
Exploiting System-Level Concurrency Abstractions for

Hardware Descriptions

DAVID J. GREAVES

University of Cambridge

SATNAM SINGH

Microsoft Research

February 2009

Technical Report

MSR-TR-2009-48

This technical report explores the idea of using an existing concur-
rent programming language and its associated tools for the com-
pilation and debugging for modeling parallel computations which
can be implemented on FPGAs to yield systems that significantly
outperform their sequential software counterparts on conventional
processors. An important application of such an approach is to
make FPGA-based co-processors more accessible to software devel-
opers and other scientist because it removes the need to describe
and implement parallel algorithms in terms of conventional hard-
ware descriptions languages like Verilog and VHDL. Previous work
has focused on automatically translating sequential programs into
hardware which is a problem which is equivalent to automatic soft-
ware parallelization. There is no known satisfactory solution for
this problem. Other researchers have developed new languages or
made modifications to existing languages to add special features for
expressing concurrency to help model parallelism in hardware. A
distinguishing aspect of our work is that we restrict ourselves to the
use of an existing language and its concurrency mechanisms and li-
braries. By doing so we make it possible for developers to use existing
compilers, debuggers and analysis tools to help develop and debug
their designs. Furthermore, developers do not need to learn a new
language and can rely on mature tools which are well documented.
Another advantage of our approach is that it gives the developer
greater control over the quality of results because the synthesized
parallel architecture and communication infrastructure is directly
related to the original parallel description. This allows the devel-
oper to make space/time trade-offs with greater control compared
to techniques which rely on more indirect methods for influencing
the structure of the output e.g. the use of pragmas.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1

1 Introduction

Future microprocessors will be composed of a heterogeneous mix of processing
elements which not only resemble today’s processor cores but may also include
specialized processors that are the evolution of today’s graphics processors, spe-
cial hardware for performing important functions e.g. Bayesian inference en-
gines as well as a generalized 2D-parallel processing fabric which will be the
evolution of today’s FPGAs. Given that FPGA-like devices will become part
of mainstream computing platforms, the task of programming such devices now
becomes a challenge (and opportunity) for mainstream programmers. It would
be highly desirable to find a way for software engineers to specify computa-
tionally intensive problems in an accessible way which can then be executed on
parallel FPGA hardware and in particular it is desirable for programmers to
think in terms of computing science abstractions rather than hardware design
abstractions. Much work has already been done in the area of compiling C-like
programs into gates. In this paper we describe an approach which takes the C-
to-gates approach one step further by showing how it is possible to take parallel
programs written in a standard modern programming language and automat-
ically compile them to efficient circuits. The reason for starting from parallel
programs rather than sequential code is to allow the programmer greater con-
trol over the architecture and performance of the generated circuit compared to
techniques that start from a sequential description. The user can influence the
degree of parallelism and the nature of communication in the generated circuit
by creating the appropriate number of threads (each of which is mapped to a dis-
tinct group of gates) and by explicitly instantiating inter-thread communication
mechanisms (e.g. channels which get mapped into FIFOs in hardware).

A significant amount of valuable work has already been directed at the
problem of transforming sequential imperative software descriptions into good-
quality digital hardware and these techniques are especially good at control-
orientated tasks which can be implemented with finite-state machines. Our
approach builds upon this work by proposing the use of parallel software de-
scriptions which capture more information from the designer about the parallel
architecture of a given problem that can then be exploited by our tools to gen-
erate good-quality hardware for a wider class of descriptions.

A novel contribution of this work is a demonstration of how systems-level
concurrency abstractions, like events, monitors and threads, can be mapped onto
appropriate hardware implementations. Furthermore, our system can process
bounded recursive methods and object-orientated constructs (including object
pointers). Figure 1 illustrates how our approach identifies a new part of the
design spectrum by focusing on an area which is much more abstract than
structural design but still leaves enough control to the programmer via threading
compared to synthesis from purely sequential descriptions. It is our hope that
such technology will make FPGA-based co-processor more accessible to non-
FPGA or hardware experts.

The approach described in this paper uses programming language concur-
rency mechanisms to model the architecture of circuits by expressing important

1

structural impera�ve (C)parallel

impera�ve

gate-level

VHDL/Verilog Kiwi
C-to-

gates

&0

0

0

Q

Q
SET

CLR

S

R

;

;

;

jpeg.cthread

2

thread

3

thread

1

Figure 1: Kiwi relative to other approaches

aspects of their parallel behavior. However, we wish to emphasize that these
parallel descriptions are usually not tenable parallel software programs that can
be executed on a multi-core processor. So we are not proposing a technique
for compiling the same code into efficient software and efficient hardware. The
benefit of our approach is to allow scientists to express parallel computations in
a programming language environment with the associated tools for debugging
and verification and then automatically produce circuits which perform faster
than the corresponding sequential program running on a regular processor.

In this paper we describe the architecture of our Kiwi synthesis system and
present results obtained from a prototype implementation that generates Verilog
circuits which are processes by Xilinx implementation tools to produce FPGA
programming bit-streams.

Throughout this paper when when we refer to an ‘assembly’ language file
we specifically mean the textual representation of the byte code file produced
by our compilation flow rather than a .NET assembly which is an altogether
different entity.

Although we present work in the context of the .NET system the techniques
are applicable to other platforms like the Java Virtual Machine (JVM). The ex-
perimental work described in this paper was undertaken on Windows machines
and also on Linux machines running the Mono system.

2 Background

There has been significant interest in the area of compiling circuit descriptions
that look like programs automatically into circuits. Most approaches take an
imperative, C-like language as a starting point and then try to work out how to

2

efficiently represent an equivalent sequential computation in terms of a circuit
with an appropriate level of parallelism and efficient communication between
sub-blocks.

The task of taking a sequential program and then automatically transforming
it into an efficient circuit is strongly related to work on automatic paralleliza-
tion. Indeed, it is instructive to notice that C-to-gates synthesis and automatic
parallelization are (at some important level of abstraction) the same activity
although research in these two areas has often occurred without advances in
one community being taken up by the other community. Both procedures are
ultimately limited by the level of achievable parallelism in a program which, in
turn, is limited by a number of well-known programming artifacts, such as the
decidability of conditional branches and array pointer comparisons.

The idea of using a programming language for digital design has been around
for at least two decades [5]. Previous work has looked at how code motions could
be exploited as parallelization transformation technique [10].

Examples of C-to-gates systems include Catapult-C [15] from Mentor Graph-
ics, SystemC synthesis with Synopsys CoCentric [2], Handel-C [9], the DWARV
[16] C-to-VHDL system from Delft University of Technology, single-assignment
C (SA-C) [12], ROCCC [3], SPARK [6], CleanC from IMEC [8] and Streams-C
[4].

Some of these languages have incorporated constructs to describe aspects
of concurrent behavior e.g. the par blocks of Handel-C. The Handel-C code
fragment below illustrates how the par construct is used to identify a block of
code which is understood to be in parallel with other code (the outer par on line
1) and a parallel for loop (the par at line 4).

1 par

2 { a[0] = A; b[0] = B;
3 c[0] = a[0][0] == 0 ? 0 : b[0] ;
4 par (i = 1; i < W; i++)
5 { a[i] = a[i−1] >> 1 ;
6 b[i] = b[i−1] << 1 ;
7 c[i] = c[i−1] + (a[i][0] == 0 ? 0 : b[i]);
8 }
9 ∗C = c[W−1];

10 }

Jonathan Babb’s group at MIT have developed an interesting system for
synthesizing sequential C and FORTRAN programs into circuit by using the
notions of small memories and virtual wires [1]. Just as we make use of an
existing compiler framework based on .NET and its associated compiler support
infrastructure the MIT work exploits the rich SUIF framework. We believe
both of these approaches are complementary to the synthesis flow that we have
developed and there is no reason why both virtual wires and small memories
could be incorporated into our system if they are required to reduce resource
usage or improve performance.

