
Probabilistic Event Resolution with the Pairwise Random
Protocol

John L. Miller1,2
1Microsoft Research, Cambridge

Cambridge, United Kingdom
+44 1223 479813

johnmil@microsoft.com

Jon Crowcroft2
2University of Cambridge Computer Laboratory

Cambridge, United Kingdom
+44 1223 763633

jac22@cl.cam.ac.uk

ABSTRACT
Peer-to-peer distributed virtual environments (DVE's) distribute
state tracking and state transitions. Many DVE's - such as online
games - require ways to fairly determine the outcome of
probabilistic events. While trivial when a trusted third party is
involved, resolving these actions fairly between adversaries
without a trusted third party is much more difficult. This paper
proposes the Pairwise Random Protocol (PRP), which uses secure
coin flipping to enable adversaries to fairly determine the result of
a probabilistic event without a trusted third party. Three different
variations of PRP are presented, and the time impact and network
overhead are examined. We conclude that PRP enables DVE’s to

distribute the work of determining probabilistic events between
adversaries without loss of security or fairness, and with
acceptable overhead.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation – gaming.

General Terms
Algorithms, Security.

Keywords
Distributed Virtual Environment, Security, Bit Commitment,
Secure Coin Flipping, Fairness, Cheating, Pairwise Random
Protocol, Network Games.

1. INRODUCTION
Distributed Virtual Environments (DVE's) are virtual environment
(VE) simulations run on two or more nodes. Nodes are defined as
individual software instances contributing to the DVE, usually
running on separate computers connected by a network. DVE's are
used for a variety of purposes, such as military simulations [1],
immersive educational and therapeutic environments[2],
cyberspace virtual environments[3], and networked computer
games. Blizzard Entertainment's World of Warcraft[4], for
example, is a DVE with more than eleven million paying
subscribers[5], and more than a million active nodes at its busiest
times.
Virtual Environments are implemented as DVE's to allow more
resources to be applied to the simulation, ideally providing better

scalability and higher simulation resolution than possible with a
fully centralized simulation. DVE's usually follow one of two
models: client-server or peer-to-peer. Client-server DVE's
perform important operations on trusted nodes, and so can
typically trust state representation and state transition calculations.
Peer-to-peer DVE's, however, distribute more of the state-keeping
and transition work to untrusted nodes, requiring additional steps
to secure the DVE.
Several solutions have been proposed to facilitate fair resolution
of competition between participants in peer-to-peer DVE’s.

Solutions which address resolution of conflict between peers
typically either focus on event ordering rather than supporting
probabilistic transactions, or rely upon quorums or disinterested
third parties to take on the role of trusted third parties,
sidestepping the problem. While useful, approaches which proxy
trusted third parties can’t guarantee fairness. Quorums can be

subverted, and arbitrary ‘disinterested’ third parties can be
malicious for the sake of being malicious, whether or not they
know their victim. How, then, can two adversaries interacting in a
DVE – for example engaged in combat in a military DVE -
determine whether a probabilistic event such as an attack succeeds
or fails when both parties are incented to cheat?
This paper outlines a pairwise random protocol (PRP) for
untrusted nodes to fairly generate random bit sequences which can
be used to resolve probabilistic events. PRP allows adversaries to
fairly resolve sequences of actions without requiring intervention
from a third party, trusted or otherwise.
The remainder of this paper presents PRP and analyzes its
benefits. Section 2 provides a brief overview of DVE security
research, and the foundation of bit commitment and secure coin
flipping. Section 3 presents two variations of PRP. Section 4
discusses PRP’s attributes and performance compared to a trusted

third party (TTP). Section 5 presents a final summary.

2. RELATED WORK
Relevant related work falls into two categories: DVE security
research, and secure coin flipping. DVE security research covers a
variety of different aspects of DVE correctness, but doesn’t

generally address fair resolution of probabilistic events without a
trusted third party. Secure coin flipping is a well-known
cryptographic technique for resolving probabilistic events
between adversaries.

2.1 DVE Security Research
Distributed Virtual Environments distribute simulation work
across two or more nodes. Distributing simulation rule
enforcement opens the DVE to exploitation by participants

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOSSDAV’09, June 3-5, 2009, Williamsburg, Virginia, USA.
Copyright 2009 ACM 978-1-60558-433-1/09/06...$5.00.

