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ABSTRACT
Identifying similar keywords, known as broad matches, is an im-
portant task in online advertising that has become a standard fea-
ture on all major keyword advertising platforms. Effective broad
matching leads to improvements in both relevance and monetiza-
tion, while increasing advertisers’ reach and making campaign man-
agement easier. In this paper, we present a learning-based approach
to broad matching that is based on exploiting implicit feedback in
the form of advertisement clickthrough logs. Our method can uti-
lize arbitrary similarity functions by incorporating them as features.
We present an online learning algorithm, Amnesiac Averaged Per-
ceptron, that is highly efficient yet able to quickly adjust to the
rapidly-changing distributions of bidded keywords, advertisements
and user behavior. Experimental results obtained from (1) histor-
ical logs and (2) live trials on a large-scale advertising platform
demonstrate the effectiveness of the proposed algorithm and the
overall success of our approach in identifying high-quality broad
match mappings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.5 [Online Information Services]: Commercial
Services

General Terms
Algorithms, Experimentation

Keywords
Keyword-based advertising, online learning, keyword similarity

1. INTRODUCTION
In pay-per-click keyword advertising, advertisements are sub-

mitted as bids on specific phrases, corresponding to the maximum
amount an advertiser is willing to pay for a user’s click on the ad-
vertisement. Whenever the bidded keywords are found in the de-
livery context, advertisements are selected via real-time auctions
that take into account the bids and estimated probability of click
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(also known as clickthrough rate). The delivery context is defined
by the advertising type: in search advertising, it is comprised of the
query submitted by a user to a search engine, while in contextual
advertising, the context includes various properties of the viewed
web page, such as its text, anchor text of incoming links, or search
queries for which the page is among top-ranked results. Keyword-
based advertising has been shown to have higher user satisfaction
and response rates compared to display advertising [35], and has
increased its share of the overall online advertising revenue to 44%
for the first six months of 2008, up from 41% in 2007 and 40% in
2006 [1].

Identifying all phrases relevant to a campaign is a difficult task
for advertisers, and to address this challenge, all major keyword ad-
vertising platforms currently offer the option of submittingbroad
matchbids on keywords. Broad match, also known as advanced
match, identifies keywords related to those found in the delivery
context, and allows advertisements bid on related keywords to com-
pete in the auction. Figure 1 provides a high-level diagram of broad
match’s role in advertisement delivery, and Table 1 illustrates sev-
eral examples of keywords and their broad match mappings. Broad
match is beneficial for both the advertising platform and the adver-
tisers. With broad match, advertisers obtain increased coverage and
reach a larger (yet targeted) audience, while the burden of campaign
management is decreased since there is no need to identify all key-
words that are relevant to a campaign. For the advertising platform,
broad match leads to increased competition in auctions and higher
monetization of traffic. Overall, it maximizes the utilization of both
advertisement and content inventory, removing a core inefficiency
from keyword-based pay-per-click Internet monetization.

In this paper, we propose a machine learning approach to com-
bining various existing similarity measures for broad match key-
word identification that relies on implicit feedback: training is based
on previously shown broad match advertisement impressions, with
the clicks (or lack thereof) providing the weak supervision. Click-
through data is available in abundance from advertising system
logs, while human judgments are costly and difficult to collect in
large quantity. Although clickthrough data is noisy, noise is also
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Figure 1: Broad matching in keyword-based advertising



Table 1: Examples of broad match mappings
Context keyword Matched Keywords

electric cars toyota prius, hybrid, cheap car, golf carts
las vegas las vegas shows, vegas, las vegas hotels
rihanna ashanti, justin timberlake, mariah carey

known to be an issue for human relevance [33], while much wider
availability of clickthrough data makes it a competitive source of
supervision.

A key problem for learning in any online advertising task is adap-
tation to the rapidly changing distributions of both advertisements
and the context in which they are shown. As both campaigns and
inventory fluctuate significantly, it is critical for the learning al-
gorithm to continuously adapt to the drift in the underlying key-
word, advertisement and user distributions. This challenge is made
more difficult by the very large traffic loads on advertising systems,
making computational efficiency a critical requirement for any ap-
proach that could be deployed in a production system.

We describe a new online algorithm, Amnesiac Averaged Per-
ceptron, that addresses all of these challenges. It is based on a
highly efficient discriminative online learner, which we modify to
allow quick adaptation to the changes in market dynamics and users’
behavior, leading to strong accuracy improvements while maintain-
ing computational efficiency, as shown by comparisons with batch
learning at varying time intervals. The method continuously lever-
ages weak supervision obtained from the ad delivery system with-
out the need to obtain labeled data from human judges, and is suit-
able for deployment in high-throughput advertising platforms.

We evaluate the proposed approach to learning broad match map-
pings on historical data as well as on live traffic on a large-scale
contextual advertising platform. First, we utilize a large dataset of
contextual advertising logs that are “replayed” to provide realistic
train-test experimentation. Results demonstrate that incorporating
amnesia to overcome distribution drift leads to dramatic improve-
ments in accuracy, with online learning significantly outperform-
ing batch-learning configurations. Second, we present empirical
results from deploying our algorithm on a live contextual advertis-
ing system alongside several alternative approaches, and compare
their performance in terms of both clickthrough and monetization.

