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ABSTRACT

There has been a recent interest in modularized shipping containers
as the building block for data centers. However, there are no pub-
lished results on the different design tradeoffs it offers. In this paper
we investigate a model where such a container is never serviced
during its deployment lifetime, say 3 years, for hardware faults.
Instead, the hardware is over-provisioned in the beginning and fail-
ures are handled gracefully by software. The reasons vary from
ease of accounting and management to increased design flexibility
owing to its sealed and service-free nature.

We present a preliminary model for performance, reliability and
cost for such service-less containerized solutions. There are a num-
ber of design choices/policies for over-provisioning the containers.
For instance, as a function of dead servers and incoming workload
we could decide which servers to selectively turn on/off while still
maintaining a desired level of performance. While evaluating each
such choice is challenging, we demonstrate that arriving at the best
and worst-case design is tractable. We further demonstrate that pro-
jected lifetimes of these extreme cases are very close (within 10%)
to each other. One way to interpret this reliability number is, the
utility of keeping machines as cold spares within the container, in
anticipation of server failures, is not too different than starting out
with all machines active. So as we engineer the containers in so-
phisticated ways for cost and performance, we can arrive at the
associated reliability estimates using a simpler more-tractable ap-
proximation. We demonstrate that these bounds are robust to gen-
eral distributions for failure times of servers.

We hope that this paper stirs up a number of research investi-
gations geared towards understanding these next generation data
center building blocks. This involves both improving the models
and corroborating them with field data.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, Availability, and Ser-
viceability

General Terms

Design, Measurement, Performance, Reliability
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Figure 1: Container units for data centers.

Keywords

Containers, Data Centers, Performance, Reliability

1. INTRODUCTION
In recent years, there has been a significant interest in modular-

ized data centers by a number of cloud service providers and hard-
ware vendors [13, 14, 18, 10, 1]. These proposed next-generation
data center building blocks are enclosed in standard shipping con-
tainers (Figure 1). Containerization simplifies supply change man-
agement. Instead of packaging the servers and then having per-
sonnel install them at a remote location, the servers come already
setup and wired. At the remote location, the containers become
large pluggable components – upon standardized hook up to power,
networking, and cooling infrastructure, service enabling can com-
mence. With large services spanning thousands of machines, a con-
tainer better approximates the right scale unit, rather than individual
or racks of servers. Importantly, containers also hold the promise
of lowering total cost of ownership, by lowering costs associated
with the need for continuous component repair. For example, if
incremental repair is not an objective, the container can be packed
densely and run hotter.

Indeed, containerization allows us to think of designs that are
service-free. That is, the container as a whole is not repaired on
incremental component failure. Rather, it is kept in service, while
enough components are in service that its service utility meets an
engineered minimum level. When the container’s utility degrades
below that level, or it reaches the end of its intended life-cycle (e.g.,
three years), it can be returned and replaced with another one sup-
porting newer technology. Service-free operation is particularly ap-
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Figure 2: Performance vs. reliability design space.

pealing for distributed data centers in remote locations [14] that are
not easily human accessible.

Overall, containerization shifts the problem of supply chain man-
agement and ongoing systems management upstream to the hard-
ware vendor, who is then tasked with designing a solution that low-
ers total cost of ownership for the cloud service provider. Con-
tainerized solutions are rapidly becoming available from all large
computer systems vendors. However, there has been no formula-
tion of the tradeoffs in costs, reliability and performance.

