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Abstract 

In recent years, advances in computer architecture have slowed dramatically with most simulation results 

demonstrating only incremental architectural innovation. This is further exacerbated by increased 

processor and system complexity spurred by a seemingly unlimited number of transistors at computer 

architect’s disposal. Computer architects produce a myopic view of their systems through the lens of 

slow, highly-detailed software simulation or fast, coarse-grained software simulation, with fidelity always 

in question.  

By leveraging silicon technology scaling in Field Programmable Gate Arrays (FPGAs), hardware can 

be used to accelerate simulation, emulation, or prototyping of systems. Furthermore, because the base 

components are reconfigurable, the same system can be used for a variety of research projects, 

amortizing the cost, both in dollars and in learning time. In this paper, we present the third generation of 

the Berkeley Emulation Engine or BEE3 system. We demonstrate a new collaboration methodology 

between academia and industry and compare the industrial and academic system design process. The 

BEE3 is a production multi-FPGA system with up to 64 GB of DRAM and several I/O subsystems that 

can be used to enable faster, larger and higher fidelity computer architecture or other systems research. 

Using a widely available hardware platform also facilitates a software community that can generate and 

share software modules, thereby enabling rapid system development for computer architecture research. 

1 Introduction 
Historically, software simulation has been the vehicle of choice for studying computer architecture 

because of its flexibility and low cost. Regrettably, users of software simulators must choose between 

high performance or high fidelity emulation. In contrast, building hardware in Application Specific 

Integrated Circuits (ASICs) provides high performance and accurate results, but lacks the flexibility to 

explore multiple designs. It is also very expensive. These tradeoffs have impeded our ability to 

thoroughly explore and evaluate new computer architectures. This lack of simulation fidelity and speed is 

further aggravated by the increase in multithreaded and/or multicore microprocessor architectures. 

Traditionally, computer architects have leveraged increasing transistor density to implement a single 

large processor that exploits instruction level parallelism (ILP). However, continued performance gains 

from ILP are becoming increasingly difficult to achieve due to limited parallelism among instructions in 

typical applications [1]. Likewise, the problems associated with designing ever-larger and more complex 

monolithic processor cores are becoming increasingly significant. These problems include higher bug 

rates, longer design and verification times caused by the design complexity, and the need to design for 

increasing wire delay [2]. This fact has spurred great interest in exploiting thread-level parallelism (TLP) 

among independent threads to continue historical microprocessor performance trends. These 

multithreaded architectures effectively integrate multiple homogeneous or heterogeneous processors onto 

a single chip [3][4]. 

Software-based simulators allow researchers to evaluate small benchmarks or fragments of larger 

benchmarks using instruction-level simulation, but are too slow to simulate entire applications in a 

reasonable time. Complicated chip multiprocessor designs worsen this problem by requiring that many 
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processors be simulated simultaneously [3][5]-[11]. The complexity of even the most basic multithreaded 

architectures limits instruction-level simulation to an effective “clock rate” of less than 1 MHz; most 

simulators, especially RTL ones, achieve much less [12]-[19]. Simulation speed therefore limits the scope 

and effectiveness of research that can be performed in reasonable amounts of time, curtailing significant 

innovation and fostering future incremental research. 

To address these problems, we have built the third generation of the Berkeley Emulation Engine or 

BEE3. This platform is a result of a unique industrial and academic collaboration targeting computer 

architecture research. We designed it both to support our research and to support the efforts of the RAMP 

(Research Accelerator for Multiple Processors) community [20]. This consortium of six universities had 

used the earlier BEE2 system as an emulation platform [21], but this system used FPGAs that were two 

generations older, and had proved to be expensive and difficult to build reliably. 

BEE3 uses state-of-the-art Xilinx Virtex 5 Field Programmable Gate Arrays (FPGAs) combined with 

copious amounts of DRAM on a single printed circuit board (PCB) to create a flexible computation fabric 

that can execute billions of operations per second. The resulting platform executes code at speeds at least 

two orders of magnitude faster than execution-driven software simulation and an order of magnitude 

faster than previous hardware emulation using generic arrays of FPGAs [17]-[19]. Using BEE3, 

researchers can rapidly prototype a variety of architectures in a relatively short amount of time by using a 

repository of low-level component designs [24]-[26]. BEE3 allows detailed investigation of many topics 

related to processor and system design, including memory hierarchies, TLP extraction methods, TLP 

oriented software design for operating systems and high-level applications, reconfigurable architectures, 

embedded systems, and ISA extensions. This platform can also be used as an application accelerator for 

applications that map well to the FPGA architecture. 