The remainder of the paper is organized as follows. Section 2
discusses related work, followed by Section 3 that sets up the task
of identifying broad match mappings via prediction of click prob-
ability. In Section 4, we explain the proposed learning-based ap-
proach to identifying broad match keywords and describe the Am-
nesiac Averaged Perceptron algorithm. In Section 5, we discuss
the data, methodology and results of experimental evaluation. We
suggest future research directions and present our conclusions in
Section 6 and Section 7, respectively.

2. RELATED WORK
The general problem of identifying related textual entities and

estimating their similarity has been studied extensively in the con-
text of many tasks that span areas from bioinformatics to databases
to natural language processing. Traditionally, algorithms for com-
puting string similarity have largely relied on the syntactic repre-
sentation of the strings, most popular of them being variants of edit
distance [19] and variants of TF-IDF cosine similarity [11].

In recent years, the problem of identifying related strings has at-
tracted increasing attention in the context of web-related tasks, such
as query substitution and suggestion [37], spelling correction [13],
and named entity disambiguation [5]. For these tasks, a number of

approaches have been proposed that leverage web-based informa-
tion, such as result pages of search engines [31], successive queries
from query logs [22, 6], and co-occurrence in web-based corpora
such as Wikipedia [5].

In recent work, Jones et al. [22] and Radlinski et al. [28] intro-
duced the problem of identifying broad match mappings in the con-
text of search advertising, and described alternative learning-based
approaches for finding broad matches for popular queries. These
methods rely on human-labeled relevance judgements for training
models that identify related keywords using several similarity mea-
sures as features. The key difference between these approaches
and one described in this paper is that our method does not as-
sume availability of human supervision, instead deriving training
data from the clickthrough logs, which allows training continu-
ously, while the methods in [22, 28] require offline training. As
demonstrated by experiments in Section 5, the ability to quickly
adapt to the fast-changing content and advertisement distributions
is critical for obtaining significant performance improvements. We
also note that the approaches of Jones et al. and Radlinski et al.
can be combined with our algorithm, with all algorithms providing
candidate broad match pairs.

The general approach of combining multiple similarity functions
for computing textual similarity has been previously described in
the context of a number of tasks, e.g., record linkage [32, 3]. In
web-related tasks, several learning-based approaches have beenpro-
posed for obtaining phrase similarity measures based on sources of
evidence that include search result pages produced for phrases en-
tered as queries [31], language modeling [26], and combining mul-
tiple evidence sources [37]. These approaches are all compatible
with our algorithm, since their outputs can be utilized as features.

The key distinction of our approach is that it relies on implicit
feedback. While information retrieval community has traditionally
relied on explicit relevance ratings produced by human judges for
evaluation and training [34], in recent years there has been increas-
ing attention to leveraging implicit feedback contained in logs of
users behavior. A variety of features derived from implicit feedback
have been shown to be useful for evaluation and training primarily
in the context of improving ranking of search results and advertise-
ments, e.g., click behavior [20, 2, 21, 8, 10], query sequences [22,
17], page dwell time [2], and mouse movements [18]. It has also
been shown that implicit and explicit feedback measures can be
correlated for specific measures, such as DCG vs. clickthrough [7]
and binary relevance judgements vs. visitation counts [36].

Advertising clickthrough logs have been central in recent work
of Chakrabarti et al. [8] and Ciaramita et al. [10] who relied on
them to improve ad ranking. These approaches are complementary
to ours, as they tackle a problem at a different stage of the advertise-
ment delivery pipeline shown in Figure 1 – selection and ranking
of advertisements selected for provided keywords – while our work
focuses on expanding the set of keywords used to fetch advertise-
ments for subsequent ranking. Estimating clickthrough rates for ad
ranking is also addressed by the work of Regelson and Fain [29]
and Richardson et al. [30], who focus on predicting click probabil-
ities for new advertisements.

3. MOTIVATION
Keyword-based advertising relies on relevance of the displayed

advertisements to the informational context in which they are pre-
sented, which explains its popularity: several studies have shown
that ads which are relevant to goal-oriented users give higher user
satisfaction and increased clickthrough rates [35]. Thus, the prob-
lem facing advertising systems is to identify all advertisements that
are relevant to the current context, even if they were submitted for



Table 2: Phrase Similarity Evidence Sources and Similarity Functions
Evidence source Similarity functions

Syntactic similarity Variants of edit distance, cosine similarity [19, 11]
Search engine logs Similarity based on clickthrough and session co-occurrence [22, 6]
Search engine resultsSnippet-based similarity (web kernels) [31, 37]

keywords not found in it. Broad match addresses this need by as-
suming that advertisements submitted for keywords related to those
extracted from context are relevant to the context by transitivity.

A number of similarity functions have been previously used for
identifying related keywords; Table 2 summarizes the primary evi-
dence sources that have been proposed in literature along with the
corresponding similarity functions that can be of syntactic, geomet-
ric and statistical nature. While the various sources and functions
provide diverse signals indicating keyword similarity, their suitabil-
ity to the broad matching task may vary. While two keywords
may be related syntactically or semantically, the distributions of
advertisements that bid on them may differ considerably due to di-
vergence in underlying commercial intent. Because broad match
mapping has the specific goal of identifying keywords for which
biddedadvertisementsare most suitable to the original context, our
approach aims to obtain broad match mappings based on suitabil-
ity of corresponding advertisements, which is best reflected by the
corresponding clickthrough rates. Focusing on clickthrough is also
essential because keyword advertising systems perform final adver-
tisement ranking and pricing based on clickthrough estimates (e.g.,
by multiplying them with the associated bids to obtain expected
monetization for a second-price auction).