A wide range of questions demand answers. Consider, for ex-
ample, Figure 2, which shows the performance of a hypothetical
container over time. Even if performance changes (and degrades)
over time owing to hardware failures and design choices, the con-
tainer is useful to the service provider as long as the performance
is above the minimum threshold (shown by the dashed horizontal
line) up to the target deployment time (shown by the dashed verti-
cal line). How long can we assure that the container holds enough
working components to meet the threshold? What is the minimum
reliability specification for a server, which we intend to deploy in a
group of 1,000 in a container, where we are willing to tolerate up
to 100 failures through three years? How can we design servers to
reach that level of reliability, i.e., how much would each cost? In
estimating the total cost of ownership (TCO) we must include com-
ponent cost as well as operational cost, including the power to drive
the container. It is far from obvious how to choose components for
these containers. If we pack containers with highly reliable servers,
will the increase in reliability overshoot our target deployment life-
time, and so result in paying a premium without commensurate
benefit? Viewed another way, if we increase cost through adding
redundancy to each container, will we increase the total cost of the
network of containers, squandering the potential savings for lower-
ing costs per container and raising reliability through redundancy
at container-level?

In this paper, we propose the first performance and reliability
model of containerized data centers. Our mathematical models al-
low us to pose questions relating to estimated time needed until the
container degrades to a level where repair is called for. The compo-
nent failure model is fail-stop. (In practice, this is the last stage of
the restart, reboot, re-image, and return life-cycle of the recovery
oriented computing paradigm.) Though, we focus on service-free
operation, the model applies equally well to deployments where
containers are never serviced on site, and to deployments where on
site service is an option, at a cost. While simple, the models are

sufficiently large and complex to defy fast solution. Fortunately,
however, the models admit corresponding lower and upper bound-
ing models to be developed, which provide insight through simple
formulas, relating critical parameters, which can be fit to measure-
ment data. Our models aim to capture high order effects, and pro-
vide engineering insights, by sacrificing the plethora of detail that
would eventually have to go into operational capacity planning and
deployment. The results allow us to reason about the ability to meet
performance targets over time.

Beyond the models presented, we work through initial analysis
based on well known failure rates of components. This is a first
step towards modeling data center containerization. In combina-
tion with lab-test and field-data on performance, reliability, cost and
availability, we can evaluate how to engineer these units from in-
dividual components. For instance, taking into account workloads,
should we use cheap HDDs (conventional, Hard Disk Drives) and
mirror them for reliability, or should we buy expensive SSDs (flash-
based, Solid State Drives)? We hope that as a result of this paper, a
more comprehensive modeling effort may be carried out to address
these sort of questions.

Once we have satisfactory answers to the problem of container
design, the onus shifts to delivering infrastructure management and
application software that can live up to the expectations of the model
predictions on performance and reliability. Thus, we argue that the
containerized model warrants further investigation from the point
of view of super low cost service provisioning. Careful container
design will not only save tremendous capital expense, but will also
push us towards reducing software complexity and raising service
reliability. It is therefore well worth the effort to investigate choices
for reliable container design.

2. PROBLEM SETUP
We introduce the performance and reliability modeling problem

using the notation shown in Table 1 below.

Table 1: Model variables for the container.

T The target lifetime of deployment
B Total budget for T years
C Cost of a unit component(server)
p Performance of each component
W Power draw of each component
F Annualized failure rate (AFR) of the component

Pth Minimum desired performance of container
E Electricity cost

Given these inputs we must decide on the number of servers to
pack in the container and a server-usage policy that maximizes the
container lifetime while maintaining the desired level of perfor-
mance.

In order to make the problem tractable we make a few assump-
tions as a first approximation and later relax some of these assump-
tions. More importantly, this is to get an initial approximation of
performance and reliability values. We assume that each of the
components can fail independently and with an identical distribu-
tion. Furthermore, we assume that the failure distribution is expo-
nential. We also assume that there are no correlated failures other
than single points of failure. Section 5.1 examines the results when
these assumption are relaxed including our analysis for general fail-
ure distributions.



Figure 3: Lower bound for MTTF (MTTFlb). All servers start

out as active.

3. RELIABILITY, PERFORMANCE AND TCO
Recall that we have a service-less model for the containers where

we provision the container with spare servers. There are a number
of different schemes to do so. Say we start with N servers. Let
us define the unit to be functional as long as at least k servers are
functional at any given time. Thus, using our notation from Table 1,

k =
Pth

p
.

