Tuning SoCs using the Dynamic Critical Path
	Hari Kannan†
	Mihai Budiu‡
	John D. Davis‡
	Girish Venkataramani*

	Stanford University†
	Microsoft Research, Silicon Valley‡
	Mathworks, Inc*.

MSR Technical Report MSR-TR-2009-44

[bookmark: PointTmp]Abstract
[bookmark: OLE_LINK3][bookmark: OLE_LINK4] (
Figure
1
: Using the critical path framework
.
)We propose using the Global Dynamic Critical Path to diagnose system-wide bottlenecks using representative benchmarks to direct embedded SoC optimizations. We provide real-world experience of implementing the global critical path (GCP) analysis framework on a Globally-Asynchronous Locally-Synchronous (GALS) SoC built around the LEON3 CPU. We perform our analysis at the RTL level and extend our evaluation to abstract RTL models. We use the power-delay product as the example cost function for optimization; we can adjust the power-delay by tuning the frequency of the clock domains of each SoC IP block. We show that the GCP optimization framework can accommodate other cost functions as well, while effectively directing SoC optimization efforts. Our case studies demonstrate that the GCP algorithm can converge quickly to solutions even in the very large (exponential) search spaces describing permissible SoC configurations, with no designer intervention (for instance, we find the solution of a 6-dimensional space with 19000 configurations in 11 steps). Even though our initial implementation relies on manual source code instrumentation, we only add 1% extra lines of code to the design. This represents annotating less than 0.2% of the ports of the overall Multi-processor SoC design.
Introduction
Silicon process technology scaling has enabled very high degrees of integration resulting in complex System-on-a-Chip (SoC) designs, spanning designs from complex Ship Multi-processors to highly integrated embedded systems. The SoC building blocks -- Intellectual Property (IP) blocks -- used by a manufacturer may come from a variety of internal and external sources. Regardless of the SoC IP block source, the internal operation of modules and associated corner cases may not be well understood or transparent to the SoC designers. Furthermore, with the high degree of integration among IP blocks, and with the increasing amount of concurrent execution, understanding the interactions between various modules or blocks has become very difficult. SoC designers are forced to make educated guesses about the way the different modules impact each other’s performance. This is further complicated by third party vendors of IP blocks that do not provide source code access for their modules. All of these factors make performance analysis of SoCs or Multi-Processor SoCs (MPSoCs) extremely difficult.
Recent work has established dynamic critical path (or global critical path, GCP) analysis [7][13] as a powerful tool for understanding and optimizing the dynamic performance profile of highly concurrent hardware/software systems. The GCP provides valuable insight into the control-path behavior of complete systems, and helps identify bottlenecks. The GCP tracks the chaining of transitions of the key control signals and identifies the modules or IP blocks that contribute significantly to the end-to-end computation delay.
In this paper, we propose using the GCP to identify and remove system-wide bottlenecks in MPSoCs. Using this knowledge, designers can better direct their optimizations: to boost the performance of underperforming modules, lower power consumption, reduce excessive resources, etc. In the absence of such a tool, designers are often forced to simulate many combinations of the various configurations [4], in order to arrive at an optimal design. The overall system architecture that we propose is depicted in Figure 1.
RTL simulation is commonly used in conjunction with software simulation to verify and validate large system design and for initial software development [5]. We start our investigation of the GCP analysis at the RTL level, which provides a completely accurate system evaluation or ground truth. We also investigate the impact of reduced simulation fidelity, by approximating RTL modules with black-boxes, and we evaluate the impact of the approximations on the accuracy of the GCP computation. While there has been a lot of work on using the GCP at higher abstraction levels (e.g. software simulation, network protocols), we are not aware of any study that attempted to quantify the errors introduced by using approximations. If these errors are small, the use of approximate models (which can be simulated much faster) is justified.
Alternative SoC optimization techniques based on numerical design optimization, such as simulated annealing [8], or evolutionary algorithms [6] require significant simulation time, especially for large designs. This problem is exacerbated by the lack of intuition related to unfamiliar or misunderstood IP blocks, and by the extremely large search space, exponential in the number of IP blocks. Knowledge of the GCP allows designers to perform a directed search, and to reach optimal configurations quickly, significantly speeding up development time. The GCP framework can be used in conjunction with a variety of cost functions to guide the SoC optimization.
The GCP framework is ideal for SoC and MPSoC designs because such systems tend to be designed for a narrow range of applications. As a result, the software running on these systems is well defined and not general purpose. The dynamic critical path analysis is only effective if the benchmarks or applications used to drive the GCP framework are representative of the actual workload.
We evaluate the effectiveness of the GCP technique using a system based on the open-source LEON3 SoC design [9]. We have modified the RTL of this design to log control signal transitions, which are used to compute the GCP. Additionally, we have added different modules (in separate clock domains) to the SoC design in order to emulate a more complex SoC composed from a variety of IP blocks.
Our experiments show that the GCP provides good feedback to designers by correctly identifying system-wide bottlenecks. Because we apply the critical path analysis to the RTL design, we have the flexibility of examining the critical path at a variety of levels: within the modules, at the module interfaces, or higher. Some designers operate on abstracted views of the design such as electronic-system-level (ESL) models, or transaction-level models [8]. These designs however are written concurrently with the actual hardware specification, and are not derived from the underlying RTL. Divergence from the actual design and the imperfect modeling of critical transitions can decrease the fidelity of the results computed using these other GCP techniques using higher abstraction levels.
Using the GCP also helps the designers to efficiently explore the search space for configuration parameters, arriving at optimal or near-optimal[footnoteRef:2] configurations much faster than exhaustive searches. Using a power-delay product as the exemplar cost function, our algorithm efficiently discovers the optimal combination of parameters for the IP blocks that constitute the SoC design. [2: We have verified optimality on small designs by exhaustive simulation; optimality cannot be ascertained for designs with very large configuration spaces, since a search for the optimum is intractable.]

