
CIMSync Protocol Specification

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

June 19, 2009

Abstract

Cimbiosysis a novel peer-to-peer replication platform that permits each device
to define its own content-based filter criteria. Cimbiosys attains two properties not
achieved by previous systems: (1) eventually, every devicestores exactly those items
whose latest version meets its arbitrary filter criteria, independent of any hierarchical
namespace and (2) eventually, every device can summarize its metadata in a compact
form, with size proportional to the number of devices ratherthan the number of items.
The first property is a matter of correctness; the second a matter of efficiency.

This report describes and presents a specification of the Cimbiosys synchronization
protocol,CIMSync. The specification is written in TLA+ and checked with the TLC
model checker.

Contents

1 Introduction 1

2 Overview 3

3 System concepts 5
3.1 Collection . 5
3.2 Identifiers and versions . 5

3.2.1 Replica and replica identifier 5
3.2.2 Item and item identifier . 6
3.2.3 Version . 6
3.2.4 Version identifier . 6
3.2.5 Compact summary of knowledge 6
3.2.6 Superseded versions . 7
3.2.7 Conflict and resolution . 7
3.2.8 Extended identifier . 7

3.3 Version metadata and content . 8
3.3.1 Made-with knowledge . 8
3.3.2 Version header . 8
3.3.3 Version content . 8

3.4 Forms of knowledge . 8
3.4.1 Knowledge . 9
3.4.2 Item-set knowledge . 9
3.4.3 Star item-set knowledge . 9
3.4.4 Promotion of ordinary knowledge 10

3.5 Filters . 10
3.5.1 Filter . 10
3.5.2 Filter containment . 10
3.5.3 Star filter . 11
3.5.4 Filter change . 11
3.5.5 Filter shrink and unshrink 11
3.5.6 Filter hierarchy . 12

3.6 A replica’s store and knowledge . 12
3.6.1 Data store and data knowledge 13
3.6.2 Direct and indirect data knowledge 14

i

3.6.3 Auth store and auth knowledge 14
3.6.4 Auth concentration . 15
3.6.5 Data knowledge compaction 15
3.6.6 Made-with knowledge densification 15
3.6.7 Conflict-free knowledge . 16

3.7 Synchronization protocol . 16
3.7.1 Data versions . 17
3.7.2 Move-out . 17
3.7.3 Direct move-out . 18
3.7.4 Indirect move-out . 18
3.7.5 The target’s set of extended identifiers 19
3.7.6 Learned knowledge . 19
3.7.7 Auth transfer . 19
3.7.8 Conflict-free knowledge accumulation20
3.7.9 Target filter skew . 20

4 Tour of the specification 21
4.1 Model checking . 21
4.2 Finding counterexamples for known bugs 22

A CIMSync specification 25

B Model configurations 58
B.1 Model configuration ibx . 59
B.2 Model configuration icy . 60
B.3 Model configuration jbx . 61
B.4 Model configuration BugAuthBounceForever 62
B.5 Model configuration BugContainFilter 63
B.6 Model configuration BugLearnSend 64
B.7 Model configuration BugLearnStore65
B.8 Model configuration BugOmitDiscardAuthSsin 66
B.9 Model configuration BugOmitDiscardDataOof 67
B.10 Model configuration BugOmitIndMoveouts 68
B.11 Model configuration BugOmitMoveouts 69
B.12 Model configuration BugOmitRebuildOnUnshrink 70
B.13 Model configuration BugUnionFreeisk 71
B.14 Model configuration BugUnshrinkLearn 72
B.15 Model configuration BugUnshrinkMoveout 73

ii

Chapter 1

Introduction

Cimbiosys[2, 3, 4] is a peer-to-peer replication platform for sharingacollectionof data
itemsamong a number of devices. Each device stores areplicaof the collection. Since
a device may participate in several collections or even may store multiple replicas of
the same collection, we shift our attention from the devicesto the replicas. We consider
replicas as the active agents in the collection.

A replica can be afull replica, which is interested in all items in the collection, or a
partial replica, which is interested in only a subset of the items. The subsetis defined
by a per-replica content-basedfilter. A filter can be interpreted as a query over the
items contained in the collection. Astar filter matches all items regardless of content.
A full replica can be considered as having a star filter. A replica may change its filter,
thus changing the subset of items in which it is interested.

A replica may create new items in the collection and may create updatedversions
of existing items. An updated versionsupersedesany existing version or versions that
it was derived from. Although the latest, unsuperseded version of each item is what is
ultimately important to the collection, each replica performs updates independently of
the other replicas and so the collection is onlyweakly consistent. Replicassynchronize
with each other from time to time in order to pass informationabout new versions from
one replica to another. Cimbiosys does not attempt to maintain any ordering between
updates to different items in the collection.

The main contribution of Cimbiosys is in demonstrating how to permit content-
based filtering among peer replicas while providing the following two important system
properties.

• Eventual filter consistency:Over time, each replica receives all items that fall
into its interest set (that is, all items that match its content-based filter) and dis-
cards all items that fall out of its interest set, so that eventually a partial replica
stores precisely those items of the entire collection whosecurrent version is of
interest.

Eventual consistency has long been demanded by applications and provided in
replication systems, but it is more challenging to ensure ina system that permits
peer-to-peer synchronization between content-based partial replicas. Not only

1

may a replica change its filter, thus changing the subset of items that are of
interest to the replica, but also a replica may update an item, thus changing the
set of replicas that find the item of interest. Eventual filterconsistency is a matter
of correctness.

• Eventual knowledge singularity:The metadata that replicas exchange during
synchronization, which is used to determine which new versions one replica
needs to learn about from its more-informed peer, eventually converges to a size
that is roughly proportional to the number of replicas in thesystem rather than
the number of stored items, even for partial replicas.