67

wishing to bias the simulation. In online game DVE's, this
exploitation is usually defined as cheating.
Known cheats have been analyzed and categorized in a variety of
ways. Yan and Randell provide a useful cheat taxonomy with
examples in [6]. Webb and Soh present an interesting overview of
cheating and their own taxonomy in [7]. Yee et. al. present a
threat model for MMOG DVE’s in [8]
A variety of approaches have been proposed to combat cheating in
game DVE's. Some - such as Mönch's work on mobile guards[9] -
suggest protecting binaries and network transmissions from
modification as the primary defense. Others[10] argue that relying
on such protections alone is akin to participating in an arms race
with the cheaters, one there is no hope of the DVE authors
winning.
Most proposals target a specific type of cheat. For example, event
reordering and update-suppress cheats can be addressed by
lockstep protocols such as asynchronous synchronization[11],
NEO[12], and trusted timestamp servers[13].
Auditing can be used to detect and deter cheating[14], though it
requires a trusted or semi-trusted auditor with sufficient resources
to validate suspect behavior.
Deferring state tracking and transition to a disinterested third
party or a quorum has been proposed several times[15][16][17].
While sound in general, ensuring quorum members or
disinterested third parties aren’t aligned with the interests of one

of the affected parties – or simply malicious – is problematic.
Finally, Knutsson et al. provide a thorough proposal for a peer-to-
peer DVE in their 2004 SimMud[18] paper. They call out the need
for interacting nodes to have a reliable, verifiable stream of
random numbers for resolving their interactions - for example by
sharing a seed for a random number generator. However, their
paper doesn't specify how this seed should be generated, and
relying on a deterministic sequence based on a random seed
introduces weaknesses, as discussed later in this paper.
Each of these techniques has merit and mitigates real threats.
However, none of them enable fair resolution of probabilistic
events.

2.2 Secure Coin Flipping
The pairwise random protocol is a variation of secure coin
flipping. Secure coin flipping was first introduced by Blum in
[19]. In essence, Blum proposes using a secure one-way function
𝐹(𝑥) to enable Alice and Bob to verifiably flip a fair coin, even
though they are adversaries. In the simplest case, this is a three
step process, where Bob tries to guess if a bit sequence 𝑅 chosen
by Alice is even or odd. If he’s correct, he wins the coin toss.
Otherwise he loses.

1. Alice chooses a bit vector 𝑥, then tells Bob 𝐹(𝑥).
2. Bob tells Alice his guess as to whether 𝑥 is even or

odd.
3. Alice reveals 𝑥 to Bob.

At the end of the exchange, Bob can calculate 𝐹(𝑥) to ensure
Alice didn’t change 𝑥 after learning Bob’s guess.
We consider the (currently) unbroken hash function SHA-256 a
suitable secure one-way function for our implementation of secure
coin flipping.

3. PAIRWISE RANDOM PROTOCOL
(PRP)

The pairwise random protocol (PRP) provides a way for two
competing nodes in a DVE to fairly resolve probabilistic events.
Consider a DVE with nodes, Alice and Bob. Each node controls
an avatar, and those avatars are interacting. Given a consistent,
verifiable view of the simulation state, we wish to enable Alice
and Bob to fairly resolve a set of probabilistic events. For
example, Alice and Bob are engaged in combat, with a certain
probability of each successfully attacking their opponent, and a
variable amount of damage inflicted per successful attack.
Each node is incented to cheat to resolve actions in their favor.
Alice wants all of her attacks to succeed, and all of Bob's attacks
to fail. Alice wants each of her hits to inflict maximum damage,
and each of Bob's hits - should he manage to get any - to inflict
minimum damage. PRP ensures that - given consistent views of
world state - Alice and Bob can fairly resolve probabilistic
interactions such as determining attack success and selecting the
amount of damage inflicted within the specified range.
As Alice and Bob are participating in the same DVE, we can make
some simplifying assumptions.

1. Alice and Bob each know the correct DVE rules. Even if
Alice is running a modified version of the DVE
software, she has the unmodified code at her disposal
for verifying validity of Bob’s activities.

2. Alice and Bob have access to identical pseudo-random
number generators, and these generators provide
‘suitably random' sequences for the DVE to resolve

probabilistic sequences of activities.
3. Alice and Bob can communicate with each other.

