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ABSTRACT 

 

In this paper, we describe CALM, a method for building 

statistical language models for the Web. CALM addresses 

several unique challenges dealing with the Web contents. 

First, CALM does not rely on the whole corpus to be availa-

ble to build the language model. Instead, we design CALM 

to progressively adapt itself as Web chunks are made avail-

able by the crawler. Second, given the dynamic and dramat-

ic changes in the Web contents, CALM is designed to 

quickly enrich its lexicon and N-grams as new vocabulary 

and phrases are discovered. To reduce the amount of heuris-

tics and human interventions typically needed for model 

adaptation, we derive an information theoretical formula for 

CALM to facilitate the optimal adaptation in the maximum 

a posteriori (MAP) sense. Testing against a collection of 

Web chunks where new vocabulary and phrases are domi-

nant, we show CALM can achieve comparable and satisfac-

tory model measured in perplexity. We also show CALM is 

robust against over training and the initial condition, sug-

gesting that any assumptions made in obtaining the initial 

model can gradually see their impacts diminished as CALM 

runs its full course and adapt to more data. 

Index Terms— N-gram, Statistical language model, 

MAP adaptation, CALM, Web applications 

 

1. INTRODUCTION 

 

Ever since appearing in Shannon’s original work on infor-

mation theory [1], statistical language models (SLM), often 

in the form of N-grams, have successfully found many natu-

ral language applications, ranging from unsupervised lin-

guistic unit acquisition, speech recognition, information 

retrieval, to more recently machine translation [2]. All these 

applications share an amazing characteristic that the SLM 

takes little advantage of the fact that what is being modeled 

is a human language. The impoverished use of linguistic 

knowledge seems largely compensated by the large amount 

of training data and rigorous statistical techniques. Over the 

decades, many of these techniques have been widely vali-

dated and made available as freely available software tool-

kits [3, 4, 5].  

The massive data available on the Web make it an en-

ticing source for building large scale SLMs. The sheer size 

of the Web, however, also poses new challenges that have 

reinvigorated a close look at the well accepted modeling 

techniques and engineering strategies. Researchers, for ex-

ample, recently proposed an approach called Stupid Backoff 

that is tailored to Google Inc.’s Map-Reduce infrastructure 

[6]. Recognizing that faithfully implementing conventional 

smoothing methods [7] is a taxing feat, the designers made a 

radical design choice in forgoing the basic probabilistic 

properties that all the probabilities of possible events must 

sum up to 1. By adopting a “probability-like” scoring me-

chanism, Stupid Backoff uses a single backoff weight whose 

value is determined manually. Stupid Backoff is technically 

no longer a statistical model for which various useful prop-

erties are applicable. Nevertheless, it is reported that such a 

tradeoff enables Stupid Backoff to scale up to a size 60 

times larger than otherwise possible [7].  

In contrast, MSRLM [8] achieves large scale capability 

by introducing an ingenious data structure to store N-gram 

in backorder trees. The new data structure, similar to those 

employed in [5], enables MSRLM to contain the memory 

use and provides an efficient way in computing backoff. As 

a result, MSRLM can implement widely known algorithms. 

Models based on either Stupid Backoff or MSRLM have 

yielded respectable outcomes in NIST MT evaluations. 

In this paper, we describe a technique called constantly 

adaptive language modeling (CALM) for building SLMs. 

Although CALM can be applied to unified language model 

[9] as well, we focus our discussion on N-grams in this pa-

per. Our applications, mostly aiming at Web search related 

tasks, are different from speech recognition or machine 

translation such that issues deemed minor in these applica-

tions become more prominent and impactful to ours. Specif-

ically, the issues CALM is designed to address include the 

following. First, our applications need to rely on a properly 

normalized scoring mechanism to compare various hypo-

theses, for which probabilistic measures remain an ideal 

choice and “probability-like” scoring is just not sufficient. 