We investigate how to provision/design a container such that it still
yields a performance of Pth at the end of T years.

3.1 Reliability
To understand reliability, we would like to calculate the mean

time to failure (MTTF) for various design choices of these con-
tainerized units. This would require us to understand a variety of
different schemes to over-provision for future failures. There are
a variety of concerns on how to detect failures, and transfer load
seamlessly, or bring cold spares online. However, that is not the
concern of this paper. The aim here is to understanding the guaran-
tees such a scheme could ever provide, assuming that robust soft-
ware can be written for it. In order to distill down from the myriad
choices of provisioning the container we examine two ends of the
spectrum of design choices to evaluate the cost/reliability benefits.

At one extreme we consider the simplest possible scheme that
results in the least utilization of servers. Thus, we start with all
N servers as active. Next, load is spread evenly so that all ma-
chines are utilized. The total performance that this container can
deliver is p × N , which is greater than Pth. As and when ma-
chines start failing the load is distributed evenly onto the remainder
of the machines that are still active. For instance, if N = 20, and
k = 12, Figure 3 shows that 7 of the 20 servers that we started
out with, have died over time (black). The container is still func-
tional in this state as it has 1 more than the minimum 12 servers
required to meet the target performance level. Eventually, when
only 11 servers remain active we declare the unit as dead. Such
a design choice leads to a wastage of resources in the early part
of the deployment lifespan as the total performance the container
could yield is more than the requirement. Furthermore, keeping the
servers active would just make them susceptible to failure due to
mechanical moving parts. The lifetime of such a container will be
the lowest possible among all possible design choices. Thus, the
mean-time-to-failure (MTTF) for this scheme, is the lower bound
(MTTFlb) for all possible MTTF values.

N N-1

(N) λ

k

(N-1) λ (k+1) λ (k) λ

FAIL. . .N N-1 k FAIL. . .

Figure 4: Markov chain for minimizing MTTF.

Figure 5: Upper bound for MTTF (MTTFub). Only k + 1
servers are kept active. Upon failure of a server, a cold one is

brought online in its place.

Given our assumption of exponential failure times (relaxed in
Section 5.1) for all components, we can model this as a Markov
chain as shown in Figure 4. The state is described by the number
of functional servers in each state. The failure of each server is
assumed to be independent with an exponential distribution with
mean 1/λ. Thus the time to failure of the first server is distributed
exponentially with mean 1/Nλ. The transition represents the fail-
ure of a server, thus, changing the number of active servers in the
container. Finally, when the server is in state k, the failure of a sin-
gle server renders the container unusable. Thus MTTFlb is simply
given by [19],

1

Nλ
+

1

(N − 1)λ
+ · · · +

1

kλ
,

MTTFlb =
1

λ

i=N
X

i=k

1

i
(1)

At the other extreme, in order to maximize the MTTF we con-
sider the following scheme. We start with only k + 1 servers as
active and all others (i.e., N − k − 1) are kept as cold spares. As
soon as a server fails we bring a cold server online and substitute
it for the failed server, thus restoring the number of active servers
back to k + 1. We are assuming that as soon as a server fails, there
is 100% fault detection and coverage and we can instantaneously
bring a cold server online to replace it. Furthermore, we assume
that cold spares never fail before coming online. Thus, this is the
most optimistic design we can ever hope to achieve and the cor-
responding MTTF will give us an upper bound (MTTFub) on all
possible MTTF values.

Figure 5 shows the state of the system when one server has failed
(black). Thus, 13 of the first 14 servers are active (gray) and the
remaining 6 are cold-spares (white). At all times we keep only 13
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Figure 6: Markov chain for maximizing MTTF.

(i.e., k +1) servers active with the remainder of the not-yet-failed
servers kept as cold spares. This scheme is extremely conservative
in the number of servers that are brought online.

