,i = rdi
. (2)

A more elaborate approach assumes that a user examines
documents in the search result page one-by-one from the
top position until the first click, and

cdi,i = rdi

i−1
∏

j=1

(1 − rdj
). (3)

A click in position i implies that all positions above are
skipped, i.e., not clicked, and this click probability depends
on the relevance of documents that appear at positions 1 ≤
j < i. This cascade model delivers better performance than
a number of competing models overall, but unfortunately,
works less favorably for bottom positions [6], which is mostly
due to the single-click assumption.

2.2 Independent Click Model
Without positional-bias, click events at different positions

are independent of each other. The single-click model speci-
fied in Eq. 2 can be directly applied to a whole query session,
and this idea was mentioned in [6, 7]. Another way to de-
rive this model is by assuming that users always come back
after clicks in the cascade examination processes, and fit-
ting multiple cascade models to the multiple clicks. Since



each position is examined with probability one, there is ac-
tually no position-bias and we obtain the same model with
independent click probabilities. So here we reformulate this
model as follows:

edi,i = 1,
cdi,i = rdi

,
(4)

and name it the independent click model (ICM) in this paper.
We will compare it with the model introduced next that
considers dependent click probabilities in a query session.

Given the actual click event {C1, . . . , CM} in a query ses-
sion as well as the document impression {d1, . . . , dM}, the
log-likelihood for ICM is given by

ℓICM =

M
∑

i=1

(

Ci log rdi
+ (1 − Ci) log(1 − rdi

)
)

. (5)

Given a query and its corresponding query sessions in the
training data, learning the ICM is to find rd for every dis-
tinct document d to maximize the log-likelihood ℓICM . The
optimal value is achieved by simply setting rd to the empir-
ical click probability:

rd =
# Click on d

# Impression of d
. (6)

Therefore, we can set up two counting statistics to each doc-
ument d, and parse only once through the training data to
get all such counts, and finally compute all document rele-
vance estimates. This leads to an learning algorithm with
linear time complexity with respect to the number of query
sessions and linear space complexity with respect to the
number of distinct query-document pairs. When new data
are available, we can do fast update and re-computation
based on these counts, also in linear time and space com-
plexities.

To evaluate multiple-click models in Section 3, we com-
pute log-likelihood on the test data, and also draw samples
from the ICM given document impressions for each query
session in the test data:

Ci ∼ Bernoulli(rdi
). (7)

Then they are compared with the ground truth to obtain
performance measures.

2.3 Dependent Click Model
In the cascade model a user always leaves the result page

upon the first click and never come back. We propose to
include a position-dependent parameter λi to reflect the
chance that the user would like to see more results after
a click at position i. In case of skip (no click), the next
document is examined with probability one. λi’s is a set
of user behavior parameters shared over multiple query ses-
sions. This user model is shown in Figure 1.

Examination and click probabilities in DCM can be spec-
ified in an iterative fashion (1 ≤ i ≤ M):

ed1,1 = 1,
cdi,i = edi,irdi

,
edi+1,i+1 = λicdi,i + (edi,i − cdi,i),

(8)

from which the following closed-form equations can be de-
rived:

edi,i =
i−1
∏

j=1

(

1 − rdj
+ λjrdj

)

, (9)

E x a m i n e N e x tD o c u m e n tC l i c kT h r o u g h ? R e a c h t h eE n d ?S e e M o r eR e s u l t s ?D o n e D o n e N oN o Y e sY e s N oY e sidr i 
Figure 1: The user model of DCM, in which rdi

is the
document relevance of di, and λi is the user behavior
parameter for position i.

cdi,i = rdi

i−1
∏

j=1

(

1 − rdj
+ λjrdj

)

. (10)

This completes the formal specification of the dependent
click model (DCM), in which examine probabilities and click
probabilities at different positions i become interdependent.

The log-likelihood for a query session with one or more
clicks is given by

ℓDCM =

l−1
∑

i=1

(

Ci(log rdi
+ log λi) + (1 − Ci) log(1 − rdi

)
)

+ Cl log rdl
+ (1 − Cl) log(1 − rdl

)

+ log
(

1 − λl + λl

n
∏

j=l+1

(

1 − rdj

)

)

, (11)

≥
l

∑

i=1

(

Ci log rdi
+ (1 − Ci) log(1 − rdi

)
)

+

l−1
∑

i=1

Ci log λi + log(1 − λl). (12)

If there is no click in this session, then the log-likelihood is
a special case with l = M, Cl = λl = 0.