This paper presents the initial implementation of our configurable hardware system. Section 2 presents 

an overview of the system. Section 3 provides an overview of RAMP projects that could be mapped to the 

BEE3, other research domains that may benefit from the BEE3, and a discussion of BEE3 usage in 

computer architecture research. Related work is presented in Section 4. The PCB design comparison to 

the Stanford FAST PCB is presented in Section 5. Section 6 provides a short discussion of the 

collaboration method used in the project. Our conclusions and future work are presented in Section 7. 

2 BEE3 Overview 
The BEE3 system is composed of a hardware 

platform, associated gateware (Verilog or VHDL 

code to program the FPGA), and the software 

stack as shown in Figure 1. The BEE3 printed 

circuit board (PCB) can accommodate three 

different variants of the Xilinx FPGA Virtex 5 

family: General logic (LXT), signal processing 

(SXT), and embedded systems (FXT) [27]. The 

BEE3 system is packaged in a 2U rack-mountable enclosure that has several I/O subsystems that can be 

used to connect several BEE3 systems together or couple the BEE3 to servers or other devices.  

2.1 BEE3 Hardware Architecture 

The BEE3 system is composed of two separate PCBs. If the reader is familiar with the BEE2 system 

[21], the control FPGA has been removed, and a smaller PCB that provides FPGA programming, 

persistent storage and console I/O functionality has been added. The main BEE3 PCB has four Virtex 5 

FPGAs, up to 64 GB of DRAM, and several I/O ports. 

By moving the control functionality off the main PCB, the overall design complexity is reduced and 

design flexibility is increased. This reduces PCB routing congestion and allows for little or no control 

logic or a more complex control and I/O interface tailored for a particular application. The control and I/O 

PCB fits in a modular sub-chassis. Figure 2 provides the block diagram illustrating the I/O PCB 
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Runtime or Operating System and/or Drivers

Applications

 

Figure 1. BEE3 system stack. 
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functionality for FPGA programming, low bandwidth I/O, and bit file (Compact Flash) and data (SD 

Flash) storage.  

The control PCB uses a Xilinx System ACE chip to manage a Compact Flash card and program the 

FPGAs. Multiple bit file versions can be stored in the Compact Flash card and the System ACE can select 

which version to use to program the FPGAs. The Xilinx JTAG pod is contained in the sub-chassis as 

well. As a result, only a USB cable coupled with the programming software on a PC host is required. 

There are four SD Flash slots (one per FPGA) that provide persistent storage for each FPGA using an SPI 

interface. Likewise, one RS-232 physical connection per FPGA is available for a console interface. The 

main BEE3 PCB has two 50-pin headers that provide these interfaces: One header for the JTAG and 

system control and the other header for the SD SPI and RS-232 interfaces. Thus, other control and I/O 

PCBs can be created and customized for a particular application domain.  

The main BEE3 PCB is footprint compatible with the following Virtex 5 parts: XC5VLX110T, 

XC5VLX155T, XC5VSX95T, XC5VFX70T, and XC5VFX100T [27]. This provides logic-, signal 

processing-, and embedded system-focused FPGAs, enabling application targeting of the system. The 

Virtex-5 FPGAs are a considerable improvement over the earlier Virtex-2 Pro devices used in BEE2 and 

the previous generation Virtex 4 devices. They provide six-input lookup tables, which improves logic 

density over the earlier four-input LUTs. They also have larger Block RAMs, and better I/O pin design, 

which improves signal integrity. The LUTs may also be employed as 64x1 memories. The LX155T parts 

used in BEE3 contain 97,280 LUT-flipflop pairs, 212 36K-bit Block RAMs, and 128 DSP slices. A 

DDR2 controller for two channels of DDR2 DIMM memory occupies about 3 percent of the resources of 

this chip [26]. 

A BEE3 system could be built as a heterogeneous or homogeneous FPGA platform, leveraging FPGA-

specific features at the granularity required by the system. Figure 3 is a block diagram showing the 

connectivity of an individual FPGA in the BEE3 system.  

