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ABSTRACT 
Peer-to-peer distributed virtual environments (DVE's) distribute 
state tracking and state transitions. Many DVE's - such as online 
games - require ways to fairly determine the outcome of 
probabilistic events. While trivial when a trusted third party is 
involved, resolving these actions fairly between adversaries 
without a trusted third party is much more difficult. This paper 
proposes the Pairwise Random Protocol (PRP), which uses secure 
coin flipping to enable adversaries to fairly determine the result of 
a probabilistic event without a trusted third party. Three different 
variations of PRP are presented, and the time impact and network 
overhead are examined. We conclude that PRP enables DVE’s to 

distribute the work of determining probabilistic events between 
adversaries without loss of security or fairness, and with 
acceptable overhead. 

Categories and Subject Descriptors 
I.6.8 [Simulation and Modeling]: Types of Simulation – gaming.  

General Terms 
Algorithms, Security. 

Keywords 
Distributed Virtual Environment, Security, Bit Commitment, 
Secure Coin Flipping, Fairness, Cheating, Pairwise Random 
Protocol, Network Games.  

1. INRODUCTION 
Distributed Virtual Environments (DVE's) are virtual environment 
(VE) simulations run on two or more nodes. Nodes are defined as 
individual software instances contributing to the DVE, usually 
running on separate computers connected by a network. DVE's are 
used for a variety of purposes, such as military simulations [1], 
immersive educational and therapeutic environments[2], 
cyberspace virtual environments[3], and networked computer 
games. Blizzard Entertainment's World of Warcraft[4], for 
example, is a DVE with more than eleven million paying 
subscribers[5], and more than a million active nodes at its busiest 
times. 
Virtual Environments are implemented as DVE's to allow more 
resources to be applied to the simulation, ideally providing better 

scalability and higher simulation resolution than possible with a 
fully centralized simulation. DVE's usually follow one of two 
models: client-server or peer-to-peer. Client-server DVE's 
perform important operations on trusted nodes, and so can 
typically trust state representation and state transition calculations. 
Peer-to-peer DVE's, however, distribute more of the state-keeping 
and transition work to untrusted nodes, requiring additional steps 
to secure the DVE.  
Several solutions have been proposed to facilitate fair resolution 
of competition between participants in peer-to-peer DVE’s. 

Solutions which address resolution of conflict between peers 
typically either focus on event ordering rather than supporting 
probabilistic transactions, or rely upon quorums or disinterested 
third parties to take on the role of trusted third parties, 
sidestepping the problem. While useful, approaches which proxy 
trusted third parties can’t guarantee fairness. Quorums can be 

subverted, and arbitrary ‘disinterested’ third parties can be 
malicious for the sake of being malicious, whether or not they 
know their victim. How, then, can two adversaries interacting in a 
DVE – for example engaged in combat in a military DVE - 
determine whether a probabilistic event such as an attack succeeds 
or fails when both parties are incented to cheat? 
This paper outlines a pairwise random protocol (PRP) for 
untrusted nodes to fairly generate random bit sequences which can 
be used to resolve probabilistic events. PRP allows adversaries to 
fairly resolve sequences of actions without requiring intervention 
from a third party, trusted or otherwise.   
The remainder of this paper presents PRP and analyzes its 
benefits. Section 2 provides a brief overview of DVE security 
research, and the foundation of bit commitment and secure coin 
flipping. Section 3 presents two variations of PRP. Section 4 
discusses PRP’s attributes and performance compared to a trusted 

third party (TTP). Section 5 presents a final summary. 

2. RELATED WORK 
Relevant related work falls into two categories: DVE security 
research, and secure coin flipping. DVE security research covers a 
variety of different aspects of DVE correctness, but doesn’t 

generally address fair resolution of probabilistic events without a 
trusted third party. Secure coin flipping is a well-known 
cryptographic technique for resolving probabilistic events 
between adversaries.  