Given these assumptions, we describe any probabilistic activity
which affects either party as an adversarial activity.
Before resolving the success or failure of an adversarial activity,
Alice and Bob must specify the activity to be decided. For
example, Alice and Bob must agree that they are performing PRP
to calculate whether or not Alice succeeds in attacking Bob. This
has two benefits:

1. It ensures that the losing party in a PRP exchange can’t

claim the exchange was intended to determine outcome
of a different activity, e.g. whether Alice gets crumbs on
her jacket from eating a donut, rather than success in
combat.

2. It allows a cryptographic proof of participation in the
activity to be generated. This reduces the utility of the
loser refusing to continue the exchange.

We assume this binding can preface the PRP exchange, or be
performed as part of it. Discussions of methods for doing this are
out of scope of this paper.
Section 3.1 describes the core PRP protocol to resolve a single
probabilistic event. Section 3.2 proposes a refinement for
generating a pseudo-random sequence without either adversary
controlling the sequence.

3.1 Resolving a single action
Probabilistic actions can be resolved by a series of secure coin
flips with a pre-agreed interpretation. For example, Alice and Bob
can agree that Alice has a 5 in 8 chance of successfully attacking
Bob. Alice therefore needs to generate a random number between

68

1 and 8, and if it is 5 or less, her attack succeeds. Alice and Bob
can generate this number by flipping a fair coin three times to
generate a 3-digit binary number, with heads being a ‘1’ and tails

a ‘0’. As long as we can guarantee sequencing of flip results used
as bits, resolving a single arbitrarily scaled probabilistic event –
such as this one - can be reduced to ensuring a single coin can be
fairly flipped.
The basic protocol for Alice and Bob to determine a random bit
without requiring a trusted third party is described below, and
illustrated in Figure 1. Note this exchange is roughly equivalent to
Blum’s secure coin flip protocol[19].

1. Alice and Bob each privately choose a bit vector of
length 1, 𝐵𝐴 and 𝐵𝐵 respectively.

2. Alice generates a (possibly zero-length) nonce 𝑁𝐴
known only to her, and uses a cryptographic hash 𝐻(𝑥)
to generate a digest 𝐷 = 𝐻(𝑁𝐴 , 𝐵𝐴). She sends 𝐷 to
Bob.

3. Bob makes a note of Alice's digest 𝐷, and sends his bit
vector 𝐵𝐵 to Alice.

4. Upon receipt of Bob's bit vector, Alice transmits her
nonce 𝑁𝐴 and bit vector 𝐵𝐴 to Bob. Bob verifies that the
hash of these values 𝐻(𝑁𝐴 , 𝐵𝐴) matches the previously
received digest 𝐷.

5. Alice and Bob XOR their own bit vector with their
adversary's bit vector to determine the outcome of the
exchange. In the case of a single-bit bit vector, if
𝐵𝐴 = 𝐵𝐵 then the result is 0. Otherwise it is 1.

As long as each message is eventually received, and Alice chooses
a nonce of sufficient size to diversify values for 𝐷 (see section 4
for details), Alice and Bob can be assured that the binary result is
fairly determined. It doesn't matter whether Alice and Bob
randomly or deliberately select their bit vectors. As long as Alice
and Bob are not collaborating, there is a 50% chance of the bit
being 1, and a 50% chance it is 0.

Figure 1 - Single Bit PRP Exchange

Barring retransmissions, a minimum of three messages
comprising one-and-a-half round trips are required to complete a
single PRP exchange, as shown in Figure 1. If low latency is more
important than a low message count, latency can be reduced to a
single round trip by adding a message and making the exchange
symmetric, as shown in Figure 2. Note that this optimization may
open additional attack vectors.

Figure 2 - Symmetric Single Bit PRP Exchange

This protocol can be trivially extended to provide an arbitrarily
long random bit vector by changing the number of bits in 𝐵𝐴 and
𝐵𝐵. For example, rather than performing three sets of exchanges
for Alice to generate her three-bit random number, she can simply
replace 𝐵𝐴 with a 3-bit bit vector, and instruct Bob to do the same
with 𝐵𝐵 .
This version of PRP is secure, but requires several network
messages for each random value provided. Depending upon the
security requirements of the DVE, it is possible to obtain
acceptable results with less overhead, as detailed below.