Secondly, many of our applications need to be able to quick-

ly reflect the dynamic changes on the Web. As a result, our 

method needs to be able to keep our SLM as fresh as possi-

ble. Third, typically the Web documents are not available to 



us all at once. Instead, they often arrive in chunks based on 

the Web crawler’s schedule. Accordingly, smoothing tech-

niques that require the raw statistics of the entire corpus to 

be available, as in MSRLM for example, no longer apply. 

Finally, the Web documents are very noisy and often full of 

ill-formed contents. Techniques that use held-out data to 

fine tune parameters are therefore not robust as they are very 

sensitive to the quality of the held-out data. In many dep-

loyments, we have found that parameters fine-tuned in a lab 

environment can lead to very brittle outcomes in deploy-

ments because data from the field are drastically different 

from the lab data. CALM is designed to avoid as much as 

possible any empirical heuristics that may appear engineer-

ing appealing but eventually hurt the application perfor-

mance. 

 

2. ITERATIVE A POSTERIORI ADAPTATION 

 

The central idea of CALM is to constantly adapt the SLM 

whenever a new Web data chunk becomes available using 

maximum a posteriori (MAP) adaptation, a technique that 

has been widely studied [10-13]. Because CALM is building 

the SLM without seeing the entire corpus, we first address 

how CALM assimilates new vocabulary and N-grams in this 

section. Also, a critical issue in MAP adaptation is how to 

determine the prior probability for adaptation. A key contri-

bution of CALM is to propose a formula to acquire this 

prior easily. 

 

2.1. Annexation of new vocabulary and N-grams 

 

Let 𝑃(𝑖) 𝑤 ℎ  denote a smoothed model at time i for a given 

history h. When a new data chunk is available, CALM up-

dates the smoothed model using 

 

𝑃 𝑖+1  𝑤 ℎ = 𝜋(𝑖)𝑃(𝑖) 𝑤 ℎ + (1 −  𝜋(𝑖))𝑃𝑀𝐿
(𝑖)

(𝑤|ℎ)   (1) 

 

Here, 𝑃𝑀𝐿
 𝑖  𝑤 ℎ  denotes the maximum likelihood (ML) es-

timation purely based on the raw counts of the new data 

chunk at time i. 𝑃𝑀𝐿
 𝑖  𝑤 ℎ  is therefore not a smoothed mod-

el but nevertheless contains all the information in the data 

chunk, including the statistics of the new vocabulary (spe-

cial case of N-grams where N=1) and phrases that are ab-

sorbed into the adapted model in the manner of (1). In our 

implementation, CALM stores N-gram probabilities in a 

large hash table that allows efficient additions of new voca-

bulary and N-grams. Note that we do not employ conven-

tional cutoff and discount strategies in CALM. To ensure 

the quality of parameter estimation and manageable model 

size, CALM uses a compression algorithm (Sec. 2.3) that 

can be incorporated into the iterations described by (1). We 

note that the interpolation technique is actually a mixture 

distribution concept as expanding the recursion in (1) leads 

to 

𝑃 ∞  𝑤 ℎ =  (1 − 𝜋(𝑖))𝑃𝑀𝐿
(𝑖)

(𝑤|ℎ)∞
𝑖=−∞                (2) 

The choice of the mixture weights is MAP optimal if each 

mixture weight is the prior probability of the individual 

component 𝑃𝑀𝐿
 𝑖  𝑤 ℎ . A MAP optimal choice of 𝜋(𝑖) in (1) 

should therefore reflect how 𝑃(𝑖) 𝑤 ℎ  is close to the even-

tual model 𝑃 ∞  𝑤 ℎ , or how well 𝑃(𝑖) 𝑤 ℎ  can already 

predict the statistics of the new data. This insight underlies 

the CALM’s approach to the prior estimation. 

 

2.2. Prior estimation and Stirling’s approximation 

 

Let 𝑛𝑘  denotes the count of the k
th

 N-gram token (h, w), 

𝑀 =  𝑛𝑘  𝑘 be the total token counts in the data chunk, 

and 𝑝𝑘 = 𝑃 𝑖  𝑤 ℎ 𝑃 𝑖  ℎ  be the N-gram probability pre-

dicted by the smoothed model. Given the fundamental as-

sumption of N-gram is that non-overlapping tokens are sta-

tistically independent from one another, we can compute 

how well the smoothed model can already explain the data 

as 

Pr =
𝑀!