Thus, the problem of identifying broad matches for a given key-
word is equivalent to predicting the click probability for advertise-
ments that bid on broad match keywords, when they are shown
in the context of the original keyword. Formally, this task can be
defined as follows. Let the advertising system have a vocabulary
of bidded keywords, where for each keywordkw there is a corre-
sponding set of broad-match advertisements with associated bids,
A(kw) = {

(

a(kw), bid(a, kw)
)

}. We assume that for every key-
word kw, a pool of candidate broad matchesC(kw) = {kw′} can
be identified using off-the-shelf similarity functions such as those
described above. The task is then to estimate the probability of
click on a broad-match

p(c|kw→kw
′) = Ea∈A(kw′)[p(c|a, kw)] (1)

for eachkw′ ∈ C(kw), where the expectation is computed over the
ads with broad-match bids onkw′ that are selected by the auction
system whenkw is found in context.

It is practically infeasible to express the expectation in Eq. (1)
analytically for a real-world auction-based advertisement ranking
system given the complexity of production ranking functions, which
are typically based on second-price auctions, but also incorporate
mechanisms to account for factors such as relevance, fraud, inven-
tory balancing, etc. However, if broad match advertisements are
continuously shown by the system, we can formulate the task as
approximatingp(c|kw → kw′) for the empirical distribution of
keywords, broad match mappings and advertisements. Then, for
each keywordkw, top broad matches can be identified by ranking
each candidatekw′ ∈ C(kw) based on a utility function that com-
bines predictedp(c|kw→kw′) with various properties ofA(kw′)
such as bid amounts, bid density, etc.

Finally, we note that considering monetary bid amounts is crit-
ical in ad ranking, and they can be easily incorporated into the
broad-match selection problem by scaling the clickthrough predic-
tions correspondingly.

4. APPROACH

4.1 Training Data
Our approach aims to leverage the abundance of user-produced

behavioral data that is collected and stored in advertising system
logs. Because users’ click behavior yields the ultimate measure of
relatedness between the bidded keywords in pay-per-click advertis-
ing, we use it as supervision for learning to identify broad match
keyword substitutions. From advertising system logs, all past ad
impressions that were based on broad match substitutions can be
extracted, yielding a dataset of training instances that have the form
(f(kw→kw′), c), where

• f(kw→kw′) is a feature vector encoding various properties
of the impression of an advertisement bid onkw′ shown in
context containing keywordkw, such as various similarity
functions, individual properties for both keywords, features
derived from the clickthrough history of the keywords, etc.,
as described in Section 5.1

• c ∈ {−1, 1} is a binary variable encoding whether a click
has occurred.

The data distribution for a dataset constructed from the logs in
this manner is completely determined by the broad-match algo-
rithms that produced the related keywords behind the served ad im-
pressions. There are two key implications of this bias. First, learn-
ing algorithms that utilize this data should avoid making strong
generative assumptions, which invites the use of discriminative ap-
proaches. Second, this setup encourages diversification of train-
ing data by employing A/B testing (also known as split or con-
trol/treatment tests, or parallel flights), where a number of alter-
native broad-match algorithms are used in parallel in randomized
fashion [23]. Employing A/B testing with a diverse set of alter-
native broad-match algorithms produces a less biased distribution
of training data, aiming to capture a broad set of candidate broad-
match pairs for evaluation.

It is well-known that clickthrough rates are heavily influenced by
the relative position in which an advertisement was displayed. Two
approaches can be utilized to normalize for position bias: one is
to only consider advertisements displayed in the top position [29],
which is what we do in experiments described in Section 5. An
alternative approach would be to utilize ad impressions from all
positions, correcting for positional bias by discounting impressions
at lower positions (see, e.g., [30]), which may be preferable in
situations when the amount of available data is more limited (e.g.,
with a smaller-scale ad platform).

There are several benefits of employing log-based training data
compared to human labeling. First, it avoids the costs of employing
human judges, while providing data at a much larger scale. Sec-
ond, it providesin situ measurement of the utility of broad-match
suggestions: while certain keywords may be judged as related by
human judges, the sets of ads bid on them may not be optimal (e.g.,
due to polysemy). Clickthrough data avoids this pitfall, directly re-
flecting on the utility of a broad-match substitution in the context
of pay-per-click advertising.



4.2 Online Learning with Amnesia
Online advertising is an extremely fluid domain. The distribu-

tions of advertisers, advertisements, bidded keywords and contexts
from which keywords are extracted (queries or web pages) change
very rapidly for a number of reasons: advertisers constantly mod-
ify their bids, new advertisers enter the system, query distribution
shifts over time, publishers’ content changes in contextual adver-
tising, etc. World events (holidays, news, new movies, etc.), sea-
sonality and other factors also significantly affect clickthroughs for
certain advertising terms, as well as change the corresponding bid-
ded advertisement distribution.

Learning in this setting requires an algorithm that can effectively
respond to the changing environment, modifying the learned hy-
pothesis automatically to reflect the drift in underlying data and
click distributions. Online learning algorithms which assume that
training instances arrive in a continuous stream are most suited for
this domain, since they allow deploying the system that continues
to learn from clickthrough data without human intervention, incor-
porating drift in the behavior of users, advertisers and publishers.