The specific contributions of this work are:
· We advocate the use of the GCP as a tool to guide designers and direct their optimizations to remove system level bottlenecks. We prove the utility of the GCP for automatically directing optimizations to find optimal SoC configurations (our search of 19200 configurations converges in at most 11 steps).
· We discuss how the GCP can be used to guide the parameter space search for various cost functions; these functions incorporate trade-offs between circuit performance and other resources (power, area, design complexity, etc.).
· We share real-world experience of incorporating the GCP at the RTL level in a SoC framework consisting of both blocking and non-blocking modules, interacting concurrently.
· We use a bottom-up approach and investigate the trade-off between increasing the level of abstraction and GCP accuracy. We develop the use of GCP for a mixed-IP block design approach that incorporates both fully defined IP blocks and black boxes (IP blocks without source).
To the best of our knowledge, this is the first work that uses GCP at the RTL level for an entire SoC design that consists of synchronous hardware components in multiple clock domains.
The rest of the paper is organized as follows: Section 2 provides background on GCP and discusses related work. In Section 3, we discuss specific issues when implementing the GCP tool for an SoC. Section 4 provides details about our evaluation system while Section 5 provides the evaluation. Section 6 concludes.
Global Critical Path Definition
The formal definition of the Critical Path in operations research is “the longest path in a weighted acyclic graph.” An informal notion of critical path has been used for a long time at various levels of system views, including asynchronous circuits [3], modeled as Petri nets [14] and synchronous circuits [7][11], as well as software modules [12], network protocols [1] and multi-tier web services. A formal definition of the critical path can be found in [13]. The critical path is also related to critical cycles in pipelined processors [2].
The GCP should not be confused with the traditional notion of static critical path in synchronous circuits, which is defined to be the longest of the possible signal propagation delays between two clocked latches. The dynamic GCP is more related to the concept of instructions per cycle (IPC) for processors, since it is dependent on a particular workload running on the system (which is why the path is called “dynamic”).

[bookmark: _Ref207812036]Figure 2: The Global Critical path is the longest chain of events in the timed graph.
Modeling a hardware circuit as a graph, the nodes in the graph are functional units and the edges are signals, shown in the rounded box in Figure 2. To define the GCP, we have to consider an execution of the circuit, for a particular input; then we “unroll” the execution of the circuit. The unrolled circuit (called a timed graph) contains a replica of the entire circuit for each relevant time moment; an example is shown in Figure 2. The edges of the timed graph are signal transitions[footnoteRef:3]: an edge between (f1, t1) and (f2, t3) represents a signal leaving functional unit f1 at time t1 and reaching f2 at time t3. Edges from a functional unit to itself such as (f2, t1) to (f2, t2) represent computation delay. The timed graph is an acyclic graph (for all edges, the end time is larger than the start time); the longest chain of events in the timed graph is the GCP. Normally only control signals need to be considered as parts of the GCP, because data signals transitions do not influence the timing of outputs[footnoteRef:4]. [3: The edges of the timed graph are not the signals themselves, but the signal transitions.] [4: In some cases data signals do influence the control transitions, and these cases can be accommodated by our methodology.]

