
MSR Technical Report MSR-TR-2009-45

Abstract

In recent years, advances in computer architecture have slowed dramatically with most simulation results

demonstrating only incremental architectural innovation. This is further exacerbated by increased

processor and system complexity spurred by a seemingly unlimited number of transistors at computer

architect’s disposal. Computer architects produce a myopic view of their systems through the lens of

slow, highly-detailed software simulation or fast, coarse-grained software simulation, with fidelity always

in question.

By leveraging silicon technology scaling in Field Programmable Gate Arrays (FPGAs), hardware can

be used to accelerate simulation, emulation, or prototyping of systems. Furthermore, because the base

components are reconfigurable, the same system can be used for a variety of research projects,

amortizing the cost, both in dollars and in learning time. In this paper, we present the third generation of

the Berkeley Emulation Engine or BEE3 system. We demonstrate a new collaboration methodology

between academia and industry and compare the industrial and academic system design process. The

BEE3 is a production multi-FPGA system with up to 64 GB of DRAM and several I/O subsystems that

can be used to enable faster, larger and higher fidelity computer architecture or other systems research.

Using a widely available hardware platform also facilitates a software community that can generate and

share software modules, thereby enabling rapid system development for computer architecture research.

1 Introduction
Historically, software simulation has been the vehicle of choice for studying computer architecture

because of its flexibility and low cost. Regrettably, users of software simulators must choose between

high performance or high fidelity emulation. In contrast, building hardware in Application Specific

Integrated Circuits (ASICs) provides high performance and accurate results, but lacks the flexibility to

explore multiple designs. It is also very expensive. These tradeoffs have impeded our ability to

thoroughly explore and evaluate new computer architectures. This lack of simulation fidelity and speed is

further aggravated by the increase in multithreaded and/or multicore microprocessor architectures.

Traditionally, computer architects have leveraged increasing transistor density to implement a single

large processor that exploits instruction level parallelism (ILP). However, continued performance gains

from ILP are becoming increasingly difficult to achieve due to limited parallelism among instructions in

typical applications [1]. Likewise, the problems associated with designing ever-larger and more complex

monolithic processor cores are becoming increasingly significant. These problems include higher bug

rates, longer design and verification times caused by the design complexity, and the need to design for

increasing wire delay [2]. This fact has spurred great interest in exploiting thread-level parallelism (TLP)

among independent threads to continue historical microprocessor performance trends. These

multithreaded architectures effectively integrate multiple homogeneous or heterogeneous processors onto

a single chip [3][4].

Software-based simulators allow researchers to evaluate small benchmarks or fragments of larger

benchmarks using instruction-level simulation, but are too slow to simulate entire applications in a

reasonable time. Complicated chip multiprocessor designs worsen this problem by requiring that many

BEE3: Revitalizing Computer Architecture Research

John D. Davis†, Charles P. Thacker†, Chen Chang*

Microsoft Research, Silicon Valley Campus†, BEECube*

[joda,cthacker]@microsoft.com†, chen@beecube.com*

2

processors be simulated simultaneously [3][5]-[11]. The complexity of even the most basic multithreaded

architectures limits instruction-level simulation to an effective “clock rate” of less than 1 MHz; most

simulators, especially RTL ones, achieve much less [12]-[19]. Simulation speed therefore limits the scope

and effectiveness of research that can be performed in reasonable amounts of time, curtailing significant

innovation and fostering future incremental research.

To address these problems, we have built the third generation of the Berkeley Emulation Engine or

BEE3. This platform is a result of a unique industrial and academic collaboration targeting computer

architecture research. We designed it both to support our research and to support the efforts of the RAMP

(Research Accelerator for Multiple Processors) community [20]. This consortium of six universities had

used the earlier BEE2 system as an emulation platform [21], but this system used FPGAs that were two

generations older, and had proved to be expensive and difficult to build reliably.

BEE3 uses state-of-the-art Xilinx Virtex 5 Field Programmable Gate Arrays (FPGAs) combined with

copious amounts of DRAM on a single printed circuit board (PCB) to create a flexible computation fabric

that can execute billions of operations per second. The resulting platform executes code at speeds at least

two orders of magnitude faster than execution-driven software simulation and an order of magnitude

faster than previous hardware emulation using generic arrays of FPGAs [17]-[19]. Using BEE3,

researchers can rapidly prototype a variety of architectures in a relatively short amount of time by using a

repository of low-level component designs [24]-[26]. BEE3 allows detailed investigation of many topics

related to processor and system design, including memory hierarchies, TLP extraction methods, TLP

oriented software design for operating systems and high-level applications, reconfigurable architectures,

embedded systems, and ISA extensions. This platform can also be used as an application accelerator for

applications that map well to the FPGA architecture.

This paper presents the initial implementation of our configurable hardware system. Section 2 presents

an overview of the system. Section 3 provides an overview of RAMP projects that could be mapped to the

BEE3, other research domains that may benefit from the BEE3, and a discussion of BEE3 usage in

computer architecture research. Related work is presented in Section 4. The PCB design comparison to

the Stanford FAST PCB is presented in Section 5. Section 6 provides a short discussion of the

collaboration method used in the project. Our conclusions and future work are presented in Section 7.

2 BEE3 Overview
The BEE3 system is composed of a hardware

platform, associated gateware (Verilog or VHDL

code to program the FPGA), and the software

stack as shown in Figure 1. The BEE3 printed

circuit board (PCB) can accommodate three

different variants of the Xilinx FPGA Virtex 5

family: General logic (LXT), signal processing

(SXT), and embedded systems (FXT) [27]. The

BEE3 system is packaged in a 2U rack-mountable enclosure that has several I/O subsystems that can be

used to connect several BEE3 systems together or couple the BEE3 to servers or other devices.