Eventual knowledge singularity conveys the importance of compact metadata
in making efficient use of bandwidth and system resources. Inparticular, this
property allows Cimbiosys to utilize brief intervals of connectivity between peer
replicas and also permits more frequent exchanges between regular synchroniza-
tion partners, thereby reducing convergence delays. Eventual knowledge singu-
larity is a matter ofefficiency.

This report describes and presents a specification of the Cimbiosys synchronization
protocol, CIMSync. The specification is written in TLA+ and checked with the TLC
model checker [1]. The remainder of this report is organizedas follows. Chap-
ter 2 presents an overview of the synchronization protocol using a simplified example.
Chapter 3 describes the system concepts of Cimbiosys and thesynchronization pro-
tocol. Chapter 4 gives a brief tour through the specificationand discusses the model
checking results. A listing of the full specification appears in Appendix A and model
configuration files in Appendix B.

Acknowledgement
The Cimbiosys synchronization protocol was developed overseveral years by Douglas
Terry, Venugopalan Ramasubramanian, Thomas Rodeheffer, Ted Wobber, Dan Peek,
and Meg Walraed-Sullivan, as part of the Community Information Management project
at Microsoft Research. Originally, we thought it would be a straightforward matter to
extend existing total replication schemes to support content-based partial replication.
Many, many dicussions went into discovering and addressingthe various problems
that came up. The protocol or parts of the protocol were implemented several times in
different ways by different people. The final result is trulya group effort.

The author distilled the protocol into this TLA+ specification so that an accessible
and fairly complete representation could be published. Anydefects in the specification
are solely the fault of the author.

2

Chapter 2

Overview

CIMSync is a simple, two-step synchronization protocol that involves two replicas,
a source replicaand atarget replica. First, the target sends a request to the source,
informing the source of the target’s current filter and stateof knowledge about the col-
lection. Second, the source sends a response to the target, updating the target’s state
of knowledge about the collection via new versions and otherinformation. CIMSync
brings the target replica up-to-date with respect to the source replica. To fully synchro-
nize two replicas, it is sufficient to repeat the protocol in the reverse direction.

Figure 2.1 shows a simplified example. Each replica hasknowledgeof a set of ver-
sions, afilter that specifies the contents of items it is interested in, and astorecontaining
current versions of items. Items are designated asi , j , k . Replicas are designated as
A, B , C . Versions are designated asA1, A2, C1. Contents of items are abbreviated as
simplyw , x , y. A filter is specified by showing the set of possible item contents that it
matches.

In the first step of the synchronization protocol, the targetreplicaA sends its current
knowledge and filter to replicaB , requesting new information. Currently, replicaA

knows about versionsA1, A2, B1, andC1. The replica’s knowledge includes versions
it stores, versions that it knows have been superseded, and versions that it knows do
not match its filter.

In this example, replicaA is storing three versions:A1, A2, andC1. VersionA1
is a version of itemi that has contentsw ; versionA2 is a version of itemj that has
contentsw , and versionC1 is a version of itemk that has contentsx . Since replicaA
knows about versionB1 but does not store it, versionB1 must either be superseded or
not match replicaA’s filter. ReplicaA’s filter matches contentsw andx . Note that it
is not possible for replicaA to tell what itemB1 might be a version of. All replicaA
knows is that versionB1 is either superseded or does not matchA’s filter.

In the second step of the synchronization protocol, the source replicaB processes
the request fromA and examines its knowledge and stored versions in light ofA’s
current knowledge and filter. Based on this examination, three types of information are
sent back to replicaA: new versions of items of interest toA, move-outsfor items that
A is storing but which have been updated and the new version is not of interest toA,
andlearned knowledge.

3

K
no

w
le

dg
e

A1 A2 B1
C1

F
ilt

er w x

S
to

re

i :A1:w

j :A2:w

k :C1:x

request

response

i :C2:x

k :B3

A1 A2 B1
B2 B3 C1

C2

w x y

i :C2:x

j :A2:w

k :B3:y

Replica A
(target)

Replica B
(source)

A1 A2 B1
B2 B3 C1

C2

w x

i :C2:x

j :A2:w

Replica A
(afterwards)

Figure 2.1: Cimbiosys synchronization protocol (simplified).

In this example, replicaB identifies versionC2 of item i as a new version of
interest to replicaA, determines that a move-out is needed for itemk , and then informs
replicaA that it has learned everything that replicaB knows.

Finally, the target replicaA processes the response from the source and updates
its knowledge and store accordingly. The updates from this processing are considered
to be performed as a single atomic transaction. The resulting state of replicaA is
shown on the right-hand side of Figure 2.1. Observe that replicaA now has the same
knowledge as replicaB and has the same set of versions in its store, except for itemk ,
the latest version of which does not match replicaA’s filter.

Many essential details have been omitted from this simplified illustration. The next
chapter goes into much more detail.

4

Chapter 3

System concepts

In this chapter we describe the system concepts of Cimbiosys, laying the groundwork
for the synchronization protocol specification which appears in Appendix A. Since the
specification explains all details of the protocol at a certain level of abstraction, the
trick is to find a level of abstraction that provides insight and clarity without getting
bogged down in endless detail.

The system concepts described here are structured according to the protocol speci-
fication in Appendix A. This structure differs somewhat fromthe published description
of the Cimbiosys implementation [3], being more abstract insome ways and more de-
tailed in others. The most significant change appears in Section 3.6, where we provide
a different and more detailed description of a replica’s store and knowledge. Related
changes appear in our description of the synchronization protocol messages in Sec-
tion 3.7. Replicas in Cimbiosys have content-based filters that can be changed at will,
and this causes interesting problems regarding the perpetuation of updates, the perpet-
uation of conflicts, and the compaction of knowledge.