Applying GCP to SoCs
GCP is easy to compute for asynchronous circuits because all signal transitions are explicit. Applying GCP to synchronous circuits presents many challenges that we address in this section. In particular, we discuss how GCP can be applied in practice for analyzing SoC designs with the added complexity of multiple clock domains.
3.1 Computing the GCP
The key idea for computing the GCP over all the modules is to track dependencies between control signals. We rely on an algorithm proposed in [7] for computing the GCP. For each module, we track the input and dependent output transitions. Whenever an output signal makes a transition (i.e., the module produces a new output value), we must be able to attribute it to a previous input transition, which triggered the computation. We only consider the last arrival input that caused this output (an output may depend on multiple inputs). Even if we track these dependencies at runtime for each module in isolation, we can construct the GCP by stitching the local transitions, starting with the last transition of the system, and going back to the last arrival input which caused that transition. Recursively, this last arrival input becomes the last transition, and the algorithm is repeated until the start state is reached. This chain of edges is the GCP.
The GCP is usually a large data structure, so we represent the GCP compactly as an edge histogram: for each signal of the circuit we count how many times its transition appears on the critical path. A signal with a high count is more critical than one with a low count.
3.2 GCP Accuracy
As noted in Section 2, the GCP can be computed at various levels of the system, from actual hardware to high-level simulations. We are interested in understanding the loss of fidelity that can occur by using approximate RTL models of the hardware. The GCP computed using the lowest levels is the ground truth GCP; the GCP computed using abstracted models is just an approximation.
Given our definition of the GCP, there are three requirements for a model to produce an accurate estimate of the GCP: (1) it must model all concurrent hardware blocks, (2) for each hardware block, it must model the correct dependencies between input and output control signals, and (3) it must model transaction interleaving in the correct order (e.g., the arrival of two input signals should not be swapped).
We choose to compute the GCP at the RTL level because we regard it as the closest approximation[footnoteRef:5] to the actual hardware where no fidelity is lost. The GCP can be applied at other layers of abstraction of the system such as transaction-level models (TLMs), if they accurately represent the hardware. TLMs are a higher abstraction used in the design of integrated circuits [8]. Currently, however, their use is mainly in RTL validation. These models are usually not derived from the RTL specification, but are hand-written to verify the RTL [8]. The final goal of this research (in progress) is to understand how to build high-level models which do not lose precision in the computation of the GCP, and how to use these models for system optimization. [5: RTL simulation cannot account for non-determinism and is an approximation of the real hardware.]

3.3 GCP for Synchronous Circuits
Unfortunately, applying this methodology to synchronous RTL-level circuits is not entirely straightforward. Surprisingly, the GCP is very easy to build for handshake-based asynchronous circuits, because all signal transitions are explicit – and the critical path is composed of signal transitions. In clocked circuits some signal transitions are implicit. This section details some of the problems that we faced and the solutions we employed.
Dependencies in FSMs: For a complex digital system, even in the presence of full RTL description, it is not always obvious what the input--output dependencies are. When an FSM transitions to a state that outputs a signal, it is unclear which of the previous inputs caused the output.
We solve this problem by tracking backwards dependencies through state transitions. If the FSM contains no ε-transitions (state transitions that are not triggered by inputs), then the previous input is the cause. If there are ε-transitions, we move backward through these transitions until we see a transition caused by an external input.
Don’t cares in control logic: Another issue is related to some control signals being computed using combinational logic; in such cases inputs that generate control signals may actually be don’t cares. We ignore the “don’t care” issue in our current implementation, and assume true dependences in such cases. Resolving don’t cares is the subject of future work.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Concurrent events: Multiple input control signals of a single module can transition in the same cycle and multiple choices for the last arrival input are possible (this issue does not occur in asynchronous circuits); if a waveform is available, the last signal to stabilize can be chosen. Simulation ties can be broken randomly, or by selecting control signals in a round-robin manner.
Implicit signal transitions: In synchronous systems a signal may not change its values between two clock cycles, but it may still imply a pair of logical transitions (down and up). Consider a pair of modules using a common clock, in a producer-consumer relation, connected with a pair of signals for handshaking: ready (producer => consumer) and stall (consumer => producer). In normal operation, the ready signal (an input to the consumer) is set every clock cycle; this however indicates the availability of a new resource (a data item) every cycle. The stall signal is an input to the producer; as long as the stall is set, the producer cannot compute. Thus the lack of transition on the stall indicates the absence of the same unique resource. No changes of the signal values are observed in either case, but the meanings are quite different. Designer knowledge is required to solve this problem.
Asynchronous-like handshaking: Synchronous systems such as pipelined processors do not have explicit request and acknowledge signals between communicating modules. (Instead, a synchronous processor pipeline usually has “stall” signals.) The asynchronous ack signal (which is really the logical equivalent of the complement of the stall) can be the last arrival input for a module, so modeling it is very important. For this purpose, we augment the synchronous circuit with “virtual” ack signals, going from consumers to producers. The virtual ack signal is logically And-ed with the actual stall signal. In our implementation, if all the inputs of a module are available, we break ties by assuming that the virtual ack signal is the last arrival input.
Pure sources and sinks: Consider the register file in a simple pipelined processor (i.e., in the absence of register renaming). One control input to the register file is a write enable. This kind of register file never has a reason to stall a write request. Thus, in the circuit graph, it is a pure sink (there are only incoming control signals for the write port). A symmetric situation occurs with a pure source (e.g., a DMA module controlled by the Ethernet interface). Computing the GCP requires the circuit graph to be strongly connected[footnoteRef:6]. Adding virtual ack signals to pure sources and sinks solves this problem, making the graph strongly connected. [6: Sinks that cannot stall can never be reached by going backwards over a control edge, so they can never be on the critical path. Sources can cause the path construction algorithm to get “stuck”, since they have no in-edges.]