3.2 Resolving an unbounded random
sequence

Interactions in DVE's are often comprised of long sequences of
actions. Requiring a three or four message exchange for each
action by each participant is secure and fair, but slow and
expensive.
An alternative is to resolve more bits than are required for the
current event, and to use the next sequence of unused bits for each
subsequent activity. While efficient from a protocol perspective,
this extension suffers from a look-ahead vulnerability in terms of
consumption. Once Alice and Bob finish the exchange and
determine the bit sequence, neither can change the bits. However,
they can modify their behavior to consume the bits in an
advantageous way.
For example, suppose Alice can execute any of four actions
interchangeably: she can tie her shoes (random chance of failure),
skip a rock (random number of skips), pick a flower (random
length of stem), or build a house (random number of rooms). Each
action has a different cost and benefit for Alice. If Alice knows the
sequence of bits which will be consumed to determine the
outcome of her probabilistic actions, she can 'look ahead' to
determine the most favorable sequence to execute. For example,
she can pick flowers to consume undesirable bits, waiting to build
a house until the next set of bits guarantee she builds a house with
the maximum number of rooms.
Another alternative to provide random values for a series of
activities is to use PRP to determine a random seed for a pseudo-
random generator. Alice and Bob agree on the use for a pseudo-
random stream, then use PRP to create a bit vector of an
appropriate size to seed the generator. Since both Alice and Bob
have copies of the random number generator, they can each
validate the sequence generated using the resolved bits seed, and
the subsequent results. Note that the idea of using a pseudo-

69

random generator to create a sequence of random numbers which
can be verified by all participants is suggested in [18].

4. RESULTS AND DISCUSSION
PRP as described in Section 3.1 provides a reliable but relatively
expensive source of bits to fairly resolve adversarial probabilistic
events. Section 3.2 describes a less expensive variant of PRP, but
at the cost of enabling look-ahead cheats, and allowing
participants to unfairly optimize the order of events which
consume those bits.
DVE authors should carefully examine impact of look-ahead
exploitation before using the random seed or pre-generation
approaches to generating bit sequences. Real-time interactive
DVE's such as network games may be so dynamic that the look-
ahead vulnerability is of no practical concern, especially if the bit
stream is refreshed every few seconds. For example, Alice may
have only a small number of action choices at any given time, and
attempting to bias her choice according to attributes of the random
bit stream may provide less value – even when done via an
automatic enhancement hack - than selecting the most appropriate
action at the time.
While PRP performance overhead is greater than the overhead of
working directly with a TTP, the cause is not solely the algorithm
itself. Distributing activities normally performed by a TTP to
unreliable, untrusted nodes can introduce significant overheads to
DVE activities, as noted in several of the previously cited DVE
security works. Still, informed choices can minimized this
overhead. We provide performance analysis below to help DVE
authors understand trade-offs in different PRP usage scenarios.
DVE’s often rely upon congruent random generators running on a
TTP to determine the outcome of probabilistic actions. For
example, Quake III Arena uses calls to their random generator to
determine variations in projectile direction due to weapon recoil.
The random number generator typically used in deployed network
games is from the ‘C’ standard library, and typically provides a

two byte random number.
In a game with trusted third parties, the TTP can often produce
and consume random numbers locally on behalf of a given client.
Alternatively, it can provide the random number to the client for
the client to consume in its local activities. In peer-to-peer DVE’s,

the system should not rely upon a TTP for common activities. The
client should ideally be able to resolve probabilistic events
without TTP intervention. For the DVE to be fair, this must be
done in a way which doesn’t allow the value to be chosen by the

same client consuming it.
The following two subsections discuss PRP’s security and

performance properties, using this scenario to illustrate those
properties.

4.1 Security
Most deployed DVE’s are implemented as client-server
applications. From the client perspective, the server acts as a
trusted third party (TTP). The server is explicitly trusted to fairly
resolve probabilistic events on behalf of its clients. In other words,
over the course of many trials, the client expects the distribution
of results to roughly match the probability of each outcome.
Even in the TTP case, outcome can be biased by many factors,
such as the source of random numbers for event resolution. We do
not propose to discuss methods for generating suitably random
numbers here. Instead, our goal is to support the proposition that

given two adversaries, neither adversary can predictably bias the
resulting random bit vector. As long as appropriate precautions
are taken, this should provide probabilistic event resolution of a
quality no worse than that available from a TTP.
Let Alice be a node undertaking PRP to create a random bit vector
for her consumption, and Bob an adversary participating in that
PRP exchange. We wish to prove that so long as Alice and Bob
cannot predict the value of their adversary’s bit vector 𝐵, neither
can bias the result of the PRP exchange. To do this, we need to
prove four properties:

P1. Once Alice commits to a choice for 𝐵𝐴 by transmitting a
digest 𝐷 to Bob, she cannot change her choice without
detection.