We carry out DCM learning by maximizing the lower
bound of log-likelihood in Eq. 12. Document relevance esti-
mate for a document d is given by:

rd =
# Click on d

# Impression of d before position l
. (13)

which is the empirical conditional click probability of d given
it appears higher than or at position l. And the best estimate
for the user behavior parameter

λi = 1 −
# query sessions when last clicked position = i

# query sessions when position i is clicked
,

(14)

for 1 ≤ i ≤ M − 1, which is the empirical probability of
position i being a not-last-clicked position over all query
sessions in the training set.

Compared with ICM, we only need additional 2(M − 1)
global counts for λi’s to carry out relevance estimate and
parameter learning, which are still linear algorithms. Similar
incremental updates are also applicable.



An important difference of DCM from ICM is that clicks
indicate both relevance and examination. So if a document
is not clicked, it can be attributed to either the document
abstract is examined but not relevant enough to be clicked,
or it appears lower than other documents that draw the
user attention away. This explain-away effect is reflected
in Eq. 13 by a smaller denominator which only counts im-
pression before last clicks than that in Eq. 6 which counts
every impression. However, for top-ranked documents that
always appear before the last clicked position, the differ-
ence between two models is minor. This is consistent with
the understanding of ICM as the model obtained by fitting
multiple cascade models together in a straightforward way.

Finally, we give the sampling procedure for DCM which
draws examination variables Ei and click variables Ci one-
by-one starting from the top position:

E1 = 1;
If Ei = 0,

Ci = 0, Ei+1 = 0;
else

Ci ∼ Bernoulli(rdi
),

Ei+1 ∼ Bernoulli(1 − Ci + λiCi).

(15)

3. EXPERIMENT
We report our experimental studies in this section, which

is based on over 8.8 million queries sessions after data pre-
processing, sampled from the click log of a major commercial
search engine in July 2008. Experimental results indicate
that both multiple-click models fit the reality well: 8 times
better log-likelihood results than a baseline approach. Es-
pecially, DCM offers much better last clicked position pre-
diction than ICM and more reasonable click distributions
by virtue of its modeling assumption that clicks at different
positions are interdependent. In the following, we start with
experimental setup in Section 3.1, and proceed with detailed
results in Sec. 3.2, and finally conclude with a summary of
experimental findings in Section 3.3.

3.1 Experiment Setup
The data set is obtained by sampling the click log of a ma-

jor commercial search engine during July 2008. The click log
consists of the query string, the time-stamp, document im-
pression data (URLs of top-10 documents in the first page)
and click data (whether each document is clicked or not)
for each query session. Only query sessions with at least
one click are kept for better data quality since we find from
additional meta-information that clicks on ads, query sug-
gestions or other elements are much more likely to appear for
the ignored sessions with no clicks. It also provides clearer
comparison of performances on predicting the first and last
clicked position. For each query, we sort its query sessions
by time-stamp and split them into training set and test set
of equal sizes. The number of query sessions in the train-
ing set is 4,804,633. Then these queries are categorized ac-
cording to the query frequency in the test set. Top 0.16%
(178) most frequently searched queries (also known as head
queries) with frequencies greater than 103.5 are not included
in the subsequent results on test set because most search en-
gines already do very well on these queries. After data pre-
processing, the test set consists of 4,028,209 query sessions
for 110,630 distinct queries in 6 query frequency categories.
The average number of clicks per query session is 1.139.

Table 1: Summary of Test Set
Query Freq # queries # Sessions Avg # Click

1∼9 59,442 216,653 (5.4%) 1.310
10∼31 30,980 543,537 (13.5%) 1.239
32∼99 13,667 731,972 (17.7%) 1.169

100∼316 4,465 759,661 (18.9%) 1.125
317∼999 1,523 811,331 (20.1%) 1.093

1000∼3162 553 965,055 (24.0%) 1.072

Statistics of the test set are summarized in Table 1. Note
that our data set includes a great number of tail queries
which are often ignored in experiments conducted in previ-
ous studies, and performances over all query sessions are not
dominated by head queries or a particular query frequency
range.