Signals with fanout: A signal such as a pipeline stall has a large fanout. Such a signal should be treated as multiple independent point-to-point signals that happen to have the same value and transition at the same time. The reason is that the stall signal may be the last arrival input for some pipeline stages, but not for others.
Modules with multiple outputs: If a module computes multiple outputs, it should be treated by the GCP-building algorithm as multiple modules, each with a single output. The reason is that each output may have distinct dependencies. Examples include caches, which interface with both the pipeline and with the bus.
3.4 GCP in an MPSoC
Interestingly, the GCP provides greater insight when analyzing systems with a high degree of concurrency: these designs have complex interactions that are hard to understand. To make an analogy, this is similar to diagnosing the impact of cache misses on performance; if several overlapping misses are being serviced at each moment, it is hard to tell which misses cause the overall slowdown. GCP is a very effective tool for diagnosing problems in MPSoCs composed of multiple concurrent IP blocks or cores, since the GCP diagnoses the actual delays that impact end-to-end performance.
Our methodology for computing the GCP requires low-level instrumentation of all the control signals of all modules involved. It may not be possible to instrument internal control signals of third-party modules incorporated in SoCs because source code may not be available or may be encrypted. Additionally, modifying the modules to log critical signals, manually or automatically, often requires a thorough understanding of the module’s behavior. A solution to this problem is to create an abstraction of the module instances and treat modules as black boxes. The designer needs to only identify the control signals in the module’s interface. Based on the transitions of these signals, the GCP analysis provides hints about the module as a whole being on the system’s critical path. Paths internal to the module are obfuscated from the GCP analysis. This solution reduces instrumentation effort and simultaneously allows the use of third-party netlists. We investigate whether the lack of knowledge of internal structure of a module can cause incorrect computations of the GCP in Section 5.3.
Future work includes investigating whether the use of split-transactions in SoCs (which requires inter-chip protocols to use transaction tags in requests and responses), can be used to infer input-to-output control signal dependencies without requiring detailed models of module internals.
[bookmark: _Ref208314941]Evaluation System
In this section, we describe the system we used in our experiments. In order to keep our evaluation tractable, we started with a simple and well-understood system which models an SoC composed of up to 6 modules that can be independently optimized, each of them in a separate clock domain. Our system is built around GRLIB, the Gaisler Research IP Library that consists of SoC components interacting with the LEON3 SPARC V8 processor, a 32-bit open-source synthesizable CPU [9]. LEON3 uses a single-issue, 7-stage pipeline: Fetch, Decode, Register Access, Execute, Memory, Exception and Writeback. The processor has separate instruction and data caches. The data cache follows a write-through, and no-write-allocate-on miss-policy. The LEON3 communicates with DRAM, and other IP cores devices via a shared AMBA system bus.
4.1 VHDL-level Instrumentation
We modified the VHDL source code of the LEON3 design to log the transitions of control signals. The LEON3 processor was originally implemented using a single VHDL process, which required all stages of the pipeline to be updated simultaneously. In order to segregate the control signals at the granularity of pipeline stages, we split the process construct into seven VHDL processes, one per pipeline stage. This allowed us to track control signals that originated within the pipeline and affected other stages. Along the lines of the discussion in Section 3.2, we added request (req) and acknowledge (ack) signals between adjacent pipeline stages[footnoteRef:7]. When a pipeline stage is ready to send data to the succeeding stage, it asserts the req signal (same as the write enable signal of the latch register). The ack signal is asserted when the following stage is ready to operate on the data. Overall, we annotated less than 0.2% of the signals in the SoC. Our annotated code increased the system’s line count by 1%. [7: These signals do not change the functionality of the pipeline.]