Each FPGA has two DDR2 DRAM channels with two DIMMs per channel. The DIMM can be single 

or dual rank and as large as 4 GB, resulting in up to 16 GB supported by each FPGA and up to 64 GB for 

the system. The FPGA speed grade determines the maximum operating frequency of the DRAM 

interface. Currently, an unoptimized DDR2 interface using a speed grade -2 FPGA is running at DDR2-

500. We use a similar DDR interface for communicating between FPGAs (to the right or left) using the 

ring wiring with a self synchronizer. The initial implementation is unidirectional, but can be easily 

modified to be bidirectional. There are also 40 differential pins wired to a Samtec QSH connector. This 

connector can be used to add interfaces to other devices using daughter cards or provide the fully 

connected FPGA interconnect to augment the ring wiring. The FPGA multi-gigabit transceivers provide 

two CX4 interfaces and one PCI-Express (PCI-E) interface. The CX4 interfaces can be used as two 10 Gb 

Ethernet ports with a XAUI interface and the eight-lane PCI-Express interface supplies endpoint 

USB-

JTAG

System 

ACE

Compact 

Flash

SD 

A

SD 

B

SD 

C

SD 

D

FPGA 

A

FPGA 

B

FPGA 

C

FPGA 

D

JTAG

A B C D

RS-232

 

Figure 2. BEE3 control PCB and JTAG programming 

chain. 

 

Figure 3. BEE3 single FPGA connectivity. 
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functionality. Each FPGA also has an embedded 1 Gb Ethernet (GbE) MAC hard macro that is coupled to 

a Broadcom PHY chip. The other major components on the BEE3 PCB are the real-time clock (RTC) and 

EEPROM that can be used by an OS and to store MAC addresses and other FPGA-specific information. 

In addition, there are several user-controlled LEDs and a global and an FPGA-specific reset button 

located on the BEE3 PCB and on the enclosure front panel. Figure 4 provides the overall high-level BEE3 

system block diagram and interfaces for the four FPGAs on the main PCB BEE3. 

The CX4, PCI-E, or 1 GbE interfaces provide a variety of ways to interconnect multiple BEE3 systems 

or complement servers with specialized hardware for application acceleration. Using conservative 

performance estimates, Table 1 provides minimum bandwidth estimates for the I/O interfaces. The 

DDR2, ring, and QSH interfaces operate at 250 MHz, DDR. Both the DRAM and ring interfaces have 

two channels and transfer 8 bytes per clock.  In contrast, the QSH is a single channel that can transfer 

only 4 bytes at a time. 

2.2 Software Infrastructure   

There are several layers that make up the software infrastructure as depicted in Figure 1. The gateware 

describes the software required to program the FPGAs to configure them for a particular task. Some of the 

gateware is provided by Xilinx, while other gateware components are provided by the community 

[24][25].  The BEE3 system includes a reference design that exercises most of the systems functionality. 

Furthermore, the power-on test suite tests all the subcomponents to guarantee functionality. The DDR2 

interface is also available online [26]. 

The Xilinx gateware is associated with many of the hard macros and provides simple examples that 

need to be customized to truly be useful. Xilinx provides a variety of gateware, some of which like the 

PCI-Express, 10 Gb XAUI interface, and 1 Gb Ethernet MAC macros can be modified for use with the 

BEE3. The user or a third party is required to customize these initial designs for any application requiring 

that functionality. Xilinx also provides other useful gateware components such as the 32-bit Microblaze 
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processor. The latest version of the Microblaze incorporates an MMU, allowing full versions of operating 

systems to be run [28].  Unfortunately, the Microblaze is distributed as a “black box”, without source 

code, so it cannot be customized. 

3 Design Mapping 
The BEE3 is a reconfigurable system that can 

be reprogrammed for use across many 

applications and research fields. Here we present 

a few applications from the RAMP community 

using the previous BEE2 system (in most cases, 

mapping these systems to BEE3 is trivial). Next, 

we present some examples of using BEE3 in 

other domains. Finally, we provide context for 

using BEE3 in computer architecture research. 

3.1 The colors of RAMP 

The RAMP consortium has developed several 

working prototypes focusing on multiprocessor 

systems. “RAMP Blue”, developed at UC 

Berkeley, has built a 1000+ core system using 21 BEE2 systems running MicroBlaze processors at 90 

MHz [29]. This large scale system is very promising because it demonstrates that large scale FPGA-based 

systems can be developed that run at reasonable hardware speeds. “RAMP Red”, developed at Stanford 

University, is an eight core transactional memory system on a single BEE2 board. It provides a software 

development environment for transactional memory programming. The hardware is not cycle accurate, 

but does run at 100 MHz and provides software performance results two orders of magnitude faster than 

the software-only simulation [30]. “RAMP White”, developed at UT Austin, splits the software simulator 

into two components, one running in hardware and the other running in software [31]. Likewise, a group 

at CMU uses a similar novel simulation approach, demonstrating simulation speed-up of one to two 

orders of magnitude for a simulation system composed of 16 processors [32].  