Given our assumption of exponential failure times, this too can
be expressed as a Markov chain as shown in Figure 6. The state
describes the number of servers that are active. The transitions
represent the failure of a server and a cold spare taking its place
seamlessly. Thus, MTTFub is,

1

(k + 1)λ
+

1

(k + 1)λ
+ · · · +

1

(k + 1)λ
+

1

kλ
,

MTTFub =
N − k

(k + 1)λ
+

1

kλ
(2)

Thus, we have derived lower (MTTFlb) and upper (MTTFub)
bounds for the value of MTTF for N servers with at least k func-
tional units. For instance, say k is 85% of N and F = 5%. Fig-
ure 7 shows that as the number of servers, N grows, the MTTF of
the container begins to drop but the curve eventually flattens out.
Thus, as long as we are in the flat part of the curve, increasing the
size of the container does not adversely effect the MTTF as long as
we are willing to tolerate the same percentage of failures (15% in
this case).

The next question we ask is the following. What is the gap be-
tween the lower and the upper bounds. If the gap is tight then we do
not need to investigate the wide spectrum of design choices in detail
before arriving at reliability guarantees. On the other hand, if the
gap is wide then further fine-tuning of the bounds is warranted. The
results are shown in Figure 7. When the number of components is
small, the gap is quite significant (5.5 years for upper bound vs. 4.5
years for lower bound when number of components is 10). How-
ever, as the number of components increases, this gap narrows and
almost becomes a constant once the number of components grow
beyond 200 (3.5 years for upper bound vs. 3.25 years for lower
bound). We did a similar analysis with a variety of different sce-
narios and for reasonable annualized failure rate (AFR) of below
10%, the gap between the lower and upper bound was within 10%
of each other. The main intuition behind this is as follows. A large
portion of servers are always ON. Thus, the cold-spare scheme can
only prolong the lifetime of a small percentage of servers thereby
not impacting overall container lifetime significantly. Thus, we can
use either of the lower/upper-bound values as an estimate of the
container’s MTTF.

3.2 Performance
To understand performance of a system where individual compo-

nents could fail, an integrated performance and reliability model,
also know as a performability [12] model is preferred. We use a
popular variant of this known as Markov Reward Model (MRM),
that builds on the Markov chain by associating rewards to each
state. The reward earned at a particular state is proportional to the
amount of time spent in that state. Overall performability is the
total reward earned during the lifetime.

To get the performability for the lower bound variant let us as-
sociate the reward with each state in Figure 4 as the performance
of the container when in that state. We can assume that the perfor-
mance is proportional to the number of active servers at that instant.
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Figure 7: Gap in lower and upper bounds of MTTF.

Thus, the reward in state i is proportional to i, say a × i, where a

is a constant. The overall reward is given by, a × N ×
1

Nλ
+ a ×

(N − 1) ×
1

(N − 1)λ
+ · · · + a × k ×

1

kλ

= a ×
1

λ
+ a ×

1

λ
+ · · · + a ×

1

λ

= a × (N − k + 1) ×
1

λ
(3)

Similarly, let us calculate the performability of the upper bound
variant by again building a MRM and associating a reward a× i to
state i, this time in Figure 6. The overall reward is given by,

a×(k+1)×
1

(k + 1)λ
+· · ·+a×(k+1)×

1

(k + 1)λ
+a×k×

1

kλ

= a ×
1

λ
+ · · · + a ×

1

λ
+ a ×

1

λ

= a × (N − k + 1) ×
1

λ
(4)

Thus, the total performance of the two extremes (lower and up-
per bound MTTF) are the same over their corresponding lifetimes.
Intuitively, in the lower bound case the performance is very high
when the container is just deployed (N × a) and it keeps falling
rapidly with time. On the other hand, the performance is constant
in the upper bound case ({k+1}×a) but is delivered over a longer
lifetime.