A notable recent example of exploiting high level parallel descriptions for
hardware design is the Bluespec SystemVerilog language [13] which provides a

3

rule-based mechanism for circuit description which is very amenable to formal
analysis.

Our approach involves providing hardware semantics for existing low-level
concurrency constructs for a language that already supports concurrent pro-
gramming and then to define features such as the Handel-C par blocks out of
these basic building blocks in a modular manner. By expressing concurrent
computations in terms of standard concurrency constructs, we hope to make
our synthesis technology accessible to mainstream programmers. Although Sys-
temC descriptions may be very efficiently synthesized, they still require the
designer to think like a digital circuit engineer. Our approach allows software
engineers to remain in the software realm, to help them move computationally
demanding tasks from executing on processors to implementation on FPGAs.

3 Parallel Circuit Descriptions

We provide a conventional concurrency library, called Kiwi, that is exposed to
the user and which has two implementations:

• A software implementation which is defined purely in terms of the sup-
porting .NET concurrency mechanisms (events, monitors, threads).

• A corresponding hardware semantics which is used to drive the .NET IL
to Verilog flow to generate circuits.

The design of the Kiwi library tries to capture a common ground between the
concurrency models and constructs used for hardware and software (see Fig-
ure 2). Our aim to is try to identify concurrency models and constructs which
have a sensible meaning both for programs and circuits and this may involve re-
stricting the way they are used in order to support our synthesis approach. How-
ever, although we use software concurrency mechanisms to model the parallel
computations performed by hardware we do not expect these parallel programs
to execute efficiently on multi-processor computers. This is because we will of-
ten express very fine grain parallelism which can be implemented effectively in
circuits but which is not economic when mapped to threads of a conventional
operation system. The dual design-flow nature of the Kiwi system is illustrated
in Figure 3.

A major paradigm in parallel programming is thread forking, with the user
writing something like:

1 ConsumerClass consumer = new ConsumerClass(...);
2

3 Thread thread1 = new Thread(new ThreadStart(consumer.process));
4 thread1.Start();

Within the Kiwi hardware library, the .NET library functions that achieve
this are implemented either by compilation in the same way as user code or
using special action. Special action is triggered when the newobj ThreadStart is
elaborated: the entry point for the remote thread is added to a list that was first

4

hardware

concurrency

models

software

concurrency

models

Kiwi

event-based

simulation

Kahn networks

multi-clock

synchronous data-flow

asynchronous threads

monitors

events

message passing

priorities

Figure 2: Concurrency models and constructs

Kiwi

Library

Kiwi.cs

circuit

model

JPEG.cs

Visual Studio

mul!-thread simula!on

debugging

verifica!on

Kiwi Synthesis

circuit

implementa!on

JPEG.v

Figure 3: Kiwi descriptions as programs and circuits

5

created by the user from a command line list of entry points. On the other hand,
the call to Threading::Start that enables the thread to run is implemented entirely
C# (and hence compiled to hardware) simply as an update to a fresh gating
variable that the actual thread waits on before starting its normal behavior.

Another important paradigm in parallel composition is the channel. The
implementation uses blocking read and write primitives to convey a potentially
composite item, of generic type T , atomically. These channels are designed to
allow one circuit to produce a result which is consumed by another circuit and
in hardware they can be compiled into single place buffers which are placed
between a single producer circuit and a single consumer circuit.

1 public class channel<T>
2 { T datum;
3 bool empty = true;
4 public void write(T v)
5 { lock(this)
6 { while (!empty)
7 Monitor.Wait(this) ;
8 datum = v ;
9 empty = false ;

10 Monitor.PulseAll(this);
11 }
12 }
13

14 public T read()
15 { T r ;
16 lock (this)
17 { while (empty)
18 Monitor.Wait(this);
19 empty = true;
20 r = datum;
21 Monitor.PulseAll(this);
22 }
23 return r;
24 }
25 }

The lock statements on lines 5 and 16 are translated by the C# compiler to
calls to Monitor.Enter and Monitor.Exit with the body of the code inside a try block
whose finally part contains the Exit call. This construct can be used to model a
rendezvous between a specific producer and consumer pair.

There are numerous levels at which we might introduce primitives when im-
plementing parts of the Kiwi library for hardware synthesis. An entire function
can be recognized and translated to the primitives of the underlying virtual
machine. Alternatively, the C# code from the software implementation can be
partially translated. In our current implementation of channels, calls to Moni-

tor.Enter and Monitor.Exit were replaced with the following C# code (containing
only native functions understood by the core compiler)

void Enter(object mutex)

6

parallel

program

C#

Thread 1

Thread 2

Thread 3

Thread 3

C to

gates

C to

gates

C to

gates

C to

gates

circuit

circuit

circuit

circuit

Verilog

for system

Figure 4: Synthesis of threads to circuits

{ while (hpr testandset(mutex, 1))
hpr pause();

}
void Exit(object mutex)
{ hpr testandset(mutex, 0);
}

Monitor.Wait was replaced with

void Wait(object mutex)
{ hpr testandset(mutex, 0);

hpr pause();
while (hpr testandset(mutex, 1))

hpr pause();
}

and Monitor.Strobe was treated as a NOP (no operation), because the underlying
hardware implementation is intrinsically parallel and can busy wait without
cost.

One way to logically view the system is shown in Figure 4, which shows the
original parallel program being decomposed into a static collection of threads
each of which is subjected to a synthesis pass described in the following sections.
The separately produced sub-circuits are then composed into a single circuit
with the inter-thread communication implemented with appropriate hardware
structures.

7

Bison Parser

HPR VM Simulator

FSM
Generation

Verilog
Conversion

User’s
Design

(C#)

CIL
Assembly

Compile-
Time

Constants

HPR
VM 1
CODE

Constant
Propagate

Kiwi
Library
(C#)

Mono/Microsoft
C# Compiler

FPGA
Vendor Tools

Kiwic CIL
Elaboration

Multi-threaded
"C-to-Gates"

provided by HPR library

Remove Stack
Expand calls in-line
Taint Determination

Consumed variable removal

Interpretation

Compilation

Stage 1

Stage 2

Stage 3

Intermediate
Processing

CIL
Canned

Libs

Off Chip Array Migration

Canned
Protocols
(eg. BVCI)

Cone of Influence Trimming

HPR
VM 2
CODE

Unwind
budget

 optional root
class/method

name(s)

S
ym

bo
l T

ab
le

8

4 Synthesis Flow

Our flow is shown in Figure 4. The C# source code passes through three gen-
eral stages of processing and several intermediate forms before being emitted
as synthesizable Verilog RTL. The first intermediate form is CIL (common in-
termediate language) and the subsequent forms are an internal virtual machine
(VM) code. A bison parser is used to convert the textual CIL form into an
abstract syntax tree (AST) as an SML data structure and the rest of the flow
is implemented in Moscow ML. We now describe each stage in detail.

4.1 .NET Assembly Language Elaboration

We start by using either the Microsoft or the Mono C# compiler to convert
the source code to CIL code. Although these two tools occasionally diverge in
the way they handle certain details, such as the way arrays are initialized and
the layout of basic blocks, they have so-far been fully interchangeable without
affecting experimental results.