3.2 Using BEE3 in a different research domain. 

Boolean Satisfiability (SAT) solvers are widely used as the underlying reasoning engine for electronic 

design automation, as well as in many other fields such as artificial intelligence, theorem proving, and 

program verification. As a result, if significant advances occur in this one area, many other fields benefit 

from this by enabling larger problem sizes and/or faster computation. In [33], Davis et al. have mapped 

the SAT problem onto a BEE3 system coupled to a host PC, using the FPGA as a co-processor. The key 

to this co-processor architecture is the novel approach to transform Boolean logic into a compact 

programmable structure to take advantage of the FPGA’s high bandwidth and low latency on-chip block 

RAM. By splitting the SAT problem into a hardware-assisted software solution, the authors were able to 

provide software flexibility and hardware acceleration simultaneously. Other domains, such as DSP-based 

oil and gas exploration data processing and financial calculations are also amenable to FGPA acceleration 

[34]. 

3.3 Using the BEE3 for Computer Architecture Research 

Now that the BEE3 is available and in production, we have started to actually use it in our research. 

Although it is premature to report results, since we are still heavily involved in gateware infrastructure-

building, this section describes a few of the projects we have begun. We also try to highlight the strengths 

and weakness of the BEE3 system. 

The primary advantage of an emulation platform like the BEE3 for architecture research is that it is 

possible to run real workloads at reasonable speed in a well-instrumented environment. The designs 

produced in an FPGA are not competitive in clock speed with “real” implementations, being 10-20X 

Table 1. Maximum aggregate bandwidth for BEE3 I/O 

interfaces. 

Interface Rate Total 

Bandwidth 

DDR2 DRAM 500 MT/s 8.0 GB/s 

Ring 500 MT/s 8.0 GB/s 

QSH 500 MT/s 2.0 GB/s 

1 Gb Ethernet - 125 MB/s 

CX4 (2 Channels)* - 5 GB/s 

PCI-E (8X)* - 4 GB/s 

* Assuming full duplex communication. 
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slower. However, this is still fast enough to run real applications to completion, rather than 

microbenchmarks or application kernels. Designing a processor core with a clock rate of 100 MHz is 

straightforward, and several such cores fit on a single FPGA. This operating frequency is only a few times 

slower than recent academic ASIC processor designs [35][36]. Likewise, additional logic may be added to 

a design to gather and log any information needed in an experiment. Additional logic may also be added 

to “warp” time to produce cycle-accurate emulations when needed. We are starting to experiment with the 

design of a message passing system that is exposed to the ISA of a conventional processor, as an 

alternative to the use of distributed shared memory in a many-core setting. In general, BEE3 provides a 

platform for many and multicore research that focuses on using simple base processors. This also enables 

studies that move up the abstraction layers and focus on various software layers.  

Not all designs display uncompetitive performance. We are using the BEE3 to experiment with 

different ways of employing flash memory in a system, using a 32 GB flash memory DIMM module that 

plugs into one or more of the DIMM slots.  This prototype is not cost-competitive with a real 

implementation, but it allows us to explore a number of competing approaches that operate at the speed of 

a real design. This platform provides the ability to investigate architecture, software, and algorithms as 

well as answer questions about the Flash devices that the Flash manufacturers do not answer.  

Similarly, the BEE3 can be used to simulate and prototype advanced networking designs, similar to, but 

much more powerful than the NetFPGA systems developed at Stanford [37]. Using the system in this way 

allows designers to make much more informed choices before embarking on a custom design. This is 

particularly interesting in the context of large data centers, since these installations are quite different 

from the internet, and may benefit from a number of optimizations enabled by their known topology and 

limited (although large) size. The BEE3 provides both a 1 Gb and two 10 Gb interfaces per FPGA for 

network experimentation. 

Emulation using FPGAs is not a panacea. Software simulators offer faster time-to-results for initial 

design studies where microbenchmarks are sufficient. It is still a major endeavor to implement the 

necessary Verilog or HDL to generate a large design, so this is appropriate primarily when the higher 

execution speed justifies it and it can build on preexisting infrastructure. As a result, initial case studies or 

limit studies are not good candidates for BEE3 and its immature software infrastructure. Likewise, there 

are still FPGA resource limitations that must be observed in order to garner good system performance. 