 𝑛𝑘 !𝑘

 𝑝𝑘
𝑛𝑘

𝑘

  

Applying Stirling’s approximation ln 𝑀! ≈ 𝑀 ln 𝑀 − 𝑀, 
one can show that 

ln Pr =  𝑛𝑘 ln
𝑝𝑘

𝑛𝑘 𝑀 𝑘
= 𝑀 

𝑛𝑘

𝑀
ln

𝑝𝑘

𝑛𝑘 𝑀 
𝑘

 

Since 𝑃𝑀𝐿
(𝑖) 𝑤 ℎ = 𝑛𝑘 𝑀,  we obtain 

 

ln Pr ≈ −𝑀𝐷𝐾𝐿(𝑃𝑀𝐿
 𝑖   𝑃(𝑖)  )                   (3) 

 

where 𝐷𝐾𝐿 𝑃 𝑄   denotes Kullback-Leibler (KL) divergence 

between the distributions P and Q. In terms of information 

theory, KL divergence describes the per-token differences of 

the information in the two distributions. A succinct way to 

interpret (3) is how well the smoothed model can account 

for the new data can be computed by how much new infor-

mation is discovered over all the M tokens in the newly ob-

served data. We note that the adaptation in (1) is conducted 

on a per-token basis while (3) computes the probability for 

all M statistically independent tokens. As a result, the per-

token interpolation weight can be obtained by 

 

ln 𝜋(𝑖) =
1

𝑀
ln Pr ≈ − 𝐷𝐾𝐿(𝑃𝑀𝐿

 𝑖   𝑃(𝑖)  )              (4) 

 

In the extreme case where 𝑃(𝑖) can fully predict the statistics 

of the new data, the KL divergence in (4) is 0 and 𝜋(𝑖) = 1, 

leading to the expected outcome that the model does not 

need to be updated.  

Since KL divergence is non-commutative, it is worth 

noting that (4) is evaluating how the model at hand is differ-

ent from the newly observed data, rather than how the data 

is different from the existing N-gram model. In other words, 

the prior estimated in (4) is indeed a posterior statistics. 

 

2.3 Model compression using tied N-grams 



Engineering realities dictate that a model’s complexity has 

to be regulated with practical concerns and principled ap-

proaches, even though (1) appears to suggest CALM can 

grow the model indefinitely. Conventional approaches 

[3,4,7] typically control the model size by excluding N-

grams from the model that, in our experience, can lead to 

undesirable results (Sec. 1). To compress the model, CALM 

uses a source coding approach in which similar N-grams are 

identified and forced to share a single distribution. In other 

words, CALM uses a “tied” distribution instead of an N-

grams removal approach. Through CALM iterations, tied N-

grams can be untied and vice versa, totally driven by data. 

The compression algorithm in CALM bears strong resem-

blance to that described in [14] and will be omitted here. 

 

3. EXPERIMENTAL RESULTS 

 

We evaluate the proposed method by comparing the uncom-

pressed SLMs obtained using CALM and MSRLM toolkit 

that implements modern language modeling techniques. In 

this article, we report the results for N-gram of order 3 and 

use perplexity as the general metric for comparison since the 

models are used in a wide variety of applications. 

 

3.1 Corpus description 

 

As observed in [6] that conventional SLM techniques can 

still run into formidable obstacles in handling large corpus, 

we limit for this study to the corpus of Microsoft Support 

US English web sites that consist of 179,904 documents, 

11.2 million sentences and 105.2 million words in 9 web 

chunks crawled on May 22, 2008. We use the first 8 chunks 

for training and the last chunk for testing. Both the baseline 

language model and the eventual CALM model have 

1,160,961 unigrams, 5,955,511 bigrams, and 15,643,795 

trigrams, i.e., the model complexities are controlled. Based 

on this corpus, the perplexity measurements for the baseline 

model with Kneser-Ney smoothing are 486.13, 73.88, and 

42.13 for unigram, bigram, and trigram, respectively. 