For illustration, we show some CIL code below. Key aspects of the CIL code
include the use of a stack rather than registers (e.g. mul pops two elements off
the stack, multiplies them and pushes the result onto the stack); local variables
stored in mutable state (e.g. ldloc.1 pushes the value at local memory location
1 onto the stack); control flow through conditional and unconditional branches;
and direct support for overloaded method calls.

IL 0019: ldc.i4.1
IL 001a: stloc.0
IL 001b: br IL 005b
IL 0020: ldc.i4.1
IL 0021: stloc.1
IL 0022: br IL 0042
IL 0027: ldloc.0
IL 0028: ldloc.1
IL 0029: mul
IL 002a: box [mscorlib]System.Int32
IL 002f: ldstr ” ”
IL 0034: call string string::Concat(object, object)

Certain restrictions exist on the C# that the user can write. Currently, in
terms of expressions, only integer arithmetic and limited string handling are
supported, but floating point could be added without re-designing anything,
as could other sorts of run-time data. More importantly, we are generating
statically allocated output code, therefore:

1. arrays must be dimensioned at compile time

2. the number of objects on the heap is determined at compile time,

3. recursive function calling must bottom out at compile time and so the
depth cannot be run-time data dependent.

9

Hardware description languages such as VHDL and Verilog 2000 contain
constructs for generating structure at compile time. These two languages specif-
ically use the keyword ‘generate’ for this, and certain variables are specifically
associated with the generate statements. On the other hand, C# programs
do not necessarily possess a clear delineation between structural-generation and
run-time evaluation. Another major difference between C# and RTL is the lack
of dynamic-storage allocation in synthesizable RTL. Therefore, our first stage of
processing, referred to as Assembly Language Elaboration, decides what to do
at compile time and what to leave to run time, as well as reducing the program
using a fixed number of storage variables. It totally removes the CIL stack.

We say that the elaboration process ‘consumes’ a number of variables present
in the input source code, including variables used only for structural generation
and all object pointers and array handles. In CIL, a variable is either a static
or dynamic object field, a top-level method formal, a local variable, or a stack
location. For each variable we decide whether to consume it in the elaboration
using heuristic rules.

Actually, there is a potentially valid reason for preserving certain object
and array handles through to run-time, which is where these are cycled over a
finite pool of objects and arrays. However, this feature is missing in our current
implementation.

The first step of processing of the AST is to form an hierarchic symbol
dictionary containing the classes, methods, fields, and custom attributes. Other
declarations, such as processor type, are ignored.

We have two ways of deciding which methods to convert to hardware. In the
first method, a command line flag to the compiler, called -root, enables the user
to select a number of methods or classes for compilation. The argument is a
list of hierarchic names, separated by semicolons. The second method consists
of a ‘Kiwi.Hardware’ attribute that is placed on certain classes or methods by
the user to nominate them from compilation. Either way, the tool is presented
with one or more thread starting points for hardware compilation. Additionally,
every class in CIL has a class constructor method, that is considered to be an
entry point if that class is nominated for compilation by either way. Other items
present in the .NET input code are ignored, unless called from a root thread.

All procedure calls made by a thread are ‘in-lined’ in the elaborate stage
by macro-style expansion of the CIL subroutine call instructions. This is pos-
sible because we maintain sufficient type information about what is stored in
what variable to select between different overloaded implementations of meth-
ods. Each thread is symbolically evaluated using a three-stage mechanism. The
first stage is a pre-processing run on each method body when the thread first
enters it. It does not expand the called function bodies, whereas the second and
third stages performs function body expansion.

The first stage operations on a method body eliminate the CIL stack. Sym-
bolic tracking of expression types and code reachability is used to determine the
concrete type stored in every variable and the layout of the stack at every basic
block boundary. Such symbolic evaluation which is straightforward since every
operator and method call is strongly typed. In our implementation of this ap-

10

proach, which of several overloaded method bodies is called cannot currently be
controlled by run-time data, but this limitation can be removed in the future.
At the entrance and exit to each basic block, load and store instructions are
respectively inserted, to load and store the contents of the stack at the block
boundaries into statically scoped surrogate variables, created for this purpose.
The surrogate variables are frequently consumed, but can appear in the VM
code and hence, from time-to-time, in the output RTL. Where a method is ex-
panded, in line, multiple times, to reduce run-time register generation the same
surrogate variable instances are shared across all instances of a stack frame at
the same depth of recursion. Since we have full knowledge of when a variable
is potentially live, alternative methods for variable sharing could be explored
in the future, such as re-using variables between stack frames that cannot be
concurrently active, but registers are not at a premium in modern target tech-
nologies, such as FPGA and ASIC, and such an approach would most-likely
result in slower designs owing to the multiplexors needed. The same algorithm
is used for local variable allocation.

Another role played by the first stage is run-time value taint determination.
Run-time input values are considered to be tainted and the algorithm propagates
the taint through every operator and function call, thereby ending up with a
map of which variables may possibly contain a run-time value. Those which do
cannot be consumed.

The second stage and third stages of processing for a threads progress within
each method respectively perform interpretation and compilation. The model
is that all threads do all of their structural generation, if any, before performing
any of their run-time behavior, if any. An algorithm determines a dynamic
switchover point for the thread between interpretation and compilation. It
maintains a fallback position for each method that is initialized to the entry
point. In the interpretation phase, the CIL code is directly simulated, with
concrete values being stored for each variable that is assigned in a slot in the
symbol table and with no VM code being emitted. When the simulated thread
encounters a basic block boundary, the fallback position is set to that point
and the state of all the variables is also noted. Some threads reach the end of
the method body in this way and others stop earlier because they encounter a
run-time tainted value or a function or operator that cannot be simulated. In
either situation, the pass switches to its second phase, by emitting a number of
VM assignment statements that ‘copy out’ the simulated state to the run-time
virtual machine, followed by a VM goto instruction to the fallback basic block
exit point. For certain threads, the exit point is the thread exit point, and so
there is no more to do, and for other threads, the third phase then proceeds.
The third phase is a conventional compilation that converts CIL code to VM
code. The parts of the method body that need converting are determined by a
reachable program-counter value scan seeded from the fallback point.

The VM code runs on a so-called HPR virtual machine. This was used be-
cause a library of code from the University of Cambridge was available that
includes many useful functions, including compilation of the VM code into syn-
thesizable Verilog. An HPR machine contains internal and externally-visible

11

variables, imperative code sections and assertions. The variable declarations
carry tag/value attributes that are interpreted by the subsequent VM compiler
and are used for specifying things like signedness, wrapping and off-chip at-
tributes (described below). One form of imperative code section consists of an
array of instructions indexed by program counter variables and, by default, there
is one program counter for each array. Associated with each program counter
there is an option for a clock and reset net specification, although the way these
are used to relate to stepping the program is not specified at this point: it is
determined later on when the VM code is converted to hardware. All program
counters start execution in parallel from location zero of their respective array.
The VM instructions are: assign, conditional branch, fork, join, exit and calls to
certain built-in functions, including hpr testandset(), hpr printf() and hpr barrier().
The expressions occurring in the instructions, such as branch conditions, array
subscripts, r.h.s. of assignment and function call arguments can use all common
integer arithmetic and logic functions, including all of the integer arithmetic
and logic operators found in the .NET input form. In addition, limited string
handling, including a string concat() function are handled, so that console out-
put from the .NET input is preserved as console output in the generated forms
(e.g. $display() in Verilog RTL).