We base our approach by adapting the max-margin voted per-
ceptron algorithm [16] to incorporate moving average weighting,
commonly used in time series applications. Max-margin voted per-
ceptron is a well-known discriminative online linear classifier that
has been shown to exhibit excellent performance on a number of
high-dimensional learning tasks in domains that vary from natural
language processing to computer vision. Using averaging instead
of voting is a common modification to the algorithm that has been
empirically shown not to impact results, while significantly simpli-
fying the computation and removing the high memory cost [12].

While averaged perceptron is a robust, efficient classifier, it does
not immediately address the issue of drift: its hypothesis is an av-
erage of all weight vectors observed in the past (although with suf-
ficient data, subsequent weight vectors will reflect past distribution
changes). We propose modifying the algorithm so that instead of a
simple mean of all weight vectors, the hypothesis is amultiplica-
tively re-weighted mean. This effectively corresponds to averaging
with an exponential time decay, where the weight vectors observed
in the past are “forgotten”, while the most recent weight vectors
have the most influence on the hypothesis. Moving averages are
frequently used in applications that involve prediction over time
series data [4], and our approach incorporates the popular Expo-
nentially Weighted Moving Average (EWMA).

The resulting algorithm, Amnesiac Averaged Perceptron, is shown
in Figure 2. The algorithm processes training examples as a stream,
updating a current hypothesis (weightsw) any time a training ex-
ample is misclassified by it, with the update based on hinge loss.
The optimal hypothesis,wavg, is maintained as the exponentially
weighted moving average used for outputting actual predictions:

w
(n)
avg = α

∑

i=1..n

(1 − α)n−i
wi = (1 − α)w(n−1)

avg + αwi

where amnesia rateα, 0 < α ≤ 1, dictates how much influence
recent examples have on the averaged hypothesis compared to past
examples (largerα correspond to more weight on recent examples).
We note that notation used in Figure 2 assumes that each instance
vectorx = f(kw → kw′) includes a special attribute that always
has value 1, which obviates the need for a separate bias term.

Because the algorithm produces uncalibrated predictions of click,
we employ sigmoid calibration to convert them to actual probabili-
ties, which has been shown to be an effective method for converting
the output of max-margin classifiers to probabilities [27].

Algorithm: Amnesiac Averaged Perceptron

Input: Streaming training examples:
{(x= f(kw→kw′), c)}, c ∈ {−1,+1}

Amnesia rate 0 < α ≤ 1
Output: Weight vector wavg

Algorithm:

Initialize
wavg = w = 0

For each (x = f(kw→kw′), c)
ĉ = sign(w · x)
If ĉ 6= c

w = w + cx

wavg = (1 − α)wavg + αw

Figure 2: Amnesiac Averaged Perceptron algorithm

4.3 Feature Selection
Given the large number of features and their redundancy, along

with the high amount of noise inherent in the data set (a given
keyword substitution will sometimes be clicked, but most often
not), we expect feature selection to improve the performance of
our method.

Feature selection has a long history within the field of machine
learning [24]. We choose to use greedy forward selection based
on a holdout set, a simple yet powerful technique. Greedy forward
selection begins with a set of pre-selected features,S (which is
typically initially empty). For each featurefi not yet inS, a model
is trained and evaluated using the feature setS ∪ fi. The feature
that provides the largest performance gain is added toS, and the
process is repeated until no single feature improves performance.

5. EXPERIMENTS AND DISCUSSION
We use the Amnesiac Averaged Perceptron algorithm described

in Section 4.2 as the learning algorithm in our experiments to pre-
dict the clickthrough rate for ads based on broad-match keywords.
The following subsections describe the features, the training data,
and the results, as well as additional details about the contributions
of each aspect of our approach: using amnesia, running in online
mode, and employing feature selection.

5.1 Features
As discussed previously, there are many types of similarity func-

tions between keywords. By including a wide variety of functions,
we provide more diverse information to the learner which can be
exploited for predicting the clickthrough of broad matches.

The first set of features is based on co-occurrence statistics in
user query logs and advertiser bidding behavior [22, 28]. When
users submit queries to a search engine, they tend to focus on a
single topic within each small time window. We can thus exploit
the co-occurrence of terms in queries that co-occur within a search
session as a signal of relevance. Analogously, when advertisers
specify the campaign for a given ad, they enter bids on multiple
keywords that are all related to the topic of the ad, allowing the use
of keyword co-occurrences as evidence of relevance between them.
We counted user query co-occurrences only if they fell within a
window of 10 minutes, which we found to qualitatively improve
the similarity measure. For advertiser bid term co-occurrences, we
ignored advertisers that had bid on more than 500 keywords, as
generally such keywords were unrelated. These features are hence-
forth called “user-query” and “ad-kw”, respectively.

The raw counts of co-occurrences, while calculating a similar-
ity between terms, are not reliable because popular keywords (e.g.,
myspace) frequently co-occur with many unrelated keywords. To



address this issue, we measure the similarity using Pointwise Mu-
tual Information (PMI) [9], defined as:

PMI(X, Y ) = log2

P (X, Y )

P (X)P (Y )

In order to avoid spuriously high PMI for rare terms, we employ
Dirichlet smoothing for the above probabilities. Only high-PMI
term pairs are kept (the threshold was set by qualitatively observ-
ing the effect of the threshold on the quality of the terms being in-
cluded). For both user and advertiser co-occurrences, we included
both the PMI and non-PMI versions of the similarity measure in
our feature set.