3.1 Collection
A collection is a set of data items that share a database schema. The collection is
replicated over a number ofreplicas, each of which stores a subset of the items. We
say that each replicaparticipatesin the collection.

Since each participating replica can independently createnew items and update
existing items, the collection isweakly consistent. Replicas synchronize with each
other to spread information and thus eventually bring all replicas into a consistent state.

3.2 Identifiers and versions
3.2.1 Replica and replica identifier
A replica is the active entity that stores items in a collection. A replica can indepen-
dently create new items and update existing items. Replicassynchronize with each
other in a pair-wise fashion to spread information about items to all replicas participat-
ing in the collection.

A replica is labeled with a uniquereplica identifier. In this report we are not con-
cerned with how replica identifiers are fashioned, with how replicas are created or

5

authenticated, or with how replicas locate or communicate with each other. We assume
that these problems are solved, and that each replica is aware of the set of replica iden-
tifiers of all replicas in the collection. For simplicity, weuse the lettersA, B , C , and
so on as replica identifiers.

3.2.2 Item and item identifier
An item is a particular data item in a collection. An item exists inversions: an item is
created by creating an initial version and updated by creating updated versions.

An item is distinguished by a uniqueitem identifierwhich labels all versions of the
item. In this report, we are not concerned with how item identifiers are fashioned. For
simplicity, we use the lettersi , j , k , and so on as item identifiers.

3.2.3 Version
A versionis a particular version of an item in a collection. A version is immutable once
created. Formally, a versionv is a tuple

〈vi(v), ii(v),mw(v), cont(v)〉

where

• vi(v) is aversion identifiersee Section 3.2.4), which uniquely labels the version,

• ii(v) is an item identifier(see Section 3.2.2), which identifies which item this
version is a version of,

• mw(v) is a made-with knowledge(see Section 3.3.1), which indicates which
versions of the same item this version supersedes, and

• cont(v) is aversion content(see Section 3.3.3), which is the data content of the
version according to the database schema of the collection.

The version identifier and item identifier comprise anextended identifier(see Sec-
tion 3.2.8). The version identifier, item identifier, and made-with knowledge comprise
aversion header(see Section 3.3.2).

3.2.4 Version identifier
Each version is labeled with a uniqueversion identifier. The version identifier is fash-
ioned by the replica that creates the version by concatenating its replica identifier and
a per-replicaversion number, which increments with each version the replica creates.
For replicaA, we say that it creates versionsA1, A2, A3, and so on. ReplicaB creates
versionsB1, B2, and so on. This design of version identifiers is part of Cimbiosys and
is a common way that weakly-consistent replication systemsprovide for identifying
versions.

3.2.5 Compact summary of knowledge
The reason for identifying versions by replica identifier and version number is that
it makes it possible to have a compact summary of what versions a replica “knows”
about. When a replica has somehow “examined” a set of versions and is storing all
the unsuperseded versions that match its filter, we say that the replica “knows” about

6

that set of versions. One goal of the replication system is tospread knowledge until all
replicas “know” about all versions that have ever been created. Quotation marks are
used because this description omits many essential details.

Suppose that replicaA has “examined” all versions created by replicaB with ver-
sion numbers in the range1 through198, all versions created by replicaC with version
numbers in the range1 through247, and all versions created by replicaD with version
numbers in the range1 through301. This is a lot of information, but replicaA can
summarize what it “knows” as simply

{B1 · · · 198,C1 · · ·247,D1 · · ·301}

From this summary, a second replica can easily determine if it “knows” of any versions
that are unknown toA. The concept of knowledge is central to Cimbiosys. Many more
details will be described later.

3.2.6 Superseded versions
A version created as an update of one or more existing versions of an item is said to
supersedethose versions and, transitively, all versions that those versions supersede.
As described in Section 3.3.1, made-with knowledge is used to determine which of
two different versions of the same item supersedes the other.

In common with most weakly-consistent replication systems, in Cimbiosys ver-
sions that have been superseded are no longer of interest in the collection. The syn-
chronization protocol spreads information about updates so that any superseded version
is eventually removed from all replicas.

3.2.7 Conflict and resolution
Since replicas create versions independently, it is possible for two different versions of
the same item to be created, neither of which supersedes the other. In such a case we
say that the versions are inconflict.

We say that the conflict between two versions isresolvedwhen yet another version
is created that supersedes them both. Technically, the two conflicting versions are still
in conflict, but since the collection retains only unsuperseded versions, the conflict is
no longer of interest.

Typically, a weakly-consistent replication system has aconflict resolutionprocess
for discovering conflicts and resolving them. In this report, we are not concerned with
what this process might be. We are only concerned that the supersession relation be-
tween versions be maintained properly so that any conflicts that might exist are perpet-
uated until they are resolved.

3.2.8 Extended identifier
Each version is a version of a particular item. We say that theversionpertainsto the
item. Note, however, that it is not possible to tell from the version identifier what
particular item the version pertains to.

Since we often have to associate a version identifier with theitem identifier of the
item the version pertains to, we form anextended identifierby concatenating the item
identifier and the version identifier. The extended identifier designates a particular
version just like a version identifier but it also designatesthe item the version pertains
to.

7

3.3 Version metadata and content
Each version of an item consists of metadata, which is how Cimbiosys keeps track of
the version, and content, which is what the user is interested in.

3.3.1 Made-with knowledge
Given two different versions of the same item, it is important to be able to determine
which version, if either, supersedes the other. This is the purpose ofmade-with knowl-
edge. If neither of two different versions of the same item supersedes the other, the
versions are said toconflict.

As described in Section 3.2.3, each versionv has a version identifiervi(v) and
made-with knowledgemw(v). In Cimbiosys, made-with knowledge is a set of version
identifiers. The made-with knowledgemv(v) is defined as follows:

• Given versionw such thatvi(w) ∈ mw(v), w 6= v , andw andv pertain to the
same item, thenv supersedesw .

