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Abstract —incremental computations require the storage of previ-

Many large-scale (cloud) computations operate Sus and/or partial results which are reused; and (4) safety

append-only, partitioned datasets, We present two incversus efficiency — there are many practical obstacles to
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. . .oeeflmng precisely the “sameness” of two computations,

mental computation frameworks to reuse prior work in ) . B y
and a very strict notion of “sameness” may prevent reuse.

these circumstances: (1) reusing identical computation§vhile we are not claiming to provide a definitive solu-

f""re""dy performed on data partitions, and.(2) computiragn' we are exploring in this paper two interesting points
just on the newly appended data and merging the new %}qhe design space

previous results. Our first solution is calletdentical ComputatioiDE),
and is fully automatic. IDE is a form of memoization,
1 Introduction which caches partial results and reuses them if they re-
occur unchanged in the context of future computations.

One of the most successful applications of cloud conthe second solution is calleMergeable Computation
puting is the analysis very large data sets. Batch pr@ER), and it requires some support from the user: the
cessing platforms such as Google’s Map-Reduce [3] apgbgrammer has to provide merging function which
Sawzall [16], Yahoo's Hadoop [18] and Pig Latin [15]combines the results computed on an old version of the
and Microsoft's Dryad [11], DryadLINQ [19] andinput with the results computed on the additional input
Scope [2] have been developed for this purpose. Mamata (delta). Intuitively, IDE is similar to the Unimake
if not most, of the computation cycles expended by thegsvl, which avoids recomputing partial results that have
engines are currently employed for analyzing logs, sugt changed, while MER is similar to the Urppatchtool,
as search engine logs. The analysis of very large scigfhich “fixes” the output given incremental changes in the
tific data sets (e-Science) [7] is another emerging classigput.
applications suitable for these platforms. We have implemented our solution in the context of the

An interesting common feature of these applications fisryad [11] large-scale computing system (described in
that the input data (a) continuously grows and (b) old dagction 2). Our solution depends on properties of Dryad
does not chandeEven the storage systems developed febmputations, which hold for other mainstream compu-
storing such data (The Google File-system [6], HDFS [1&tional models as well (such as Map-Reduce); most no-
and Cosmos [2]) take advantage of the append-only natgly, we rely on the fact that computation is composed
of these large data sets. Although the logs change oflym a collection of purely functional processes — in con-
incrementally, many useful computations need to processquence, each process is idempotent and deterministic,
repeatedly the entire data set. and it produces the same outputs when re-executed with

In this paper we are investigating the problemiof he same inputs.
crementalizinghe computation as well: given a compu- The contributions of this paper are: (1) we present two
tation of a large data set, we attempt to perform it effincremental computation algorithms for the context of
ciently on an incrementally larger data-set, reusing magtge-scale distributed systems; (2) we discuss practical
of the effort. This leads to faster executions, higher elusfssues for implementing these algorithms in real systems;
throughput and less energy consumed. We are interesi@d (3) we provide a preliminary evaluation of our algo-
in finding solutions which automate this task as much @ghms in a real implementation.
possible.

The space of incremental computations presents sev-
eral non-trivial trade-offs: (1) particular versus generé Background and Model

— a custom solution can be much more efficient thanljaryad [11] is a computational model which allows pro-

generic one by t?""”g advantage of the_ problem sem ammers to express distributed batch computations as
tics; (2) automatic versus manual; (3) time versus sp

Sllections of processes connected via point-to-point
e will ignore the privacy requirements which may causgéhannels. The computation is a graph: the graph verticgs

the heads of the logs to be discarded after a bounded reten@$e processes, and the graph edges are the communica-

period. tion channels. Dryad constrains the computation graph to




Dryad Job Manager ) run logic then checks the cache server for the presence of

|DE/MER Rerun Logic ) these results.
Modify DAG before run (2) DAG rewriting If some of the results identified at
RUN Cache Server step (1) are found in the cache, the rerun logic modifies
Update cache after run

) the job DAG according to the IDE or MER algorithms, to
jeuse these results.