Overall, FPGAs are still limited to about 1-2 MB of on-chip memory. Designs requiring more than what 

is available on-chip may face some problems. FPGAs also suffer from limited off-chip pin bandwidth. 

Designs that span multiple FPGAs and/or do not exploit locality are not well suited for high-speed 

operation on FPGAs. Structures that require many read and/or write ports or which have high 

associativity require and rapidly exhaust FPGA resources. Examples of these structures are multi-way 

caches, register files with many ports, CAMs, and TLBs. Also, operations that can be implemented in a 

single ASIC cycle, such as gang clearing cache tag bits, are not possible in the FPGA and may require 

many hundreds of cycles. While FPGAs are hardware, they require using a restricted subset of hardware 

primitives to be efficient and these primitives do not necessary map to normal ASIC hardware primitives 

and techniques. Operating outside of the FPGA-provided building blocks is painful at best, and normally 

impossible for large designs. 

We are currently developing various gateware infrastructure and providing it to the broader community. 

The first major gateware component is a DDR2 controller for the two channels in each FPGA [26]. These 

are independent, non-coherent DDR2 controllers that support two 4 GB dual rank, ECC RDIMMs at 

DDR2-500. With further optimization and/or -3 speed grade parts, the DRAM could operate faster. 

The second major piece of gateware infrastructure we are developing is the Beehive [38]. The Beehive 

is a multiprocessor system composed of a number of RISC cores, a memory controller [26], Ethernet 

controller, local I/O subsystem and system interconnect in the form of a token ring.  

Although the core has a non-standard instruction set architecture, it is supported by a C- and C# compiler 

for software development. 

The RISC core has 32 registers and uses word addressing to address up to 8 GB of DRAM. The 

processor contains a 4KB direct-mapped, allocate-on-write, blocking data cache and a 4KB direct-
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mapped instruction cache. The caches are not coherent – coherence must be provided where needed 

through software. It is possible to provide a larger cache with increased associativity, but this comes at the 

expense of more Block RAMs, which are the scarcest FPGA resource. The data cache is also treated as a 

local I/O device, since it is possible to do an I/O operation to evict a line from the cache. Each core has a 

local I/O subsystem that also includes an RS232 controller, a multiply unit (implemented with a DSP) 

capable of doing a 32 x 32 2’s complement multiply in ten cycles, an inter-processor messaging facility 

for exchanging short messages between cores, and a locking unit to provide atomic operations without 

involving the DRAM.  

The processors are connected to each other, to the memory, and to the Ethernet controller using a token 

ring interconnect.  The interconnect carries a stream of 32-bit data items plus a 4-bit SlotType field and a 

SrcDest field indicating the source or destination of an operation. The ring addresses one of the most 

serious limitations of an FPGA many-core design:  Routing congestion. Had we used a crossbar or 

hierarchical bus, routing a design with more than a few cores would be extremely problematic.  With a 

ring, all inter-core wiring is local and relatively short, so it is possible to instantiate a large number of 

cores.  

The Beehive cores can operate at 125 MHz and about 20 cores can fit in a single LX155T FPGA. This 

enables approximately 80 cores in a homogeneous system on a BEE3 platform using the PCB ring wiring 

for communication between the FPGAs. Heterogeneous multiprocessor systems can also be derived from 

the base Beehive components. 

4 Related Work 
Historically, hardware emulation platforms using arrays of FPGAs have been used to generate rapid 

prototyping systems that can simulate entire applications at an RTL level [17]-[19]. Unfortunately, efforts 

to compile multiprocessor designs to these systems have been limited by poor FPGA logic utilization, 

limited interconnectivity in the FPGA arrays, and poor word-size data manipulation by bit-width FPGA 

logic units [41]. Likewise, crossing chip boundaries has been a fundamental limitation because off-chip 

bandwidth is much less than on-chip bandwidth. However, as silicon technology has improved, the 

capacity of reconfigurable devices and per-pin bandwidth has dramatically improved. Today, multiple 

simple processors can be mapped to a single FPGA [29] and overall, FPGA capacity and increased per-

pin bandwidth enable much greater prototyping flexibility.  

There have been several previous systems that have incorporated reconfigurable hardware to enable 

limited design exploration around a single design point. These hardware prototypes were one-off systems 

that validated a particular idea [41]-[44]. Other systems were used to explore a narrow research domain 

[39][40][23]. With advances in FPGA technology derived from Moore’s Law, this research domain 

continues to be broadened by the greater capacity and speed of these system building blocks.  