• Versionv supersedes no other versions.

Observe that the definition permits the made-with knowledgeto include (1) version
identifiers of versions that pertain to other items and (2) the version identifier of the
superseding version itself. The reason for this freedom is that it makes it possible for
replicas to compact the made-with knowledges of stored versions.

Made-with knowledge is a form ofknowledgeas defined in Section 3.4.

3.3.2 Version header
We call a version’s metadata aversion header. Although metadata may be compacted
across the versions in a replica’s store or the versions in a protocol message, in the
abstract each version has its own metadata.

A version header for a versionv consists of an extended identifier conjoined with
made-with knowledge. The extended identifier contains the version identifier ofv and
the item identifier of the item to whichv pertains. The made-with knowledge represents
the set of versions superseded byv .

Version headers are important because in some places in the Cimbiosys synchro-
nization protocol, only the metadata of a version needs to beconveyed and the actual
content of the version is immaterial. This is the case for a direct move-out, as described
in Section 3.7.3.

3.3.3 Version content
In addition to the version header metadata, a version containsversion contentwhich is
the data in which the user is interested. The version contentmay be considered as a set
of attribute-value pairs in some database schema. For simplicity in the specification,
version content is represented by abstract valuesw , x , y and so on.

3.4 Forms of knowledge
Knowledge is a central concept in Cimbiosys and it shows up inmany different places
and in different forms. Unfortunately, this can be somewhatconfusing. Even in this
report, we use the term “knowledge” loosely within quotation marks because it is so
convenient. However, careful use of terminology is essential to understanding the spec-
ification.

8

3.4.1 Knowledge
As used in the specification,

• knowledgeis a set of version identifiers

Whatknowledgemeans is that you “know” something about the versions identfied by
the version identifiers in the set. For example, in the case ofmade-with knowledge (see
Section 3.3.1), you know that a given version supersedes every different version of the
same item in the set.

When we say that a version identifiervi is in a knowledgek we mean simple set
membership,vi ∈ k . Recall that an extended identifier, a version header, and a version
all contain a version numbervi as a component. By extension, when we say that an
extended identifier, a version header, or a version is in a knowledgek , we mean that
the component version identifiervi is in knowledgek .

3.4.2 Item-set knowledge
When a replicaA is up-to-date with respect to all updates in the collection,having
somehow “examined” all created versions and arranged to store the unsuperseded ones
that match its filter, the replica can claim it “knows” about all the updates, as in the
compact summary described in Section 3.2.5. However, thereis a difficulty in convey-
ing whatA’s “knowledge” means to another replicaB . The difficulty arised because
A “knows” versions with respect toA’s filter, whereasB needs to “know” versions
with respect toB ’s filter. And, in general, it is impossible to compute the relation be-
tween the two filters. Cimbiosys overcomes this difficulty through the use ofitem-set
knowledge.

As used in the specification,

• item-set knowledgeis a map from item identifier to knowledge

Recall thatknowledgeis a set of version identifiers. Whatitem-set knowledgemeans is
that for a given item identfier you “know” something about theversions identified by
the version identifiers in the corresponding set.

The problem of conveyingA’s knowledge toB is solved by using item-set knowl-
edge. Regardless ofA’s andB ’s filters,A can express what it “knows” as a map from
item identifiers to what it “knows” about the specific versions of that item it is actu-
ally storing, andB can incorporate that knowledge, provided thatB represents what it
“knows” as item-set knowledge.

When we say that a version identifiervi is in an item identfierii component of
an item-set knowledgeisk we mean simple set membership,vi ∈ isk [ii]. Recall that
an extended identifier, a version header, and a version all contain a version numbervi
and an item identfierii as components. By extension, when we say that an extended
identifier, a version header, or a version is in an item-set knowledgeisk , we mean that
the component version identifiervi is in the component item identifierii component of
the item-set knowledgeisk .

3.4.3 Star item-set knowledge
Recall that item-set knowledge is defined as a map from item identifiers to knowl-
edge. An implementation would obviously attempt to encode item-set knowledge as

9

efficiently as possible, perhaps by grouping item identifiers that map to the same knowl-
edge [3]. A particularly efficient grouping results when an item-set knowledge maps
every item identifier to the same knowledge. Such an item-setknowledge we callstar
item-set knowledge.

3.4.4 Promotion of ordinary knowledge
Observe that ordinary knowledge, which is a set of version identifiers, is not parameter-
ized by item identifier. Therefore ordinary knowledge can bepromoted to star item-set
knowledge via the obvious transformation.

3.5 Filters
3.5.1 Filter
Each replica has a content-basedfilter that selects the items of interest to that replica. A
filter is a predicate on version content. The filter can be considered as a standing query
over all the items in the collection. One goal of Cimbiosys isto execute this query so
that the replica is storing the latest versions of items thatmatch its filter.

In contrast to previous work in partial replication systemsin which the interest
set of a replica is based on a static labeling of items in a hierarchical namespace, a
Cimbiosys filter is based on the current contents of items. Consequently, when an item
is updated it can move from outside to inside the interest setof some replicas and from
inside to outside the interest set of other replicas. When a replica changes its filter
it can also cause some items to move from outside to inside thereplica’s interest set
and other items to move from inside to outside the replica’s interest set. Making sure
that replicas are updated appropriately in these situations is one of the major problems
addressed by the Cimbiosys synchronization protocol.

A replica’s filter can be encoded in a query language and sent to another replica as
part of the synchronization protocol. For example, in the synchronization request mes-
sage, the target replica sends its filter to the source replica so that the source replica can
limit its reply to contain only those versions that are of interest to the target. This saves
much bandwidth when synchronizing with a target replica that has a narrow interest
set.

For simplicity, in the specification we represent a filter as the set of version content
it matches.