2.1 BEE3 Hardware Architecture

The BEE3 system is composed of two separate PCBs. If the reader is familiar with the BEE2 system

[21], the control FPGA has been removed, and a smaller PCB that provides FPGA programming,

persistent storage and console I/O functionality has been added. The main BEE3 PCB has four Virtex 5

FPGAs, up to 64 GB of DRAM, and several I/O ports.

By moving the control functionality off the main PCB, the overall design complexity is reduced and

design flexibility is increased. This reduces PCB routing congestion and allows for little or no control

logic or a more complex control and I/O interface tailored for a particular application. The control and I/O

PCB fits in a modular sub-chassis. Figure 2 provides the block diagram illustrating the I/O PCB

BEE3 Hardware System

BEE3 Gateware

Runtime or Operating System and/or Drivers

Applications

Figure 1. BEE3 system stack.

3

functionality for FPGA programming, low bandwidth I/O, and bit file (Compact Flash) and data (SD

Flash) storage.

The control PCB uses a Xilinx System ACE chip to manage a Compact Flash card and program the

FPGAs. Multiple bit file versions can be stored in the Compact Flash card and the System ACE can select

which version to use to program the FPGAs. The Xilinx JTAG pod is contained in the sub-chassis as

well. As a result, only a USB cable coupled with the programming software on a PC host is required.

There are four SD Flash slots (one per FPGA) that provide persistent storage for each FPGA using an SPI

interface. Likewise, one RS-232 physical connection per FPGA is available for a console interface. The

main BEE3 PCB has two 50-pin headers that provide these interfaces: One header for the JTAG and

system control and the other header for the SD SPI and RS-232 interfaces. Thus, other control and I/O

PCBs can be created and customized for a particular application domain.

The main BEE3 PCB is footprint compatible with the following Virtex 5 parts: XC5VLX110T,

XC5VLX155T, XC5VSX95T, XC5VFX70T, and XC5VFX100T [27]. This provides logic-, signal

processing-, and embedded system-focused FPGAs, enabling application targeting of the system. The

Virtex-5 FPGAs are a considerable improvement over the earlier Virtex-2 Pro devices used in BEE2 and

the previous generation Virtex 4 devices. They provide six-input lookup tables, which improves logic

density over the earlier four-input LUTs. They also have larger Block RAMs, and better I/O pin design,

which improves signal integrity. The LUTs may also be employed as 64x1 memories. The LX155T parts

used in BEE3 contain 97,280 LUT-flipflop pairs, 212 36K-bit Block RAMs, and 128 DSP slices. A

DDR2 controller for two channels of DDR2 DIMM memory occupies about 3 percent of the resources of

this chip [26].

A BEE3 system could be built as a heterogeneous or homogeneous FPGA platform, leveraging FPGA-

specific features at the granularity required by the system. Figure 3 is a block diagram showing the

connectivity of an individual FPGA in the BEE3 system.

Each FPGA has two DDR2 DRAM channels with two DIMMs per channel. The DIMM can be single

or dual rank and as large as 4 GB, resulting in up to 16 GB supported by each FPGA and up to 64 GB for

the system. The FPGA speed grade determines the maximum operating frequency of the DRAM

interface. Currently, an unoptimized DDR2 interface using a speed grade -2 FPGA is running at DDR2-

500. We use a similar DDR interface for communicating between FPGAs (to the right or left) using the

ring wiring with a self synchronizer. The initial implementation is unidirectional, but can be easily

modified to be bidirectional. There are also 40 differential pins wired to a Samtec QSH connector. This

connector can be used to add interfaces to other devices using daughter cards or provide the fully

connected FPGA interconnect to augment the ring wiring. The FPGA multi-gigabit transceivers provide

two CX4 interfaces and one PCI-Express (PCI-E) interface. The CX4 interfaces can be used as two 10 Gb

Ethernet ports with a XAUI interface and the eight-lane PCI-Express interface supplies endpoint

USB-

JTAG

System

ACE

Compact

Flash

SD

A

SD

B

SD

C

SD

D

FPGA

A

FPGA

B

FPGA

C

FPGA

D

JTAG

A B C D

RS-232

Figure 2. BEE3 control PCB and JTAG programming

chain.

Figure 3. BEE3 single FPGA connectivity.

FPGA

DDR2 DIMM0

DDR2 DIMM1

DDR2 DIMM2

DDR2 DIMM3

CX4 A

CX4 B

PCI-E 8X

QSH-DP
RTC

EEPROM

1 GbE (RJ45)

RS232

SD Card

5 LEDs, 2 RST PB

72@DDR2-500+

72@DDR2-500+ 72@DDR2-500+

(R
ing)

72@DDR2-500+

(R
ing)

GMII

SPI

SPI

GTPx4

GTPx4

GTPx8

40(LVDS)@

DDR-500+

FPGA

(right)

FPGA

(left)

4

functionality. Each FPGA also has an embedded 1 Gb Ethernet (GbE) MAC hard macro that is coupled to

a Broadcom PHY chip. The other major components on the BEE3 PCB are the real-time clock (RTC) and

EEPROM that can be used by an OS and to store MAC addresses and other FPGA-specific information.

In addition, there are several user-controlled LEDs and a global and an FPGA-specific reset button

located on the BEE3 PCB and on the enclosure front panel. Figure 4 provides the overall high-level BEE3

system block diagram and interfaces for the four FPGAs on the main PCB BEE3.