For each query, document relevance estimates are com-
puted using Eq. 6 and Eq. 13 for ICM and DCM respectively
on the training data. But for documents which appear very
few times in the training set and which appear only in the
test set, document relevance are replaced by position rel-
evance, which are computed for each position in a similar
way, for deriving log-likelihood and other metrics in the test
set. This has a smoothing effect on the document relevance,
and leads to better performance for the evaluation on the
test data. Since the additional counts that we need to keep
in the computation, 2M for each query, is usually much
smaller than the cost saving from low-frequency documents,
the time and space complexities can also be reduced. The
cut off of minimum number of impression for document rel-
evance computation is set adaptively according to the query
frequency category from 1 to 6. Finally, to avoid infinite
values in the evaluation, we further imposes a lower bound
of 0.01 and an upper bound of 0.99 on the learned relevance
values for both models as well as user behavior parameters
in DCM.

Parsing the data from the hard disk and loading them
into main memory takes around 45 minutes. All the subse-
quent experiments are carried out in a server machine, with
2.67GHz CPU cores, 32GB memory, Windows Server 2008
64-bit OS, and MATLAB R2008a installed. The computa-
tional time for training DCM is no more than 7 minutes.

3.2 Experimental Evaluation

3.2.1 Results on Log-Likelihood
Figure 2 presents log-likelihood curves for different query

frequencies, where larger log-likelihood results indicate bet-
ter fit on the test data. Besides DCM and ICM, the baseline
model specified in Eq. 1 is also implemented. DCM achieves
larger performance gain for more frequent queries, and con-
sistently outperforms ICM by over 10% when the query fre-
quency is over 100. Both DCM and ICM have over 8 times
larger likelihood than the baseline; the difference is only less
significant for tail queries of frequencies less than 10.

The DCM curve goes below ICM for queries with frequen-
cies less than 101.5. But this does not imply that we should
always apply ICM to model these queries. Instead, we sug-
gest that lower confidence should be given in document rel-
evance estimates derived from click models for these tail
queries. We could still record counting statistics for these
queries, but document relevance estimates should be reliable



0.75

1.25

1.75

2.25

2.75

3.25

3.75

100 101 101.5 102 102.5 103 103.5

Query Frequency

F
irs

t C
lic

k 
R

M
S

 E
rr

or

 

 

ICM
DCM
Optimal

0.75

1.25

1.75

2.25

2.75

3.25

3.75

100 101 101.5 102 102.5 103 103.5

Query Frequency

La
st

 C
lic

k 
R

M
S

 E
rr

or

 

 

ICM
DCM
Optimal

(a) (b)

Figure 3: Root-mean-square (RMS) errors for predicting first clicked position (a) and last clicked position
(b). Results are averaged over 100 samples per query session.
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Figure 2: Log-likelihood per query session on the
test data for different query frequencies. The overall
average for DCM is -1.327, compared with -1.401 for
ICM and -3.534 for the baseline method.

when new data flow in and the amount of training data is
enough to obtain a good fit.

3.2.2 Predicting First and Last Clicks
We now focus on clicks and test whether samples gen-

erated from ICM and DCM provide good match of first
and last clicked position compared with the empirical data.
Given each query session in the test set, we use the docu-
ment relevance learned from the training set to determine
the click probability. For ICM, clicks are sampled for each
position independently, whereas for DCM, sampling starts
from the top ranked document and ends at either the first
non-examined position or the last (10th) position. For both

models, we collect 100 samples with at least one click, then
first and last clicked position are identified from the simu-
lated click data and compared with the ground truth to com-
pute RMS errors. This is the most time-consuming part in
the model evaluation experiments and takes around one hour
to finish. To reflect the inherent randomness in user click
behavior, we also compute for each query the standard de-
viation of first and last clicked position and take a weighted
mean over different queries to approximate the lower bound
of RMS error. This corresponds to the “optimal” curves in
Figure 3. We expect a model that gives consistently best fit
of click data would have the smallest margin with respect to
the optimal error, and this margin also reflects the robust-
ness of model prediction since the RMS error metric takes
account of both bias and variance in prediction. Finally, we
aggregate results over all queries and compare the distribu-
tion of first and last clicks from two click models with the
empirical distribution of the test data, which corresponds to
the “empirical” curves in Figure 4.