When we say a versionv is in a filterf , we mean that the content ofv matches the
filter predicate.

3.5.2 Filter containment
When filterf1 selects everything that filterf2 selects, we say thatf1 containsf2.

We expect that frequently a filter would be composed of a conjunction of query
terms such asrating > 2 and topic = music. So in some cases it will be possible to
compare filters via inspection.

Of course, in the general case, filter containment is undecidable. So, technically,
what we have in Cimbiosys isknown containment, when we know that filterf1 contains
filter f2.

Having a filter containment relation, if we know it, helps in two situations. First,
when a replica changes its filter, some items might move from outside to inside the

10

replica’s interest set. As discussed in Section 3.5.4, if the old filter contains the new
filter then knowledge can be retained that otherwise must be discarded.

Second, when a source replica is sending information to a target replica during
synchronization, if the source replica’s filter contains the target replica’s filter, then the
source has the advantage of being interested in everything the target is interested in.
In such a case, the source can also inform the target about versions the source knows
about but does not store. Such versions must not be of interest to the source. Since
the source’s filter contains the target’s filter, the source can conclude that such versions
would also not be of interest to the target.

3.5.3 Star filter
A star filter is a filter that is known to select everything. Therefore, a star filter is known
to contain any other filter.

3.5.4 Filter change
In Cimbiosis, a replica canchange its filter. This can result in some versions moving
from outside to inside the replica’s interest set and other versions moving from inside to
outside the replica’s interest set. There is a subtle difficulty with unsuperseded versions
that move from outside to inside the replica’s interest set.

In the following discussion, when we talk about what a replica “stores” and what it
“knows”, we are talking about the replica’sdata storeanddata knowledge. What is at
risk when a replica changes its filter is itsindirect data knowledge. See Sections 3.6.1
and 3.6.2.

Suppose thatv is a version that moves from outside to inside a replica’s interest set
when the replica changes its filter. Now, before changing itsfilter, the replica might
“know” aboutv , in that it knew thatv had been created so that it was up-to-date in that
regard, but the replica might not be storing it, becausev was not of interest. The main
reason why a replica would want to “know” about a version thatit was not interested
in storing is that by means of “knowing” such things it can obtain a more compact
representation of knowledge, as discussed in Section 3.2.5.

However, after changing its filter, in the general case the replica could no longer
claim to “know” aboutv . What if this version happened to be inside the new filter?
Since the replica is not storingv , it cannot tell if this might be the case or not. Therefore
the replica must discard its claim that it “knows” aboutv . Furthermore, the replica is
in this position regarding any version of which it “knows” but does not store. The only
safe course of action upon changing its filter is for the replica to discard its “knowledge”
of all versions it does not store.

On the other hand, in the case that the old filter contains the new filter, there cannot
be any versions that match the new filter without matching theold filter. So if the
replica knows that the old filter contains the new filter, thenit can retain everthing it
“knows”.

3.5.5 Filter shrink and unshrink
Changing a replica’s filter when it is known that the old filtercontains the new filter is
called afilter shrink. As discussed in Section 3.5.4, in this case the replica can retain
all of its base knowledge.

11

Changing a replica’s filter when it is not known that the old filter contains the new
filter is called afilter unshrink. This is the general case and is always a safe course of
action. As discussed in Section 3.5.4, in this case the replica must discard “knowledge”
of all versions it does not store.

3.5.6 Filter hierarchy
Since replicas typically only store versions that match their filter, and they can change
their filters at any time, there is the problem of assuring that versions will eventually
reach all replicas that are interested in them. Cimbiosys solves this problem by re-
quiring that the replicas eventually form afilter hierarchy, a tree in which one replica
with a star filter is chosen as the root and each other replica chooses a parent whose
filter is known to include its own filter. Furthermore, each replica other than the root is
required to synchronize regularly to and from its parent.

If the filter hierarchy remains stable long enough in the absence of updates, Cim-
biosys will reachfilter consistency, knowledge singularity, andmade-with singularity.

• Filter consistency means that each replica’s data store contains precisely the un-
superseded versions that match its filter, of all versions ever created.

• Knowledge singularity means that each replica’s data knowledge is star item-set
knowledge.

• Made-with singularity means that for each item with no unresolved conflicts, the
made-with knowledge of all versions of that item at all replicas is identical.

Convergence to a stable filter hierarchy is provided by a policy layer on top of
Cimbiosys. How it is achieved is not part of the specification. The specification only
assumes that it happens eventually.

3.6 A replica’s store and knowledge
Each replica has a store of versions and it “knows” somethingabout how its store
relates to updates performed by various replicas. Althoughthis is a simple idea there
are several complications.

• To perpetuate updates, a replica may be required temporarily to store a version
that does not match its filter. For example, if a replica updates an existing ver-
sion to a new version that does not match the replica’s filter,the replica cannot
immediately discard the new version because to do so would cause the update to
be lost. A related case can result from a replica changing itsfilter.

• To compact knowledge via range encoding, Cimbiosys must be able eventually
to account for each version number generated by every replica. This problem is
related to perpetuating updates, although what must be perpetuated in this case
is just the metadata.

• In the absence of conflicts, it is possible to simplify (densify) the most up-to-date
version’s made-with knowledge, which makes for a more efficient representation
of metadata. However, with content-based partial replication, it is possible that
of two conflicting versions of an item, one version matches a replica’s filter and
the other does not. This can lead to some bizarre situations.

12

The published description of the Cimbiosys implementation[3] deals with these com-
plications only in part. The specification in this report deals with them in full.

We divide the replica’s store into two parts:

• adata storeand its associateddata knowledge, which is concerned with keeping
the most up-to-date versions of items that match the replica’s filter, and

• anauth storeand its associatedauth knowledge, which is concerned with perpet-
uating updates.