The CX4, PCI-E, or 1 GbE interfaces provide a variety of ways to interconnect multiple BEE3 systems

or complement servers with specialized hardware for application acceleration. Using conservative

performance estimates, Table 1 provides minimum bandwidth estimates for the I/O interfaces. The

DDR2, ring, and QSH interfaces operate at 250 MHz, DDR. Both the DRAM and ring interfaces have

two channels and transfer 8 bytes per clock. In contrast, the QSH is a single channel that can transfer

only 4 bytes at a time.

2.2 Software Infrastructure

There are several layers that make up the software infrastructure as depicted in Figure 1. The gateware

describes the software required to program the FPGAs to configure them for a particular task. Some of the

gateware is provided by Xilinx, while other gateware components are provided by the community

[24][25]. The BEE3 system includes a reference design that exercises most of the systems functionality.

Furthermore, the power-on test suite tests all the subcomponents to guarantee functionality. The DDR2

interface is also available online [26].

The Xilinx gateware is associated with many of the hard macros and provides simple examples that

need to be customized to truly be useful. Xilinx provides a variety of gateware, some of which like the

PCI-Express, 10 Gb XAUI interface, and 1 Gb Ethernet MAC macros can be modified for use with the

BEE3. The user or a third party is required to customize these initial designs for any application requiring

that functionality. Xilinx also provides other useful gateware components such as the 32-bit Microblaze

User

FPGA 1

User

User User

DDR2 DIMM0

DDR2 DIMM1

DDR2 DIMM0

DDR2 DIMM1

72*

72*

72*

72*

72* 72*

DDR2 DIMM2

DDR2 DIMM3

72*72*

DDR2 DIMM2

DDR2 DIMM3

40x2

DDR2 DIMM0

DDR2 DIMM1

DDR2 DIMM0

DDR2 DIMM1

72* 72*

DDR2 DIMM2

DDR2 DIMM3

72*72*

DDR2 DIMM2

DDR2 DIMM3

QSH-DP-

040
40x2

40x2
QSH-DP-

040

QSH-DP-

040

 PCI-E

8X

CX4

CX4

CX4

CX4

CX4

CX4

 PCI-E

8X

 PCI-E

8X

40x2
QSH-DP-

040

CX4

CX4

 PCI-E

8X

FPGA 2

FPGA 4FPGA 3

Ring

Ring

RingRing

Figure 4. BEE3 main PCB subsystems.

5

processor. The latest version of the Microblaze incorporates an MMU, allowing full versions of operating

systems to be run [28]. Unfortunately, the Microblaze is distributed as a “black box”, without source

code, so it cannot be customized.

3 Design Mapping
The BEE3 is a reconfigurable system that can

be reprogrammed for use across many

applications and research fields. Here we present

a few applications from the RAMP community

using the previous BEE2 system (in most cases,

mapping these systems to BEE3 is trivial). Next,

we present some examples of using BEE3 in

other domains. Finally, we provide context for

using BEE3 in computer architecture research.

3.1 The colors of RAMP

The RAMP consortium has developed several

working prototypes focusing on multiprocessor

systems. “RAMP Blue”, developed at UC

Berkeley, has built a 1000+ core system using 21 BEE2 systems running MicroBlaze processors at 90

MHz [29]. This large scale system is very promising because it demonstrates that large scale FPGA-based

systems can be developed that run at reasonable hardware speeds. “RAMP Red”, developed at Stanford

University, is an eight core transactional memory system on a single BEE2 board. It provides a software

development environment for transactional memory programming. The hardware is not cycle accurate,

but does run at 100 MHz and provides software performance results two orders of magnitude faster than

the software-only simulation [30]. “RAMP White”, developed at UT Austin, splits the software simulator

into two components, one running in hardware and the other running in software [31]. Likewise, a group

at CMU uses a similar novel simulation approach, demonstrating simulation speed-up of one to two

orders of magnitude for a simulation system composed of 16 processors [32].

3.2 Using BEE3 in a different research domain.

Boolean Satisfiability (SAT) solvers are widely used as the underlying reasoning engine for electronic

design automation, as well as in many other fields such as artificial intelligence, theorem proving, and

program verification. As a result, if significant advances occur in this one area, many other fields benefit

from this by enabling larger problem sizes and/or faster computation. In [33], Davis et al. have mapped

the SAT problem onto a BEE3 system coupled to a host PC, using the FPGA as a co-processor. The key

to this co-processor architecture is the novel approach to transform Boolean logic into a compact

programmable structure to take advantage of the FPGA’s high bandwidth and low latency on-chip block

RAM. By splitting the SAT problem into a hardware-assisted software solution, the authors were able to

provide software flexibility and hardware acceleration simultaneously. Other domains, such as DSP-based

oil and gas exploration data processing and financial calculations are also amenable to FGPA acceleration

[34].

3.3 Using the BEE3 for Computer Architecture Research

Now that the BEE3 is available and in production, we have started to actually use it in our research.

Although it is premature to report results, since we are still heavily involved in gateware infrastructure-

building, this section describes a few of the projects we have begun. We also try to highlight the strengths

and weakness of the BEE3 system.

The primary advantage of an emulation platform like the BEE3 for architecture research is that it is

possible to run real workloads at reasonable speed in a well-instrumented environment. The designs

produced in an FPGA are not competitive in clock speed with “real” implementations, being 10-20X

Table 1. Maximum aggregate bandwidth for BEE3 I/O

interfaces.

Interface Rate Total

Bandwidth

DDR2 DRAM 500 MT/s 8.0 GB/s

Ring 500 MT/s 8.0 GB/s

QSH 500 MT/s 2.0 GB/s

1 Gb Ethernet - 125 MB/s

CX4 (2 Channels)* - 5 GB/s

PCI-E (8X)* - 4 GB/s

* Assuming full duplex communication.