2.1 DVE Security Research 
Distributed Virtual Environments distribute simulation work 
across two or more nodes. Distributing simulation rule 
enforcement opens the DVE to exploitation by participants 
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wishing to bias the simulation. In online game DVE's, this 
exploitation is usually defined as cheating.  
Known cheats have been analyzed and categorized in a variety of 
ways. Yan and Randell provide a useful cheat taxonomy with 
examples in [6]. Webb and Soh present an interesting overview of 
cheating and their own taxonomy in [7]. Yee et. al. present a 
threat model for MMOG DVE’s in [8] 
A variety of approaches have been proposed to combat cheating in 
game DVE's. Some - such as Mönch's work on mobile guards[9] - 
suggest protecting binaries and network transmissions from 
modification as the primary defense. Others[10] argue that relying 
on such protections alone is akin to participating in an arms race 
with the cheaters, one there is no hope of the DVE authors 
winning.  
Most proposals target a specific type of cheat. For example, event 
reordering and update-suppress cheats can be addressed by 
lockstep protocols such as asynchronous synchronization[11], 
NEO[12], and trusted timestamp servers[13]. 
Auditing can be used to detect and deter cheating[14], though it 
requires a trusted or semi-trusted auditor with sufficient resources 
to validate suspect behavior.  
Deferring state tracking and transition to a disinterested third 
party or a quorum has been proposed several times[15][16][17]. 
While sound in general, ensuring quorum members or 
disinterested third parties aren’t aligned with the interests of one 

of the affected parties – or simply malicious – is problematic.  
Finally, Knutsson et al. provide a thorough proposal for a peer-to-
peer DVE in their 2004 SimMud[18] paper. They call out the need 
for interacting nodes to have a reliable, verifiable stream of 
random numbers for resolving their interactions - for example by 
sharing a seed for a random number generator. However, their 
paper doesn't specify how this seed should be generated, and 
relying on a deterministic sequence based on a random seed 
introduces weaknesses, as discussed later in this paper. 
Each of these techniques has merit and mitigates real threats. 
However, none of them enable fair resolution of probabilistic 
events.  

2.2 Secure Coin Flipping 
The pairwise random protocol is a variation of secure coin 
flipping. Secure coin flipping was first introduced by Blum in 
[19]. In essence, Blum proposes using a secure one-way function 
𝐹(𝑥) to enable Alice and Bob to verifiably flip a fair coin, even 
though they are adversaries.  In the simplest case, this is a three 
step process, where Bob tries to guess if a bit sequence 𝑅 chosen 
by Alice is even or odd.  If he’s correct, he wins the coin toss. 
Otherwise he loses. 

1. Alice chooses a bit vector 𝑥, then tells Bob 𝐹(𝑥).  
2. Bob tells Alice his guess as to whether 𝑥 is even or 

odd. 
3. Alice reveals 𝑥 to Bob.  

At the end of the exchange, Bob can calculate 𝐹(𝑥) to ensure 
Alice didn’t change 𝑥 after learning Bob’s guess.  
We consider the (currently) unbroken hash function SHA-256 a 
suitable secure one-way function for our implementation of secure 
coin flipping. 

3. PAIRWISE RANDOM PROTOCOL 
(PRP) 

The pairwise random protocol (PRP) provides a way for two 
competing nodes in a DVE to fairly resolve probabilistic events.  
Consider a DVE with nodes, Alice and Bob. Each node controls 
an avatar, and those avatars are interacting. Given a consistent, 
verifiable view of the simulation state, we wish to enable Alice 
and Bob to fairly resolve a set of probabilistic events. For 
example, Alice and Bob are engaged in combat, with a certain 
probability of each successfully attacking their opponent, and a 
variable amount of damage inflicted per successful attack.  
Each node is incented to cheat to resolve actions in their favor. 
Alice wants all of her attacks to succeed, and all of Bob's attacks 
to fail. Alice wants each of her hits to inflict maximum damage, 
and each of Bob's hits - should he manage to get any - to inflict 
minimum damage. PRP ensures that - given consistent views of 
world state - Alice and Bob can fairly resolve probabilistic 
interactions such as determining attack success and selecting the 
amount of damage inflicted within the specified range. 
As Alice and Bob are participating in the same DVE, we can make 
some simplifying assumptions.  

1. Alice and Bob each know the correct DVE rules. Even if 
Alice is running a modified version of the DVE 
software, she has the unmodified code at her disposal 
for verifying validity of Bob’s activities. 

2. Alice and Bob have access to identical pseudo-random 
number generators, and these generators provide 
‘suitably random' sequences for the DVE to resolve 

probabilistic sequences of activities.  
3. Alice and Bob can communicate with each other.  

Given these assumptions, we describe any probabilistic activity 
which affects either party as an adversarial activity.  
Before resolving the success or failure of an adversarial activity, 
Alice and Bob must specify the activity to be decided. For 
example, Alice and Bob must agree that they are performing PRP 
to calculate whether or not Alice succeeds in attacking Bob. This 
has two benefits: 

1. It ensures that the losing party in a PRP exchange can’t 

claim the exchange was intended to determine outcome 
of a different activity, e.g. whether Alice gets crumbs on 
her jacket from eating a donut, rather than success in 
combat.  