One of the first notable FPGA-based hardware emulators was the Rapid Prototyping engine for 

Multiprocessors (RPM). This initial hardware emulator for multiprocessor architectures moved beyond 

simply observing system behavior like bus traffic [39]. RPM was built to prototype Multiple Instruction 

Multiple Data (MIMDs) multiprocessor machines. The configurable technology available for this project 

enabled reconfigurable memory system implementations with a fixed SPARC processor. Each processor 

module was implemented on a single PCB with up to eight boards connected to a backplane and host 

machine. RPM focused on the memory system of large multiprocessor systems. Even though RPM 

combined SPARC processors with FPGAs, RPM preserved the memory system transparency all the way 

up to the processor. Unfortunately, RPM lacked the software infrastructure to make it easy to use and as a 

result, it failed to achieve widespread adoption like software simulators [12][15][16]. 

A decade later, The Flexible Architecture for Simulation and Testing (FAST) was developed to 

investigate TLP architectures. Like RPM, this system had full memory system transparency up to the 

processor. FAST used simple processors (MIPS R3000 and R3010) combined with state-of-the-art 

FPGAs and memory chips on a single PCB to create a flexible compute fabric that can execute millions of 

instructions per second. The resulting environment executes code at speeds at least two orders of 

magnitude faster than execution-driven software simulation and an order of magnitude faster than 
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previous hardware emulation using generic arrays of FPGAs [23]. FAST was designed explicitly to 

enable memory system and additional architectural research such as speculative coprocessors for Thread 

Level Speculation or other off-load engines, in large multiprocessor (MP) or small, fast CMP systems. 

FAST was able to replicate the memory latency for both MP and CMP systems, as well as anywhere in 

between by artificially throttling the high-speed SRAM [23]. The FAST system was scalable up to 16 

PCBs, enabling up to 64 processor systems, although only one system was ever built. Like RPM, FAST 

also suffered because of a lack of resources and resulting software infrastructure. 

The RAW Architecture Workstation (RAW) [41] enabled in depth research on multicore architectures, 

but the RAW fabric lacked the capacity and the ease of use for mapping other designs. Even though RAW 

used a commercially available emulation platform, the difficulty experienced when mapping other 

designs to this resource-constricted FPGA array prevented the RAW FPGA array from being used for 

other research projects. Partitioning designs across 64 very small FPGAs also presented a significant 

challenge and considerable communication delays because of pin pressure.  

The RAMP consortium faces the same financial hurdles that face any project trying to distribute a 

system that is not free, but RAMP is also trying to attack the software infrastructure problem by 

collaborating and creating an open-source-like community for the hardware infrastructure [25]. The 

combination of hardware and software continues to be essential for the next generation prototyping 

platform. The hardware design should be flexible, but the software infrastructure is crucial for wide 

adoption and rapid system building. Constructing research systems with software simulators will always 

be easier, but leveraging a gateware repository will reduce the hardware burden.  

RAMP repurposed the BEE2 platform to use an architecture research platform. The BEE2 is an 

evolution of a platform focused on DSP development for wireless radio applications such as cellular 

phone base stations. The BEE2 has 5 Virtex-II Pro 70 FPGAs. One FPGA is designated as the master or 

control FPGA and the other four FPGAs are user FPGAs. Each FPGA has 4 DDR2-400 channels. The 

four FPGAs communicate using a ring topology. The control FPGA has point-to-point links to each user 

FPGA. Each user FPGA has 4 independent high-speed serial links and connections to common 

peripherals such as 10/100 Ethernet, USB 1.1, RS232 serial, DVI, and GPIOs [21]. 

Table 2 provides a comparison of the FAST, BEE2, and BEE3 systems. Even though the BEE3 is more 

complex than the older systems in the comparison, it is smaller, thinner (less layers), and has fewer 

components, nets, and most importantly, vias. This leads to a system that is easier and cheaper to 

manufacture and more reliable as a result. While BEE3 uses the latest generation FPGAs, it is interesting 

to compare the recent FPGA computer architecture systems. The Berkeley Emulation Engines have 

evolved from their DSP and wireless radio research genesis. Design elements like the FPGA ring are 

evidence of its history. The QSH interconnect is an addition to the BEE3 platform tailored for all-to-all 

communication with computer architecture research in mind. Likewise, few DRAM channels with higher 

capacity were selected instead of more DRAM bandwidth. This significantly reduced the system cost by 

utilizing an FPGA with a smaller package. Finally, FAST utilized SRAM to model low-level cache and 

memory behavior, while BEE3 provides copious amounts of DRAM that enables investigation at a higher 

system level using simple cores with simple cache hierarchies. 