6

slower. However, this is still fast enough to run real applications to completion, rather than

microbenchmarks or application kernels. Designing a processor core with a clock rate of 100 MHz is

straightforward, and several such cores fit on a single FPGA. This operating frequency is only a few times

slower than recent academic ASIC processor designs [35][36]. Likewise, additional logic may be added to

a design to gather and log any information needed in an experiment. Additional logic may also be added

to “warp” time to produce cycle-accurate emulations when needed. We are starting to experiment with the

design of a message passing system that is exposed to the ISA of a conventional processor, as an

alternative to the use of distributed shared memory in a many-core setting. In general, BEE3 provides a

platform for many and multicore research that focuses on using simple base processors. This also enables

studies that move up the abstraction layers and focus on various software layers.

Not all designs display uncompetitive performance. We are using the BEE3 to experiment with

different ways of employing flash memory in a system, using a 32 GB flash memory DIMM module that

plugs into one or more of the DIMM slots. This prototype is not cost-competitive with a real

implementation, but it allows us to explore a number of competing approaches that operate at the speed of

a real design. This platform provides the ability to investigate architecture, software, and algorithms as

well as answer questions about the Flash devices that the Flash manufacturers do not answer.

Similarly, the BEE3 can be used to simulate and prototype advanced networking designs, similar to, but

much more powerful than the NetFPGA systems developed at Stanford [37]. Using the system in this way

allows designers to make much more informed choices before embarking on a custom design. This is

particularly interesting in the context of large data centers, since these installations are quite different

from the internet, and may benefit from a number of optimizations enabled by their known topology and

limited (although large) size. The BEE3 provides both a 1 Gb and two 10 Gb interfaces per FPGA for

network experimentation.

Emulation using FPGAs is not a panacea. Software simulators offer faster time-to-results for initial

design studies where microbenchmarks are sufficient. It is still a major endeavor to implement the

necessary Verilog or HDL to generate a large design, so this is appropriate primarily when the higher

execution speed justifies it and it can build on preexisting infrastructure. As a result, initial case studies or

limit studies are not good candidates for BEE3 and its immature software infrastructure. Likewise, there

are still FPGA resource limitations that must be observed in order to garner good system performance.

Overall, FPGAs are still limited to about 1-2 MB of on-chip memory. Designs requiring more than what

is available on-chip may face some problems. FPGAs also suffer from limited off-chip pin bandwidth.

Designs that span multiple FPGAs and/or do not exploit locality are not well suited for high-speed

operation on FPGAs. Structures that require many read and/or write ports or which have high

associativity require and rapidly exhaust FPGA resources. Examples of these structures are multi-way

caches, register files with many ports, CAMs, and TLBs. Also, operations that can be implemented in a

single ASIC cycle, such as gang clearing cache tag bits, are not possible in the FPGA and may require

many hundreds of cycles. While FPGAs are hardware, they require using a restricted subset of hardware

primitives to be efficient and these primitives do not necessary map to normal ASIC hardware primitives

and techniques. Operating outside of the FPGA-provided building blocks is painful at best, and normally

impossible for large designs.

We are currently developing various gateware infrastructure and providing it to the broader community.

The first major gateware component is a DDR2 controller for the two channels in each FPGA [26]. These

are independent, non-coherent DDR2 controllers that support two 4 GB dual rank, ECC RDIMMs at

DDR2-500. With further optimization and/or -3 speed grade parts, the DRAM could operate faster.

The second major piece of gateware infrastructure we are developing is the Beehive [38]. The Beehive

is a multiprocessor system composed of a number of RISC cores, a memory controller [26], Ethernet

controller, local I/O subsystem and system interconnect in the form of a token ring.

Although the core has a non-standard instruction set architecture, it is supported by a C- and C# compiler

for software development.

The RISC core has 32 registers and uses word addressing to address up to 8 GB of DRAM. The

processor contains a 4KB direct-mapped, allocate-on-write, blocking data cache and a 4KB direct-

7

mapped instruction cache. The caches are not coherent – coherence must be provided where needed

through software. It is possible to provide a larger cache with increased associativity, but this comes at the

expense of more Block RAMs, which are the scarcest FPGA resource. The data cache is also treated as a

local I/O device, since it is possible to do an I/O operation to evict a line from the cache. Each core has a

local I/O subsystem that also includes an RS232 controller, a multiply unit (implemented with a DSP)

capable of doing a 32 x 32 2’s complement multiply in ten cycles, an inter-processor messaging facility

for exchanging short messages between cores, and a locking unit to provide atomic operations without

involving the DRAM.

The processors are connected to each other, to the memory, and to the Ethernet controller using a token

ring interconnect. The interconnect carries a stream of 32-bit data items plus a 4-bit SlotType field and a

SrcDest field indicating the source or destination of an operation. The ring addresses one of the most

serious limitations of an FPGA many-core design: Routing congestion. Had we used a crossbar or

hierarchical bus, routing a design with more than a few cores would be extremely problematic. With a

ring, all inter-core wiring is local and relatively short, so it is possible to instantiate a large number of

cores.

The Beehive cores can operate at 125 MHz and about 20 cores can fit in a single LX155T FPGA. This

enables approximately 80 cores in a homogeneous system on a BEE3 platform using the PCB ring wiring

for communication between the FPGAs. Heterogeneous multiprocessor systems can also be derived from

the base Beehive components.