[bookmark: _Ref207694578][bookmark: _Ref207694569] (
Figure
3
:
E
valuation system
 with six clock domains.
)Our system under test was designed to mirror the composition of a contemporary small, embedded MPSoC. The system is composed of two processors, (one of which has an attached coprocessor), a DMA engine, a DRAM interface and a shared system bus. Figure 3 shows a high-level overview of our system architecture. The coprocessor is a 4-stage pipeline that performs Dynamic Information Flow Tracking (DIFT) on the instruction stream executed by the main processor [9],for security purposes. To explore the impact of a large configuration space, we added support for multiple clock domains (CD). Each component, including the bus, is in a separate CD – i.e., the frequency of each CD can be adjusted independently. This was accomplished by adding asynchronous queues between the various modules and the system bus, not shown in Figure 3.
SoCs contain third party IP blocks for which designers do not have access to source code. We emulate this case by treating the coprocessor and DMA engine as black boxes. We restrict logging control signal transitions for these IP blocks to just the interfaces provided by these blocks, thus reducing instrumentation effort, but potentially sacrificing fidelity.
Experimental evaluation
We perform cycle-accurate behavioral simulation of the design’s RTL using ModelSim 6.3 (structural simulation of the system can be used as well; according to the discussion in Section 3.2, it should produce identical results). Logging all control signals in our system did not increase the simulation time.
SoC designers impose design performance constraints that can be specified by cost functions such as power-delay, area-delay, etc. Cost functions typically include factors such as performance coupled with chip power, area, or other metrics. For the purposes of this evaluation, we define our cost function to be the power-delay product (PD), summed over all the components in the SoC[footnoteRef:8]: [8: In section 5.1 we discuss how alternative cost metrics can be accommodated.]

PD = Power x Delay = ∑(CiVi2fi) x (Execution Time)[footnoteRef:9] [9: C is the capacitance, V is the voltage and f the frequency of each system component i.]

We report normalized power-delay results with respect to the initial configuration. In all of our experiments, we execute a small synthetic benchmark on the processors. The main processor executes an integer benchmark, while the second processor executes an I/O benchmark. The two processors run concurrently, and compete with each other for resources, such as the shared system bus. The coprocessor inspects the instruction stream committed by the main processor, and checks for security flaws. While our benchmarks are small (hundreds of thousands of cycles), our methodology can be easily extrapolated to more complex workloads.
5.1 Search Space Exploration
In order to assess the effectiveness of the GCP method for quickly discovering high-quality configurations, we first performed an exhaustive search of the parameter space for 3 independent parameters: the clock frequencies of the second CPU, the coprocessor, and DRAM. (The clock frequency of the main CPU is held constant; frequencies are changed in increments of 5MHz). We constrain system performance to be above a minimum threshold; an execution longer than the threshold is unacceptable and not shown in the surfaces in Figure 4. This makes the search space have an irregular shape. The colors in Figure 4 show the Power-Delay (PD) values for all possible legal combinations, where red is high PD (bad) and blue is low PD (good).
The search proceeds by choosing one of two kinds of moves: (1) increase system performance, by speeding up a module on the critical path, or (2) decrease system power, by slowing down a module outside of the critical path. Note that, while we only modify clock frequencies of components in these experiments, we could choose other moves which impact the cost function, such as capacitance, voltage, even arbiter priorities and cache sizes.
Computing these results required a large number of simulations (more than 130) even when exploring just three degrees of freedom. We used the exhaustive search as the “ground truth” for finding the optimal. The GCP-based directed search uses a much reduced number of simulation points in the search space while improving the optimization criterion, PD. This directed search is completely automatic, and does not require any human intervention. The directed search converges very rapidly when the optimization algorithm makes monotonic moves in the cost function space.
[image:]
Figure 4: Complete search space for 4-module system when varying the frequency of the 2nd CPU, coprocessor and DRAM. The four surfaces correspond to the four legal values of the 2nd processor’s frequency. The colored arrows show the directed search followed by using the GCP from 4 initial random points.
[bookmark: _Ref207814904]The thick arrows in Figure 4 show the results of this directed search overlaid on the exhaustive search space. We show four searches, starting from four random points (different colors), which rapidly converge to the optimal configuration. In our experiments, the longest search took only 5 simulation steps.
These results are applicable for other optimization functions that combine system performance (delay) with other metrics (e.g., area, design time, reliability, etc). The algorithm requires a set of parameters that can be changed for each module and knowledge of their impact on the optimization metrics. The current algorithm always improves the performance of modules on the critical path, and decreases the cost of modules outside of the path. More sophisticated algorithms can be formulated and used in this framework.
5.2 Higher Dimension Search Space
While it may be possible to perform an exhaustive search of all the allowable configurations for a small number of components, this approach quickly becomes intractable for a larger number of modules. By making all 6 IP blocks in our system configurable (ten possible configurations for the main CPU, four for the DMA engine, and three for the system bus), the size of the search space grows from 160 to 19200. For such a large space, we cannot exhaustively compute the optimal configuration. This issue is even more acute for real systems, which can have tens or hundreds of degrees of freedom. In Figure 5, we show the results of the directed search for the large search space, which converges to a minimal PD configuration in just 11 steps. This is the longest run out of multiple simulations performed.