In addition, a replica also maintainsconflict-free knowledge, which is used in densify-
ing made-with knowledge. These stores and knowledges are described next.

3.6.1 Data store and data knowledge
Each replica has adata storeof versions and a correspondingdata knowledgeof item-
set knowledge with the following properties.

• The replica “knows” everything it stores. Formally, for every versionv in the
data store,v and all ofv ’s made-with knowledge is in theii(v) component of
data knowledge. Recall that data knowledge is item-set knowledge, so it has a
component for each item identifier.

• The replica stores every unsuperseded version matching itsfilter that it “knows”.
Formally, for every unsuperseded versionv , if v matches the filter andv is in the
data knowledge, thenv must be in the data store.

• The replica “knows” no version that supersedes something itstores. Formally,
for every created versionv , if v is in the data knowledge but not in the data store,
then there is no versionw in the data store superseded byv .

The properties permit a replica’s data store to contain versions that do not match its
filter. The replica is permitted to discard such versions at any time. The idea is that the
data store contains versions in the replica’s interest set,plus perhaps a few extra that
the replica has still lying around in its cache since the lastfilter change.

The properties permit a replica’s data knowledge to containversions in addition
to the versions it stores. In particular, the replica’s dataknowledge may contain su-
perseded versions and versions that do not match its filter. Versions that have been
superseded and versions that do not match the replica’s filter are not of interest to the
replica, so of course the replica should not have to store them. However, it is impor-
tant for the replica to know about such versions in order to demonstrate that it is fully
up-to-date with respect to other replicas.

The data knowledge describes what the replica “knows” aboutthe versions in its
data store. The reason that a replica cannot have data knowledge of any version that
supersedes something in its data store has to do with the caseof a superseding version
that does not match the replica’s filter. The property is required for usingconflict-free
knowledgein made-with knowledge densificationwithout regard for the replica’s filter,
as discussed in Section 3.6.7.

13

3.6.2 Direct and indirect data knowledge
A replica’s data knowledge can be partitioned intodirect data knowledgeandindirect
data knowledgeas follows.

Direct data knowledge. This is data knowledge that can be derived by inspecting the
version identifiers and made-with knowledge of the versionsin the replica’s data
store. A replica always has direct data knowledge.

Indirect data knowledge. This is other data knowledge that a replica might have.
Based on the properties of data knowledge, indirect data knowledge must be
of versions that are either superseded or fail to match the replica’s filter.

Indirect data knowledge is obtained in two ways. First, if a replica discards a version
from its data store that does not match its filter, the direct data knowledge of that ver-
sion that the replica used to have now becomes indirect data knowledge. Second, a
replica can receive indirect data knowledge aslearned knowledgeas a result of syn-
chronization.

As discussed in Section 3.5.4, a replica must discard all indirect data knowledge
when it performs afilter unshrink.

3.6.3 Auth store and auth knowledge
Each replica has anauth storeof versions and a correspondingauth knowledgeof
knowledge with the following properties.

• Permanence. For every unsuperseded versionv , there is some replica that hasv

in its auth store.

• Compaction. For every created versionv , there is some replica that hasv in its
auth knowledge.

• The replica “knows” everything it stores. Formally, for allversionsv in the auth
store,v is in auth knowledge.

• The replica stores every unsuperseded version it “knows”. Formally, for every
unsuperseded versionv in auth knowledge,v is in the auth store.

The idea of the auth store is to hold every unsuperseded version somewhere, so that
updates do not disappear from the collection even though they may currently only be
known to replicas that are not interested in them. This is thereason for the permanence
property.

The idea of the auth knowledge is to maintain knowledge of every created version
somewhere, so that eventually knowledge can be compacted because all updates are
known. The is the reason for the compaction property.

“Auth” stands for “authoritative”. As originally conceived, the replica is authori-
tative for versions in its auth knowledge, any unsupersededversions of which can be
found in the replica’s auth store. However, we have enough long words in the specifi-
cation already, and “authoritative” is just one too many.

14

3.6.4 Auth concentration
In contrast to the data store and data knowledge, which the synchronization protocol
tries to spread far and wide to all replicas, the synchronization protocol attempts to
concentrate the auth store and auth knowledge. The idea is transfer a replica’s auth store
and knowledge to its parent in afilter hierarchy, with everything eventually ending up
at the root. The filter hierarchy is described in Section 3.5.6.

Of course, the concentration is effective only when there isa filter hierarchy. How
a filter hierarchy is achieved is not specified. The specification permits a replica to
change its filter at any time. All that is assumed is that eventually a filter hierarchy is
achieved and remains stable. Prior to that, the specification admits of relative chaos
in terms of attempting to concentrate the auth store and knowledge. However, it is
controlled chaos, in that nothing is lost.

3.6.5 Data knowledge compaction
Observe that auth knowledge is ordinary knowledge, which can be promoted to star
item-set knowledge as described in Section 3.4.4. Hence auth knowledge is nicer than
data knowledge, which in the general case is cumbersome item-set knowledge.

Careful study of the auth and data store and knowledge properties will show that it
is permitted for a replica to “copy” its auth store and knowledge into its data store and
knowledge, provided that the replica take care to discard superseded versions from its
data store (which is always the case when adding to data knowledge).

The reason for performing such a “copy” is that it results indata knowledge com-
paction. The auth knowledge promotes into star item-set knowledge when copied into
data knowledge, thus working towardsknowledge singularity. This is especially ef-
fective if the auth store and knowledge have been concentrated at the root of the filter
hierarchy, as discussed in Section 3.6.4.

3.6.6 Made-with knowledge densification
Recall that each version contains made-with knowledge thatis used to determine the
supersession relation between versions of the same item. Made-with knowledge is a
set of version identifiers and in the general case nothing less than a set will do, since
there are bizarre scenarios such as the following.