4 Related Work
Historically, hardware emulation platforms using arrays of FPGAs have been used to generate rapid

prototyping systems that can simulate entire applications at an RTL level [17]-[19]. Unfortunately, efforts

to compile multiprocessor designs to these systems have been limited by poor FPGA logic utilization,

limited interconnectivity in the FPGA arrays, and poor word-size data manipulation by bit-width FPGA

logic units [41]. Likewise, crossing chip boundaries has been a fundamental limitation because off-chip

bandwidth is much less than on-chip bandwidth. However, as silicon technology has improved, the

capacity of reconfigurable devices and per-pin bandwidth has dramatically improved. Today, multiple

simple processors can be mapped to a single FPGA [29] and overall, FPGA capacity and increased per-

pin bandwidth enable much greater prototyping flexibility.

There have been several previous systems that have incorporated reconfigurable hardware to enable

limited design exploration around a single design point. These hardware prototypes were one-off systems

that validated a particular idea [41]-[44]. Other systems were used to explore a narrow research domain

[39][40][23]. With advances in FPGA technology derived from Moore’s Law, this research domain

continues to be broadened by the greater capacity and speed of these system building blocks.

One of the first notable FPGA-based hardware emulators was the Rapid Prototyping engine for

Multiprocessors (RPM). This initial hardware emulator for multiprocessor architectures moved beyond

simply observing system behavior like bus traffic [39]. RPM was built to prototype Multiple Instruction

Multiple Data (MIMDs) multiprocessor machines. The configurable technology available for this project

enabled reconfigurable memory system implementations with a fixed SPARC processor. Each processor

module was implemented on a single PCB with up to eight boards connected to a backplane and host

machine. RPM focused on the memory system of large multiprocessor systems. Even though RPM

combined SPARC processors with FPGAs, RPM preserved the memory system transparency all the way

up to the processor. Unfortunately, RPM lacked the software infrastructure to make it easy to use and as a

result, it failed to achieve widespread adoption like software simulators [12][15][16].

A decade later, The Flexible Architecture for Simulation and Testing (FAST) was developed to

investigate TLP architectures. Like RPM, this system had full memory system transparency up to the

processor. FAST used simple processors (MIPS R3000 and R3010) combined with state-of-the-art

FPGAs and memory chips on a single PCB to create a flexible compute fabric that can execute millions of

instructions per second. The resulting environment executes code at speeds at least two orders of

magnitude faster than execution-driven software simulation and an order of magnitude faster than

8

previous hardware emulation using generic arrays of FPGAs [23]. FAST was designed explicitly to

enable memory system and additional architectural research such as speculative coprocessors for Thread

Level Speculation or other off-load engines, in large multiprocessor (MP) or small, fast CMP systems.

FAST was able to replicate the memory latency for both MP and CMP systems, as well as anywhere in

between by artificially throttling the high-speed SRAM [23]. The FAST system was scalable up to 16

PCBs, enabling up to 64 processor systems, although only one system was ever built. Like RPM, FAST

also suffered because of a lack of resources and resulting software infrastructure.

The RAW Architecture Workstation (RAW) [41] enabled in depth research on multicore architectures,

but the RAW fabric lacked the capacity and the ease of use for mapping other designs. Even though RAW

used a commercially available emulation platform, the difficulty experienced when mapping other

designs to this resource-constricted FPGA array prevented the RAW FPGA array from being used for

other research projects. Partitioning designs across 64 very small FPGAs also presented a significant

challenge and considerable communication delays because of pin pressure.

The RAMP consortium faces the same financial hurdles that face any project trying to distribute a

system that is not free, but RAMP is also trying to attack the software infrastructure problem by

collaborating and creating an open-source-like community for the hardware infrastructure [25]. The

combination of hardware and software continues to be essential for the next generation prototyping

platform. The hardware design should be flexible, but the software infrastructure is crucial for wide

adoption and rapid system building. Constructing research systems with software simulators will always

be easier, but leveraging a gateware repository will reduce the hardware burden.

RAMP repurposed the BEE2 platform to use an architecture research platform. The BEE2 is an

evolution of a platform focused on DSP development for wireless radio applications such as cellular

phone base stations. The BEE2 has 5 Virtex-II Pro 70 FPGAs. One FPGA is designated as the master or

control FPGA and the other four FPGAs are user FPGAs. Each FPGA has 4 DDR2-400 channels. The

four FPGAs communicate using a ring topology. The control FPGA has point-to-point links to each user

FPGA. Each user FPGA has 4 independent high-speed serial links and connections to common

peripherals such as 10/100 Ethernet, USB 1.1, RS232 serial, DVI, and GPIOs [21].

Table 2 provides a comparison of the FAST, BEE2, and BEE3 systems. Even though the BEE3 is more

complex than the older systems in the comparison, it is smaller, thinner (less layers), and has fewer

components, nets, and most importantly, vias. This leads to a system that is easier and cheaper to

manufacture and more reliable as a result. While BEE3 uses the latest generation FPGAs, it is interesting

to compare the recent FPGA computer architecture systems. The Berkeley Emulation Engines have

evolved from their DSP and wireless radio research genesis. Design elements like the FPGA ring are

evidence of its history. The QSH interconnect is an addition to the BEE3 platform tailored for all-to-all

communication with computer architecture research in mind. Likewise, few DRAM channels with higher

capacity were selected instead of more DRAM bandwidth. This significantly reduced the system cost by

utilizing an FPGA with a smaller package. Finally, FAST utilized SRAM to model low-level cache and

memory behavior, while BEE3 provides copious amounts of DRAM that enables investigation at a higher

system level using simple cores with simple cache hierarchies.