P2. Bob cannot ascertain Alice’s choice of 𝐵𝐴 from the
digest 𝐷.

P3. If Bob has no knowledge of Alice’s choice for 𝐵𝐴 , then
Bob cannot choose a 𝐵𝐵 which will bias the result.

P4. Given the sequence of messages exchanged in PRP,
neither Alice nor Bob can dispute the value of the
resulting bit vector 𝐵𝐴 ⨁ 𝐵𝐵.

P1: Alice transmits the digest 𝐷, a SHA-256 hash of an input of
length at least 256 bits. In this, case input is a 255-bit nonce 𝑁𝐴
and Alice’s 1-bit bit vector 𝐵𝐴 . In order for Alice to change her
selection of 𝐵𝐴 to 𝐵′𝐴 after transmitting 𝐷 to Bob, she must find a
new nonce 𝑁𝐴′ such that 𝑆𝐻𝐴256(𝑁′𝐴 , 𝐵𝐴

′) = 𝑆𝐻𝐴256(𝑁𝐴 , 𝐵𝐴).
Since 𝑆𝐻𝐴256 isn’t broken, this would require a brute force
attack, on average 2256/ 2 attempts, which means trying every
value for the 255-bit nonce. This is computationally infeasible.
Even if every computer on earth were employed and each was
capable of testing a million candidates per second, more than
1056 years would be required. Alternatively Alice could try to
find two 256-bit vectors with a different last bit whose hashes
collide, but even this would require 𝑶(√2256) = 𝑶(2128)
attempts.
P2. Since SHA-256 is an unbroken cryptographic one-way
function, and since Alice has given it an input of at least 256 bits,
there is no way for Bob to predict the value of the input solely
based upon its output, or to limit that input to a specific candidate
pool other than brute-force attack, which as shown above is
computationally infeasible.
P3. For each bit in 𝐵𝐵, a 1 will invert Alice’s choice for the same

bit in the result bit vector, while a 0 will leave Alice’s choice

intact. Since Bob cannot determine the bit chosen by Alice for
each position in 𝐵𝐴 at the time he must commit to 𝐵𝐵, he has no
way of choosing a value for 𝐵𝐵 to maximize chances of a specific
outcome.
P4. For a given input, XOR is a deterministic operation, so
𝐵𝐴 ⨁ 𝐵𝐵 is deterministic for given 𝐵𝐴 and 𝐵𝐵. By the time
𝐵𝐴 ⨁ 𝐵𝐵 can be calculated by either Alice or Bob, both are
committed to their bit vector values, and cannot change that
commitment without detection from their adversary.
Like most protocols, PRP in its basic form is vulnerable to abort
attacks, e.g. Bob refusing to acknowledge receipt of Alice’s final

PRP message after he determines the resulting bit vector does not
yield his desired outcome. This can be mitigated by standard
cryptographic techniques such as signing each message in the
protocol, and using anti-replay and sequencing protections to

70

prove message sequence order and contents. Such mitigations are
especially important if the PRP variation in Figure 2 is used.

4.2 Performance
Suppose Alice wishes to generate a single 16-bit random number
for consumption for a pre-agreed purpose. Suppose as well that
Alice has 100 ms RTT to Bob on the network. Table 1 compares
the network latency and traffic required for Alice to obtain this
random bit vector. We assume IPv4 UDP on Ethernet as the
transport medium, inducing transport overhead of 42 bytes per
packet. PRP uses SHA-256 as the one-way hash, and a nonce size
equal to (hash length – target bit vector size) for bit vectors
smaller than the hash value size.
PRP requires one and a half round trips, with each packet
containing 42 bytes of headers. The first packet contains the SHA-
256 hash of Alice’s 240-bit nonce and 16-bit bit vector. The
second packet contains Bob’s 16-bit bit vector. The final packet
contains Alice’s nonce and bit vector, and completes the PRP