3.3 Power Cost
In order to calculate the power draw for the lower bound and the

upper bound we again build a MRM. The reward at each state is
the amount of energy drawn. This is proportional to the number of
servers active in a given state. Thus, the results will be identical to
those for performance, albeit with a different constant. Thus, simi-
lar to performance, the total energy spent in running the machines
is the same over the lifetime of the two design choices.
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3.4 Component Cost
Figure 7 represents one way of comparing the schemes. In reality

however, we would know the time of deployment, i.e., T in our
model. Amortizing the cost of replacing hardware and upgrading
to the latest available technology mandates that T be in the 3-5
year range. Let us say that T = 3 years. Given the failure rate
F , and threshold k we can calculate how many machines to start
with i.e., N , for both the lower bound as well as the upper bound
models. Since the two numbers will be different, we can compare
the percentage difference to get an estimate of how "expensive" one
option is vs. the other in terms of component cost. Figure 8 shows
the fractional increase in machines in moving from the upper bound
to the lower bound model against different failure rate for servers.
For instance, for failure rate of around 5%, we would need just 1%
(i.e., 0.01 fraction) more servers in the lower bound model than the
upper bound model to achieve the same MTTF. Even with failure
rate of 10%, the increase in number of servers is around 4%.

Based on the above results we conclude that for reasonable val-
ues of failure rate (<10% AFR), using the lower bound variant is
a good approximation for the cost, reliability, and performance of
any arbitrary scheme. A majority of the remainder of this paper
will show further analysis with this assumption.

4. DESIGNING A CONTAINER
Following the methodology outlined thus far, we can get the total

cost of ownership (TCO) as the component cost + operations cost
(i.e., the power cost). We next demonstrate how to use TCO to
compare different design choices in building a container.

Consider a typical server with hard-disk reliability governed by
an AFR of 5% and for all other components an aggregate of 5%
AFR. The reliability of the server is a product of the reliability of
the disk and other components. Thus, it is exponentially distributed
with mean,

1

λdisk + λother

where λdisk and λother can be calculated from the corresponding
failure rates (AFRs) using the following equation,

AFR = 1 − eλ×1

Say, the server costs $1, 000 and draws 100W of power. Also,
assume that the server is put to I/O intensive jobs and for a random
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Figure 9: Reliability of RAID1 with 5% AFR HDDs is equiva-

lent to a single HDD with AFR 1%.

workload gives us a performance of 500 IOPS. Let us say that we
wanted to build a container of these server components that lasts 3
years and has a Pth = 500, 000 IOPS. Since the performance of
each server is 500 IOPS, this implies that k is 1, 000. Based on the
AFR, we can use the lower bound variant to calculate N , which in
this case equals 1370 servers (Equation 1). Thus the total compo-
nent cost is 1370×1, 000 =$1, 370, 000 and the power cost (based
on the MRM described in Section 3.2) is $185, 076.54 assuming
$0.06 per KW-h. Thus, the cost is dominated by component cost.
Likewise, if we had other choices of servers, then based on their
reliability, cost, performance and power ratings we could compare
them.

One option to avoid buying a lot of servers is to increase the reli-
ability of individual servers by making the storage subsystem more
reliable. One way of doing that might be to consider a RAID1 sys-
tem i.e., by mirroring the hard disk. This would mean more cost
to buy extra hard disks for each server, and more power draw, but
an increased reliability due to redundancy (one hard-disk can take
over when the other one fails). Note, that the performance of the
server does not change at all. If we assume that the disk reliability
is exponentially distributed with parameter λdisk then the reliabil-
ity of the parallel redundant RAID1 subsystem can be expressed as
thus,