2. It allows a cryptographic proof of participation in the 
activity to be generated. This reduces the utility of the 
loser refusing to continue the exchange.  

We assume this binding can preface the PRP exchange, or be 
performed as part of it. Discussions of methods for doing this are 
out of scope of this paper. 
Section 3.1 describes the core PRP protocol to resolve a single 
probabilistic event. Section 3.2 proposes a refinement for 
generating a pseudo-random sequence without either adversary 
controlling the sequence.  

3.1 Resolving a single action 
Probabilistic actions can be resolved by a series of secure coin 
flips with a pre-agreed interpretation. For example, Alice and Bob 
can agree that Alice has a 5 in 8 chance of successfully attacking 
Bob. Alice therefore needs to generate a random number between 
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1 and 8, and if it is 5 or less, her attack succeeds. Alice and Bob 
can generate this number by flipping a fair coin three times to 
generate a 3-digit binary number, with heads being a ‘1’ and tails 

a ‘0’. As long as we can guarantee sequencing of flip results used 
as bits, resolving a single arbitrarily scaled probabilistic event – 
such as this one - can be reduced to ensuring a single coin can be 
fairly flipped.  
The basic protocol for Alice and Bob to determine a random bit 
without requiring a trusted third party is described below, and 
illustrated in Figure 1. Note this exchange is roughly equivalent to 
Blum’s secure coin flip protocol[19].  

1. Alice and Bob each privately choose a bit vector of 
length 1, 𝐵𝐴  and 𝐵𝐵 respectively.  

2. Alice generates a (possibly zero-length) nonce 𝑁𝐴  
known only to her, and uses a cryptographic hash 𝐻(𝑥) 
to generate a digest 𝐷 =  𝐻(𝑁𝐴 , 𝐵𝐴). She sends 𝐷 to 
Bob. 

3. Bob makes a note of Alice's digest 𝐷, and sends his bit 
vector 𝐵𝐵  to Alice. 

4. Upon receipt of Bob's bit vector, Alice transmits her 
nonce 𝑁𝐴  and bit vector 𝐵𝐴  to Bob. Bob verifies that the 
hash of these values 𝐻(𝑁𝐴 , 𝐵𝐴) matches the previously 
received digest 𝐷.  

5. Alice and Bob XOR their own bit vector with their 
adversary's bit vector to determine the outcome of the 
exchange. In the case of a single-bit bit vector, if  
𝐵𝐴 = 𝐵𝐵  then the result is 0. Otherwise it is 1. 

As long as each message is eventually received, and Alice chooses 
a nonce of sufficient size to diversify values for 𝐷 (see section 4 
for details), Alice and Bob can be assured that the binary result is 
fairly determined. It doesn't matter whether Alice and Bob 
randomly or deliberately select their bit vectors. As long as Alice 
and Bob are not collaborating, there is a 50% chance of the bit 
being 1, and a 50% chance it is 0.  

 
Figure 1 - Single Bit PRP Exchange 

Barring retransmissions, a minimum of three messages 
comprising one-and-a-half round trips are required to complete a 
single PRP exchange, as shown in Figure 1. If low latency is more 
important than a low message count, latency can be reduced to a 
single round trip by adding a message and making the exchange 
symmetric, as shown in Figure 2. Note that this optimization may 
open additional attack vectors. 

 
Figure 2 - Symmetric Single Bit PRP Exchange 

 
This protocol can be trivially extended to provide an arbitrarily 
long random bit vector by changing the number of bits in 𝐵𝐴  and 
𝐵𝐵. For example, rather than performing three sets of exchanges 
for Alice to generate her three-bit random number,  she can simply 
replace 𝐵𝐴   with a 3-bit bit vector, and instruct Bob to do the same 
with 𝐵𝐵 . 
This version of PRP is secure, but requires several network 
messages for each random value provided. Depending upon the 
security requirements of the DVE, it is possible to obtain 
acceptable results with less overhead, as detailed below. 