The elaborate stage creates an HPR machine for each root thread. The
externally-visible variable list for the HPR machine is formed from the param-
eter list of the methods nominated as roots and from static user variables that
have been marked with Kiwi attributes. A return value from a root method is
assigned to an externally-visible variable. The externally-visible variables be-
come the I/O terminals of the generated RTL section. The internal variables are
the remainder of the variables, including stack surrogate variables, the contents
of heap-allocated arrays and object fields.

The C# compiler assumes that a number of libraries are present in the run-
time system. These include functions for initializing arrays, accessing multi-
dimensional arrays, forking threads and performing string operations. We have
to provide implementations of all of these as ‘canned’ libraries. We did this
by compiling suitable C# fragments to SML data structures and then pasting
these into the kiwic source code. As explained elsewhere, certain of the canned
libraries map through to hpr xxx primitives whereas other trigger specific be-
havior during CIL elaboration. For instance, new user threads are enabled by
trapping the ‘Thread.Start()’ library call.

We have defined attributes for marking certain C# methods as assertions
to be included in the HPR machine’s assertion list, but these mechanisms are
beyond the scope of this paper.

Using C# attributes applied to classes and fields the user can influence the
hardware that is generated. He can control the width of registers, the names
of clock domains, which signals are input/output connections, how memories
are implemented and various other details (which are being described in a user
manual).

A synchronous circuit designed with kiwi requires a clock and reset input.
A default clock domain exists and the default net names clock and reset are

12

automatically generated. To override the default names, or when more than
one clock domain is used, the ‘ClockDom’ attribute is used to mark up a root
method, giving the clock and reset nets to be used for activity generated by
that method.

[Kiwi.ClockDom(”clknet1”, ”resetnet1”)]
public static void Work1()
{ while(true) { ... } }

A root method may have at most one clock domain annotation but unannotated
methods can be called from various clock domains. These annotations are passed
on as tags to the HPR imperative code array.

Integer variables of width 1, 8, 16, 32 and 64 bits are native in C# and CIL
but hardware designers frequently use other widths. We support declaration of
registers with width up to 64 bits that are not a native width using an ‘HwWidth’
attribute. For example, a five-bit register is defined as follows.

[Kiwi.HwWidth(5)] static byte fivebits;

When running the generated C# naively as a software program (as opposed to
compiling to hardware), the width attribute is ignored and wrapping behavior
is governed by the underlying type, which in the example is a byte. The HPR
machine supports variable declarations that have both an enumeration range
that controls when they will actually wrap and a secondary range that the
subsequent VM compiler just uses for checking. The VM compiler performs a
conservative data-flow analysis for the reachable ranges of all variables and flags
a compile-time error if there is any chance that the variable will wrap differently
in hardware from software.

Object-oriented software sends threads between compilation units to perform
actions. Synthesizable Verilog and VHDL do not allow threads to be passed
between separately compiled circuits: instead, additional I/O ports must be
added to each circuit and then wired together at the top level. Accordingly,
we mark up methods that are to be called from separate compilations with a
remote attribute.

[Kiwi.Remote(”parallel:four−phase”)]
public return type entry point(int a1, bool a2, ...)
{ ... }

When an implemented or up-called method is marked as ‘Remote’, a protocol
is given and kiwic generates additional I/O terminals on the generated RTL
that implement a stub for the call. The currently supported protocol for remote
calling is asynchronous, using a four-phase handshake and a wide bus that carries
all of the arguments in parallel. Another bus, of the reverse direction, conveys
the result where non-void. The remote-calling facilities were easy to implement:
the user’s code is placed inside an infinite loop with top and tail code added to
synchronize with the external control signals and handle data transfer.

13

4.2 Intermediate Processing

The output from CIL elaboration is a multi-threaded virtual machine. In our
intermediate processing stage, we preserve this structure while making a number
of rewrites to simplify the code, share resources and provide off-chip arrays.

By default, arrays allocated by the C# code pass through our tool chain
and convert directly to simple Verilog array definitions. These typically compile
to on-chip RAMs using today’s FPGA tools, but there is also frequently a
need to map larger arrays into off-chip SRAM or DRAM banks. Any memory
subsystem is limited in terms of the number of ports it has and the simultaneous
number and type of transactions possible at any one port, so there can be
a structural hazard if too many reads or writes need to be active in one RTL
clock cycle. We define static and dynamic structural hazards based on the notion
that we do not generally know at compile time what the relative alignment of
separate threads might be at run time. We define a static structural hazard to
be when the code for a single thread attempts too many operations at once and
a dynamic structural hazard to be when two different threads both try to use
the same resource at once, exceeding its ports. In general, other component that
must be shared, such as expensive ALUs, can also generate structural hazards.
We explain our approach to overcoming these hazards and giving control over
resource sharing. Static hazards become resolved at compile time, owing to the
symbolic evaluation applied to the mutex variables in the HPR library, whereas
for dynamic hazards, the operations on the mutex variables cannot generally
be evaluated at compile time and so these variables appear in the generated
RTL. At the level of the RTL tool-chain, all ‘threads’ are combined into one
Verilog ’always’ block for each clock domain, since it is not allowed within the
definition of synthesizable RTL for any register to be written by more than one
thread. Therefore, the difference between our static and dynamic resolution is
not apparent at the level of the RTL tool-chain.

To use off-chip RAMs, we provide the kiwi ‘OutboardArray’ attribute to
cause an array declaration and access operations to be replaced with a set of
external connections to a memory subsystem outside of the current compilation.
The user then wires up an external SRAM, DRAM or cache port. In the current
system, a number of outboard ports may be declared, each of which supports
read and write operations and has a data width and address range. The port
name and offset within the port for mapping a particular array are given in
the kiwi attribute next to the array declaration in the C# program. The net-
level protocol to use for each port and number of operations in progress it will
support are given on the command kiwic line. The example below maps a pair
of user arrays into the same external memory using the same port at user-defined
offsets. We are still finding out how to make it as easy as possible to map the
user’s arrays into RAMs. Within the current mechanism we can at least flag
whether or not the mappings overlap. However, a more-automatic mechanism
is going to be preferable in the long run.

[Kiwi.OutboardArray(”portx”, 0)]
static short [] PA = new short[32768];

14

[Kiwi.OutboardArray(”portx”, 32768)]
static short [] PB = new short[32768];

Off-chip arrays are implemented by rewriting all the VM instructions that
access the array. A write access is made by an assignment statement. This is
replaced with a call to a canned macro library code that implements a write
transaction on the external port for the required protocol

A[e′] := e is replaced with hpr array write(A, e′, e)

and read accesses occurring in any expression are replaced with the names of
freshly-created holding registers that are loaded by calls inserted before the
instruction

v := A[B[e]] is replaced with
hpr array read(A, e, h1); hpr array read(A, h1, h2); v := h2

where h1 and h2 are the holding registers. The inserted read calls are sorted into
an order whereby no holding register is used before it is written. The canned
library code is then expanded in place.

With multi-threaded user code, the read and write functions can potentially
be re-entrant, but generally external bus protocols can only support a finite
number of transactions open at one time. The maximum is typically only one
for simple protocols. It is easy to cater for these constraints in our approach
since the transaction is inserted into the user’s thread, and so the number of
outstanding operations is easily bounded by inserting further code that blocks
the thread by spinning on a mutex with hpr testandset calls at the entry point
to the library code and freeing the mutex on exit. Providing a write-posting
mechanism, that does not block the user threads on writes, just requires that
the inserted code has its own thread to implement the actual write call.

We have implemented BVCI [14] and four-phase handshake as alternative
canned protocols for off-chip arrays and remote procedure call, but, as with the
other canned library code, there is no reason why these protocols should not
be read in from separate C# description files if desired. In the fullness of time,
we expect to support a range of protocols that are compatible with standard
on-chip busses.

