Simple Linear Time Approximation Algorithm
for Betweenness

Yury Makarychev
Microsoft Research New England

Abstract

In this technical report, we present a simple combinatorial algo-
rithm for the Betweenness problem. In the Betweenness problem, we
are given a set of vertices and betweenness constraints. Each between-
ness constraint of the form u ~» {v, w} requires that the vertex u lies
between vertices v and w. Our goal is to find an ordering of vertices
that maximizes the number of satisfied constraint. In 1995, Chor and
Sudan [2] constructed an SDP algorithm that satisfies half of all con-
straints if the instance is (completely) satisfiable. We present a simple
linear time algorithm with the same approximation guarantee.

1 Introduction

In the Betweenness problem, we are given a set V' of n vertices and a set C
of m betweenness constraints. A linear order < on V satisfies a betweenness
constraint u ~» {v,w} if either v < u < w or w < u < v (we identify
constraints u ~~ {v,w} and u ~~ {w,v}). Our goal is to find an ordering of
vertices that maximizes the number of satisfied constraint.

In 1979, Opatrny [3] proved that the decision version of the problem is NP-
hard. Chor and Sudan [2] showed that moreover it is MAX SNP hard. The
approximability of the problem crucially depends on whether the instance
is (completely) satisfiable or not. There is always a trivial 3-approximation
algorithm: choose a random ordering. In general, one cannot get a better
approximation factor as was recently shown by Charikar, Guruswami, and
Manokaran [1] (assuming the Unique Games Conjecture). However, Chor
and Sudan [2] proved that if the instance is satisfiable, it is possible to satisfy

at least half of all constraints. Their approximation algorithm is based on
semidefinite programming and thus it is not very fast. In this technical
report, we design a very simple combinatorial algorithm with running time
O(m + n) that achieves the same approximation guarantee.

2 Algorithm

Definition 2.1. Given a subset of vertices A C V', we say that a vertex
u € A is free in A if there is no constraint of the form w ~~ {v,w} with
v,wE A.

Note that if a set has a free vertex, it is easy to find it. We will show now
that if the instance is satisfiable then every set has a free vertex.

Claim 2.2. Suppose the betweenness instance is satisfiable. Then there is a
free vertex in every non-empty subset A of vertices.

Proof. Consider a vertex ordering that satisfies all constraints. Let u be the
first (least) vertex w.r.t. this ordering in A. Then u does not lie between
any two vertices of A. Since all constraints are satisfied, u is a free vertex in

A. O
Corollary 2.3. Suppose the betweenness instance is satisfiable. Then there
exists an ordering uy, . ..,u, of V such that each u; is free in {u;,..., u,}.

Proof. Let u; be a free vertex in V', uy be a free vertex in V'\ {u1}, ..., w1
be a free vertex in V' \ {uy,...,u;}. Since {u;, ..., u,} =V \{u1,...,u;i_1},
the corollary holds. O]

We denote the set {u;,...,u,} by A;. Let C; be the set of constraints
that involve only vertices from A;.

Recall that the ordinal sum of two ordered sets (A, <4) and (B, <gp) is
the ordered set on AU B in which every element of A is less than any element
of B; the orders on A and B are defined by <4 and <p correspondingly. We
will denote the sum of (A, <4) and the ordered set {u} (formally, ({u},@))
by (A, <a)+{u}, and similarly the sum of {u} and (A, <4) by {u}+(A, <a).

Lemma 2.4. We recursively define a linear order <; on A; as follows. Let
<, be the trivial order on A,. Given <;.1 consider two orders (A;, <L) =
{u;} + (Aig1, <ip1) and (A, <B) = (A, <o) + {uws}. Let (A, <E) be the

2

1 function OrderSet

2 Input: subset of vertices A;;

3 Output: linear order order = (A;, <;).

4 begin

5 if A contains two or less elements return any order.