3.2 Resolving an unbounded random 
sequence 

Interactions in DVE's are often comprised of long sequences of 
actions. Requiring a three or four message exchange for each 
action by each participant is secure and fair, but slow and 
expensive.  
An alternative is to resolve more bits than are required for the 
current event, and to use the next sequence of unused bits for each 
subsequent activity. While efficient from a protocol perspective, 
this extension suffers from a look-ahead vulnerability in terms of 
consumption. Once Alice and Bob finish the exchange and 
determine the bit sequence, neither can change the bits. However, 
they can modify their behavior to consume the bits in an 
advantageous way.  
For example, suppose Alice can execute any of four actions 
interchangeably: she can tie her shoes (random chance of failure), 
skip a rock (random number of skips), pick a flower (random 
length of stem), or build a house (random number of rooms). Each 
action has a different cost and benefit for Alice. If Alice knows the 
sequence of bits which will be consumed to determine the 
outcome of her probabilistic actions, she can 'look ahead' to 
determine the most favorable sequence to execute. For example, 
she can pick flowers to consume undesirable bits, waiting to build 
a house until the next set of bits guarantee she builds a house with 
the maximum number of rooms.  
Another alternative to provide random values for a series of 
activities is to use PRP to determine a random seed for a pseudo-
random generator. Alice and Bob agree on the use for a pseudo-
random stream, then use PRP to create a bit vector of an 
appropriate size to seed the generator. Since both Alice and Bob 
have copies of the random number generator, they can each 
validate the sequence generated using the resolved bits seed, and 
the subsequent results. Note that the idea of using a pseudo-
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random generator to create a sequence of random numbers which 
can be verified by all participants is suggested in [18].  

4. RESULTS AND DISCUSSION 
PRP as described in Section 3.1 provides a reliable but relatively 
expensive source of bits to fairly resolve adversarial probabilistic 
events. Section 3.2 describes a less expensive variant of PRP, but 
at the cost of enabling look-ahead cheats, and allowing 
participants to unfairly optimize the order of events which 
consume those bits.  
DVE authors should carefully examine impact of look-ahead 
exploitation before using the random seed or pre-generation 
approaches to generating bit sequences. Real-time interactive 
DVE's such as network games may be so dynamic that the look-
ahead vulnerability is of no practical concern, especially if the bit 
stream is refreshed every few seconds. For example, Alice may 
have only a small number of action choices at any given time, and 
attempting to bias her choice according to attributes of the random 
bit stream may provide less value – even when done via an 
automatic enhancement hack - than selecting the most appropriate 
action at the time. 
While PRP performance overhead is greater than the overhead of 
working directly with a TTP, the cause is not solely the algorithm 
itself. Distributing activities normally performed by a TTP to 
unreliable, untrusted nodes can introduce significant overheads to 
DVE activities, as noted in several of the previously cited DVE 
security works. Still, informed choices can minimized this 
overhead. We provide performance analysis below to help DVE 
authors understand trade-offs in different PRP usage scenarios. 
DVE’s often rely upon congruent random generators running on a 
TTP to determine the outcome of probabilistic actions. For 
example, Quake III Arena uses calls to their random generator to 
determine variations in projectile direction due to weapon recoil. 
The random number generator typically used in deployed network 
games is from the ‘C’ standard library, and typically provides a 

two byte random number. 
In a game with trusted third parties, the TTP can often produce 
and consume random numbers locally on behalf of a given client. 
Alternatively, it can provide the random number to the client for 
the client to consume in its local activities. In peer-to-peer DVE’s, 

the system should not rely upon a TTP for common activities. The 
client should ideally be able to resolve probabilistic events 
without TTP intervention. For the DVE to be fair, this must be 
done in a way which doesn’t allow the value to be chosen by the 

same client consuming it.  
The following two subsections discuss PRP’s security and 

performance properties, using this scenario to illustrate those 
properties. 

4.1 Security 
Most deployed DVE’s are implemented as client-server 
applications. From the client perspective, the server acts as a 
trusted third party (TTP). The server is explicitly trusted to fairly 
resolve probabilistic events on behalf of its clients. In other words, 
over the course of many trials, the client expects the distribution 
of results to roughly match the probability of each outcome. 
Even in the TTP case, outcome can be biased by many factors, 
such as the source of random numbers for event resolution. We do 
not propose to discuss methods for generating suitably random 
numbers here. Instead, our goal is to support the proposition that 

given two adversaries, neither adversary can predictably bias the 
resulting random bit vector. As long as appropriate precautions 
are taken, this should provide probabilistic event resolution of a 
quality no worse than that available from a TTP.  
Let Alice be a node undertaking PRP to create a random bit vector 
for her consumption, and Bob an adversary participating in that 
PRP exchange. We wish to prove that so long as Alice and Bob 
cannot predict the value of their adversary’s bit vector 𝐵, neither 
can bias the result of the PRP exchange. To do this, we need to 
prove four properties: 

P1. Once Alice commits to a choice for 𝐵𝐴  by transmitting a 
digest 𝐷 to Bob, she cannot change her choice without 
detection. 