Off-chip arrays are the obvious example of components that offer structural
hazards (i.e. they have limited accessibility in terms of concurrent user threads),
but in the future, other resources described in the C# input or in other ways,
such as a complex ALU module or a subroutine that should not be inlined in two
different threads can also be shared between threads if suitably declared. For
a C# subroutine we can provide an attribute that makes it a shared resource,
rather than a resource in-lined in each thread. Bluespec has a facility of this
nature, called the ‘FSM server’ [13]. This will provide a flexible and elegant way
for an engineer to choose whether to use time (clock cycles) or space (silicon
area) to solve his problem.

After the rewrites that multiplex access to shared resources and off-chip re-
sources, the constructor methods are executed by simulation, with any inputs

15

-ubudget n

HPR
Machine

HPR
Machine(s)

Output queue with
rollback checkpoints

(pc==loc, g, sigma=[e1/v2, e2/v2, ...]) list

Pending activation queue

Input
program

Symbolic
simulator

Input Activation

Entry point
for each thread

0, 1, or 2
output activations

Blocking
activation or

budget
consumed ?

Completed activation list

Unwind
budget

Already processed
checker ? Discard

yes

no
no

yes

Figure 5: Conversion of control flow graph to FSM.

(free variables) set to don’t know. However, constructor methods do not com-
monly have inputs, apart from constant values passed from parents as formals.
Any variables which are assigned a constant value and not further assigned in
the body of the program (i.e. that part which is not deterministic given un-
certain inputs) are determined as compile-time constants and consumed by a
constant propagation function (Figure 4.) Finally, a cone-of-influence logic trim
is performed, whereby assignments to variables that have no ultimate effect
on any output or side-effecting system call, such as writeline, are removed.
Although such trimming is aways ultimately performed by the backend RTL
synthesis tools, our purpose here is to reduce the size and vocabulary of the
HPR code that is to be converted to RTL.

4.3 FSM Generation

The input to the FSM generation stage is an HPR machine with its executable
code held in an array for each root thread and user-forked thread. In this section
we explain how the HPR library converts this form of program code to Verilog
RTL.

Each instruction is either an assignment, exit statement, built-in primitive or
conditional branch. We have not used the fork and join instructions supported
by the HPR library since only static thread creation has been supported in the
kiwic front end, but in the future we will use them to process C# programs
that contain dynamic thread creation or joins. The expressions occurring in

16

various fields of the instructions may be arbitrarily complicated, containing any
of the operators and referentially-transparent library calls present in the input
language, but their evaluation must be non-blocking.

The output from FSM generation is an HPR machine where the imperative
code consists of an HPR parallel construct for each clock domain. The parallel
construct contains a list of finite-state-machine edges, where edges have three
possible forms:

(g, v, e)
(g, A[e’], e)
(g, f, [args])

where the first form assigns e to v when g holds, the second assigns to a named
array in a similar way and the third calls built-in function f when g holds. All
.NET arrays are single-dimensional with multi-dimensional arrays being folded
down within the canned libraries.

An additional input, from the command line, is an unwind budget: a max-
imum number of basic blocks to explore in any loop unwind attempt. Where
loops are nested or fork in flow of control, the budget is divided amongst the
various ways. Alternatively, in the future, the resulting machine can be analyzed
in terms of meeting a user’s clock cycle target and the unwinding decisions can
be adjusted until the clock budget is met.

The central data structure is the pending activation queue (Figure 5), where
an activation has form (p == v, g, σ) and consists of a program counter (p)
and its current value (v), a guard (g) and an environment list (σ) that maps
variables that have so far been changed to their new (symbolic) values. The
guard is a condition that holds when transfer of control reaches the activation.

Activations that have been processed are recorded in the completed activa-
tion queue and their effects are represented as edges written to the output queue.
All three queues have checkpoint annotations so that edges generated during a
failed attempt at a loop unwind can be undone. The pending activation queue
is initialized with the entry points for each thread.

Compilation uses a symbolic simulator function, denoted as SS[[C]](n,g,σ)

that evaluates command C from address n of the code array according to its
denotational semantics, as given in Table 1. This uses the symbolic expression
evaluator function [[]]σ that rewrites the AST for an expression using values
from σ and performing evaluation of compile-time manifestly constant expres-
sions. The expression [e/v]σ denotes a modified version of the environment
where variable v is set to expression e. Operation removes one activation and
symbolically steps it through a basic block of the program code, after which
zero, one or two activations are returned. These are either converted to edges
for the output queue or added to the pending activation queue. An exit state-
ment terminates the activation and a basic block terminating in a conditional
branch returns two activations. A basic block is also terminated with a single
activation at a blocking native call, such as hpr pause(). When returned from
the symbolic simulator, the activation may be flagged as blocking, in which case
it goes to the output queue. Otherwise, if the unwind budget is not used up

17

SS[[exit;]](n,g,σ) → []

SS[[v := e;]](n,g,σ) → [(n + 1, g, [[[e]]σ/v]σ)]

SS[[if (e) goto d;]](n,g,σ) → [(d, g ∧ [[e]]σ, σ),

(n + 1, g ∧ ∼[[e]]σ, σ)]

Table 1: Semantic Rules for the HPR Imperative Code

the resulting activation(s) go to the pending queue. If the budget is used up,
the system is rewound to the latest point where that activation had made some
progress.

Activations are discarded instead of being added to the pending queue if they
have already been successfully processed. Checking this requires comparison of
symbolic environments. These are kept in a ‘close to normal form’ form so that
typographical equivalence can be used. The normal-form normalizer uses rules
to eliminate common operators, to sort the arguments of commutative operators
and adjust the nesting of associative operators. For instance, a > b is always
represented as b < a, b + a is always held as a + b and (a + b) + c) is held
as a + (b + c). A more-powerful proof engine can be used to check equivalence
between activations, but there will always be some loops that might be unwound
at compile time that are missed (decidability).

Operation continues until the pending activation queue is empty.
The generated machine contains an embedded sequencer for each input

thread, with a variable corresponding to the program counter of the thread
and states corresponding to those program counter values of the input machine
that are retained after unwinding. However, the sequencer is no longer explicit;
it is just one of the variables assigned by the FSM edges. When only one state is
retained for the thread, the program counter variable is removed and the edges
made unconditional.

The output edges must be compatible. Compatible means that that no two
activations contain a pair of assignments to the same variable under the same
conditions that disagree in value. Duplicate assignments of the same value at
the same time are discarded. This checking cannot always be complete where
values depend on run-time values, with array subscript comparison being a
common source of ambiguity. Where incompatibility is detected, an error is
flagged. When not detected, the resulting system can be non-deterministic.

The built-in hpt testandset() function, operating on a mutex, m, resolves non-
determinism arising from multiple updates at the same time using an ordering
that arises from the order the activations are processed. (Other, fairer forms
of arbiter could also be implemented.) Any boolean variable can be used as
a mutex. The acquire operation returns the previous value from the symbolic
environment, σ, of the activation, or the mutex itself if it is not present, while
updating the environment to set the mutex. A clear operation is implemented

18

as a straightforward reset of the mutex:

[[hpr testandset(m, 1)]]σ → (σ(m), [1/m]σ)

[[hpr testandset(m, 0)]]σ → (0, [0/m]σ)

Multiple set and clear operations can occur within one clock cycle of the gener-
ated hardware with only the final value being clocked into the hardware register.
Sometimes, this final value is always the same, allowing the hardware register
to be eliminated, with the arbitration completed fully at compile time.