Suppose a replica learns about versionv1 of some item. It updates this version,
creating versionv2 and spreads it to other replicas. Later, the replica changesits filter
so thatv2 is no longer of interest, so it discards versionv2. Then it unshrinks its filter,
so it has to forget all knowledge ofv2 and also ofv1. Subsequently, the replica learns
again about the old versionv1 from some out-of-date replica. The replica now updates
v1 again, creating versionv3. Logically,v2 andv3 ought to be in conflict, since neither
was made with knowledge of the other.

However, in most cases there will not be conflicts, and even when there are con-
flicts we would expect that eventually a conflict resolution process would render them
uninteresting. It is cumbersome to have to maintain foreverunique made-with knowl-
edge on every version. In fact, when conflicts have been resolved for a given item it
is legal to replace the made-with knowledge on the latest version of that item with the
replica’s data knowledge of that item. This replacement is calledmade-with knowledge
densification.

15

Made-with knowledge densification is especially effectivewhen the replica has
achieved knowledge singularity and has the same data knowledge for every item.

3.6.7 Conflict-free knowledge
Given an item identifierii , conflict-free knowledgeof ii is a set of version identifiers
cfk(ii) with the following properties.

• If v1 and v2 are two conflicting versions ofii in cfk(ii), then there exists a
versionv0 of ii in cfk(ii) such thatv0 supersedes bothv1 and v2. In other
words, there are no unresolved conflicts among versions ofii in cfk(ii).

• A versionv has been created corresponding to every version identifier in cfk(ii).
In other words, all the versions incfk(ii) have been created, so there will not ever
be any unreolved conflicts among versions ofii in cfk(ii).

Each replica maintainsconflict-free knowledge, which is item-set knowledge map-
ping each item identifierii to conflict-free knowledge ofii . Observe that it is safe
to assume that conflict-free knowledge is empty. However, once some conflict-free
knowledge is known, it is good forever, so over time it need never retreat.

Replicas learn conflict-free knowledge in two ways. First, it is sent via the synchro-
nization protocol, so if a replica receives some that is better than what it currently has,
it can (piecewise by item identifier) adopt the better conflict-free knowledge. Second,
if a replica has a star filter, it can examine its data store. For items for which its data
store contains no conflicts, the replica’s corresponding data knowledge is conflict-free
knowledge of that item.

Replicas use their conflict-free knowledge to performmade-with knowledge den-
sification. (See Section 3.6.6.) Regardless of a replica’s filter, if a replica’s data store
contains a versionv such that

• vi(v) is in the replica’s conflict-free knowledge ofii(v), and

• the replica’s data knowledge ofii(v) contains the replica’s conflict-free knowl-
edge ofii(v)

then it is permitted to replace the made-with knowledge ofv with the replica’s conflict-
free knowledge ofii(v). The first condition assures thatv is in the conflict-free knowl-
edge ofii(v) and not superseded by anything the replica “knows”. The second condi-
tion assures that the replica “knows” everything in the conflict-free knowledge ofii(v).
Note that the property that a replica’s data knowledge cannot contain any version that
supersedes a version in its data store gets used here. Consequently,v must be the only
unsuperseded version ofii in the replica’s conflict-free knowledge ofii(v).

3.7 Synchronization protocol
The Cimbiosys synchronization protocol,CIMSync, is a simple, two-step protocol that
involves two replicas, asource replicaand atarget replica.

First, the target sends asynchronization request messageto the source, informing
the source of the target’s current filter and state of knowledge about the collection.
Specifically, in addition to delivery information such as the message type and identi-
fication of the sender and receiver, the synchronization request message contains the
following components:

16

• the target’s filter,

• the target’s filter unshrink number, a sequence number that increments whenever
the target unshrinks its filter,

• the target’s data knowledge, and

• an optional set of the extended identifiers of the versions inthe target’s data store.

Second, the source sends asynchronization response messageto the target, updating
the target’s state of knowledge about the collection via newversions and other infor-
mation. Specifically, in addition to delivery information such as the message type and
identification of the sender and receiver, the synchronization request message contains
the following components:

• a set of data versions,

• a set of transferred auth versions,

• transferred auth knowledge,

• accumulated conflict-free knowledge,

• the target’s filter unshrink number,

• a set of direct move-outs,

• a set of indirect move-outs, and

• learned knowledge.

The protocol brings the target replica up-to-date with respect to the source replica.
To fully synchronize two replicas, it is sufficient to repeatthe protocol in the reverse
direction.

We assume that the synchronization messages are delivered reliably. The issue of
failure is beyond the scope of this report. Next we describe the concepts involved in
the messages.

3.7.1 Data versions
Based on the target’s filter and data knowledge, the source can determine which of the
versions in its data store are (1) not known to the target and (2) of interest to the target.
These versions the source sends back to the target asdata versionsto add to its data
store.

3.7.2 Move-out
Because of partial replication, the target might have in itsdata store an obsolete version
of an item whose updated version is not of interest to the target. If the source knows of
the updated version, in order to bring the target up-to-dateit must tell the target about
the situation. We call this amove-out. The target has an obsolete version that it must
move out of its data store in order to become up-to-date.

There are two cases:

17

• a direct move-out, in which the source has the updated version in its data store,
and

• an indirect move-out, in which the source does not have the updated version in
its data store.

3.7.3 Direct move-out
Thedirect move-outcase is easier. The source has the updated version in its datastore
and it can inspect the version content to determine that indeed it does not match the
target’s filter. By checking the target’s data knowledge, the source can determine that
the target does not know about the updated version.

The source could speculate that there might be an obsolete version and that the
target was storing it, but this seems like it would usually just be a waste of bandwidth.
Instead, we require that the target also inform the source ofthe extended identifiers
of the versions in its data store. With this information, thesource can verify that the
updated version actually does supersede a version that the target has in its data store.
In this case, in order to bring the target up-to-date with regard to the updated version,
the source must send a move-out to the target.