P2. Bob cannot ascertain Alice’s choice of 𝐵𝐴  from the 
digest 𝐷.  

P3. If Bob has no knowledge of Alice’s choice for 𝐵𝐴 , then 
Bob cannot choose a 𝐵𝐵 which will bias the result. 

P4. Given the sequence of messages exchanged in PRP, 
neither Alice nor Bob can dispute the value of the 
resulting bit vector 𝐵𝐴  ⨁  𝐵𝐵.  

P1: Alice transmits the digest 𝐷, a SHA-256 hash of an input of 
length at least 256 bits. In this, case input is a 255-bit nonce 𝑁𝐴  
and Alice’s 1-bit bit vector 𝐵𝐴 . In order for Alice to change her 
selection of 𝐵𝐴  to 𝐵′𝐴  after transmitting 𝐷 to Bob, she must find a 
new nonce 𝑁𝐴′  such that 𝑆𝐻𝐴256(𝑁′𝐴 , 𝐵𝐴

′ )  =  𝑆𝐻𝐴256(𝑁𝐴 , 𝐵𝐴). 
Since 𝑆𝐻𝐴256  isn’t broken, this would require a brute force 
attack, on average 2256/ 2 attempts, which means trying every 
value for the 255-bit nonce. This is computationally infeasible. 
Even if every computer on earth were employed and each was 
capable of testing a million candidates per second, more than 
1056 years would be required. Alternatively Alice could try to  
find two 256-bit vectors with a different last bit whose hashes 
collide, but even this would require 𝑶(√2256)  =  𝑶(2128) 
attempts. 
P2. Since SHA-256 is an unbroken cryptographic one-way 
function, and since Alice has given it an input of at least 256 bits, 
there is no way for Bob to predict the value of the input solely 
based upon its output, or to limit that input to a specific candidate 
pool other than brute-force attack, which as shown above is 
computationally infeasible. 
P3. For each bit in 𝐵𝐵, a 1 will invert Alice’s choice for the same 

bit in the result bit vector, while a 0 will leave Alice’s choice 

intact. Since Bob cannot determine the bit chosen by Alice for 
each position in 𝐵𝐴  at the time he must commit to 𝐵𝐵, he has no 
way of choosing a value for 𝐵𝐵 to maximize chances of a specific 
outcome.  
P4. For a given input, XOR is a deterministic operation, so 
𝐵𝐴  ⨁  𝐵𝐵 is deterministic for given 𝐵𝐴  and 𝐵𝐵. By the time 
𝐵𝐴  ⨁  𝐵𝐵 can be calculated by either Alice or Bob, both are 
committed to their bit vector values, and cannot change that 
commitment without detection from their adversary. 
Like most protocols, PRP in its basic form is vulnerable to abort 
attacks, e.g. Bob refusing to acknowledge receipt of Alice’s final 

PRP message after he determines the resulting bit vector does not 
yield his desired outcome. This can be mitigated by standard 
cryptographic techniques such as signing each message in the 
protocol, and using anti-replay and sequencing protections to 
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prove message sequence order and contents. Such mitigations are 
especially important if the PRP variation in Figure 2 is used.  

4.2 Performance 
Suppose Alice wishes to generate a single 16-bit random number 
for consumption for a pre-agreed purpose. Suppose as well that 
Alice has 100 ms RTT to Bob on the network.  Table 1 compares 
the network latency and traffic required for Alice to obtain this 
random bit vector. We assume IPv4 UDP on Ethernet as the 
transport medium, inducing transport overhead of 42 bytes per 
packet. PRP uses SHA-256 as the one-way hash, and a nonce size 
equal to (hash length – target bit vector size) for bit vectors 
smaller than the hash value size.  
PRP requires one and a half round trips, with each packet 
containing 42 bytes of headers. The first packet contains the SHA-
256 hash of Alice’s 240-bit nonce and 16-bit bit vector. The 
second packet contains Bob’s 16-bit bit vector. The final packet 
contains Alice’s nonce and bit vector, and completes the PRP 