The run-time semantics for the three types of finite-state machine edge are
that all of the edges whose guards hold are executed in parallel on the clock
edge, with no assignment visible in any expression until they are all completed.
This directly corresponds to Verilog’s non-blocking assignments and the signal
assignment found in VHDL. Therefore, all three types of finite-state machine
edge are readily converted to synthesizable RTL. However, we have found that
some, even quite small, examples can exceed the capabilities of certain FPGA
tools if rendered directly in RTL. Therefore, a pair of optimizers are used that
collate all of the guard expressions for a given assigned variable and simplify
them using Espresso in conjunction with a 1-D linear-programming package that
implements examples such as the following

x < 4 && x < 6 → x < 4

4 < x && x < 6 → x == 5.

5 Producer Consumer Example

This section presents a small example of two communicating threads which are
synthesized into a circuit. The following section presents a more realistic exam-
ple of a filter circuit. However, before tackling a more sophisticated example
we describe in detail an example built using threads and the one place channels
described in the previous sections to build an example of a producer/consumer
scenario which is a common idiom for channel based concurrent systems.

The example in this section comprises two threads: a producer thread which
generates the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and then stops; and a consumer
thread which continually reads integer values from a channel and outputs their
double on an output channel. The two threads are joined by a shared channel
as shown in Figure 6.

This circuit is represented by a collection of methods in a class Producer-

ConsumerExample which are used to spawn off threads plus other declarations to
define the ports of the circuit and the channels used for inter-thread communi-
cation. For example, here is the portion of the code that specifies the output
to be an integer port and which also declares and creates the two channels used
for communication between the threads and the main program.

19

Producer
thread

Consumer
thread

one-place
channel

one-place
channel

produces output
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

consumes input,
multiplies it by 2,
output it, forever

0, 2, 6, 8, 10, 12, 14, 16, 18

chan1 chan2

Figure 6: A producer/consumer scenario

1 class ProducerConsumerExample
2 {
3 [Kiwi.OutputIntPort(”result”)]
4 public static int result;
5

6 static Kiwi.Channel<int> chan1 = new Kiwi.Channel<int>();
7 static Kiwi.Channel<int> chan2 = new Kiwi.Channel<int>();

The two channels that are created are exactly the same one-place channels
described in the previous sections. Note that all of the declarations in this class
have so far been of static fields.

The producer is described by a thread which is an instantiation of the fol-
lowing static method.

1 public static void Producer()
2 {
3 for (int i = 0; i < 10; i++)
4 {
5 chan1.Write(i);
6 Kiwi.Pause();
7 }
8 }

The producer writes out ten values and then stops. The values are written to
the shared channel chan1 and the writing of values is sequenced to synchronize
with an implicit clock by called Kiwi.Pause();.

The consumer is another static method which runs forever.

1 public static void Consumer()
2 {
3 while (true)
4 {
5 int i = chan1.Read();
6 chan2.Write(2 ∗ i);
7 Kiwi.Pause();
8 }
9 }

The consumer reads values from the shared chan1 (which is populated by

20

the producer thread) and then writes the double of the read value to the output
channel chan2.

The top level circuit description instantiates the producer and consumer
threads and then reads the result values from chan2 which are used to drive the
result output.

1 public static void Behaviour()
2 {
3 Thread ProducerThread = new Thread(new ThreadStart (Producer));
4 ProducerThread.Start();
5

6 Thread ConsumerThread = new Thread(new ThreadStart(Consumer));
7 ConsumerThread.Start();
8

9 while (true)
10 {
11 Kiwi.Pause();
12 result = chan2.Read();
13 Console.Write(result + ” ”);
14 }

When this program is compiled and run on the command line or in the
Visual Studio IDE it produces the expected output values.

>ProducerConsumerExample

0 2 4 6 8 10 12 14 16 18 ^C

The consumer executes indefinitely so this execution of the program has
been terminated with a control-C signal.

6 Filter Example

This section demonstrates how a filter can be designed as a collection of com-
municating threads. First, we describe a 5-tap filter without using any threads
other than the main program. This produces a filter with five multipliers and a
combinational adder tree. Later we shall show how a semi-systolic filter can be
designed with multiple threads.

The specification of the filtering operation we describe and implement in this
section is shown below.

yt =

N−1∑

k=0

akxt−k

The code to implement a simple finite impulse response filter as described
above is shown below as a static method in C#.

1 public static int[] SequentialFIRFunction (int[] weights, int[] input)
2 {
3 int[] window = new int[size];
4 int[] result = new int[input.Length];

21

xa
4

+

xa
3

+

xa
2

+

xa
1

+

xa
0

+0

x
t-k

y
t

Figure 7: A transposed multi-tap filter

5

6 // Clear to window of x values to all zero.
7 for (int w = 0; w < size; w++)
8 window[w] = 0;
9

10 // For each sample...
11 for (int i = 0; i < input.Length; i++)
12 {
13 // Shift in the new x value
14 for (int j = size − 1; j > 0; j−−)
15 window[j] = window[j − 1];
16 window[0] = input[i];
17

18 // Compute the result value
19 int sum = 0;
20 for (int z = 0; z < size; z++)
21 sum += weights[z] ∗ window[z];
22 result[i] = sum;
23 }
24

25 return result;
26 }

Note that this code has no explicitly sequencing through calls to Kiwi.Pause()

and there is no inter-thread communication. This code can be synthesized into
a circuit which fairly directly implements the logic above with the loops unrolled
to yield five multipliers.

A much better way to make a filter is to use 5-taps with registers between
the taps to yield either a semi-systolic or systolic filter which will have a much
better throughput than the one produced from the design above and which will
also not suffer from a long combinational critical path. Furthermore the filter
can be transposed to allow the input samples to be broadcast to each stage.
Such a design is illustrated in Figure 7.

The first design decision we make is to represent each tap of the transposed
filter with one thread. This will not result in an efficient software implementa-
tion but this decision does allow us to express the idea that we want to build a

22

filter using N parallel stages which then does result in fast parallel hardware.
A static method can be defined which can be instantiated several times to

create multiple tab threads. Each tap-thread is passed in its weight, a channel to
read its x sample value from, a channel to read the sum of the previous multiply-
add operations and a channel to write out the result. Each tap tread contains
an infinite loop which repeatedly consumes values from the input channels and
writes results to the output channel. Synchronization occurs implicitly through
the use of the read and write methods of the channel class.

1 static void Tap(int a, Kiwi.Channel<int> xIn, Kiwi.Channel<int> yIn,
2 Kiwi.Channel<int> yout)
3 {
4 int x;
5 int y;
6 while(true)
7 { y = yIn.Read();
8 x = xIn.Read();
9 yout.Write(x ∗ a + y);

10 }
11 }

In the description shown above the reads from the yIn and xIn channels
may occur sequentially. We could have explicitly specified that the reads are
concurrent by spawning off a thread for one of the reads and then joining on it
and this will schedule the read operations within the same clock cycle. However,
this is rather clumsy in C# and this is case where having a language level par

block is useful (e.g. as is done in Handel-C). However, we believe this problem
can be alleviated through the use of a join pattern which expresses the notion
of reading from multiple channels atomically. It is possible to implement join
patterns as a library in C# without changing the compiler or runtime.

The filter architecture shown in Figure 7 can now be modeled by instanti-
ating the tap thread multiple times with the appropriate channels between the
threads and the addition of some extra threads to provide the zero input along
to the y chain of channels.