protocol transaction.
Table 1 - Random number generation cost

 TTP Adversary
Additional

cost

Latency 50 ms 150 ms 300%

Network
Bytes

44 bytes 192 bytes 436%

The cost in terms of latency and network bytes for the PRP
protocol version described in section 3.1 is significant compared
to obtaining the random bit vector directly from a TTP.
Fortunately there are a few ways we can decrease overhead
without realistically compromising security.
First, we can reduce the number of bytes transmitted in payloads
by reducing the size of the transmitted hash, and of the nonce
itself. PRP uses SHA-256 because SHA-256 is not yet broken,
rather than because 256 bits of protection are required. Secrets in
a PRP exchange are short-lived – less than a second in the
example above – so the hash value only requires enough bits to
prevent an attacker from determining Alice’s bit vector before it is
revealed in Alice’s second message. The most significant threat is

a dictionary attack, because of its short execution time.
In the 16-bit bit vector case, it would be trivial for Bob to create a
dictionary with the SHA-256 hash values for the 216 possible
values for Alice’s bit vector. To prevent this, we include a large
nonce in the hash to make lookup impractical for Bob. We can
establish a size of lookup table we wish to defeat – for example
one petabyte – and choose a hash and nonce size to enable that
level of protection. A petabyte is approximately 258 bits. Each
entry in a sparse lookup table would include the lookup hash
value and the expected 16-bit bit vector. If the hash is truncated
to 64-bits, then each lookup table entry would consume 80 bits,
resulting in a table capacity of about 252 entries. With a nonce
size of 48 bits (and a 16-bit bit vector), this would give Bob a
probability of about 252 / 264 = 0.02% chance of successfully
looking up Alice’s bit vector from the hash in her first PRP packet

with a petabyte index. This optimization reduces the network
bytes required for a 16-bit bit vector PRP exchange from 192
bytes to 144 bytes, dropping the network cost from 436% of TTP
transaction cost to 327%.

Another way to improve both latency and network overhead
associated with PRP – though at the cost of some security - is to
pre-calculate a large bit vector for consumption, and then use
successive parts of that vector for the next 𝑘 random contests. For
example, suppose Alice needs an average of ten 16-bit random
values per second. She can request a bit vector with enough bits
to satisfy five seconds of her requirements, or 50 ∗ 16 = 800
random bits. For a request this large, assuming a sufficiently
random input bit vector on Alice’s side, a nonce is no longer

needed. Precalculating a series of random values amortizes PRP
latency PRP across several seconds of bit consumption, reducing
its effective performance impact. It also reduces the relative
overhead of generating the 800 random bits. Total PRP network
byte cost – assuming 64-bit truncated hash - is 340 bytes, which
compared with a TTP-sent packet size of 44+(800/8) = 144 bytes
is 236% more, less overhead than our previous optimizations.
A slightly weaker choice would be to use PRP to create the 32-bit
seed for Alice’s DVE random number generator, and have Alice
use the resulting pseudo-random sequence for a set interval or
number of operations. This approach would consume 46 bytes to
obtain the seed from a TTP, or 146 bytes using PRP. While the
relative overhead in this case is still more than 300% greater than
obtaining the seed from a TTP, the absolute cost to the DVE for
generating e.g. 800 pseudo-random bits is quite low.

5. CONCLUSIONS
This paper presented the Pairwise Random Protocol (PRP), based
on secure coin flipping. Using PRP, adversaries can fairly
determine and agree upon the outcome of probabilistic actions.
Three different variations of PRP were presented, along with
high-level performance analysis of the algorithms. The variations
range from a perfectly fair approach which requires a three-way
handshake per random event, to creating arbitrarily long pseudo-
random sequences using a fairly determined random seed, up to
the tolerance of the DVE.
PRP makes it possible for adversaries to fairly determine the
results of probabilistic events in a DVE with the same security a
trusted third party – such as a game server – could provide. For
DVE’s which do not frequently need random numbers, or which

are tolerant of the 2 to 4 times overhead required for the most
secure versions of PRP, this can be done without loss of fairness
or security. If the DVE is performance-sensitive, then
compromises can be used such as pre-generating a set of random
bits to use over time, or seeding a random number generator,
which allow reasonable security without significant performance
impact.
For future work we hope to integrate PRP into a peer-to-peer
adaptation of a deployed game, such as Quake III Arena which is
available in open-source form.

6. REFERENCES
[1] IEEE standard for distributed interactive simulation -

application protocols. IEEE Std 1278.1-1995 (1996), -.
[2] Pagdin, Frances A. and Taylor, Ian C. Virtual Reality - a

new therapeutic medium (2001). http://members.kabsi.at
/t01/twa/article.html. Accessed 10-January-2008.