A subset of computer architecture research will continue to incorporate hardware prototypes given the 

increased capacity of FPGAs, but the ability to leverage both hardware and software infrastructure will 

make the use of FPGA-based systems like BEE3 much more widespread. This amortizes the hardware 

Table 2. FAST, BEE2, BEE3 PCB comparison. 

Platform Dimensions Layers FPGAs Components Pins Vias Connections Nets BRAM SRAM DRAM 

FAST 16" x 16" 20 10 4300 22000 32000 17000 4200 640 KB 68 MB N/A 

BEE2 13.8" x 17.3" 22 5 4000 25000 18000 18000 5200 3 MB N/A 20 GB 

BEE3 12" x 16.5" 18 4 2500 16000 9900 12000 3300 3.7 MB N/A 64 GB 
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and software development and cost across multiple projects and leverages both hardware and software 

infrastructure. By developing the hardware and software as a community, computer architecture research 

can once again validate ideas with working hardware that is easier and cheaper to build. Furthermore, the 

hardware enables more thorough system and software investigation and software development and tuning, 

completing the once-broken research cycle. 

FPGAs have reached the point where they can implement multiple designs given an intelligent 

framework. RPM, FAST, and BEE2 have demonstrated the ability to build working, configurable 

prototyping platforms. The RAMP consortium may provide the most important thing missing from 

previous reconfigurable hardware systems: Community. While RAMP has demonstrated that multiple 

designs can be mapped to the same hardware substrate, it is still to be seen if they can foster a community 

that develops and shares infrastructure [20][29]-[32].  

5 Building a system in academia versus industry 
There have been several academic PCB designs in addition to microprocessor and other ASICs. The 

BEE3 provides a unique opportunity to compare and contrast the PCB development process in an 

academic and industrial environment. We compare the timeline and design process for the BEE3 and the 

Stanford FAST PCB. FAST’s major differences compared to the BEE3 are the memory and I/O systems. 

FAST integrated two levels of SRAM and had no DRAM interface verses the DRAM-only memory 

interface of the BEE3. Furthermore, BEE3 also has many more I/O subsystems than FAST. Unlike the 

BEE3, FAST provided both dedicated integer and floating point pipelines by tightly coupling MIPS CPUs 

and FPUs with FPGAs. However, high performance floating point can be provided on BEE3 using the 

DSP hardware macros provided by the FPGA. 

The FAST project at Stanford initially had a false start. The first graduate student experienced 

significant design hurdles for two years, which finally resulted in him leaving the PhD program due to 

burnout. The FAST PCB design was restarted from scratch and the layout and routing took about 6 

months and was completed by a single graduate student. Again, this time was doubled by CAD tool 

problems, which halted progress until the problems were corrected. Once the FAST PCB design was 

complete, an additional 2 months were required to adjust the routed design to improve its manufacturing 

yield, since design for manufacturability (DFM) was an afterthought for this graduate student’s first major 

PCB design. The overall time to produce a single untested system was eighteen months. There was an 

additional 8 months of system bring up, testing and development that demonstrated FAST’s capabilities.  

In contrast, no graduate students were lost or harmed in the design and prototype build of the BEE3. By 

using a professional PCB design house (Celestica Corporation), the resulting BEE3 system (a more 

complex design) was simpler (fewer PCB layers) and as a result cheaper to build. By using a PCB design 

house, we were able to develop the PCB, the bring-up gateware, and system gateware like the DRAM 

controller [26], in parallel. Much of the gateware from BEE2 was ported to BEE3 to quickly produce a 

bring-up test. Like FAST, the BEE3 required no rework based on the initial specification. Unlike FAST, 

the initial BEE3 specification had to be revised, which required a single revision of the PCB before it 

could be released for production. This was the only unscheduled delay in the BEE3 development. From 

inception to initial prototype, the BEE3 took about 9 months, half the time required to produce FAST. 

Even when considering the BEE3 revision, the fully functional BEE3 design was completed in 17 months 

compared to 28 months required to design, build, and test FAST. 