RMS errors for ICM and DCM are close for first clicked
position because their model assumptions are the same until
the first click. Predicting last clicked position turns out to
be a more difficult task as demonstrated by higher error
curves in Figure 3(b) than 3(a). With a position-dependent
modeling assumption, DCM outputs more reasonable last
click estimates than ICM, reducing the RMS error gap from
the optimal curve by around 30%.

Figure 4 illustrates generally slower than geometric de-
crease with the position for the empirical probabilities of
both first and last clicks. DCM matches these probabilities
very well at the top 5 positions. The higher tail of empirical
curves is probably due to user scrolling behaviors, especially
for informational queries which have a higher click through
rate. And we suspect that users may examine documents
in a different fashion when they scroll to the bottom of the
search result page, so that the 10th position receives even
more last clicks than the two above. However, they con-
tribute to a fairly small fraction of overall results: clicks af-
ter position 6 represent only 6.1% of the total number. For
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Figure 4: First click distribution (a) and last click distribution (b) obtained by drawing samples from DCM
and ICM given document impression. The overall first/last click distribution of DCM samples matches the
empirical distribution in the test set very well, particularly for top 5 positions. Results are averaged over
100 samples per query session.
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Figure 5: Click probabilities for different positions
summarized from ICM/DCM samples as well as test
data, and examine probabilities implied by DCM.
The click distribution implied by DCM matches the
ground truth closely.

ICM samples, documents that appears in lower positions
may receive more clicks than the ground truth because of
the position-independent assumption. This results in over-
estimation of last click probabilities for these positions in
Figure 4(b). On the other hand, the document relevance es-
timates in ICM is smaller than those in DCM, due to a larger
denominator in computing the empirical probabilities. This
under-estimation has a more significant effect on documents
which usually appear in lower positions and after the last
clicked position. Therefore, the first click probability distri-
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Figure 6: Examine probabilities implied by DCM
for different query frequencies. Queries are grouped
into 6 frequency ranges similarly as in Table 1.
Darker and lower curves correspond to more fre-
quent queries.

bution derived from ICM has a lower tail than the empirical
curve, as shown in Figure 4(a).

3.2.3 Examination and Click Curves
A unique property of DCM is that examination probabil-

ities could be computed for each query session and they are
aggregated together to provide a hint on user attention over
different positions, which corresponds to the dashed curve
in Figure 5. The first position is always examined from the
modeling assumption, followed by a geometrically decreas-



ing pattern after position 2. Compared with the DCM click
curve, the gap between them reflects the log conditional click
probabilities for each position, which suggests larger proba-
bilities for both top and bottom positions. Note that both
curves go below the empirical click for the last position, and
this bias is attributed to user behaviors beyond the modeling
assumption as discussed for first and last click distributions.
Moreover, putting the empirical click and last click prob-
abilities together, it seems that a number of users tend to
click the bottom few positions simultaneously, leading to an
slightly upward tail in Figure 4(b) for empirical curves.

Figure 6 displays detailed examination probabilities for
different query frequencies. All of them share similar de-
creasing pattern but differ in absolute values. The trend is
that less frequent queries tend to be examined in greater
depth, and we also observe more clicks per query session in
the click log for them.

3.3 Experiment Summary
The extensive experimental study carried out in this study

has demonstrated the gain of modeling multiple clicks and
their dependencies. Specifically, both multiple-click mod-
els achieve 8 times larger likelihood on the test data than a
baseline approach, and DCM is 7% percent better than ICM.
Despite its simplicity, ICM actually performs very well for
predicting the first clicked position, but falls short for the
challenging task of predicting where the last click happens
compared with DCM (15% margin) which effectively cap-
tures click dependencies. Click distributions derived from
DCM matches empirical ground truth on the test data very
well, especially for the top 5 positions which receive over
90% of total clicks. Finally, it is interesting to point out the
fact that the category of most frequent queries, which has no
more than 8 percent of multiple-click query sessions, bene-
fits most from the multiple-click model. So it is the amount
of data per query that plays an important role in boosting
the performance of click models.

4. RELATED WORK
Previous work most relevant to this paper is the cascade

model presented in [6], earlier work carried out by Dupret
et al. [7, 9], and eye tracking studies in [12, 13]. They have
been discussed in Section 1.