The rationale behind choosing this corpus is that, though 

being very small by the Web standards, it highlights the 

challenge in building language models for the Web. Figure 1 

depicts how the model grows under CALM (Sec. 2.1) as 

more data chunks are included in the adaptation. As can be 

seen, the portion of new N-grams encountered in each chunk 

is high. Among all the trigrams in the last training chunk 

(Chunk 8), for example, 54% of them are new. This high 

ratio is especially worth noting as all these data chunks, 

which are all in-domain data, can often be misclassified as 

out-of-domain by techniques that use Web documents for 

language modeling [15]. We note that a major source of the 

new N-grams is from the diverse Microsoft product or ser-

vice names as well as the specific technical terminologies 

and resource locators that describe the product features and 

solutions to various end user issues. 

 

3.2 Perplexity measurement against the baseline 
 

Figure 2 shows the perplexity measurements of the CALM 

models relative to the baseline. Here, we first use MSRLM 

on Chunk 1 to obtain the initial smoothed model 𝑃(0). The 

priors  𝜋(𝑖) computed using (4) for the following adaptation 

chunks are also shown in Figure 2. As can be seen, CALM 

progressively reduces the perplexity as more data are used 

to adapt the model. At the end of the first pass, i.e., when all 

the training chunks are encountered, the CALM model 

reaches a comparable, if not a better, perplexity than the 

baseline. The model perplexity remains roughly unchanged 

going into the second pass where all the training data have 

been seen before, suggesting CALM is robust against over 

training. This desirable outcome can be attributed to (4) that 

shows the model will not be changed much if a high prior 

estimation indicates the statistics of the data chunk can al-

ready be predicted by the model.  

 

 
Fig.1. Percentage of new N-grams in each incoming chunk. 
 

 
Fig.2. CALM model perplexities, relative to the baseline in percen-

tage, after adapting each data chunk. The second pass results sug-

gest CALM model does not change much after repeated chunk 

exposure. Also shown is the adaptation prior computed using (4). 

 

3.3 Sensitivity to initial conditions 

 

CALM being an iterative algorithm, a key question to ask is 

whether the proposed method is sensitive to the choice of 

the initial condition. Using different chunks as the starting 

point, we show in Figure 3 that the eventual model perplexi-



ties do not vary much, demonstrating that CALM is not sen-

sitive to the initial conditions.  

 

 
Fig.3. Relative perplexities of CALM models with various initial 

conditions. After a full pass of adaptation, all reach similar results.  

 

 
Fig.4. Perplexity comparison of dynamically computed and fixed 

priors (from 0.4 to 0.9). Dynamically computed prior reaches the 

lowest perplexity.  

 

3.4 Effects of fixed priors 
 

A key step of CALM is to estimate for each new data chunk 

the interpolation prior using (4) without using any held-out 

data. We studied the importance of the dynamically esti-

mated priors by comparing the results from models adapted 

with fixed priors whose values range from 0.4 to 0.9. As 

shown in Figure 4, all fixed prior cases result in inferior 

models, and only when values close to the dynamically 

computed  𝜋(𝑖)are used can the final model reach the compa-

rable perplexity.  

 

4. SUMMARY 

 

In this paper we describe CALM, a novel approach for 

building SLMs for Web-scale corpus. CALM is designed to 

iteratively adapt to partial data without needing the entire 

corpus and some held-out data to be available. The iterative-

ly adapting nature of CALM is highly desirable for Web 

applications that require the SLMs to reflect the fresh con-

tents available on the Web. Even though CALM builds the 

model without having the global lexicon and N-gram statis-

tics, we show CALM yields comparable model quality as 

obtained from the state-of-the-art techniques. In addition, 

we show CALM is resilient to over training and insensitive 

to initial condition. Finally, we show the method used in 

CALM to dynamically compute the adaptation priors plays a 

key role in the model quality. 
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