(3) RunningDryad executes the DAG as a regular job.
be acyclic (a DAG). Dryad computations can be seen ag4) Caching After the successful completion of a job,
sets ofstagesall the vertices in a stage are performing thghe rerun logic selects partial results that may be useful
same computation. The output of any stage is a collectifgt future computations and inserts them into the cache.
of records, partitioned into disjoint pieces. We represegervices of the distributed storage system are called to
the global input and output of a Dryad job with a specigersist the contents of temporary channels.
kind of stage, composed just from “storage” vertices. WeThroughout this paper we evaluate IDE and MER in iso-
denote inputs by | and outputs by O; input partitions atation; see Section 7 about combining them.

11,12, (e.g., Figure 2). As a safety measure, the rerun logic always keeps
We assume that the job input and output data is storg¢@ unmodified Dryad job graph as a back-up for re-
on a persistent storage system, similar to the Google Fégecution, in case some of the cached data turns out to

System [6] or Cosmos [2]. Each file is stored as a Spe unavailable.
quence of disjoint extents, representing disjoint parts ©he Cache Server: is a generic cluster-level service with
the data. We also call these extepttitions Further- a put/get API operating on key-value pairs. The typical
more, we assume that stored datanisnutable and can use of the cache server is mapping fingerprints of com-
only change by the addition of new complete extentsutations to persistent storage extents. The cache server
We denote the “new” extents by delta, ar. The con- can implement arbitrary cache replacement policies; the
tent of each extent is protected with an MD5 checksumistributed file system garbage-collects the unreferenced
we call these checksunfisgerprints The storage systemextents.
maintains such fingerprints to detect data corruption using
scrubbing. . .

Our algorithms have been tested with Dryad comput4- 1 dentical Computation (IDE)

tions jobs that change dynamically during job execution

(Dryad supports runtime job graph changes in restrictdE stores and reuses the results of computations already
ways). performed in the past. We call thegkentical computa-

tions In our context, we reuse computations at the vertex
. granularity; two vertices are identical if they execute the
3 System Architecture same code on the same input data. This notion naturally
. . extends to entire computational (sub)DAGs.
Flgure 1 presents the architecture of our system, whichy identify identical computations, we extefidger-
is formed by two components: (1) therun l0gic, an €X-  hrintsto handle computations, not just data. For example,
tension of the Dryad Job Managewhich detects reusedypq fingerprint of a vertex computation captures informa-
computation and performs job graph rewriting and (2) thgy, apout the executable invoked, input channels, and the
cache servera network service with a put/getinterface. g ironment of the process, including start-up arguments.
The Rerun Logic: In the Dry‘?‘d system job graphs areEngineering the fingerprints involves some trade-offs be-
generated programmatically (i.e., the user uses an APLIg. o, conservativeness and efficiency; for example, some

construct_ jqb graphs With arbitrary acyplic shapes). Tlﬁ?ﬁanges in the environment (e.g., the current time) or in
rerun logic intercepts the job DAG after it has been gengfi evecutable (e.g., a program re-linked after a bugfix)

ated, just prior to its execution. The rerun logic perforrr}§1ay not change the computation behavior
the following actions: X . )
_ . \We further extend fingerprints to also capture the struc-
(1) Analysisbased on the job DAG and the method usetﬂre (computation and data) of a Dryad DAG. We asso-

(IDE or MER), this step identifies a set of previous riate a fingerprint with any vertex and channel in a Dryad

sults(tjhtat rr;}ay belprfesent in the C?Che' Th?sgz Ir)e:glts Cﬁ{éB? The fingerprint is computed recursively on the job
spond o channels from previously execute s (0 AG structure: the fingerprint of a vertex is a function of

channels implemented as files are considgrethe re- the fingerprints of its input channels and the fingerprint

2The Dryad job manager is a centralized process which g th‘_a binary executed; the fing.erprint of a channel is a
erates the computation DAG and oversees its execution.  function of the vertex which writes to the channel, and

3Dryad supports other types of (non-persistent) channe®®, the output channel number (a vertex can have many
such as TCP pipes and in-memory FIFOs. output channels). Intuitively, the fingerprint of a channel