A subset of computer architecture research will continue to incorporate hardware prototypes given the

increased capacity of FPGAs, but the ability to leverage both hardware and software infrastructure will

make the use of FPGA-based systems like BEE3 much more widespread. This amortizes the hardware

Table 2. FAST, BEE2, BEE3 PCB comparison.

Platform Dimensions Layers FPGAs Components Pins Vias Connections Nets BRAM SRAM DRAM

FAST 16" x 16" 20 10 4300 22000 32000 17000 4200 640 KB 68 MB N/A

BEE2 13.8" x 17.3" 22 5 4000 25000 18000 18000 5200 3 MB N/A 20 GB

BEE3 12" x 16.5" 18 4 2500 16000 9900 12000 3300 3.7 MB N/A 64 GB

9

and software development and cost across multiple projects and leverages both hardware and software

infrastructure. By developing the hardware and software as a community, computer architecture research

can once again validate ideas with working hardware that is easier and cheaper to build. Furthermore, the

hardware enables more thorough system and software investigation and software development and tuning,

completing the once-broken research cycle.

FPGAs have reached the point where they can implement multiple designs given an intelligent

framework. RPM, FAST, and BEE2 have demonstrated the ability to build working, configurable

prototyping platforms. The RAMP consortium may provide the most important thing missing from

previous reconfigurable hardware systems: Community. While RAMP has demonstrated that multiple

designs can be mapped to the same hardware substrate, it is still to be seen if they can foster a community

that develops and shares infrastructure [20][29]-[32].

5 Building a system in academia versus industry
There have been several academic PCB designs in addition to microprocessor and other ASICs. The

BEE3 provides a unique opportunity to compare and contrast the PCB development process in an

academic and industrial environment. We compare the timeline and design process for the BEE3 and the

Stanford FAST PCB. FAST’s major differences compared to the BEE3 are the memory and I/O systems.

FAST integrated two levels of SRAM and had no DRAM interface verses the DRAM-only memory

interface of the BEE3. Furthermore, BEE3 also has many more I/O subsystems than FAST. Unlike the

BEE3, FAST provided both dedicated integer and floating point pipelines by tightly coupling MIPS CPUs

and FPUs with FPGAs. However, high performance floating point can be provided on BEE3 using the

DSP hardware macros provided by the FPGA.

The FAST project at Stanford initially had a false start. The first graduate student experienced

significant design hurdles for two years, which finally resulted in him leaving the PhD program due to

burnout. The FAST PCB design was restarted from scratch and the layout and routing took about 6

months and was completed by a single graduate student. Again, this time was doubled by CAD tool

problems, which halted progress until the problems were corrected. Once the FAST PCB design was

complete, an additional 2 months were required to adjust the routed design to improve its manufacturing

yield, since design for manufacturability (DFM) was an afterthought for this graduate student’s first major

PCB design. The overall time to produce a single untested system was eighteen months. There was an

additional 8 months of system bring up, testing and development that demonstrated FAST’s capabilities.

In contrast, no graduate students were lost or harmed in the design and prototype build of the BEE3. By

using a professional PCB design house (Celestica Corporation), the resulting BEE3 system (a more

complex design) was simpler (fewer PCB layers) and as a result cheaper to build. By using a PCB design

house, we were able to develop the PCB, the bring-up gateware, and system gateware like the DRAM

controller [26], in parallel. Much of the gateware from BEE2 was ported to BEE3 to quickly produce a

bring-up test. Like FAST, the BEE3 required no rework based on the initial specification. Unlike FAST,

the initial BEE3 specification had to be revised, which required a single revision of the PCB before it

could be released for production. This was the only unscheduled delay in the BEE3 development. From

inception to initial prototype, the BEE3 took about 9 months, half the time required to produce FAST.

Even when considering the BEE3 revision, the fully functional BEE3 design was completed in 17 months

compared to 28 months required to design, build, and test FAST.

Unlike FAST, the BEE3 PCB prototype was a global project. The PCB layout and routing was done in

Shanghai. The simulation (static timing analysis and signal integrity analysis) and PCB fabrication and

assembly were done in Toronto. The design specification, design reviews, and related logistics were done

in California. In aggregate, the BEE3 prototype had 30 individuals contributing to the project and many of

the contributors were specialists with extensive knowledge of the CAD suite. In the case of FAST and

BEE2, these specialists were replaced by one or a few graduate students. As a result, the academic

projects produced more complex and less reliable PCBs (as demonstrated by the PCB layer count), longer

project time horizon, and graduate student casualties.

10

6 A New Model for Industry-Academic Collaboration
The BEE3 is an example of a new type of tightly coupled industrial and academic collaboration. In this

case, we have developed a system based on academic specifications and that is available to both academia

and industry. This is a dramatic change from providing research funding for a particular project or

providing supplement project support, e.g., silicon chip back-end process and/or fabrication support, and

has many benefits over the normal government or industrial funding process. First and foremost, the

industrial partner can leverage expertise that does not exist in or cannot be accessed from academia.

Second, in the case of BEE3, PCB design professionals produced a system in less time and with a lower

manufacturing cost than could be done by an academic institution using graduate students to design the

system. Graduate student designers must spend a great deal of time learning the complex CAD tools, an

activity with limited pedagogical value. Third, the BEE3 is available to both academics and industry

alike, in contrast to the FAST or BEE2 systems. The BEE3 project is unique in that it provides a research

platform for a wide variety of research domains that exist both in academia and industry. It is an example

of industry providing research support that is outside the normal support channels, but is a more efficient

use of resources with potentially much higher impact than an academic-only system. Finally, the BEE3

design was licensed, royalty free, to BEEcube Corporation [45], a company that produces, sells, services,

and enhances the BEE3 system.

