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Abstract

In this technical report, we present a simple combinatorial algo-
rithm for the Betweenness problem. In the Betweenness problem, we
are given a set of vertices and betweenness constraints. Each between-
ness constraint of the form u {v, w} requires that the vertex u lies
between vertices v and w. Our goal is to find an ordering of vertices
that maximizes the number of satisfied constraint. In 1995, Chor and
Sudan [2] constructed an SDP algorithm that satisfies half of all con-
straints if the instance is (completely) satisfiable. We present a simple
linear time algorithm with the same approximation guarantee.

1 Introduction

In the Betweenness problem, we are given a set V of n vertices and a set C
of m betweenness constraints. A linear order < on V satisfies a betweenness
constraint u {v, w} if either v < u < w or w < u < v (we identify
constraints u {v, w} and u {w, v}). Our goal is to find an ordering of
vertices that maximizes the number of satisfied constraint.

In 1979, Opatrny [3] proved that the decision version of the problem is NP-
hard. Chor and Sudan [2] showed that moreover it is MAX SNP hard. The
approximability of the problem crucially depends on whether the instance
is (completely) satisfiable or not. There is always a trivial 3-approximation
algorithm: choose a random ordering. In general, one cannot get a better
approximation factor as was recently shown by Charikar, Guruswami, and
Manokaran [1] (assuming the Unique Games Conjecture). However, Chor
and Sudan [2] proved that if the instance is satisfiable, it is possible to satisfy
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at least half of all constraints. Their approximation algorithm is based on
semidefinite programming and thus it is not very fast. In this technical
report, we design a very simple combinatorial algorithm with running time
O(m + n) that achieves the same approximation guarantee.

2 Algorithm

Definition 2.1. Given a subset of vertices A ⊂ V , we say that a vertex
u ∈ A is free in A if there is no constraint of the form u {v, w} with
v, w ∈ A.

Note that if a set has a free vertex, it is easy to find it. We will show now
that if the instance is satisfiable then every set has a free vertex.

Claim 2.2. Suppose the betweenness instance is satisfiable. Then there is a
free vertex in every non-empty subset A of vertices.

Proof. Consider a vertex ordering that satisfies all constraints. Let u be the
first (least) vertex w.r.t. this ordering in A. Then u does not lie between
any two vertices of A. Since all constraints are satisfied, u is a free vertex in
A.

Corollary 2.3. Suppose the betweenness instance is satisfiable. Then there
exists an ordering u1, . . . , un of V such that each ui is free in {ui, . . . , un}.

Proof. Let u1 be a free vertex in V , u2 be a free vertex in V \ {u1}, . . . , ui+1

be a free vertex in V \ {u1, . . . , ui}. Since {ui, . . . , un} = V \ {u1, . . . , ui−1},
the corollary holds.

We denote the set {ui, . . . , un} by Ai. Let Ci be the set of constraints
that involve only vertices from Ai.

Recall that the ordinal sum of two ordered sets (A, <A) and (B, <B) is
the ordered set on A∪B in which every element of A is less than any element
of B; the orders on A and B are defined by <A and <B correspondingly. We
will denote the sum of (A, <A) and the ordered set {u} (formally, ({u} , ∅))
by (A, <A)+{u}, and similarly the sum of {u} and (A, <A) by {u}+(A, <A).

Lemma 2.4. We recursively define a linear order <i on Ai as follows. Let
<n be the trivial order on An. Given <i+1 consider two orders (Ai, <

L
i ) ≡

{ui} + (Ai+1, <i+1) and (Ai, <
R
i ) ≡ (Ai+1, <i+1) + {ui}. Let (Ai, <

L
i ) be the
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1 function OrderSet
2 Input: subset of vertices Ai;
3 Output: linear order order = (Ai, <i).
4 begin
5 if A contains two or less elements return any order.
6 find a free vertex ui in Ai

7 (A, <i+1) = OrderSet(A \ {u})
8 return the better of the two orders, {ui}+ (A, <i+1) and (A, <i+1) + {ui}
9 end

Figure 1: Approximation Algorithm for Betweenness. OrderSet(V ) returns
a solution to the problem.

one of the two that satisfies more constraints in Ci (break the ties arbitrarily).
Then (Ai, <i) satisfies at least half of constraints in Ci. In particular, the
order <1 on V = A1 satisfies half of all constraints.

Proof. The proof is by induction. For i = n the statement trivially holds.
Consider the order <i. Observe that <i satisfies a constraint C from Ci+1 if
and only if <i+1 satisfies C. Therefore, <i satisfies at least half of constraints
in Ci+1.

Now consider a constraint in Ci\Ci+1. Since ui is free in Ai, the constraint
has form uj  {ui, uk}, where j > i and k > i. Note that if uj <i+1 uk

then ui <L
i uj <L

i uk and thus the order <L
i satisfies the constraint; similarly,

uk <i+1 uj then the order <R
i satisfies the constraint. That is, each constraint

in Ci \ Ci+1 is satisfied by (exactly) one of the orders <L
i and <R

i . So one of
them satisfies at least half of constraints in Ci \ Ci+1 and hence in Ci.

The lemma is constructive and provides an approximation algorithm for
the problem: first find an ordering u1, . . . , un from Corollary 2.3, then recur-
sively find orders <n, . . . , <1. Figure 1 presents the algorithm.
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variable how we store it
Ai Each vertex has a boolean flag that says whether it be-

longs to Ai. Initially, all vertices are in Ai. We can
remove a vertex from Ai in constant time.

Ci Each constraint has a boolean flag that says whether it
belongs to Ci. Initially, all constraints are in Ci.

list of free
vertices
in Ai

We store all free vertices in a stack S. For each vertex
u, we also store the number du of constraints in Ci of the
form u {v, w}. Initially, S contains all vertices free in
V . Every time we remove a constraint u {v, w} from
Ci, we decrease du. If du becomes equal 0, we push u
onto S. Using S, we can find a free vertex in constant
time (i.e., pop it from Ai).

order <i We store the order <i in a circular buffer B of capacity
n. We can insert an element before or after all other
elements in constant time. Every vertex in the support
of <i stores a pointer to its location in the buffer. We
can compare two elements w.r.t. <i in constant time.

Figure 2: We use the following data structures to store all the variables.

Theorem 2.5. Given a satisfiable instance of the Betweenness problem, the
algorithm presented in Figure 1 outputs an ordering that satisfies at least half
of all constraints. The algorithm runs in time O(m + n).

Proof. The correctness of the algorithm follows from Corollary 2.3 and Lemma 2.4.
We shall explain now how to implement the algorithm so that it runs in linear
time. We store the variables in data structures described in Figure 2.

Let the degree of a vertex be the number of constraints it participates in.
Denote the degree of u by deg(u). Clearly,

∑
u∈V deg(u) = 3m.

Let us bound the number of operations in one iteration of the algorithm.

• Execution of step 5 takes constant time.

• At step 6, we pop ui from S. That takes constant time.

• At step 7, we remove ui from Ai, increment i, and remove constraints in-
volving ui from Ci (for each removed constraint v  {u, w}, we update
dv, and, if necessary, S; see Figure 2). The total time is O(deg(ui)+1).
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• At step 8, we loop through all constraints of the form v  {ui, w} in
Ci and determine whether for the majority of constraints v <i w or
w <i v. Correspondingly, we insert ui into B at the left or right end.
That takes time O(deg(ui) + 1).

Therefore, each iteration takes time O(deg(ui) + 1). The total running time
is O

(∑
u∈V (deg(u) + 1)

)
= O(m + n).
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