The second set of features is based on 17 pre-existing broad
match mappings, which were generated by other Microsoft em-
ployees using a variety of techniques such as those described in
Table 2, and based on textual features, clickthrough logs, moneti-
zation, etc. We will refer to these mappings asBMi, wherei is
the index of broad match mapping. For each, we generate a binary
feature which indicates whetherkw→ kw′ exists in the mapping.

The similarity measure derived from users query logs, advertiser
bids, and the pre-existing broad match mappings can be formulated
as graphs, where each node is a keyword and the similarity between
two keywords is given by the weight of the edge between them. We
use the following technique to increase the density of the graph: for
each node, we add two-step neighbors (neighbors of neighbors) and
set the weight of the edge using the electrical-network (or inverse
distance) conversion. This third set of features (called “densified”),
partially exploits the local structure of graphs and, as will be seen,
improved results in some cases.

The fourth set of features is based on syntactic similarity mea-
sures, which include string edit distance, the presence of one key-
word as a substring inside the other, etc. We also include features
that are a function of either the original or the broad-match keyword
in isolation, such as the prior clickthrough rate (CTR) of either key-
word calculated from both search and contextual advertising logs.
We also add some other derivative features such as the log and log-
odds values of the above prior CTRs, and a binary indicator feature
encoding whether the prior CTR is larger for the original or sub-
stituted keyword. For each of the similarity functions described
above, we also add a binary indicator features that takes value 1 if
the similarity function value is non-zero, and 0 otherwise.

Finally, we add two additional feature sets, each of dimension
equal to the total number of bidded keywords, for the original and
broad-match keywords. These “keyword-id” features simply en-
code the identity of the two keywords in each pair; and are effi-
ciently accommodated in the Amnesiac Averaged Perceptron when
encoded sparsely.

5.2 Dataset
Our training and testing data was derived from two months of

logs collected by the Microsoft contextual advertising system. As
explained in Section 4.1, the training set was constructed by ex-
tracting ad impressions that were based on broad match substi-
tutions from existing broad match algorithms used in the system.
From each ad impression, an instance(f(kw → kw′), c) was cre-
ated based on the original keywordkw, the substituted keyword
kw′ (from one of the mappings,BMi), and an indication whether
it was clicked or not,c. To remove positional bias of the ads, we
only considered advertisements that were shown in the top posi-
tion. We subsampled the training data, keeping less than 1% of
the non-clicked impressions, to make the class distribution more
balanced. Random subsampling does not hurt learning because
Amnesiac Averaged Perceptron is a discriminative classifier. The

resulting training set contains millions of advertising impressions
based on millions of bidded keywords.

5.3 Results
The goal of the work is to accurately predictp(c|kw→kw′), the

probability that an ad shown for a substituted keyword,kw′, will be
clicked, given the original keyword,kw. Following conventional
practice, our base metric for model evaluation is its log-loss over a
test datasetX = {(kw→kw′, c)}:

LogL(X) =
∑

(kw→kw′,c)∈X

log2 (p(c|kw→kw
′))

A higher log-loss indicates a more accurate model. Note, how-
ever, that the test set is very noisy: any given keyword pair,kw→
kw′, will correspond to many impressions with clicks, and to even
more impressions without clicks. Thus, no batch-mode model can
achieve a perfect log-loss score because the best it can do is predict
the empiricalp(c|kw → kw′) on the test set, suffering non-zero
loss for all impressions. In fact, this perfect batch-mode model
will achieve a log-loss that is equal to the entropy of the test set
distributionH(c|kw → kw′), which we measured to be 0.5348.
We thus report the difference between our model’s log-likelihood
and the entropy of the test set, which we term “log-likelihood lift"
(LogL-Lift). LogL-Lift of zero means the model is equivalent to
the perfect, oracle-like batch-mode learner. In the following sec-
tions, we present both log-loss (negative log-loss) and LogL-Lift
for each model; for both metrics, lower is better. All log-loss and
LogL-Lift differences presented in this paper are statistically sig-
nificant (p < 0.01) with the exception of Figure 3, on which we
provide error bars.

Training was conducted using the features described in Section 5.1.
We used online learning, greedy feature selection, and amnesia, as
described in Section 4. The following methodology was used for
training: the two-month dataset was divided into one month for
training and validation, and one month for testing. The first month
was further subdivided in half into a training set (the first 15 days)
and a validation set (the last 15 days). Feature selection was per-
formed by training on the training set, and testing on the validation
set. Amnesia parameter (α) setting was performed by trying 12
values, ranging from10−6 to 10−1(see Figure 4), training a model
on the training set (using the features selected without amnesia),
and testing it on the validation set. The best value ofα was then
used for a new iteration of feature selection that included amnesia
as part of its training process (this was found to improve results)1.

We chose online vs. batch feature selection depending on whether
we were training online or batch. Similarly, we ran feature selec-
tion using amnesia depending on whether we were training with
amnesia or not. For example, if we were training online and with
amnesia then feature selection was also done using amnesia and in
online mode. This process of feature selection improved perfor-
mance. Once the parameter and feature selection were complete,
the model was trained on the entire first month, and tested on the
entire second month (note that the feature selection and parameter
tuning were performed only using the data from the first month).
Table 3 presents these results.