1 static void ParallelFIR(int size, Kiwi.Channel<int> xin, Kiwi.Channel<int> yout)
2 {
3 Kiwi.Channel<int>[] Xchannels = new Kiwi.Channel<int>[size];
4 Kiwi.Channel<int>[] Ychannels = new Kiwi.Channel<int>[size + 1];
5

6 // Create the channels to link together the taps
7 for (int c = 0; c < size; c++)
8 {
9 Xchannels[c] = new Kiwi.Channel<int>();

10 Ychannels[c] = new Kiwi.Channel<int>();
11 Ychannels[c].Write(0); // Pre−populate y−channel registers with zeros
12 }
13 Ychannels[size] = new Kiwi.Channel<int>();
14

15 // Connect up the taps for a transposed filter

23

16 for (int i = 0; i < size; i++)
17 {
18 int j = i;
19 Thread tapThread = new Thread(delegate()
20 { Tap(j, weights[j], Xchannels[j], Ychannels[j], Ychannels[j+1]); });
21 tapThread.Start();
22 }
23

24 // Broadcast the input
25 Thread broadcast = new Thread(delegate() { BroadcastInput(xin, Xchannels); });
26 broadcast.Start();
27

28 // Insert an infinite sequence of zeros into the first Y channel stage
29 Thread zeroYs = new Thread(delegate() { ZeroFirstY(Ychannels[0]); });
30 zeroYs.Start();
31

32 // Drive yout
33 int yresult;
34 while (true)
35 {
36 yresult = Ychannels[size].Read();
37 yout.Write(yresult);
38 }
39 }

The top-level inputs and outputs of the circuit are represented by integer
ports. The class that defines the transposed convolver starts with the port
declarations and a definition of the weights.

1 class ParallelConvolver
2 {
3 const int size = 5;
4 static int[] weights = new int[size] {2, 5, 6, 3, 1} ;
5

6 [Kiwi.InputIntPort(”sample”)]
7 public static int sample;
8

9 [Kiwi.OutputIntPort(”result”)]
10 public static int result;

We may also have explicit control over the bit-vector representation of an
output port e.g to create a 32-bit bit-vector in the generated Verilog instead of
an integer port we could write:

1 [Kiwi.OutputWordPort(”result”, 31, 0)]
2 public static int result;

Finally the top level definition of the filter is a static method that consumes
sample values every tick from the input and pumps them into the filter and
which also consumes a value from the filter and writes it to the output port.
This is the method that is nominated as the ‘root’ method to the Kiwi tools for
the generation of a Verilog netlist.

24

1 static void FIRtop()
2 {
3 // Create channels to allow the main program to communicate with the circuit
4 Kiwi.Channel<int> xin = new Kiwi.Channel<int>();
5 Kiwi.Channel<int> yout = new Kiwi.Channel<int>();
6

7 // Create a thread to filter a single channel.
8 Thread filterChannel = new Thread(delegate() { ParallelFIR(xin, yout); });
9

10 // Perform the parallel filtering.
11 filterChannel.Start();
12

13 while (true)
14 {
15 xin.Write(sample);
16 Kiwi.Pause();
17 result = yout.Read() / sumOfWeights;
18 }
19

20 }

For the purposes of simulation with the Microsoft Visual Studio IDE we can
define the main method to feed in some data values and write out the results.

1 public static void GenerateInput(Kiwi.Channel<int> xin, int[] inputs)
2 {
3 for (int k = 0; k < inputs.Length; k++)
4 xin.Write(inputs[k]);
5 }
6

7 static void Main(string[] args)
8 {
9 int[] inputs = new int[16] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };

10

11 // Create channels to allow the main program to communicate with the circuit
12 Kiwi.Channel<int> xin = new Kiwi.Channel<int>();
13 Kiwi.Channel<int> yout = new Kiwi.Channel<int>();
14

15 // Create a thread to filter a single channel.
16 Thread filterChannel = new Thread(delegate() { ParallelFIR(xin, yout); });
17

18 // Perform the parallel filtering.
19 filterChannel.Start();
20

21 // Generate the inputs
22 Thread generateInput = new Thread(delegate() { GenerateInput (xin, inputs); });
23 generateInput.Start();
24

25 // Write out the first 10 results.
26 for (int i = 0; i < 10; i++)
27 {

25

28 result = yout.Read();
29 Console.Write(”{0} ”, result);
30 }
31 Console.WriteLine();
32 }

This description can be executed directly inside Visual Studio and a new
top-level program can be written to write out the results. Alternatively, the
same code can be processed by our Kiwi system to generate the corresponding
semi-systolic circuit. We believe the ability to specify circuit structure through
the explicit use of threads in an existing language and library for controlling
circuit architecture is a novel and useful feature.

The sequential filter code was used for the kernel of a program for convolving
Windows BMP images and we instrumented its performance. On a dual-core
Pentium Q6700 system running at 2.67GHz with 3GB of memory the sequential
code could process 6,562,500 pixels per second. We measured only the time
taken for the kernel operation on the image in memory and not the time taken
to read or write images to the disk.

The parallel software version of the kernel which used a separate filter thread
for each of three three color channels operated at 10,467 pixels per second which
gives an indication of how poorly very fine grain parallelism maps onto a con-
ventional multi-core architecture. The FPGA version has a critical path of
7.093ns on a XC5VLX50T-1 part can operate at 141MHz. The handshaking
protocol that we synthesize means that it takes four cycles to process a sample
so this circuit operates at 35,000,000 pixels per second. The generated Verilog
produces a circuit which is mapped into 359 slice LUTs and 4 DSP48E blocks
(we believe the insertion of another register could help the synthesis tools map
the remaining filter tap stage into a DSP48E block). A similar filter generated
using Xilinx’s core generator which makes aggressive use of DSP48E blocks
and pipelining operate at around 400MHz. We generated a similar transposed
systolic filter using Core Generator

On the BEE3 RAMP board the DRAM memory controller delivers 288-bits
for each read operation so we can process 12 8-bit pixels in each clock ticks.
This increases the perform to 429,000,000 pixels per second if we instantiate
12 banks of filters (with 3 filters per bank for each color channel). There is
significant room for improvement e.g. by optimizing the implementation of the
handshaking protocol (or totally removing it through aggressive analysis) and
by further pipelining.

In conclusion our prototype system can produce a convolver from a parallel
program which operations 3,000 times faster (on the ML-505 board) or 40,000
times faster on the BEE3 system than the corresponding sequential program.
However, compared to an optimized filter from Xilinx’s Core Generator our
system is ten times slower. This supports our thesis that our approach can
help to significantly speed up certain kinds of computations compared to their
sequential software counterparts however we do not aim to match the speed of
hand crafted designs.

26

systems level concurrency constructs

threads, events, monitors, condi�on variables

rendezvous join pa!erns
transac�onal

memory

data

parallelism

user

applica�ons

domain specific

languages

Figure 8: Higher level concurrency abstractions

7 Future Work

This paper describes how certain uses of system-level concurrency constructs
may be compiled into circuits. In the next steps of the project we aim to imple-
ment higher-level concurrency abstractions in terms of the low-level constructs
that we have already implemented. The objective is for user applications to
use these higher-level abstractions rather than the low-level mechanisms that
we have described in the previous sections. Figure 8 also shows that we hope to
layer domain-specific languages on top of higher-level concurrency abstractions
like software transactional memory, join patterns and data parallelism.

Aggressive loop unwinding increases the complexity of the actions on each
clock step in exchange for reducing the number of clock cycles used. Currently
an unwind budget is given as a command line option but we are exploring
higher-level ways of guiding such space/time trade-offs, including allowing the
user to nominate objects and methods that are to be shared between threads
rather than having fresh allocations for each thread.