1 − (1 − e−λdiskt)
2

This is no longer exponential, hence not as easily tractable. How-
ever, for the 5% AFR of a single disk, as shown in Figure 9 the re-
liability curve of this parallel redundant system can be bounded be-
low by an exponential curve corresponding to an AFR of 1%. Since
we are using a lower bound on MTTF we further relax the bound
by using the exponential distribution corresponding to AFR of 1%
as an approximation to the RAID1 reliability. Now we can get the
server reliability as a series combination of the RAID1 subsystem
and the rest of the component. This corresponds to a ∼ 6% AFR.
In adding the extra disk and the RAID controller, say the cost of
the server goes up by $150, and the power draw increases by 20W.
We repeat our analysis and this time it turns out that we need to
start with only 1, 203 servers. Our component cost is $1, 383, 450
and the power cost is $207, 945. Thus, both the costs have actually
gone up slightly but we have fewer servers to fit in the container
now.

Finally, we consider a third alternative, this time replacing disks
with SSDs. We can assume a 20W savings in power. Also we can



Design Choice Server Cost AFR Power draw Performance k N
(USD) (W) (IOPS) (at end of 3 years) (total components)

SSD 2500 0.06 80 1,000 500 601
RAID 1 1150 0.06 120 500 1,000 1,203

HDD 1,000 0.1 100 500 1,000 1,370

Table 2: Cost, reliability, and performance for design alternatives.

Figure 10: Bar chart showing TCO as well as distribution of

component and power cost for the various choices.

assume that the reliability is no worse than 1% In other words, the
reliability is the same as a RAID1 provisioned server. However,
let us say that it costs an extra $1, 500 to buy an SSD (hiking the
server cost to $2, 500) instead of a HDD but you get twice the per-
formance1 . Thus, k is only 500 now and the total number of com-
ponents to start with is 601. The component cost is $1, 502, 500
and the power cost is only $69, 315.

The parameters for these three options are summarized in Ta-
ble 2. The last column also shows the total number of servers of
each type that we need to put in the container to meet the target
MTTF and performance requirement. The corresponding compo-
nent and power costs are shown in Figure 10. Thus, the total cost
of ownership (TCO) for the three options are very close to each
other. One way to interpret the result is that the current choice of
values represents the break even point for the three options. For
instance, if SSDs start costing a little less, or give more than double
the performance of HDDs for random I/O workloads then it would
make sense to migrate to SSDs. The other way to look at this is
that it makes sense to migrate given that it will reduce the number
of servers, make individual servers more reliable, (thereby placing
less stress on the software complexity) and finally be a greener so-
lution (by reducing the power consumption)!

5. RELAXING THE ASSUMPTIONS
The models presented thus far put us into position to analyze

different design choices for container based data centers. However,
we made a number of simplifying assumptions. While those pro-
vide a first approximation, further refinement is clearly required. In
this section we relax two of the assumptions, regarding exponential
failure rates and correlated failures.

1Not true for sequential workloads. We do not consider disk ca-
pacity either. Extending our analysis to include these are avenues
of future work.

5.1 Failure Distribution
Thus far, we have assumed server failure rates are exponential.

However, a simple methodology, borrowed from the asymptotic
analysis of order statistics, provides sharp estimates, which work
for general failure distributions.

Let T model the time to fail a given component. Consider the
cumulative distribution function for failures, F (x), and the com-
plementary cumulative distribution function, G(x) = Pr(T > x),
i.e., the probability that the time to fail is greater than x. Assume
we have N components, with independent, identically distributed
times to failure Ti, each modeled by G. Define xi = 1 if Ti > m,
and 0 otherwise.
Thus, the expected number of failed components after time m,
E(#Ti > m) = E(Σixi)
= n × Pr(T > m)
= n × G(m).

For, our lower bound we seek the time to hit the condition where k
servers remain alive. We estimate that time by solving
n × G(m) = k
where m is the MTTF. For instance, if T is exponential, as we had
assumed so far, then
G(x) = exp(−λx), thus m = −log(k/n)/λ.

Recent studies have found that disk failure rates are better described
with families of distributions, whose parameters can be set to be-
have much differently than the exponential. In particular, the Weibull
distribution [16] provides good fits to data. It is worthwhile, more-
over, to consider disk failures, because these tend to dominate all
other hard systems failures [15, 11]. Approximating the failure rate
of servers as a Weibull distribution, we obtain:

F (x) = 1 − e−λtα

.

=> G(x) = e−λtα

.

=> k = n × e−λtα

.
=> t = −log(k/n)/λ1/α

.

Taking this estimate of the MTTF, let’s examine the impact. Specif-
ically, set values of λ = 0.049, and α = 0.71, as reported in [16].
The derived value of MTTF will be lower than the result obtained
using the exponential distribution. A similar generalization of the
analysis might be carried out for the upper bounding model. How-
ever, we observe that the exponential provides a larger upper bound
than would be obtained with an appropriately parameterized Weibull.
That is, the MTTF for the upper bound is higher when we assume
an exponential distribution, as opposed to the appropriate Weibull.
Thus, the estimate of the gap between lower and upper bounds
is conservative if we use exponential assumptions for the upper
bound. Similar to our analysis in Section 3.4 (Figure 8) we an-
alyze the number of extra nodes for the lower bound against the
upper bound. Figure 11 shows fractional difference in the number
of nodes as a function of k. If we assume exponential failure for
both the upper and lower bound then the gap is just around 1% for
all values of k. However, if we relax the lower bound to Weibull
distribution but retain the upper bound as exponential, even then



Figure 11: Comparing difference in using Weibull vs. exponen-

tial as lower bound.

Figure 12: Points of failure in the design. In reality t varies

from 1 to N.

the gap is still only 10%. While the relative change to the estimate
is large, the takeaway – the gap itself is small in absolute terms –
remains in force.

5.2 Correlated Failures
We use the following framework to help understand correlated

failures. As shown in Figure 12, suppose that, for every subset of
d servers there is a single point of failure, say a network switch,
whose failure is equivalent to the failure of d servers. As a first
approximation to this generic framework we analyze the following
variation of our model. Suppose that there exists a single point of
failure for the entire container. Let us retain exponential distribu-
tions for component times to fail, for simplicity. We model this via
the Markov Chain shown in Figure 13, which agrees with that of
Figure 4 except that from each state there is an extra transition to
the FAIL state with failure rate λSPF (Single Point of Failure).

We can easily calculate the MTTF by solving balanced transition
equations for this Chain [19]. The MTTF is naturally lower then
that of Figure 4. Putting it another way, the lifetime of the con-
tainer is dictated by reaching a threshold number of failed servers,
or by the SPF failing, whichever happens first. However, with a
careful design the reduction in MTTF can be largely controlled.
For instance, with a 5% AFR for the servers as well as the single
point of failure, the MTTF decreases by 5 months from a 3 year
target deployment lifetime. Adapting the analysis to use use redun-
dancy for the single point of failure reduces aggregate AFR from
5% to 1%, and reduces MTTF by just 1 month.

N N-1

(N) λ

k

(N-1) λ (k+1) λ

(k) λ + λ SPF

. . .

λ SPF

λ SPF

FAIL

Figure 13: Markov chain when a single point of failure can

bring the entire container down.

More fundamentally, correlation in failures can arise from shared
dependencies stemming from manufacturing batch, environmen-
tal, power, and networking dimensions. These can be mitigated
at container-level: We can reliably create systems of multiple con-
tainers. These can also be mitigated through use of diversity across
these dimensions – e.g., use of components from different manu-
facturing batches.

6. DISCUSSION
The models considered here provide context for analyzing and

designing container-based data center building blocks. They high-
light the importance of considering the interplay of reliability, per-
formance and cost as elements of total cost of ownership (TCO).
More generally, the types and characteristics of workloads, service
level agreements, time to deployment and operating cost must be
incorporated into richer models. The goal of this paper is to illu-
minate the issues and suggest fruitful topics for further exploration
within a framework for multivariate optimization.

To simplify the models and bound the range of behaviors, we
have made several simplifying assumptions about performance in
response to offered load and the probability of component failure
in response to that load. Clearly, additional data are needed on con-
tainer failure modes and rates, drawn from field experience. In par-
ticular, this failure data would enable construction of hierarchical
reliability models for nodes, based on processor, memory, storage,
network, power supply and cooling systems failures. With such
hierarchical models, one can begin construction of improved ana-
lytic models and parametric simulation studies [6, 17] that increase
confidence and reduce the errors in our bounding models.

As noted earlier, modeling reliability is but one aspect of in-
tegrated assessment. Time-varying resource demands and the re-
silience of application workloads to component failure also shape
the feasibility of certain design alternatives. One intriguing aspect
is considering periodic maintenance and “crop rotation” of contain-
ers based on integrated performability models and residual value
relative to newer and presumably more efficient infrastructure.

The industry’s longstanding hardware design point has been cre-
ating most reliable hardware possible within a given price enve-
lope. One intriguing possibility is to consider the inverse, reducing
reliability if one can dramatically decrease capital costs. However,
this increases the importance of system and application software
resilience to failures.



7. RELATED WORK
Recently, several vendors have developed data center building

blocks based on industry-standard shipping containers [9, 1, 10,
13, 14, 18, 20]. This approach is motivated by the rapid increase
in data center size, with cloud data centers now containing hun-
dreds of thousands of servers. Larger building blocks simplify in-
stallation and configuration, reducing the time from purchase to
operation. In addition, defining standard interfaces for networking,
electrical power and cooling allow hardware vendors to innovate
within the container while enabling interoperability across vendors
and container generations. Finally, containers allow cloud service
providers to build data centers and edge networks at a variety of
scales, from a single container to hub-and-spoke mega-data cen-
ters [5, 8, 2].

Given the recent appearance of the container model, there has
been little formal, parametric assessment of the balance of cost, re-
liability and performance at scale. At massive scale, assessing con-
tainer reliability and the desirability and frequency of field compo-
nent replacement while maintaining service level agreements (SLAs)
are critically important issues. Quite clearly, at large scale, compo-
nent failures are common [7] and designs and operational practice
must reflect this reality.

Recovery oriented computing [4, 3] is one such instance, al-
beit at much smaller scale. Our work considers true “lights out”
container farm design where systems must operate for extended
periods without human intervention or field service. As such, it
draws on analysis of component failures (e.g., DRAM, power sup-
ply, fans), cooling elements and storage systems [15, 16, 11].

8. CONCLUSION
Modularized data centers are gaining popularity, and essentially

all major server hardware vendors have a container offering. To our
knowledge, this paper is the first to present corresponding models
of performance and reliability. Containerization leads quickly to
the question of how to totally disrupt the model of supply chain
and life cycle management of IT infrastructure, to a new model
where the container is service-free. When performance degrades
to an engineered threshold, or when the technology becomes out-
dated (whichever comes first), the container is returned or recy-
cled. Our paper provides models that allow engineers to gauge how
to build for such an objective (and related less radical objectives)
economically. We showed that for typical component failure rates,
the behaviors of the best and worst case strategies for use of pre-
provisioned extra components are remarkably close to each other.
We further showed how to estimate total cost of operation based on
both component and power costs. A preliminary example applica-
tion of the results showed how to meet the same reliability objec-
tive at lower cost using multiple Solid State Drives, as opposed to
multiple (RAID1) Hard Disk Drives, provided the workload can be
accommodated adequately on both. We hope that, while simple, the
models and the bounds derived are useful and robust for providing
guidance on the tradeoffs between cost and reliability in container-
ized components. To go deeper, we see a plethora of opportunities
to bring more detailed analysis and measurement into play.
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