The row labeled ‘Prior’ represents a model that simply predicts
the same probability of click for all instances in the test set, deter-
mined by the average probability of click on the training set. The
second row gives the performance of our complete model, which
was trained online, and includes feature selection and amnesia. In
1We also tried re-tuningα, given these new selected features, but
found that in all cases, it remained unchanged.



Table 3: Comparison of Log-Loss and LogL-Lift with Prior
(lower score is better). All tabular log-loss and LogL-Lift dif-
ferences presented in this paper are statistically significant.

Model -LogLoss LogL-Lift

Prior 0.6572 0.1224
Feature Selection (FS) +
Online Learning (O) + 0.5709 0.0361
Amnesia (A)

the remaining tables, we will abbreviate these as O, FS, and A,
respectively. The complete model results in a significant improve-
ment in accuracy, approaching the performance of the hypothetical
perfect batch learner, eliminating 71% of the loss between the prior
and this (possibly impossible) goal.

In the following subsections, we investigate the contribution of
each of the major portions of our model to the overall performance:
feature selection, online training, and amnesia.

5.4 Feature Selection
In this section, we investigate the value of performing feature se-

lection. In Table 4, we give the same full model results as before,
but with an additional line indicating the performance of the Am-
nesiac Averaged Perceptron without feature selection (“O+A, All
Features”).

Table 4: Log-Loss and LogL-Lift and Feature Selection
Model -LogLoss LogL-Lift

O+A, All Features 0.6563 0.1215
O+A, Keyword-id Features 0.5953 0.0605
O+A, Feature Selection 0.5709 0.0361

As can be seen, feature selection provides a dramatic improve-
ment over the standard algorithm that uses all features. Table 5
shows the features selected for the four possible scenarios of (on-
line vs. batch) and (amnesia vs. no amnesia). Interestingly, only
a few of the features were selected from the original 68 base (non-
keyword-id) features. One of the reasons might be because many
features are redundant, particularly the derived features such as the
binarized similarity measures (see Section 5.1 for details).

The selected features for different settings contain a mix of fea-
ture types, covering historically observed clickthrough rates, tex-
tual matching, other broad match mappings and both the user- and
advertiser-based co-occurrence similarity measure. Interestingly,
the actual PMI-valued features based on co-occurrence graphs were
not considered useful, while features discretizing them via thresh-
olds were chosen. Notably, the densified versions of the graphs
generated from user query logs and advertiser bids logs were cho-
sen over the non-dense versions, demonstrating the value of the
two-step walk densification procedure.

The keyword-id features were selected for all four model settings
(Table 5). They perform well in all configurations, but particularly
so in the online setting, as they capture the empirical clickthrough
rates accumulated continuously, reflecting changes in them due to
various drift factors. In fact, a model using only the keyword-id
features achieved a log-loss of 0.5953, which represents 72% of
the overall improvement from the prior.

We note that if online-mode feature selection is computationally
too expensive for a given system, it can be performed periodically
offline without a significant loss in performance.

5.5 Online vs. Batch
As discussed above, the task of predicting which ad replacement

pairs are most likely to be clicked is inherently an online task. In
this subsection, we investigate the contribution that online learning
made to the overall performance of the learner.

Table 6: Log-Loss and LogL-Lift and Online Updates
Model -LogLoss LogL-Lift

A+FS, Batch 0.6110 0.0762
A+FS, Weekly Batch 0.5948 0.0600
A+FS, Online 0.5709 0.0361

As can be seen from Table 6, online learning contributes signif-
icantly to the overall performance of the learner. Recall that when
testing batch-mode model performance, feature selection is done
by training a model on the training set and testing it in batch mode
on the validation set. Likewise, for online feature selection, test-
ing on the validation set is done online. In both cases, we find
that matching the feature selection mode to the mode in which the
learner would be used leads to increased performance (e.g., online-
trained feature selection performs worse than batch-mode-trained
feature selection in batch mode training).

Online learning significantly improves the log-loss of the model.
One natural question is, what if we re-train the model periodically,
rather than keep it updated in an online fashion. In Table 6, we give
results for performing such retraining on a weekly basis2. Specif-
ically, the model is trained on the training set, and tested on the
first week of the test set. Then, it is trained on the training set
plus the first week of the test set and tested on the second week of
the test set, and so on. As with online learning, the performance
is measured as the overall performance on the entire test set. As
can be seen from the table, weekly re-training does improve model
accuracy, but online training (which retrains after every individual
example) is still significantly better.

To further explore the issue of online vs. batch mode training, we
plot learning curves (see Figure 3) for batch and online modes (top
and bottom curves, respectively). The x-axis indicates the relative
data set size, obtained by randomly sampling data instances accord-
ing to the corresponding probability. The first item to note is that
the performance of the batch model asymptotes at around 80%, in-
dicating that the improved performance of the online learner comes
from its ability to track a changing distribution, rather than from
needing additional data. The results of experimenting with the am-
nesia rates (presented in next section) also confirm that this is the
case by demonstrating that intentionally forgetting distant training
examples significantly improves performance.

The learning curves also show that the performance of the online
model with only 10% of the data still out-performs that of the batch
model. In a live system, it may not be possible to train the model on
every ad impression, but as can be seen, even if the training occurs
on only one of every ten impressions, the model still significantly
out-performs the batch learner. Also, the performance of the online
model is continuing to improve at 100% of the training set available
to us, indicating the value of using all available data. One advantage
of the Amnesiac Averaged Perceptron algorithm is that it can be
implemented very efficiently, which allows taking advantage of all
incoming data. Our implementation was able to process over 5000
examples per second on a single CPU core on a commodity PC
workstation.