Figure 1: Incremental Computation System Architectu




Outputs implemented a heuristic to select a small set of channels

to cache. Intuitively, the heuristic attempts to discover a
stage where all vertices are affected Ay the inputs to
this stage are cached. The heuristic marks vertices using
_ x a breadth-first traversal of the DAG starting from one ran-
® P ® ot o © dom input partition. This process stops when marked ver-
Figure 2: IDE applied to a record-counting application.tices isolate input_s from outputs (one cannot create a path
of unmarked vertices from an input vertex to an output
one). The input channels of the vertices on the frontier of
the marked region are cached. For the example in Figure
3 the heuristic chooses to cache the outputs of the hash-
distribution stage. In all applications that we have invest
gated this heuristic has provided optimal results (discov-
) ering the maximal common sub-DAG).
ot e CW For IDE, the analysis phase of the rerun logic applies
® sub-DAG iput - ofhash aistribute. O the heuristic to determine a cut in the DAG and com-
Figure 3: IDE applied to a histogram application. putes the fingerprints for the channels in this cut. The

DAG-rewriting phase replaces each channel found in the

summarizes the effects of the complete SUb'DAG that C8lche with its associated data partition from the cache,
influence the channel data. Two channels with the same

! . o . and then removes the resulting dead code. Finally, the
fingerprint are guaranteed to contain identical data. g y

. caching phase inserts into the cache the channels selected
Note that IDE can reuse computations between untge- s
the heuristic and not already cached.

lated jobs (and not just between multiple instances of t g
same job executed on incrementally larger data).

Figure 2 shows a simple example of using IDE on @&a M ergeable Computation (M ER)
application that counts the records in a partitioned input . ) .
file. The first execution (Figure 2A) is performed on an inlVe define a functior” : I — O to bemergeablef there
put file with two data partitions. Eadh (Count ) vertex €XISts @ funct|0£1M :0x0 = O0,stF(+A) =
performs the count on one partition; the(Add) vertex M (£'(1), F(A))". In this paper we considef to repre-
aggregates the individual partition counts. Subsequenfignt the entire computation (the result produced by the
the input file grows to three partitions (Figure 2B). ThEUtPUt stage), but our approach can be extended to work
Count vertices operating on the 11 and 12 partitions praVith intermediate results.

duce the same results as in the previous execution. Ifthe’rER caches'(/); given! + A, MER only computes

outputs have been cached, IDE can reuse them by rewfi| A), and uses the merge function to compkitd + A).

ing the computation as shown in Figure 2C. The first twh€ Programmer has to write the merge functidnMER

input channels of th&dd vertex are replaced with Storeoa_utomatlcally |d_ent|f|esA, detec_ts whether usable pre-
data containing the cached outputs of @mint vertices vious results exist and synthesizes the incremental DAG
from the Figure 2A execution F(A). MER can be potentially more efficient than IDE

In general, given two computational DAGS; = F(I) in reusing computation, because it can reuse much more
andG, = F(I + A), where+ denotes concatenationan just common identical sub-DAGs.
IDE locates a common sub-DAG of both graphs and Flgqre 4ShO.WS Fhe effect of applylpg MI.ER to the record
replaces the instance @f in G5 with the outputs ofC' counting appllcat|o_n presented ee}r.her. Fig. 4(A) '."‘.”d (.B)
computed and cached @;. This method provides mostSNOW the computation on a 2-partition and 3-partition in-
savings wher(' is the largest common subgraph @f put re_spectlvely. F_lg. 4(C) shows the result provided by an
andG,. Figure 3 shows the original and IDE DAG of ar{deal implementation of MER: the DAG reuses the previ-
application that computes the histogram of records in4> result and adds the C.Oun.t C_omp_uted on thg _delta. In
this case the merge function is just integer addition; the

partitioned file. dd vertex itself imol ts th funci
Implementation: IDE is fully automatic and transparen vertexitse ) impiements the merge function.
mplementation: To identify whether a previous instance

to Dryad users; the Users submit unmodified I_Dryad J()bﬁ”the application is present in the cache, MER has to ver-
and the system rewrites them to compute only mcremen?al

results if the cached data is available. ify the following conditions: (1) the executable code that