Figure 5: Directed search in a 6-dimensional space.
5.3 Abstracting Away Module Information
Using our SoC infrastructure, we obtained the critical path when the main CPU was treated as a black box, and compared it with the path obtained with knowledge of the internal CPU structure. The critical path analysis thus, merely observed the transitions on the inputs to, and outputs from the CPU. We found that both analyses ranked the same edges in the histogram to be critical. There was a slight difference of 3% in the number of transitions seen between the abstracted and non-abstracted case.
On further investigation, we found that this difference was due to the non-blocking stores issued by the main processor that hit in its data cache. LEON3 has a write-through data cache that follows a no-allocate-on-miss policy. All stores must be written to main memory in order to maintain consistency. With an abstracted view, we merely see all memory requests from the processor, but not the context they are issued under. Thus, even though the processor does not stall (waiting for DRAM to reply for such stores), the GCP algorithm places these stores on the critical path (in other words, as discussed in Section 3.2, we are missing some of the dependencies between inputs and outputs for the black-box module). In the non-abstracted view, these stores are not considered critical because the processor does not stall. The difference in the critical path is proportional to the percentage of non-blocking requests. Modules that have few non-blocking requests, or that allow the algorithm to infer the dependent input-output pairs will provide accurate critical path results in the abstracted view.
Thus, even when approximated, the critical path analysis can still provide useful hints for optimizing systems with black-box IP blocks. This is a viable technique, depending both on the design’s characteristics, and the designer’s tolerance to loss of fidelity. This shows promise for abstracting low-level detail in IP blocks resulting in less logging overhead, and closed-source IP block compatibility.
Conclusions
We presented the case for using dynamic global critical path analysis for diagnosing and optimizing performance problems in SoC and MPSoC systems where the designer may not understand complex system interactions. Adding instrumentation to source code to track GCP required knowledge of the system and fluency in VHDL. However, we demonstrated that abstracted modules (black box IP blocks) with user-supplied context can provide close approximations to the GCP. By using publicly available IP blocks, we have developed an MPSoC and optimized it for power-delay using the GCP framework.
Our model MPSoC consisted of GALS components. We showed that a directed search algorithm based on the GCP provides optimal configurations in a few steps (11 out of 19200 possibilities). We successfully applied this technique to SoC designs with 3-6 degrees of freedom. Our implementation required manual VHDL instrumentation of less than 0.2% of the module signals or about 1% more lines of instrumentation code and added immeasurable overhead to the simulation time. By abstracting RTL modules, the absolute difference of the GCP analysis was only 3% different compared to complete GCP using the low-level GCP analysis. The overall GCP ranking of module criticality was unchanged using the abstracted or black-box RTL modules and the PD optimal design search results were the same.
In future work, we would like to automatically infer control signals from the HDL and generate the resulting instrumentation code to reduce designer effort. We would also like to investigate generation of accurate abstract SoC models, which will speed up simulation for real, commercial MPSoCs or SoCs. Finally, we would like to apply the GCP to larger SoC and MPSoC systems.
References
[1] [bookmark: _Ref208190123][bookmark: _Ref208190047][bookmark: _Ref208189465]P. Barford and M. Crovella, “Critical Path Analysis of TCP transactions”, in the Proceedings of IEEE Transactions on Networking, 2001
[2] [bookmark: _Ref208189495]E. Borch, E. Tune et al., “Loose loops sink Chips”, in the Proceedings of the Eighth International Symposium on High-Performance Computer Architecture, Boston, MA, Feb 2002
[3] [bookmark: _Ref208189400]S. M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis, California Institute of Technology, 1991
[4] [bookmark: _Ref208292161][bookmark: _Ref208189299]J. D. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP Throughput with Mediocre Cores”, in the Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques, St. Louis, MO, Sep 2005
[5] [bookmark: _Ref216005088][bookmark: _Ref208310307]J. D. Davis, C. Fu, and J. Laudon, “The RASE (Rapid, Accurate Simulation Environment) for Chip Multiprocessors”, in Computer Architecture News, Vol. 33, Nov 2005
[6] [bookmark: _Ref216006864][bookmark: _Ref208292136]T. Eeckelaert, T. McConaghy, and G. Gielen, “Efficient Multiobjective Synthesis of Analog Circuits using Hierarchical Pareto-Optimal Performance”, in the Proceedings of the Design, Test and Automation in Europe Conference, Munich, Germany. March 2005
[7] [bookmark: _Ref208311029]B. Fields, S. Rubin et al., “Focusing processor policies via critical-path prediction”, in the Proceedings of the 28th International Symposium on Computer Architecture, Goteborg, Sweden, Jun 2001
[8] [bookmark: _Ref216005110][bookmark: _Ref208310298]F. Ghenassia (ed), “Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embedded Systems”, Springer, 2005
[9] [bookmark: _Ref228162392][bookmark: _Ref208189372]H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling Dynamic Information Flow Tracking with a Dedicated Coprocessor”, in the Proceedings of the 39th International Conference on Dependable Systems and Networks, Estoril, Portugal, Jun 2009
[10] LEON3 SPARC Processor. http://www.gaisler.com.
[11] [bookmark: _Ref208189434]R. Nagarajan, X. Chen et al., “Critical Path Analysis of the TRIPS Architecture”, in the Proceedings of the International Symposium on Performance Analysis of Systems and Software. Austin, TX, Apr 2006
[12] [bookmark: _Ref208189452][bookmark: _Ref208292229]A. Saidi, N. Binkert et al., “Full-system critical path analysis”, in the Proceedings of the International Symposium on Performance Analysis of Systems and Software, Austin, TX, Apr 2008
[13] [bookmark: _Ref208292104]G. Venkataramani, M. Budiu et al., “Critical Path: A Tool for System-Level Timing Analysis”, in the Proceedings of the 44th Design Automation Conference, San Diego, CA, Jun 2007
[14] [bookmark: _Ref208292204]A. Xie, S. Kim et al, “Bounding average time separations of events in stochastic timed Petri nets with choice”, in the Proceedings of the 5th International Symposium on Advanced Research in Asynchronous Circuits and Systems, Apr 1999
image2.emf
f2