protocol transaction. 
Table 1 - Random number generation cost 

 TTP Adversary 
Additional 

cost 

Latency 50 ms 150 ms 300% 

Network 
Bytes 

44 bytes 192 bytes 436% 

 
The cost in terms of latency and network bytes for the PRP 
protocol version described in section 3.1 is significant compared 
to obtaining the random bit vector directly from a TTP. 
Fortunately there are a few ways we can decrease overhead 
without realistically compromising security.  
First, we can reduce the number of bytes transmitted in payloads 
by reducing the size of the transmitted hash, and of the nonce 
itself. PRP uses SHA-256 because SHA-256 is not yet broken, 
rather than because 256 bits of protection are required. Secrets in 
a PRP exchange are short-lived – less than a second in the 
example above – so the hash value only requires enough bits to 
prevent an attacker from determining Alice’s bit vector before it is 
revealed in Alice’s second message. The most significant threat is 

a dictionary attack, because of its short execution time. 
In the 16-bit bit vector case, it would be trivial for Bob to create a 
dictionary with the SHA-256 hash values for the 216  possible 
values for Alice’s bit vector. To prevent this, we include a large 
nonce in the hash to make lookup impractical for Bob. We can 
establish a size of lookup table we wish to defeat – for example 
one petabyte – and choose a hash and nonce size to enable that 
level of protection.  A petabyte is approximately 258 bits. Each 
entry in a sparse lookup table would include the lookup hash 
value and the expected 16-bit bit vector.  If the hash is truncated 
to 64-bits, then each lookup table entry would consume 80 bits, 
resulting in a table capacity of about 252 entries.  With a nonce 
size of 48 bits (and a 16-bit bit vector), this would give Bob a 
probability of about 252  / 264   = 0.02% chance of successfully 
looking up Alice’s bit vector from the hash in her first PRP packet 

with a petabyte index. This optimization reduces the network 
bytes required for a 16-bit bit vector PRP exchange from 192 
bytes to 144 bytes, dropping the network cost from 436% of TTP 
transaction cost to 327%.  

Another way to improve both latency and network overhead 
associated with PRP – though at the cost of some security - is to 
pre-calculate a large bit vector for consumption, and then use 
successive parts of that vector for the next 𝑘 random contests. For 
example, suppose Alice needs an average of ten 16-bit random 
values per second.  She can request a bit vector with enough bits 
to satisfy five seconds of her requirements, or 50 ∗  16 =  800 
random bits. For a request this large, assuming a sufficiently 
random input bit vector on Alice’s side, a nonce is no longer 

needed. Precalculating a series of random values amortizes PRP 
latency PRP across several seconds of bit consumption, reducing 
its effective performance impact. It also reduces the relative 
overhead of generating the 800 random bits. Total PRP network 
byte cost – assuming 64-bit truncated hash - is 340 bytes, which 
compared with a TTP-sent packet size of 44+(800/8) = 144 bytes 
is 236% more, less overhead than our previous optimizations. 
A slightly weaker choice would be to use PRP to create the 32-bit 
seed for Alice’s DVE random number generator, and have Alice 
use the resulting pseudo-random sequence for a set interval or 
number of operations. This approach would consume 46 bytes to 
obtain the seed from a TTP, or 146 bytes using PRP. While the 
relative overhead in this case is still more than 300% greater than 
obtaining the seed from a TTP, the absolute cost to the DVE for 
generating e.g. 800 pseudo-random bits is quite low. 

5. CONCLUSIONS 
This paper presented the Pairwise Random Protocol (PRP), based 
on secure coin flipping. Using PRP, adversaries can fairly 
determine and agree upon the outcome of probabilistic actions. 
Three different variations of PRP were presented, along with 
high-level performance analysis of the algorithms.  The variations 
range from a perfectly fair approach which requires a three-way 
handshake per random event, to creating arbitrarily long pseudo-
random sequences using a fairly determined random seed, up to 
the tolerance of the DVE. 
PRP makes it possible for adversaries to fairly determine the 
results of probabilistic events in a DVE with the same security a 
trusted third party – such as a game server – could provide. For 
DVE’s which do not frequently need random numbers, or which 

are tolerant of the 2 to 4 times overhead required for the most 
secure versions of PRP, this can be done without loss of fairness 
or security.  If the DVE is performance-sensitive, then 
compromises can be used such as pre-generating a set of random 
bits to use over time, or seeding a random number generator, 
which allow reasonable security without significant performance 
impact. 
For future work we hope to integrate PRP into a peer-to-peer 
adaptation of a deployed game, such as Quake III Arena which is 
available in open-source form.  
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