A challenge for IDE is the choice of the channels tgenerates the job DAG has not changed from the previ-

cache after a successful execution; the system has to ma %execuuon, (2) the job executes on the same input file

this choice before knowing the shape of future compu- A more general definition for mergeable functions, which
tations. Caching all channels is impractical, so we hawe do not explore here, B(I + A) = M (F(I),A).
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Incremental computation can translate ifdster execu-
tion, higher cluster job throughpuand reduced energy
consumptionOn the downside, incremental computations
require more storage, for caching intermediate results.
The correct trade-off depends on many factors; for ap-
plications which perform large data reductions the stor-
age trade-off may be very effective. Note that the required
B &2 & cache storage size does not depend on the number of exe-
Figure 5: MER applied to a histogram application. f:utions ofajob gnd is, in general,_less th_an the size_ o_f the
input data. The time to compute fingerprints is negligible
and (3) the code of all vertices involved in the computaompared to the job execution and scheduling.
tion has not changed. MER ensures these conditions bye evaluate IDE and MER on a 8 node cluster, us-
computing fingerprints. For simplicity, in the currentiming a single application that computes a histogram of
plementation, we ensure conditions (2) and (3) by restri¢ite records (we use the query histogram application from
ing that F'(I) is isomorphic to a subgraph @ (I + A) Section 6.3 in [11], a job similar, but more complex than
(this is safe, but not optimal). MER stores the serializade one in Figure 3). The machines are running 64-bit
job DAGs into the cache server; the check for subgrapfindows Server 2003, are equipped with dual-core pro-
isomorphism with unchanged vertices and inputs is p&fessors and 8 GB of memory, and have four 400GB disks
formed using the same fingerprints as used by IDE.  each, used in a RAID 0 configuration.
To identify A, MER uses the serialized DAG of the pre- Fig. 6 presents the execution times for the histogram ap-
vious execution from the cache. plication when increasing the input file by four extents at a
To synthesize the incremental DAG fd@f(A), MER time (250MB) or 20 extents at at time (1.3GB). The mea-
substitutes all partitions of with empty partitions in surements were carried in increasing order of input size,
F(I + A),i.e.F(A) = F(I + A)|r=¢. Applying this using the cached data from the previous run to start the
algorithm to the record-counting application results i@ tmext run. We skipped input sizes in the range 50-90GB
DAG in Figure 4(D). The resulting’(A) can be improved to speed up evaluation (but all shown data points use the
by using semantic information, e.g., removing verticessame amount of incremental data).
that produce empty outputs when given empty inputs, byin this example, both MER and IDE provide significant
replacing them with empty partitions, etc. savings (up to 80-90%) and the execution time is essen-
Fig. 5 shows the result of applying the MER algorithriially linear in the input size. For this application, MER
to the histogram computation example, presented earligritperforms IDE for large data. There are two reasons: (1)
in Fig.3. Fig. 5(A) shows the optimal way to performmore computation is saved by MER and (2) MER takes
the incremental computation whéxis a single partition. advantage of a large reduction size for reused results. In
Fig. 5(B) depicts the implementation actually built by oufact, MER runs almost in constant time for very large in-
algorithm, (which removed the hash-partitioning verticeguts (the duration is a function @ | + |O| (output), and
with empty inputs). Note that even if vertices with emptgfter a while|O| stops increasing). However, note that
inputs are not removed from the graph, the time to executeanging some parameters of the job graph (e.g., number
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of partitions per stage) can influence the performance: wentext of large-scale distributed computing. We make
saw variations which improved IDE by 50% while slowfew assumptions about the semantics of computation and
ing down MER by 30% (results not shown). The small difhus we use little information for performing optimiza-
above 30 GB of input for both IDE and MER is caused biyons. There is clearly a lot of interesting work to be per-
us turning off the interactive visualization of the job DAGformed in this space. We can envision a rich space of so-
the DAGs at this size are large enough to consume masgtons built on top of our generic framework.

of the CPU of the job manager machine for computing the

graph layout. The two sudden spikes in performance fRefer ences

IDE likely represent transient effects in the cluster.
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