Finally, we also plot a curve indicating the performance of the
online learner if it is only given a portion of the initial training set,
2We tried both batch and online feature selection and report the
better of the two.



Table 5: List of selected features using Feature Selection. See section 5.1 for a description of these features.
Online and Amnesia Keyword-id, log2(Contextual CTRkw), BM1, BM17

Online and No Amnesia Keyword-id, Contextual CTRkw′ , Contextual CTRkw′ > Contextual CTRkw, BM12,
Binary-Users-query using PMI, BM14, BM4

Batch and Amnesia Keyword-id, log2(Paid CTRkw′), log-odd2(Paid CTRkw), Substring, Paid CTRkw′

Batch and No Amnesia Keyword-id, log2(Paid CTRkw′), log2(Paid CTRkw), Substring,
Binary-Densified-User-query using PMI, Binary-Densified-Ad-kw using PMI
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Figure 3: Effect of training data availability on performance

instead of the full training set (middle curve). At approximately
50% of the data, the performance of this curve joins that of the
online learner that was initialized with the full training set, indicat-
ing that with sufficient online data, the learner does not need much
initial training.

5.6 Amnesia
In this subsection, we investigate the value of adding amnesia to

the standard online averaged perceptron algorithm. As described
in Section 4.2, amnesia is a technique for the model to smoothly
forget old training examples as novel examples arrive. This allows
it to remain focused on the current instance distribution, which may
have changed dramatically from the original one. In Table 7, we
give the results with and without amnesia.

Table 7: Log-loss and LogL-Lift with and without amnesia,
both for batch and online Mode

Model -LogLoss LogL-Lift

O+FS 0.6033 0.0685
O+FS, with Amnesia 0.5709 0.0361

FS 0.6204 0.0856
FS, with Amnesia 0.6110 0.0762

As can be seen, amnesia is contributes significantly to the model
performance. Given the time-varying nature of our task, we ex-
pected this, but the fact that adding amnesia nearly halves the LogL-
Lift of our model is surprising. This shows that there is significant
change occurring in the data stream, and also suggests the potential
benefits from using amnesia in other clickthrough prediction tasks,
such as modeling user interaction with search engines.

The amnesia parameter,α, was set using the validation set. As
can be seen in Figure 4, the minimum log-loss on the validation set
(in online mode) is achieved atα = 5×10−4 for the online setting.
In batch mode, the optimal setting isα = 5× 10−5. In both cases,
the minimum log-loss on the test set is found at the same setting as
on the validation set. It is interesting to note that the amnesia pa-
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Figure 4: Effect of amnesia parameter on Log-Loss, using on-
line training.

rameter is larger for online mode, which makes intuitive sense: as
the online learner is continuously refreshed with new examples, a
larger amnesia setting allows it to react more rapidly to any changes
in the distribution.

5.7 Offline CTR Estimates On Real-World Data
While log-loss provides a good information-theoretic measure

of the quality of our model, it is difficult to interpret from a prac-
tical standpoint. To construct a more concrete evaluation measure,
we attempt to estimate the real-world performance of our approach
through the following process: (1) Use the learned model to build a
new broad match mapping (BM mapping), (2) Estimate the click-
through rate (CTR) of ads based on the new mapping. The new
broad match mapping is built by selecting, for each source key-
word, the set ofk broad-match keywords with highest predicted
clickthrough. These are chosen from all observed broad match re-
placements in the training data.

Once the top-k replacements are selected for each term, the map-
ping is evaluated by estimating the CTR that would be obtained if it
were used on real user traffic. This is done by measuring the CTR
of the subset of the test set that overlaps with the mapping:

CTR(BM) = p(c|(kw→kw
′) ∈ BM)

For each test-set instance, if the substituted keyword,kw′ is one
of the k replacements given by the broad match mapping for the
original keyword,kw, it is considered in the CTR computation,
otherwise it is ignored. We also report the coverage of the mapping:

Coverage(BM) = p((kw→kw
′) ∈ BM)

The purpose of the coverage measure is to verify that a given
algorithm is not just providing replacements for a few “cherry-
picked" high-CTR keywords. It does not reflect what would hap-
pen if the mapping were used on live traffic, because at that point it
would have 100% coverage; rather, we use it as a diagnostic metric
to ensure that the estimated CTR is based on a significant subset of
the test set.



Because our metrics use the test set to evaluate the quality of
the broad match mapping, we must restrict ourselves to only using
the batch-mode model (the online model uses information from the
test set to continue training, which would constitute having knowl-
edge of the future when the mapping was evaluated). Since the on-
line model performs significantly better, we would expect an even
higher CTR for it.

To compare to a pre-existing broad match mapping, we follow
the same process, but with a model that is trained using only one
feature: whether or not the keyword pair exists in that mapping.
This ensures a fair comparison between the learned model and the
previous broad match mappings by ensuring that (1) they have ac-
cess to the same set of pairs with which to construct a mapping,
and (2) they are both forced to build replacement lists of sizek for
each original keyword, which helps to ensure they have comparable
coverage on the test set.