Unlike FAST, the BEE3 PCB prototype was a global project. The PCB layout and routing was done in 

Shanghai. The simulation (static timing analysis and signal integrity analysis) and PCB fabrication and 

assembly were done in Toronto. The design specification, design reviews, and related logistics were done 

in California. In aggregate, the BEE3 prototype had 30 individuals contributing to the project and many of 

the contributors were specialists with extensive knowledge of the CAD suite. In the case of FAST and 

BEE2, these specialists were replaced by one or a few graduate students. As a result, the academic 

projects produced more complex and less reliable PCBs (as demonstrated by the PCB layer count), longer 

project time horizon, and graduate student casualties. 
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6 A New Model for Industry-Academic Collaboration 
The BEE3 is an example of a new type of tightly coupled industrial and academic collaboration. In this 

case, we have developed a system based on academic specifications and that is available to both academia 

and industry. This is a dramatic change from providing research funding for a particular project or 

providing supplement project support, e.g., silicon chip back-end process and/or fabrication support, and 

has many benefits over the normal government or industrial funding process. First and foremost, the 

industrial partner can leverage expertise that does not exist in or cannot be accessed from academia. 

Second, in the case of BEE3, PCB design professionals produced a system in less time and with a lower 

manufacturing cost than could be done by an academic institution using graduate students to design the 

system. Graduate student designers must spend a great deal of time learning the complex CAD tools, an 

activity with limited pedagogical value. Third, the BEE3 is available to both academics and industry 

alike, in contrast to the FAST or BEE2 systems. The BEE3 project is unique in that it provides a research 

platform for a wide variety of research domains that exist both in academia and industry. It is an example 

of industry providing research support that is outside the normal support channels, but is a more efficient 

use of resources with potentially much higher impact than an academic-only system. Finally, the BEE3 

design was licensed, royalty free, to BEEcube Corporation [45], a company that produces, sells, services, 

and enhances the BEE3 system.  

This collaboration model also has it challenges. Not all projects are amenable to industry development. 

There may be issues related to intellectual property and licensing. Feature creep and specification 

deviation may also be a problem for projects that have long time horizons resulting in something that 

neither industry nor academia want. In this case, we were able to work closely and effectively with 

academia and other industry partners and this helped to guarantee a very favorable outcome. The BEE3 

also benefits from a third party distribution mechanism that may be difficult to reproduce. Finally, it may 

be difficult to define a project well enough from its onset that industry can provide an alternative 

mechanism.  

7 Conclusions & Future Work 
The initial bring up and testing of the BEE3 system has been very successful. We have tested all of the 

subsystems at or above target operating frequency and have found no problems. The complete production 

BEE3 system in its 2U chassis is shown in Figure 5.  

The delivery of the first production run of licensed BEE3 system took place in August 2008. The BEE3 

system was completed faster and better than previous academic designed multi-FPGA systems. The result 

is a system with better signal integrity and cheaper PCB manufacturing costs. Like all previous multi-

FPGA PCBs, the BEE3 system is nowhere near the initial $5,000 target PCB price, even if all the PCB 

parts were free. It is also the case that the BEE3 will not replace software simulation in computer 

architecture, but augment the research cycle with hardware either as a simulation accelerator, software 

development platform, or a prototyping platform. This is a viable method to reintroduce hardware back 

into the research cycle for a broader class of architectures and systems research. Finally, we have 

presented a short survey of RAMP projects that demonstrate the fidelity spectrum and variety of usage 

models for systems like BEE3. Depending on the target, BEE3 can provide a wide range of fidelity 

without the performance impact that software simulation exhibits. BEE3 will not supplant software 

simulators, but, with some software infrastructure building, BEE3 does provide a solution as a computer 

architecture research platform for multicores and many cores. We have demonstrated this by building the 

Beehive many-core system. 

The BEE3 systems have several future directions inside and outside our research group. Focusing on 

computer architecture, we plan on developing infrastructure to investigate transactional memory running 

on real hardware, multiprocessor and memory research, as well as, operating system research enabled by 

special purpose hardware. Using software defined processors, we are able to move up the stack into 

software and implement interesting systems that were infeasible in a software simulator. As one can 
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imagine, there are several systems research areas to pursue as well. In those areas, we plan on mapping 

the initial application accelerators and prototype research platforms to the BEE3 for evaluation.  

Outside of our research group, the main initial target for the BEE3 is the RAMP consortium. This 

collection of universities has many ongoing projects and our hope is that a vibrant community continues 

to develop and share infrastructure to enable research and collaboration across university boundaries. 

These research areas will be accelerated by a community sharing and supporting a common platform. 
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