f1

f2

f1

f2

f1

f2

f1

t

0

t

1

t

2

t

3

Event: signal from (f1, t

1

) to (f2, t

3

)

Analyzed system

oleObject2.bin

image3.emf
DRAM

CD5

MAIN

PROCESSOR

CD1

COPROCESSOR

CD2

I$ D$

$

Decoupling

Queue

Instr

Enable

I$ D$

DMA

CD6

SYSTEM BUS CD3

SECOND

PROCESSOR

CD4

CD = Clock Domain

oleObject3.bin
DRAM
CD5

DMA
CD6

MAIN
PROCESSOR
CD1

COPROCESSOR
CD2

image4.jpeg
8

Directed Search Initial Configuration:

3 @

@

Power-Delay (normalized)
s 3

Coprocessor Freq (MHz)

24 CPU Freq (MHz)

image5.emf
Power

-

Delay

(normalized)

100

90

80

70

60

95

85

75

65

oleObject4.bin

image1.emf
M

e

m

C

t

r

l

m

P

m

P

D

M

A

C

o

-

m

P

M

e

m

C

t

r

l

Critical Path

Framework

m

P

D

M

A

Cost Function

S

o

C

I

P

B

l

o

c

k

s

C

o

-

m

P

RTL Annotations

O

p

t

i

m

i

z

e

d

S

o

C

oleObject1.bin
Critical Path Framework

mP

DMA

Co-mP

Mem Ctrl

Cost Function

SoC IP Blocks

RTL Annotations

mP

Mem Ctrl

DMA

Co-mP

mP

Optimized SoC

Tuning SoCs using the Dynamic Critical Path

Hari Kannan

†

Mihai Budiu

‡

John D. Davis

‡

Girish Venkataramani

*

Stanford University

†

Microsoft Research, Silicon Valley

‡

Mathworks, Inc

*

.

MSR Technical Report MSR

-

TR

-

2009

-

44

Abstract

We propose using the Global Dynamic Critical Path to

diagnose system

-

wide bottlenecks using representative

benchmarks to

direct embedded SoC optimizations. We

provide real

-

world experience of implementing the global

critical path (GCP) analysis framework on a Globally

-

Asynchronous Locally

-

Synchronous (GALS) SoC built

around the LEON3 CPU. We perform ou

r

analysis at the RTL

l

evel

and extend our evaluation to abstract RTL models

. We

use the power

-

delay product as the example cost function for

optimization; we can adjust the power

-

delay by tuning the

frequency of the clock domains of each SoC IP block

.