In Table 8, we give the results of this experiment, for our model
(in batch mode) and the three pre-existing broad match mappings
that have performed best on live traffic (BM1, BM2, andBM6).
In the table, we give the relative CTR as compared toBM6, the
best performing broad match mapping. As can be seen, our model
(FS+A) performs significantly better than all of the previous best
mappings. The coverage results verify that all three models are
being fairly compared, as all cover a sizable fraction of the test
data.

Our method could have chosen to use any subset of the 17 dif-
ferent input broad match mappings (BM1, BM2, ...) as inputs
(though the feature selection often chose only a couple). Thus, we
verified that the FS+A model has a higher estimated CTR than all
17 BM mappings. Given these results, we can be reasonably con-
fident that our model will significantly boost CTR if used in a live
system with real users.

Table 8: Relative Estimated CTR (relative toBM6) and Cover-
age for batch-trained model (FS+A) and the three broad match
mappings that had highest real-world performance (see Sec-
tion 5.8). The FS+A model achieves a higher estimated CTR
than all 17 broad match mappings,BM1-BM17 (not shown).

Model Relative CTR Coverage

BM1 80.0% 59.5%
BM2 76.7% 59.2%
BM6 (100.0%) 30.2%
FS+A 117.6% 41.4 %

5.8 Live Test Results
There are limits to the accuracy of offline scoring. In particu-

lar, some of the best replacements suggested by our algorithm may
never be seen because they are not part of the observed data. This
could occur, for example, if a particular keyword replacement has
ads that are not very valuable. Though our offline tests suggest the
algorithm will perform well, in the end, running it in an actual sys-
tem serving live traffic is the most trustworthy evaluation. Thus,
we employed the method from Section 4 to generate a broad match
mapping, settingk to the same number of replacements as were
used in the existing broad match mappings. Furthermore, we in-
corporated monetization into our mapping by adding a preference
for terms that had historically been worth more.

In Figure 5, we show the CTR performance and revenue of our
algorithm (AAP) as compared to the three other broad match map-
pings that had highest revenue and CTR. These mappings were run
in parallel, meaning each impression entering the system was ran-

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

BM1 BM2 BM6 AAP

Revenue CTR

Figure 5: Relative revenue and CTRs for our model (AAP) vs.
the three other best-performing broad match mappings

domly assigned to one of many broad match mappings (ours and
the three best performers are just four of many). Because the broad
match mappings are running in parallel, we have a controlled ex-
periment that allows us to directly compare the CTR and revenue
results for each mapping. The CTRs and revenues are scaled so
that the highest-CTR mapping performance is given as 100%.

As can be seen, our model increases revenues by approximately
15% over the next-best mapping (BM2), and 18% over the map-
ping that has highest CTR. In terms of CTR, our model has a slight
(2%) decrease in CTR vs. the best model, but still shows an 11%
gain over the model that had the next-highest revenue. By having a
good model for clickthrough of substitution terms, our model was
able to identify terms that were most likely to lead to higher click-
through. We were then able to trade-off that improved clickthrough
for improved revenue by selecting terms that had a slightly lower
clickthrough, but provided more revenue. We hypothesize this is
the reason for our model significantly increasing revenues with a
negligible effect on clickthrough rates.

We note that live traffic tests were conducted using a preliminary
version of our algorithm that did not yet incorporate amnesia or on-
line learning. In terms of log-loss, the complete model performed
significantly better than the one that we tested, so we expect the
real-world performance of the complete model to show even more
significant gains in revenue and possibly gains in CTR.

6. FUTURE WORK
While in this work we only employed similarity functions based

on pairwise similarities between keywords, the highly relational na-
ture of data in the keyword advertising domain invites approaches
that can exploit higher-order structures for obtaining more accurate
similarity estimates. For example, an interesting avenue for future
research is investigating the utility of graph-based similarity func-
tions. One such function has been proposed by Fouss et al. [15],
which estimates similarity based on a random-walk computation.
Another possible approach is to incorporate the work of Zhou et
al. [38] who proposed a multiple-graph framework for document
recommendation.

The very high dimensionality and sparsity of keyword adver-
tising data makes smoothing an important component for proba-
bilistic similarity functions such as PMI. Improving smoothing us-
ing advanced approaches such as that of Mei et al. [25] may pro-
duce improved similarity estimates, leading to better overall per-
formance.

Our dataset is obtained from a diverse set of broad match algo-
rithms running on a large ad network. It is interesting and chal-



lenging to explore the algorithms to be used on small networks to
sample the data adaptively.

The excellent empirical performance of Amnesiac Averaged Per-
ceptron invites developing principled theoretical understanding of
its effectiveness. The recent development ofbudgetedperceptron
variants that allow learning-theoretic analysis, e.g., Forgetron [14],
lends hope that formal analysis of Amnesiac Averaged Perceptron
will provide a fruitful research direction.

7. CONCLUSIONS
In this paper, we propose an approach to identifying broad match

keywords via learning to estimate corresponding clickthrough prob-
abilities. The approach utilizes supervision in the form of implicit
feedback obtained from logs of past ad impressions based on broad
matches, obviating the need for expensive human labeling. We in-
troduce an efficient online algorithm, Amnesiac Averaged Percep-
tron, which rapidly adapts to changes in the underlying data distri-
bution by multiplicatively down-weighting past weights when av-
eraging the hypotheses. Experimental evaluation demonstrated the
effectiveness of our approach both in offline log-based experiments
as well as in live tests conducted on contextual advertising traffic.
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