When sending a direct move-out, the source has the updated version in its data store
so it can send the entire version header, containing the itemidentifier, version identifier,
and made-with knowledge. The version content is of course not of interest to the target,
since by the definition of a move-out, the version content does not match the target’s
filter. By sending the version header for a direct move-out, the target can determine
what has been superseded and it can add the metadata to its indirect data knowledge.

3.7.4 Indirect move-out
The indirect move-outcase is harder. Since the source does not have the updated ver-
sion in its data store, it has access to neither the version content nor its metadata. One
might wonder whether it was even worth worrying about this case, since the difficulties
are large, but it turns out to be essential, as shown by the following example.

Suppose that there are three replicas,A, B , andC , arranged in a filter hierarchy
(see Section 3.5.6) whereC is the parent ofB andB is the parent ofA. By the
definition of a filter hierarchy,C ’s filter containsB ’s filter andB ’s filter containsA’s
filter. Recall that eventual filter consistency is supposed to be assured provided that
each replica other than the root regularly synchronizes to and from its parent.

Suppose that replicaA creates an item that matches its filter and this item spreads
via synchronization to replicasB andC . Next suppose that replicaC updates the item
so that it moves outside ofB ’s filter. WhenB next synchronizes fromC , C will send
a direct move-out tellingB to discard its obsolete version from its data store.

Note that replicaA is now storing an obsolete version. Its parent replicaB knows
about the updated version but is does not have it in its data store, since it does not
matchB ’s filter. The question is how replicaA ever becomes up-to-date. From the
filter hierarchy rules, replicaA must regularly synchronize to and from replicaB , its
parent, but it never need synchronize from replicaC . The only way to resolve this
situation is for replicaB to send an indirect move-out to replicaA.

There are several conditions required for an indirect move-out.

18

• The source’s filter must contain the target’s filter.

• There is an item identifierii such that the source’s data knowledgeii component
contains the target’s data knowledgeii component. In other words, the source
knows everything about itemii that the target knows.

• The target has a versionv of item ii in its data store. As for the direct move-
out, we require that the target inform the source of the extended identifiers of
the versions in its data store. With this information, the source can evaluate this
condition.

• The source does not have versionv in its data store.

If all these conditions are satisfied, the source can send an indirect move-out for version
v to the target. Since the source does not store versionv , it does not have access to the
version header, but it does have the extended identifier for versionv , which it can send.

3.7.5 The target’s set of extended identifiers
In order to avoid speculative direct move-outs, and in orderto enable indirect move-
outs, we require that the target send the set of extended identifiers of the versions in its
data store. However, even though this is required, optimizations are possible.

First, the target does not have to send the set every time. If the set is not sent, then
the source will omit responding with move-outs and consequently also omit responding
with learned knowledge.

Second, when requesting from a regular sychronization partner, the source could
cache the set enabling the target to send only deltas and fingerprints most of the time.

3.7.6 Learned knowledge
In the ideal case, synchronization would cause the target tolearn everything that the
source knows. Specifically, the source’s entire em data knowledge would be copied to
the target. We call thislearned knowledge.

Observe that the target gets a lot of data knowledge from the metadata of data ver-
sions and direct move-outs. This is not what we call learned knowledge here. Learned
knowledge, if it can be sent, is the source’s entire data knowledge.

The source must omit sending learned knowledge in the following cases.

• The source’s filter does not contain the target’s filter.

• The target omitted to send the set of extended identifiers forthe versions in its
data store.

3.7.7 Auth transfer
As described in Section 3.6.4, the synchronization protocol attempts to concentrate
auth store and auth knowledge by transferring them up to parent replicas in a filter
hierarchy. So whenever the target is the parent of the source, the source takes the entire
contents of its auth store and auth knowledge and transfers it to the target.

When the target receives the response message, it incorporates the transferred auth
store and auth knowledge into its auth store and auth knowledge.

19

3.7.8 Conflict-free knowledge accumulation
As described in Section 3.6.7, once some conflict-free knowledge is known, it is good
forever. So the source always sends a copy of its current conflict-free knowledge.

When the target receives the response message, it performs acomponent-wise ex-
amination of the sent conflict-free knowledge to determine if it can improve any com-
ponent of its current conflict-free knowledge.

3.7.9 Target filter skew
When the target receives the synchronization response message from the source, it can
ingest the sent data versions, auth store, auth knowledge, and conflict-free knowledge
without any hesitation. However, the sent move-outs and learned knowledge are based
on the what the target’s filter was at the time the target sent its request. The target could
have changed its filter since then.

If the target has shrunk its filter, any move-outs and learnedknowledge remain
valid, since anything that was not of interest to the target is still not of interest. How-
ever, if the target has unshrunk its filter, this may not be true. Actually, the situation is
even more complicated. If the target has unshrunk its filter at any time since sending
the request, then there are scenarios in which the move-outsand learned knowledge
might not be valid. We call this situationtarget filter skew.

In order to detect target filter skew, each replica maintainsa counter that increments
each time it unshrinks its filter. The value of this counter issent in the request message
and returned in the response message. If the value in the response message does not
match the target’s current value, them there is target filterskew and the target must
ignore the move-outs and learned knowledge of the response.

20

Chapter 4

Tour of the specification

A listing of the TLA+ CIMSync protocol specification is givenin Appendix A. The
specification is divided into a large number of parts separated by horizontal rules. Ba-
sically, the specification defines options, data types, the initial state, a constraint, the
next state relation, invariants, temporal assumptions, temporal properties, a state view,
and finally the actual specification. Next we describe these parts in more detail.

Various options appear starting on page 25. Some options control how various
constraints are interpreted in restricting the elaboration of the state graph. