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Abstract

We address the problem of automatically aligning
structure-from-motion reconstructions to overhead images,
such as satellite images, maps and floor plans, gener-
ated from an orthographic camera. We compute the opti-
mal alignment using an objective function that matches 3D
points to image edges and imposes free space constraints
based on the visibility of points in each camera. We demon-
strate the accuracy of our alignment algorithm on several
outdoor and indoor scenes using both satellite and floor
plan images. We also present an application of our tech-
nique, which uses a labeled overhead image to automati-
cally tag the input photo collection with textual information.

1. Introduction

Recent progress in structure-from-motion (SfM) has led

to robust techniques that can operate in extremely general

conditions [20, 21]. However, a limitation of SfM is that

the scene can only be recovered up to a similarity transfor-

mation (when camera intrinsics are available, or when au-

tocalibration is used [24]). This paper addresses the prob-

lem of geo-referencing an SfM reconstruction by automatic

alignment with a satellite image, floor plan, map, or other

overhead view.

Solving this alignment problem has a number of interest-

ing applications that we explore in this paper. For example,

Figure 1 shows an image from the Photo Tourism paper [20]

where an SfM reconstruction has been manually aligned to

a satellite image, enabling an enhanced 3D browsing ex-

perience. Our objective is to automate this process and to

explore a more general range of alignment tasks.

The fact that humans are able to perform this alignment

task suggests they are using visual cues that an automated

algorithm could also exploit. The most evident of these cues

is point-to-edge agreement—the points in the SfM recon-

struction, when properly aligned, coincide with boundaries

of objects (i.e., edges) in the overhead image, as seen in

Figure 1. This works because architectural scenes tend to

contain vertical walls that appear as lines in overhead views.

Figure 1. Left: satellite image of a town square in Prague, Czech

Republic. Right: manual alignment of an SfM reconstruction

(points and camera frustra) of the same area to the satellite image

from Photo Tourism [20]. Our goal is to automate this process.

While this is indeed a powerful cue, image edges are notori-

ously noisy and often correspond to non-geometric factors

such as shadows, surface markings, etc. Another power-

ful (but perhaps less obvious) cue is lack of boundaries, or

free-space. The presence of a large open area, for exam-

ple a square, park, or road, is a strong location cue that can

be useful for the alignment task. Many such free-space re-

gions can be detected both in the satellite image (relative

lack of edges in the square of Figure 1), and in the SfM point

cloud (visibility constraints due to 3D camera-point obser-

vations). Our alignment approach exploits both point-to-

edge and free-space cues to obtain robust alignments over a

wide range of scenes.

Our system offers a fully automated pipeline for cre-

ating geo-referenced scene models: given a user-specified

search term (e.g., “Prague old town square”), the system

downloads images from Flickr [8] using keyword search,

matches and reconstructs the images via SfM, downloads

a corresponding satellite image, and aligns the image and

SfM point cloud. In the case of indoor scenes, our sys-

tem also enables matching to blueprints and floor plans (al-

though in this case, we assume the blueprint or floor plan is

provided explicitly, as an additional input to the system).

Our approach is based on defining energy functions for

the point-to-edge and free-space cues, and minimizing this

energy using a discrete search over a 4D parameter space

(2D position, orientation, and scale). In many cases, rough



estimates of some of these parameters can be found by in-

corporating geotags (location information associated with

some photos), and/or computing moments of the model and

image; we show how such estimates enhance the perfor-

mance of the method. Our approach works remarkably well

in practice, and we show successful alignments for a wide

range of indoor and outdoor scenes.

We also demonstrate how our technique can be used to

automatically apply labels (or tags) to a photo collection

given additional contextual information provided with the

map or floor plan. Once an SfM reconstruction is regis-

tered with an overhead image, our auto-tagging application

automatically transfers labels from the image to individual

objects in the input photos.

2. Related Work
We seek to solve an alignment problem between a 3D

point cloud and an overhead image; specifically, we align

the 2D projection of the point cloud onto a ground plane

with the overhead image. As such, this paper relates to pre-

vious work on 3D to 3D alignment, 3D to 2D alignment,

and 2D to 2D alignment, as follows.

The problem of aligning two 3D models is well stud-

ied, with perhaps the best known method being Iterative

Closest Points (ICP) [4, 26]. ICP alternates between es-

timating a point correspondence and solving for the best

rigid alignment between the models, repeating until con-

vergence. While ICP can also be defined in 2D, a limitation

of ICP is that it requires a good initialization to converge.

Additionally, there is not an easy way to factor in visibility

constraints in the ICP procedure, as we advocate in this pa-

per. Finally, while ICP has been used to align SfM-derived

point clouds to 3D sensor data [27], our approach can han-

dle alignments to much noisier types of data, such as edge

maps derived from satellite images.

Classical work on object recognition addresses the prob-

lem of matching projections of 3D models to 2D images.

Examples (among many) include the alignment work of

Huttenlocher and Ullman [12] and Lowe’s viewpoint con-

sistency constraint [16] which seek to match projections of

a known 3D model to 2D edge images. While we also seek

to align a 3D model to a 2D image, there are a number of

important differences which make it difficult to apply these

methods to our problem. First, traditional methods assume

a clean, correct 3D model with known contours that produce

edges when projected. We are not aware of prior recogni-

tion work that operates on SfM-derived 3D point clouds—

these point clouds represent a very incomplete and sparse

scene representation. Second, prior work has focused on

simpler scenes typically consisting of a single object, where

we seek to align images of large urban environments. And

lastly, the nature of our problem enables us to reduce the

alignment problem to 2D by operating on overhead views.

The third category of related work is 2D shape to im-

age matching, another well-studied topic in the literature,

with popular methods that include chamfer matching, Haus-

dorff matching [11], and shape context [3]. These and many

others could be used to help solve our problem, indeed,

we incorporate a chamfer term in our edge cost. These

prior methods rely on shape descriptors for matching. In

this paper, we additionally exploit free-space information—

not available to the above methods—that is derived from

the distribution of camera centers and feature points. We

have found that this visibility information is crucial in many

cases to find correct alignments.

Also related to our work are techniques that correlate

SfM data to maps. Robertson and Cipolla treat a map as

an affine view of a scene, and use manually-specified cor-

respondences between ground-level images and a map to

recover more accurate scene geometry [18]. Levin and

Szeliski use a rough, user-sketched map to refine a cam-

era path computed using SfM, by solving for a temporal

correspondence between the video path and the map [14].

Again, these techniques correlate SfM geometry to clean,

manually-specified map data, and are not directly applica-

ble to unsegmented satellite imagery.

There is also a body of related work in georegistering

laser scans. Ding et al. [5] align LiDAR scans with oblique

aerial imagery by detecting and matching corners, while

Früh and Zakhor [10, 9] register aerial and ground-level

scans. The dense 3D geometry used in these techniques al-

low for much more robust detection of geometric primitives

such as edges and corners for matching. Our challenge is to

handle much sparser point clouds and cluttered, real-world

aerial imagery. Additionally, we introduce a visibility term

that can significantly improve registration.

3. Problem Formulation
Our system takes two inputs. The first is an SfM recon-

struction of a scene, consisting of a set of reconstructed 3D

points, P = {p1, p2, . . . , pn}, a set of recovered camera lo-

cations, C = {c1, c2, . . . , cm}, and, for each camera, a list

of 3D points visible to that camera (represented as a vis-

ibility operator Vij equal to 1 when point pi is visible in

camera cj and 0 otherwise). The second input is a binary,

overhead image B(x, y) of the same scene representing im-

portant structures (e.g., walls). B can be obtained from a va-

riety of sources, e.g., an edgemap computed from a satellite

or aerial image or a vector street map (for outdoor scenes),

or a floor plan (for indoor scenes). B is assumed to be an

orthographic view looking directly down on the scene.

In a preprocessing step, we project the point cloud onto

the ground plane to create a 2D point cloud, producing a

point cloud image. The ground plane normal (i.e., the scene

up vector) is computed using the method of Szeliski [23].

In this way, we reduce the problem to a 2D to 2D alignment
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Figure 2. Example of inputs to the edge cost and free-space cost for the Prague dataset. The left two figures show the overhead image and

the binary image B created from it. The two figures on the right demonstrate a point cloud viewed from above and the associated ray image

R with inverted values for visualization (lighter pixels have lower values, while darker pixels have higher values). The binary image and

the point cloud are inputs to the edge cost, while the binary image and the ray image are used for the free-space cost.

problem. In the remainder of the paper, we treat each point

p ∈ P as a (projected) 2D point (x, y).
Given these inputs, the goal is to correctly align the SfM

reconstruction (in the form of the point cloud) to the over-

head image. In particular, we seek the 2D similarity trans-

form T that best maps the reconstruction to B. T has four

degrees of freedom: a 2D translation (x, y), an in-plane ro-

tation θ, and a uniform scale s. To make these parameters

explicit, we refer to a given transform as Tx,y,θ,s. To find

Tx,y,θ,s, we define an energy function (called the alignment
cost, A(x, y, θ, s)) that measures the fit of a transformed re-

construction to the overhead image B.

The alignment cost consists of two terms: an edge cost,
E, and a free-space cost, F . The edge cost measures

how closely points in the point cloud image correspond to

edges in the overhead image B, while the free-space cost

estimates how many free-space violations occur given the

known visibility relationship between points and cameras.

We now discuss the two costs in detail.

3.1. The edge cost

The edge cost is based on the idea that points in the

SfM reconstruction, when properly aligned, coincide with

boundaries of walls and other objects (i.e., edges) in the

overhead image, and is similar to the objective function

commonly used in ICP. We define the edge cost to be the av-

erage of the L2 distance between each (transformed) point

in the point cloud image and the spatially closest point (i.e.,

nearest pixel with value 1) in the binary image B:

E(i, j, θ, s) =
1
n

∑

p∈P

min
(x,y)∈B1

||Ti,j,θ,s(p)− (x, y)||2 (1)

where B1 is the set of pixels (x, y) such that B(x, y) = 1.

Figure 2 shows an example of a binary image created from

a satellite image, as well as a point cloud.

Lower values of the edge cost indicate that more of the

feature points lie on or close to edges, implying a poten-

tially better alignment. To compute E efficiently, we first

compute a distance transform DTB of B [6]. The distance

transform DTB is a lookup table mapping a pixel (x, y) to

the distance to the nearest pixel with value 1 in B.

There are several limitations to using only the edge cost

for alignment. First, overhead images derived from satel-

lite images have many extraneous edges, compared to the

points in the SfM reconstruction. For example, the binary

image B may contain several edges on a building’s roof, but

the roof may not be visible from the position of the cameras

that created the 3D point cloud. Thus, the transform with

the minimum edge cost might correspond to an incorrect

alignment that happens to have many accidental matches

between points and extraneous edges. Second, the scale pa-

rameter of the transform would be optimal when the point

cloud converges to a single pixel, which is then translated

onto an edge in the binary image B. To address these limi-

tations we introduce the free-space cost.

3.2. The free-space cost

The free-space cost is based on the idea that the path

between a camera and any point visible to the camera should

be free of occluders, as otherwise the visibility of the point

would be violated. To compute the free-space cost, we first

create an image we call the ray image, R for each scale

we are searching over. This image is created by tracing a

ray from each camera location cj in the point cloud image

to each the point pi that is deemed visible to that camera

during the SfM computation (i.e., Vij = 1). Each pixel

in the ray image along the line segment from cj to pi is

incremented. Once all source locations are processed, each

pixel R(x, y) in the ray image will have the value of k, the

number of rays that pass through that pixel or 0 if no rays

pass through it. Figure 2 shows an example of a ray image.

Next, for each transform of the point cloud image, we

superimpose the transformed ray image R onto the binary

image B. The free-space cost, F is computed by examining

each edge pixel in the binary image B and adding the value

of the pixel at the corresponding location in the ray image



R. F is the sum of the pixelwise product of the transformed

ray image and the binary image. The intuition is that if an

edge in the overhead image lies on a pixel in the ray im-

age that is part of any ray (R(x, y) > 0), the edge should

be penalized as an occluder that violates the free-space as-

sumption. The free-space cost F is thus defined as:

F (i, j, θ, s) =
1
n

∑

(x,y)

R(Ti,j,θ,s(x, y))B(x, y) (2)

where the normalization factor n is the number of pixels in

the binary image B where B(x, y) = 1.

Lower values of this cost imply fewer occlusions be-

tween a camera and its feature points, which implies a bet-

ter alignment. Also, note that we are computing the free-

space cost over translations, rotations and scales. Had we

only been searching over translations, we could have sim-

ply computed the convolution of the binary image and ray

image or, similarly, the convolution of the point cloud im-

age and the distance transform for the edge cost. Instead,

we use a coarse-to-fine approach as described in Section 4.

There are limitations to the free-space cost as well. First,

while we assume that satellite images are orthographic, in

practice they usually exhibit a slight angle. This can cause

higher penalties on the free-space cost as the edges of the

angled vertical surfaces “creep” into free space areas of the

ray image. Second, we assume that if a ray passes through

an edge in the binary image, there is a free-space violation.

However, this may not be the case if the ray passes over,

rather than through, an object, or if the ground plane is tex-

tured. Despite these limitations, we observe that the free-

space cost for the best alignment is usually still better than

the cost for incorrect alignments. Like the edge cost, the

free-space cost also prefers transforms with smaller scales,

as scaling the entire reconstruction down to a small, tex-

tureless area of the overhead image can result in a very low

free-space cost. In the next section, we combine both costs

to reduce the impact of the limitations of each cost.

3.3. The alignment cost

The free-space and edge costs each tend to balance out

the limitations of the other. While the edge cost seeks to

maximize the match of points in the point cloud to edges,

the free-space cost minimizes the violation of free space

constraints by edges. In particular, the problem with each

cost preferring small scales is neutralized by considering

both costs, which also yields more robust alignments over-

all. Thus, the final alignment cost is a linear combination of

F and E, combined using a weighting factor α:

A(i, j, θ, s) = α F (i, j, θ, s) + (1− α) E(i, j, θ, s) (3)

where 0 ≤ α ≤ 1. We seek to minimize this function to

compute the optimal alignment of the point cloud image to

the overhead image.

edge cost free-space cost alignment cost

Figure 3. Comparison of the components of the alignment cost for

St. Peter’s dataset. Scale and rotation are fixed for easier visualiza-

tion. The first row shows cost maps, which plot the cost for each

x and y translation. The second row shows the best scoring align-

ment. The range blue to red represents low to high costs. Neither

the edge cost nor free-space cost alone are sufficient to determine

the optimum alignment, which the combined alignment cost does

find. The blue spot near the center is the correct alignment.

Figure 3 shows a visualization of the alignment cost and

its individual components. Notice that the edge cost prefers

an alignment where the dense feature points in the dome are

aligned over the edges of a side chamber, without regard for

the free space. Additionally, although we could have ruled

out the free-space cost false minimum by decreasing the

search range, this example illustrates that the free-space cost

by itself is susceptible to false minima due to large empty

regions of the binary image. Requiring that the point cloud

also align with image edges solves this problem, as demon-

strated by the selection of the optimal alignment based on

the alignment cost.

4. Alignment Algorithm

The optimal alignment could be found by computing the

alignment cost for all possible transforms of the point cloud

in a brute force fashion and choosing the transform receiv-

ing the minimum cost. However, this search space can be

very large. For a 1000 by 1000 image, searching across 180

rotations and 10 scales results in 1.8 billion possible cost

computations. By using a slightly more efficient approach,

we can reduce this space while not significantly impacting

the results. In this section we detail the algorithm and show

our results on several datasets. In the next section, we show

how using prior information can improve our results.

To reduce the search space of possible transforms, we

first search at a coarse granularity to identify areas where

the optimal alignment may reside. This involves using

larger steps when searching the space for the optimal trans-

lation. For example, instead of searching at single pixel in-

crements, we search at intervals of 10 to 20 pixels during the

coarse search phase. This particular interval range worked



Prague
# of images 168
# of points 15647
Error % 0.43
Time 67m

Red Square (UW)
# of images 114
# of points 11870
Error % 1.09
Time 78m

Pantheon
# of images 592
# of points 89904
Error % 0.28
Time 67m

House
# of images 158
# of points 13467
Error % 0.65
Time 19m

Dataset Info. Overhead Image Binary Image Point Cloud Ray Image Alignment Result

Figure 4. Successful alignment results from the algorithm in Section 4. First two rows show outdoor scenes with satellite images, last

two rows show indoor scenes with floor plans. Zoom into the PDF file to see alignment results (last column) at higher resolution. More

challenging cases are presented in the next section.

well for our datasets, but we could try a more classic octave

sampling approach in the future. During this phase, we also

keep track of the top k (5 to 10 proved effective) transforms

Ti,j,θ,s that produce the smallest alignment costs.

For the refinement step, we adopt the standard coarse-

to-fine approach and search within a window surrounding

the k transforms that the coarse search identified as possi-

ble optimal alignments. We use a window size large enough

to guarantee that we search the space of possible transforms

within the “step size.” For example, if our coarse step size

was 10 pixels for the x and y translations, in the refinement

phase, we search with a range of ±10 pixels, a 20 × 20
search window. The rightmost column of Figure 3 shows a

visualization of the alignment cost at single pixel translation

increments over all rotations and at constant scale. This vi-

sualization implies a descent toward the minimal alignment

cost (also the optimal alignment) that makes our coarse-to-

fine search likely to succeed for many datasets.

We show the results of our system on several datasets

in Figure 4. The first column provides statistics on each

dataset as well as information about the alignment, includ-

ing the average pixel error as a percentage of the image

height. We compute this by finding the average distance

between corresponding 3D points in the ground truth (ob-

tained through manual registration) and computed align-

ments. The next four columns display the inputs as de-

scribed in Section 3. The final column shows the result-

ing alignment of the point cloud overlaid onto the overhead

image from the second column.

5. Exploiting Prior Alignment Information

Our system performed well on the datasets presented in

Figure 4, but did not perform as well on others. The 5th

columns of Figure 5 and the 4th column of Figure 6 show

the incorrect alignments our system produces. We now dis-

cuss these failures, as well as methods to overcome them.

5.1. Using GPS information

A growing number of photos have embedded location in-

formation in the form of latitude/longitude geotags. Photos

can be geotagged in a number of ways, typically via GPS-
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Our Alignment

w/GPS Initialization

Figure 5. Inputs and results for the Piazza dataset (532 images, 74233 points). Our algorithm incorrectly computed an alignment with a

17.05% error, mainly due to the 180 degree rotation error (shown in column 5). The alignment computed using only GPS is shown in

column 6 and has an error of 2.01%. The final column shows that our GPS-initialized results produce the best alignment (0.45% error).

equipped cameras and mobile phones or photo-sharing sites

such as Flickr and Picasa Web Albums that allow users to

drag images onto a map. When available, we can exploit

geotags to compute a rough initial alignment of the scene

to the model. Our approach is to solve for a 2D similarity

transform between the SfM-derived camera positions and

the geotagged positions. The geotags are first converted to

meters as described in [1]. Because geotags can be very

inaccurate (especially when manually specified), we use a

RANSAC [7] approach to reduce the effect of outliers.

Given this initial alignment, we search a range of 75%

to 125% of the initial scale estimate and ± 25 degrees of

the initial rotation. Figure 5 shows the inputs of the Piazza

dataset and compares the results of our original algorithm,

GPS alignment only and our algorithm using GPS initial-

ization. The symmetry of the scene causes a 180 degree er-

ror in the rotation parameter, resulting in the selection of a

sub-optimal scale. The point cloud for this dataset was con-

structed using 532 images, of which 23 were geotagged and

15 used as inliers to calculate the GPS alignment. The orig-

inal algorithm ran in 59 minutes, while the GPS-initialized

version completed in 19 minutes.

The accuracy of GPS is on the order of 5-10 meters (of-

ten larger in confined areas or poor environmental condi-

tions). Given enough GPS tags, this accuracy is sufficient

for reasonable initialization of the transformation. How-

ever, while the initialization we get from geotags is often

quite close to the true solution, for some datasets the ini-

tial scale or orientation is far from correct. These errors

stem from the fact that many existing geotags do not actu-

ally come from GPS, but from manual placement of images

on a map. Thus, the accuracy of tags within a datset can

vary widely, depending on the proportion of true GPS tags

and the accuracy of manual placement. Cameras with built-

in GPS (e.g. the Nikon P60000 and Ricoh 500SE) are be-

ginning to appear, however, so we anticipate that a greater

number of accurate geotags will be available in the future.

5.2. Estimating scale from floor plans

We can use characteristics of indoor scenes to obtain a

reasonable estimate for scale. In general, floor plans are

well segmented into the area of interest and the same struc-

tures (walls) are likely to be present in both the floor plan

and an indoor point cloud. By contrast, satellite images con-

tain many structures that are not represented in the point

cloud. We can use the fact that indoor point clouds and floor

plans often cover similar areas to aid in scale estimation.

We first compute the mean and standard deviation for

the point cloud and the binary image B. We then use the

ratio of the standard deviation of the binary image to that

of the point cloud as an initial scale estimate and search in

the range of 50% to 125% of this value. The lower part of

this range is larger because the point cloud usually encom-

passes only a subset of the area of the floor plan. Thus the

ratio is likely to over-estimate the scale of the point cloud,

hence the lower search bound. Figure 6 demonstrates the

improvement on the St. Peter’s dataset when using the prior

scale information as part of our search. The original algo-

rithm took 52 minutes to run, compared to only 26 minutes

when searching over the smaller scale range.

6. Alignment Pipeline

When GPS tags are available for an outdoor image col-

lection, then the entire pipeline, including downloading the

satellite image, is completely automated. A user simply en-

ters a search term on Flickr corresponding to the site of

interest (e.g., “Prague Old Town Square”), and the sys-

tem downloads the images, finds the geotags, computes

the initial alignment using RANSAC, downloads the cor-

responding satellite image with the specified range of lati-

tude/longitude values, extracts an edge image, and runs our

alignment algorithm on this image with GPS initialization.

To automatically acquire a satellite image given the ini-

tial RANSAC alignment, we compute an area of interest

by using the point cloud and camera positions to find the
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Figure 6. Inputs and results for the St. Peter’s dataset (380 images, 43507 points). Our algorithm computes a poor alignment (27.6% error)

for St.Peters when not using scale initialization (shown in column 5). The final column shows our improved alignment algorithm when

using the standard deviation for scale initialization (0.42% error).

bounding box (in latitude/longitude coordinates) that con-

tains 90% of the points. This bounding box is then ex-

panded by a factor of two. We download the correspond-

ing satellite image from Live Search Maps [15] using the

ModestMaps API [17].

7. Auto-Tagging Photos

Once we have registered an SfM reconstruction to a floor

plan, map, or satellite image, we can leverage the wealth of

additional context that accompanies the map for a host of

applications (including the Photo Tourism application [20]

shown in Figure 1). In this section, we focus on one ap-

plication in particular: using tagged objects in the map to

automatically tag objects in the input photos.

There are many rich sources of tags for overhead images:

road and point-of-interest data on Internet mapping sites,

region tags on sites like like Wikimapia [2], textural and

geotag information on Wikipedia [25], to name a few. In

addition, floor plans of famous buildings are often annotated

with locations and descriptions of objects.

For example, the floor plan for St. Peter’s used to register

the St. Peter’s reconstruction (shown in Figure 6) is anno-

tated with numbers indicating locations of important statues

and monuments, and the webpage where we obtained this

image has a key describing each object [22]. We use this in-

formation to automatically tag the photos in the St. Peter’s

dataset. Several autotagged photos are shown in Figure 7.

To autotag each image, we check, for each tag (number

on the map), whether any 3D points visible to that image

are physically close to the location of that tag on the map

(we use a threshold of 6 pixels in the coordinate system of

the floor plan, though this could also be specified in me-

ters given the dimensions of the building; we could also use

a footprint of the object if known). If such points exist, we

compute the centroid of their projections into the image, and

draw the name of the object at that image position. We re-

strict 3D points considered to be lower than a certain height

(we assume objects in the scene are close to the ground).

While autotagging of photos has also been explored by

other authors [13, 19], the novelty of our approach is the

ability to automatically import data from existing 2D maps

and annotated floor plans, resources which are very preva-

lent on the Internet.

8. Discussion
We have presented a system for aligning SfM-derived 3D

point clouds with overhead images (e.g. satellite maps and

floor plans). We develop an objective function that exploits

the characteristics of architectural datasets that leads to ac-

curate alignments. Our results improve when computing

prior information based on GPS information and statistics.

Our system performs well on almost all of our datasets.

While we’ve found this approach to work remarkably

well across a broad range of indoor and outdoor scenes,

there are also important limitations and failure cases. Fig-

ure 8 shows one such failure case where the presence of

many image edges in the interior of the Colosseum violates

our 2D free-space model (as described in Section 3.2). A

more sophisticated free-space model that takes into account

the 3D structure of the point cloud and cameras could rem-

edy this problem. Our implementation is a prototype that

runs on Java and is not optimized for speed, resulting in run

times that sometimes take hours. There are many opportuni-

ties for accelerating the algorithm which could be explored

in the future (e.g., by extracting descriptors or performing

convolutions in the Fourier domain).
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