Joachims [11] presented a pioneering study to exploit click-
through data for optimizing the ranking function for search
engines. Pairwise preference feedback, such as web docu-
ment i is more relevant as web document j, are extracted
from click logs and used to train a ranking support vector
machine (ranking SVM) to output a retrieval function most
concordant with these partial orderings. It was extended
by Radlinski et al. [15], and an algorithm was proposed to
detect a sequence of reformulated queries from the same
user to learn an improved function. Radlinski et al. [16]
followed this line of study for optimizing ranking functions
but takes an alternative active-learning approach to con-
trol documents presented to users in search result pages for
obtaining more helpful feedback as the next-round training
data. The approach we take in this paper is different from
these previous studies in that clicks are treated as random
events under an explicit user model and document relevance
is interpreted as click probabilities upon examination.

Clickthrough data could be also combined with other im-
plicit measures or browsing data available from query logs

to improve web search. The studies by Agichtein et al. pro-
posed to extract a spectrum of features from browsing and
click activities as well as textual data to train a better ranker
[1] and estimate user preference [2]. An earlier work in eval-
uating these implicit measures appeared in [10]. Note that
these additional information may not be able to be collected
everyday due to the huge search volume. And it may also be
subject to high level of noise, e.g., web page dwelling time
may be inaccurate if a user locks the screen to have a break
with the browser open.

One of the earliest publications on large scale query log
analysis [19] appeared in 1999 which presented interesting
statistics as well as a simple correlation analysis from the
Alta Vista search engine. Xue et al. [21] proposed to use
clickthrough data to improve graph-based static ranking al-
gorithms. Bilenko et al. [3] presented a novel study in iden-
tifying “search trails” from user activity logs and used a
random-walk based algorithm for improved retrieval accu-
racy. In [5] Carterette et al. proposed a logistic model to
predict document relevance using scores obtained from hu-
man judges.

There is a very recent paper on click models by Dupret
and Piwowarski [8] in SIGIR’08, but we were limited by time
to implement their models and algorithms on our data set
and compare with the DCM we presented. So here we give
a brief discussion from a theoretical point of view on these
two independent threads of click model studies. Both DCM
and user browsing models proposed in [8] adopt the exam-
ination hypothesis and the linear traversal hypothesis, but
they differ in the specification of examination probabilities
over different positions. In DCM, they are derived from a
first-order Markovian examination processes. In user brows-
ing models, the specification is more complicated and in-
volves M(M+1)/2 user behavior parameters compared with
(M −1) for DCM. Accordingly, parameter learning and doc-
ument relevance estimation cost more time and space in user
browsing models. They are performed by an iterative algo-
rithm under the coordinate ascent framework in [8], which
requires multiple scans through the training data and each
scan is an order of magnitude more expensive than DCM.
Incremental updates for user browsing models would also
be a non-trivial task. DCM, on the other hand, features a
simpler specification and more efficient algorithms, but this
does not necessarily imply less effective or less robust per-
formance. Due to the differences in experimental setting as
well as the data set property between [8] and this study, the
reported results are not directly comparable. However, it
is interesting to point out that in [8] the evaluation met-
rics is the perplexity, which focuses on prediction accuracy
at each position individually, whereas evaluation metrics in
this paper, in particular log-likelihood and last clicked posi-
tion prediction, are based on click prediction over different
positions in a query session. To achieve good performance
in these two metrics, a model has to be able to capture click
dependencies between different positions.

5. CONCLUSION
We attempt to close the gap between previous work and

the reality for modeling query sessions with multiple clicks,
by presenting two click models: ICM and DCM. Theoret-
ical derivation shows that both models have linear time
and space complexities and a desired property which allows
fast incremental computation. Extensive experimental stud-



ies demonstrate that DCM makes good trade-off between
model complexity and efficiency, and offers better perfor-
mance than ICM. Performance gain is most significant on
log-likelihood and predicting last clicked position, where the
ability to model click dependencies is a must. Furthermore,
our experimental setup does not rely on tweaking search
engine algorithms or active user participation, so it can be
easily adopted or reproduced by future studies. Our future
work includes the design of more robust click models and
comparing the performance of existing click models.
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