This collaboration model also has it challenges. Not all projects are amenable to industry development.

There may be issues related to intellectual property and licensing. Feature creep and specification

deviation may also be a problem for projects that have long time horizons resulting in something that

neither industry nor academia want. In this case, we were able to work closely and effectively with

academia and other industry partners and this helped to guarantee a very favorable outcome. The BEE3

also benefits from a third party distribution mechanism that may be difficult to reproduce. Finally, it may

be difficult to define a project well enough from its onset that industry can provide an alternative

mechanism.

7 Conclusions & Future Work
The initial bring up and testing of the BEE3 system has been very successful. We have tested all of the

subsystems at or above target operating frequency and have found no problems. The complete production

BEE3 system in its 2U chassis is shown in Figure 5.

The delivery of the first production run of licensed BEE3 system took place in August 2008. The BEE3

system was completed faster and better than previous academic designed multi-FPGA systems. The result

is a system with better signal integrity and cheaper PCB manufacturing costs. Like all previous multi-

FPGA PCBs, the BEE3 system is nowhere near the initial $5,000 target PCB price, even if all the PCB

parts were free. It is also the case that the BEE3 will not replace software simulation in computer

architecture, but augment the research cycle with hardware either as a simulation accelerator, software

development platform, or a prototyping platform. This is a viable method to reintroduce hardware back

into the research cycle for a broader class of architectures and systems research. Finally, we have

presented a short survey of RAMP projects that demonstrate the fidelity spectrum and variety of usage

models for systems like BEE3. Depending on the target, BEE3 can provide a wide range of fidelity

without the performance impact that software simulation exhibits. BEE3 will not supplant software

simulators, but, with some software infrastructure building, BEE3 does provide a solution as a computer

architecture research platform for multicores and many cores. We have demonstrated this by building the

Beehive many-core system.

The BEE3 systems have several future directions inside and outside our research group. Focusing on

computer architecture, we plan on developing infrastructure to investigate transactional memory running

on real hardware, multiprocessor and memory research, as well as, operating system research enabled by

special purpose hardware. Using software defined processors, we are able to move up the stack into

software and implement interesting systems that were infeasible in a software simulator. As one can

11

imagine, there are several systems research areas to pursue as well. In those areas, we plan on mapping

the initial application accelerators and prototype research platforms to the BEE3 for evaluation.

Outside of our research group, the main initial target for the BEE3 is the RAMP consortium. This

collection of universities has many ongoing projects and our hope is that a vibrant community continues

to develop and share infrastructure to enable research and collaboration across university boundaries.

These research areas will be accelerated by a community sharing and supporting a common platform.

8 Acknowledgements
There were many people involved in this project that made it successful. On the academic side, the

RAMP consortium and in particular, the people at BWRC were very helpful. Celestica made the hardware

development easy with a distributed team in China and Canada. In total, over 30 people from Microsoft,

Celestica, and BEEcube were intimately involved in the design, manufacturing, and licensing of the

BEE3 system.

9 References
[1] D. W. Wall, “Limits of Instruction-Level Parallelism,” WRL Research Report 93/6, Digital Western Research

Laboratory, Palo Alto, CA, 1993

[2] D. Matzke, “Will Physical Scalibility Sabotage Performance Gain?,” IEEE Computer Magazine, September

1997, page(s) 84-88

[3] J. D. Davis, J. Laudon, K. Olukotun, “Maximizing CMT Througput with Mediocre Cores,” In Proceedings of

the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT), Sept. 2005

[4] R. Kumar, D. Tullsen, et al., “Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload

Performance,” The 31st International Symposium on Computer Architecture (ISCA-31), June 2004.

[5] L. Hammond, B. Hubbert, et al., “The Stanford Hydra CMP,” IEEE MICRO Magazine, March-April 2000.

Figure 5. Production BEE3 system.

12

[6] J. Huh, et al., “Exploring the Design Space of Future CMPs,” PACT, pp. 199-210, Sept. 2001.

[7] V. Krishnan and J. Torrellas, “A Chip Multiprocessor Architecture with Speculative Multithreading,” IEEE

Transactions on Computers, Special Issue on Multithreaded Architecture, September 1999

[8] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz, “Smart Memories: A Modular

Reconfigurable Architecture,” ISCA-27, June 2000.

[9] K. Sankaralingam, R. Nagarajan, et al., “Exploiting ILP, TLP, and DLP Using Polymorphism in the TRIPS

Architecture,” ISCA-30, pp. 422-433, June 2003

[10] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” ISCA-22, pp. 414–425, June 1995.

[11] J. Steffan and T. Mowry, “The Potential for Using Thread-Level Data Speculation to Facilitate Automatic

Parallelization,” Proceedings of the Fourth International Symposium on High-Performance Computer

Architecture (HPCA-4), February 2-4, 1998.

[12] T. Austin, E. Larson, and D. Ernst “SimpleScalar: An Infrastructure for Computer System Modeling,” IEEE

Computer Magazine, Feb. 2002, Page(s): 59 -67

[13] J. Emer, et. al., “Asim: A Performance Model Framework,” IEEE Computer Magazine, Feb. 2002, pp: 68-76

[14] C. J. Hughes, et al., “Rsim Simulating Shared-Memory Multiprocessors with ILP Processors,” IEEE Computer

Magazine, Feb. 2002, pp. 40-49

[15] P. Magnusson, M. Christensson, J. Eskilson, et al., “Simics: A Full System Simulation Platform,” IEEE

Computer Magazine, February 2002, pages 50-58

[16] M. Rosenblum, E. Bugnion, et al., “Using the SimOS Machine Simulator to Study Complex Computer

Systems,”ACM Transactions on Modeling and Computer Simulations, vol. 7, no. 1, pages 78-103, Jan. 1997

[17] Mentor Emulation Products, http://www.mentor.com/emulation

[18] Dini Group Product Brochure, http://www.dinigroup.com/files/dini_brochure.pdf

[19] HiTech Global FPGA Prototyping and evaluation boards, http://www.hitechglobal.com/Boards/allboards.htm

[20] Arvind, et al.; "RAMP: Research Accelerator for Multiple Processors - A Community Vision for a Shared

Experimental Parallel HW/SW Platform." 2005; Available from:

http://ramp.eecs.berkeley.edu/index.php?publications.

[21] C. Chang, J. Wawrzynek, and R. W. Brodersen. “BEE2: A Hig-End Reconifgurable Computing System.” IEEE

Des. Test, 2005. 22(2): p. 114-125.

[22] J. D. Davis, C. Fu, and J. Laudon, “The RASE (Rapid, Accurate Simulation Environment) for chip

multiprocessors.” SIGARCH Computer Architecture News, 2005. 33(4):p. 14-23.

[23] J. D. Davis, “FAST: A Flexible Architecture for Simulation and Testing of Multiprocessor and CMP Systems,”

Ph.D. Thesis in Electrical Engineering, 2006, Stanford University: Stanford, CA.

[24] Open source for hardware modules, http://www.opencores.org/

[25] Berkeley FPGA Repository, http://repository.eecs.berkeley.edu/

[26] C. Thacker, “DDR2 Controller for the BEE3,” http://research.microsoft.com/en-us/downloads/12e67e9a-f130-

4fd3-9bbd-f9e448cd6775

[27] Xilinx Virtex5 Datasheets, http://www.xilinx.com/support/documentation/virtex-5_data_sheets.htm

[28] MicroBlaze Processor Reference Guide; Available from:

http://www.xilinx.com/support/documentation/sw_manuals/edk92i_mb_ref_guide.pdf

[29] A. Krasnov, A. Schultz, J.Wawrzynek, G. Gibeling, and P. Droz, “RAMP Blue: A Message-Passing Manycore

System In FPGAs,” Proceedings of International Conference on Field Programmable Logic and Applications,

Amsterdam, The Netherlands, August 2007.

[30] N. Njoroge, et al., "Building and Using the ATLAS Transactional Memory System," in Proceedings of the

Workshop on Architecture Research using FPGA Platforms, held at HPCA-12. 2006.

[31] H. Angepat and D. Sunwoo and D. Chiou. “RAMP-White: An FPGA-Based Coherent Shared Memory Parallel

Computer Emulator.” 8th Annual Austin CAS Conference, March 2007.

[32] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai, “A complexity-effective architecture for

accelerating full-system multiprocessor simulations using FPGAs,” Proceedings of the 16th international

ACM/SIGDA symposium on Field programmable gate arrays, Monterey, California, 2008

[33] J. D. Davis, Z. Tan, F. Yu, and L. Zhang, “Designing an Efficient Hardware Implication Accelerator for SAT

Solving,” SAT 2008 , H. K. Büning and X. Zhao (eds.),LNCS,vol. 4996, pp.48-62

[34] R. Dimond,M. J. Flynn, O. Mencer, and O. Pell, “MAXware: Acceleration in HPC,” in Proceedings of

HotChips 20, August, 2008

[35] J. H. Ahn, W. J. Dally, et al., “Evaluating the Imagine Stream Architecture,” Proceedings of the 31st Annual

International Symposium on Computer Architecture, Munich, Germany, June 2004

http://cva.stanford.edu/people/gajh
http://csl.stanford.edu/~billd/
http://cva.stanford.edu/publications/2004/imagine-evaluation/

13

[36] K. Sankaralingam, R. Nagarajan, et al., “The Distributed Microarchitecture of the TRIPS Prototype Processor,"

39th International Symposium on Microarchitecture (MICRO), December, 2006

[37] J. W. Lockwood, N. McKeown, et. Al., “NetFPGA - An Open Platform for Gigabit-rate Network Switching and

Routing,” MSE 2007, San Diego, June 2007.

[38] C. Thacker, “Beehive,”

[39] L. A. Barroso, S. Iman, et al., “RPM: a rapid prototyping engine for multiprocessor systems,” IEEE Computer

Magazine, Feb. 1995, Page(s): 26 -34

[40] M. Dubois, J. Jeong Y. H. Song, A. Moga, “Rapid hardware prototyping on RPM-2,” IEEE Design & Test of

Computers, July-Sept. 1998, Page(s): 112-118

[41] E. Waingold, et. al., “Baring It All to Software: Raw Machines.” IEEE Compter, 30(8), pages80-93, September

1997, MIT/LCS Technical Report TR-709, March 1997.

[42] Agarwal, A., et al., "The MIT Alewife machine: architecture and performance," in Proceedings of the ISCA-22.

1995, ACM Press:

[43] Gibson, J., et al., "FLASH vs. (Simulated) FLASH: closing the simulation loop," in Proceedings of the ninth

international conference on Architectural support for programming languages and operating systems. 2000,

ACM Press: Cambridge, Massachusetts.

[44] Lenoski, D., et al., "The DASH prototype: implementation and performance," in Proceedings of the ISCA-19.

1992, ACM Press: Queensland, Australia.

[45] BEEcube Corporation, http://www.beecube.com/

http://www.cs.utexas.edu/users/cart/trips/publications/micro06_trips.pdf