[3] LINDEN RESEARCH, INC. Second Life: Official site of
the 3D online virtual world. Second Life.
http://secondlife.com/. Accessed 3-April-2009.

71

[4] BLIZZARD ENTERTAINMENT. World of Warcraft
Community Site (2009). http://www.worldofwarcraft.com.
Accessed 3-April-2009.

[5] BLIZZARD ENTERTAINMENT. World of Warcraft
Surpasses 11 Million Subscribers Worldwide (October
2008). http://www.blizzard.com/us/press/081028.html.
Accessed 3-April-2009.

[6] Yan, Jeff and Randell, Brian. A systematic classification of
cheating in online games. In NetGames '05: Proceedings of
4th ACM SIGCOMM workshop on Network and system
support for games (2005), ACM Press, 1-9.

[7] Webb, Steven Daniel and Soh, Sieteng. Cheating in
networked computer games: a review. In DIMEA '07:
Proceedings of the 2nd international conference on Digital
interactive media in entertainment and arts (2007), ACM,
105-112.

[8] Yee, George, Korba, Larry, Song, Ronggong, and Chen,
Ying-Chieh. Towards Designing Secure Online Games. In
AINA '06: Proceedings of the 20th International
Conference on Advanced Information Networking and
Applications - Volume 2 (AINA'06) (2006), IEEE
Computer Society, 44-48.

[9] Mönch, Christian, Grimen, Gisle, and Midtstraum, Roger.
Protecting online games against cheating. In NetGames '06:
Proceedings of 5th ACM SIGCOMM workshop on Network
and system support for games (2006), ACM Press, 20.

[10] Pritchard, Matt. How to Hurt the Hackers: The Scoop on
Internet Cheating and How You Can Combat It. Gamasutra
(July 2000). http://www.gamasutra.com/features/20000724
/pritchard_pfv.htm. Accessed 3-April-2009.

[11] Baughman, Nathaniel E., Liberatore, Mark, and Levine,
Brian Neil. Cheat-proof Playout for Centralized and Peer-
to-Peer Gaming. IEEE/ACM Transactions on Networking,
15 (2006), 1-13.

12] GauthierDickey, Chris, Zappala, Daniel, Lo, Virginia, and
Marr, James. Low latency and cheat-proof event ordering
for peer-to-peer games. In NOSSDAV '04: Proceedings of
the 14th international workshop on Network and operating
systems support for digital audio and video (2004), ACM
Press, 134-139.

[13] Shusuke, Tatsuhiro Yonekura. Time-Stamp Service makes
Real-Time Gaming Cheat-Free. In NetGames '07:
Proceedings of 6th ACM SIGCOMM workshop on Network
and system support for games (2007), ACM Press, 135-
138.

[14] Fung, Yeung Siu. Hack-proof synchronization protocol for
multi-player online games. In NetGames '06: Proceedings
of 5th ACM SIGCOMM workshop on Network and system
support for games (2006), ACM Press, 47.

[15] Cecin, F. R., Real, R., Oliveira, R. de, Resin, C. F., Martins,
M. G., and Victoria, J. L. A Scalable and Cheat-Resistant
Distribution Model for Internet Games. In Distributed
Simulation and Real-Time Applications, 2004. DS-RT 2004.
Eighth IEEE International Symposium on (2004), IEEE,
83-90.

[16] Fan, Lu, Taylor, Hamish, and Trinder, Phil. Mediator: A
Design Framework for P2P MMOGs. In NetGames '07:
Proceedings of 6th ACM SIGCOMM workshop on Network
and system support for games (2007), ACM Press.

[17] Kabus, Patric, Terpstra, Wesley W., Cilia, Mariano, and
Buchmann, Alejandro P. Addressing cheating in distributed
MMOGs. In NetGames '05: Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for
games (2005), ACM Press, 1-6.

[18] Knutsson, Björn, Lu, Honghui, Xu, Wei, and Hopkins,
Bryan. Peer-to-Peer Support for Massively Multiplayer
Games. In INFOCOM 2004: Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications
Societies (2004), IEEE.

[19] Blum, Manuel. Coin flipping by telephone a protocol for
solving impossible problems. SIGACT News, 15 (1983), 23-
27.

72