6 find a free vertex u; in A;

7 (A, <it1) = OrderSet(A\ {u})

8 return the better of the two orders, {u;} + (4, <;+1) and (4, <;41) + {u;}
9 end

Figure 1: Approximation Algorithm for Betweenness. OrderSet(V') returns
a solution to the problem.

one of the two that satisfies more constraints in C; (break the ties arbitrarily).
Then (A;, <;) satisfies at least half of constraints in C;. In particular, the
order <y on'V = Ay satisfies half of all constraints.

Proof. The proof is by induction. For ¢ = n the statement trivially holds.
Consider the order <;. Observe that <; satisfies a constraint C' from C;; if
and only if <, satisfies C'. Therefore, <; satisfies at least half of constraints
in Ciiq.

Now consider a constraint in C;\ C;41. Since w; is free in A;, the constraint
has form w; ~» {w;, ux}, where j > i and k > i. Note that if u; <;41 w
then u; < u; <F w;, and thus the order <} satisfies the constraint; similarly,
up <;41 u; then the order <R satisfies the constraint. That is, each constraint
in C; \ C;;1 is satisfied by (exactly) one of the orders <* and <. So one of
them satisfies at least half of constraints in C; \ C;+1 and hence in C;. O

The lemma is constructive and provides an approximation algorithm for
the problem: first find an ordering uy, . .., u, from Corollary 2.3, then recur-
sively find orders <, ..., <;. Figure 1 presents the algorithm.

variable how we store it

A; Each vertex has a boolean flag that says whether it be-
longs to A;. Initially, all vertices are in A;. We can
remove a vertex from A; in constant time.

C; “Each constraint has a boolean flag that says whether it
belongs to C;. Initially, all constraints are in Cj.

list of free | We store all free vertices in a stack S. For each vertex
vertices u, we also store the number d, of constraints in C; of the
in A; form u ~» {v,w}. Initially, S contains all vertices free in
V. Every time we remove a constraint u ~» {v,w} from
C;, we decrease d,. If d, becomes equal 0, we push u
onto S. Using S, we can find a free vertex in constant
time (i.e., pop it from A;).

order <; | We store the order <; in a circular buffer B of capacity
n. We can insert an element before or after all other
elements in constant time. Every vertex in the support
of <; stores a pointer to its location in the buffer. We

can compare two elements w.r.t. <; in constant time.

Figure 2: We use the following data structures to store all the variables.

Theorem 2.5. Given a satisfiable instance of the Betweenness problem, the
algorithm presented in Figure 1 outputs an ordering that satisfies at least half
of all constraints. The algorithm runs in time O(m + n).

Proof. The correctness of the algorithm follows from Corollary 2.3 and Lemma 2.4.
We shall explain now how to implement the algorithm so that it runs in linear
time. We store the variables in data structures described in Figure 2.

Let the degree of a vertex be the number of constraints it participates in.
Denote the degree of u by deg(u). Clearly,) . deg(u) = 3m.

Let us bound the number of operations in one iteration of the algorithm.

e Execution of step 5 takes constant time.
e At step 6, we pop u; from S. That takes constant time.

e At step 7, we remove u; from A;, increment ¢, and remove constraints in-
volving u; from C; (for each removed constraint v ~» {u, w}, we update
d,, and, if necessary, S; see Figure 2). The total time is O(deg(u;)+1).

4

e At step 8, we loop through all constraints of the form v ~» {u;, w} in
C; and determine whether for the majority of constraints v <; w or
w <; v. Correspondingly, we insert u; into B at the left or right end.
That takes time O(deg(u;) + 1).

Therefore, each iteration takes time O(deg(u;) + 1). The total running time
is O (X ,cv(deg(u) + 1)) = O(m +n). O

References

[1] M. Charikar, V. Guruswami, and R. Manokaran. Every Permutation
CSP of arity 3 is Approximation Resistant, to appear in IEEE Confer-
ence on Computational Complexity, 2009.

[2] B. Chor and M. Sudan. A geometric approach to betweenness, SIAM
Journal on Discrete Mathematics, 11(4):511-523, Nov. 1998.

[3] J. Opantry. Total Ordering Problem, SIAM Journal on Computing,
8(1):111-114, Feb. 1979.

	Introduction
	Algorithm