In software designs, threads pass between separately compiled sections and
update the variables in the section they are in. This is not supported in syn-
thesizable RTL, so instead updates to a variable from a separately-compiled
section must be via a special update interface with associated handshaking pro-
tocol. This neatly mirrors contemporary programming style in OO languages
such as C#, where direct access to an object’s internal state is avoided with
preference for a variety of accessor methods that may read or update more than
one variable. It would be interesting to explore others mechanisms for separate
compilation and composability.

One initial source of inefficient circuits was the use of int types in C# which

27

resulted in circuits with 32-bit ports after synthesis. Our fix for this problem
involves attaching a custom attributes that specify the bit-width or integer
sub-range for integer values that can then be used by our system to generate
bit-vectors of the appropriate size in Verilog. Integer sub-ranges can be used as
assertions about the reachable state space of the design, thereby removing the
need to accurately preserve the behavior of the program outside its naturally-
reachable state space and also providing a source of dont-cares for hardware
optimization. Another approach would have been to follow the example of
System-C and provide a new type that encapsulates the idea of an integer range
but we felt that this would be a change that permeates the whole program in a
negative way.

Our hypothesis for our future work is that because we have a good translation
for the low-level concurrency constructs into hardware then we should be able
to translate the higher-level idioms by simply implementing them in the usual
way. An interesting comparison would be to examine the output of our system
when used to compile join patterns and then compare them to existing work on
compiling join patterns in software using Hardware Join Java [7].

Another direction to take our work is to generate code for other kinds of
parallel computing resources like GPUs. It is not clear if we can continue to
use the same concurrency abstractions that we have developed for Kiwi or if we
need to add further domain-specific constructs and custom attributes.

It may appear that our approach requires static allocation although strictly
speaking our system analyzes instances of dynamic allocation (as identified by
the new keyword) and tries to subsume them as static allocations. Future work
could involve dealing with a broader class of dynamic allocations in order to
make the programming model less restrictive. For example, Figure 9 demon-
strates how we may apply shape analysis and separation logic to automatically
transform a program that uses a linked list into a program that uses a statically
allocated array.

A significant and perhaps optimistic assumption in our approach is that
programmers can write parallel software and it is not clear that thread-level
parallelism as supported by current mainstream languages is suitable for our
objectives [11]. Although we have shown how to map specific uses of systems
level concurrency constructs to hardware, a more realistic system would provide
levels of abstractions that make it easier to specify concurrency and parallelism
e.g. nested data parallel arrays and their associated operations.

8 Conclusions

Although it may not seem possible at first sight we have shown that system
level concurrency constructs can be synthesized into circuits and this can be
used as the basis of an approach for compiling parallel programs into circuits.
Specifically, we have provided translations for events, monitors, the lock synchro-
nization mechanism and threads under specific usage idioms. By providing sup-
port for these core constructs we can then automatically translate higher-level

28

nodePtr

nil

while (nodePtr != null)

{ ProcessNode(nodePtr);

 nodePtr = nodePtr->next;

}

[0] [1] [2] [3]

for (int i=0; i<4; i++)

 ProcessNode(a[i]);

a

use shape analysis tool to prove program invariant ls(k,nodePtr,null) in separation logic
or prove ls(k,nodePtr,null) && k<4 i.e. we use at most 4 cells in the circuit

Figure 9: Using shape analysis to convert a linked list program into an array
program

constructs expressed in terms of these constructs e.g. join patterns, multi-way
rendezvous and data-parallel programs.

The designs presented in this paper were developed using an off-the-shelf
software integrated development environment (Visual Studio 2005) and it was
particularly productive to be able to use existing debuggers and code analysis
tools. By leveraging an existing design flow and existing language with extension
mechanisms like custom attributes we were able to avoid some of the issues that
face other approaches which are sometimes limited by their development tools.

Our approach complements the existing research on the automatic synthesis
of sequential programs (e.g. ROCCC and SPARK) as well as work on synthesiz-
ing sequential programs extended with domain specific concurrency constructs
(e.g. Handel-C). By identifying a valuable point in the design space i.e. parallel
programs written using conventional concurrency constructs in an existing lan-
guage and framework we hope to provide a more accessible route reconfigurable
computing technology for mainstream programmers. The advent of many-core
processors will require programmers to write parallel programs anyway, so it
is interesting to consider whether these parallel programs can also model other
kinds of parallel processing structures like FPGAs and GPUs.

Our initial experimental work suggests that this is a viable approach which
can be nicely coupled with vendor-based synthesis tools to provide a powerful
way to express digital circuits as parallel programs.

29

Further work which exploits recent results in shape analysis and separa-
tion logic give us the possibility of taking programs that use dynamic memory
allocation and then automatically transform these programs into their array
equivalents. Such a technique would greatly extend the utility of an approach
that aims to take regular parallel programs written by software engineers and
convert them into efficient circuits.

References

[1] Janthan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee, Matthew
Frank, Rajeev Barua, and Saman Amarasinghe. Parallelizing applications
into silicon. 7th IEEE Symposium on Field-Programmable Custom Com-
puting Machines, 1999.

[2] Francesco Bruschi and Fabrizio Ferrandi. Synthesis of complex control
structures from behavioral systemc models. Design, Automation and Test
in Europe, 2003.

[3] B. A. Buyukkurt, Z. Guo, and W. Najjar. Impact of loop unrolling on
throughput, area and clock frequency in ROCCC: C to VHDL compiler
for FPGAs. Int. Workshop On Applied Reconfigurable Computing, March
2006.

[4] M. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-oriented
FPGA computing in the Streams-C high hevel language. 8th IEEE Sym-
posium on Field-Programmable Custom Computing Machines, 2000.

[5] Rajesh K. Gupta and Stan Y. Liao. Using a programming language for
digital system design. IEEE Design and Test of Computers, 14, April 1997.

[6] Sumit Gupta, Nikil D. Dutt, Rajesh K. Gupta, and Alex Nicolau. SPARK:
A high-level synthesis framework for applying parallelizing compiler trans-
formations. International Conference on VLSI Design, January 2003.

[7] John Hopf, G. Stewart Itzstein, and David Kearney. Hardware Join Java:
A high level language for reconfigurable hardware development. IEEE In-
ternational Conference on Filed Programmable Technology, 2002.

[8] IMEC. CleanC analysis tools. Web page http://www.imec.be/CleanC/, 2008.

[9] Celoxica Inc. Handel-C language overview. Web page
http://www.celoxica.com, 2004.

[10] Monia S. Lam and Robert P. Wilson. Limits of control flow on parallelism.
The 19th Annual International Symposium on Computer Architecture, May
1992.

[11] Edward A. Lee. The problem with threads. IEEE Computer, 39(5), 2006.

30

[12] W. A. Najjar, A. P. W. Bohm, B. A. Draper, J. Hammes, R. Rinker, J. R.
Beveridge, M. Chawathe, and C. Ross. High-level language abstraction for
reconfigurable computing. IEEE Computer, 36(8), 2003.

[13] Rishiyur Nikhil. Bluespec SystemVerilog: Efficient, correct RTL from high-
level specifications. Formal Methods and Models for Co-Design (MEM-
OCODE), 2004.

[14] OCPIP. Open Core Protocol Specification Release 1.0. Web page
http://www.ocpip.org, 2001.

[15] Andres Takach, Bryan Bower, and Thomas Bollaert. C based hardware
design for wireless applications. Design, Automation and Test in Europe,
2005.

[16] Y. D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G. N. Gaydadjiev, Y. Lu,
and S. Vassiliadis. DWARV: Delftworkbench automated reconfigurable
VHDL generator. 17th International Conference on Field Programmable
Logic and Applications, August 2007.

31