We

show that the GCP optim

ization framework can accommodate

other cost functions as well, while effectively directing SoC

optimization efforts. Our case studies demonstrate that the

GCP algorithm can converge quickly to solutions even in the

very large (exponential) search spaces d

escribing permissible

SoC configurations, with no designer intervention (for

instance

,

we find the solution of a 6

-

dimensional space with

19000 configurations in 11 steps). Even though our initial

implementation relies on manual source code instrumentation

,

we only add 1% extra lines of code to the design. This

represents annotating less than 0.2% of the ports of the overall

Multi

-

processor SoC design.

1.

I

NTRODUCTION

Silicon process technology scaling

has enabled

very

high

degrees of integration resulting i

n complex System

-

on

-

a

-

Chip

(SoC) designs

, spanning designs f

r

om complex Ship Multi

-

processors to highly integrated embedded systems

. The SoC

building blocks

--

Intellectual Property (IP) blocks

--

used by

a manufacturer

may

come from a variety of

internal

and

external

sources

. Regardless of the SoC IP block source, the

internal operation

of modules

and

associated

corner cases may

not be well understood

or transparent to the SoC designers

.

Furthermore, with

the

high degree of integration among IP

blocks

, and

with the increasing amount of concurrent

execution

, understanding the interactions between various

modules or blocks has become very difficult. SoC designers

are forced to make educated guesses about the way the

different modules impact each other

’

s perfo

rmance. This is

further complicated by third party vendors of IP blocks that

do not provide source code access for their modules. All

of

these

factors

make performance analysis of SoCs or Multi

-

Processor SoCs (MPSoCs) extremely difficult.

Recent work has established

dynamic

critical path

(or

global critical path, GCP)

analysis

[7]

[13]

as a powerful tool

for understanding

and optimizing

the dynamic performance

profile of

highly concurrent

hardware

/

software systems. The

GCP

provides valuable insight into the control

-

path behavior

of

complete

systems, and helps i

dentify bottlenecks.

The GCP

tracks the

chaining of

transition

s

of

the

key control signals

and identifies the modules or IP blocks that

contribute

significantly to the end

-

to

-

end computation delay

.

In this paper, we propose using

the GCP

to identify

and

remove

system

-

wide bottlenecks in MPSoCs. Using this

knowledge, designers can better direct their optimizations: to

boost the performance of underperforming modules,

lower

power consumption

,

reduce excessive resources

,

etc

. In the

absence of such a too

l, designers are

often

forced to simulate

many combinations of the various configurations

[4]

, in order

to arrive at

an

optimal design.

The overall system architec

ture

that we propose is depicted in

Figure 1

.

RTL simulation is commonly used in conjunction with

software simulation to verify and validate large system design

and for initial software development

[5]

. We start our

investigation of the GCP analysis at the RTL level, which

provides a completely accurate system evaluation or

ground

truth

.

We also investigate the impact of reduced simulation

fidelity, by approximating

RTL modules

with black

-

boxes,

and we evaluate the impact of the approximations on the

accuracy of the GCP computation.

While there has been a lot

of work on using the GCP at higher abstraction levels (e.g.

software simulation,

network protocols

), we are

n

ot

aware of

any

study that attempted to quantify the errors introduced by

using approximations. If these errors are small, the use of

approximate models (which can be simulated much faster) is

justified.

Alternative

SoC

optimization

techniques based on

numerical design optimization, such as simulated annealing

[8]

, or evolutionary algorithms

[6]

requ

ire significant

simulation time

, especially for large designs

.

This

problem

is

exacerbated by the lack of intuition

related to unfamiliar or

misunderstood IP blocks

,

and

by the

extremely large

search

space

,

exponential in the num

ber of IP blocks. Knowledge of

the

GCP

allows designers to perform a directed search, and

to

reach optimal configurations

quickly

, significantly speeding

up development time. Th

e

GCP

framework can

be

u

sed in

conjunction with

a variety of cost functions to

guide the

SoC

optimization

.

The GCP framework is ideal for SoC and MPSoC designs

because

such

system

s

tend to be

designed for a narrow range

of

application

s

. As a result, the software running on these

systems is well defined and

not

general purpose. The dynamic

critical path analysis is only effective if

the

benchmarks or

applications used to drive the GCP framework are

representative

of the actual workload

.

M

e

m

C

t

r

l

�

P

�

P

D

M

A

C

o

-

�

P

M

e

m

C

t

r

l

Critical Path

Framework

�

P

D

M

A

Cost Function

S

o

C

I

P

B

l

o

c

k

s

C

o

-

�

P

RTL Annotations

O

p

t

i

m

i

z

e

d

S

o

C

Figure

1

: Using the critical path framework

.

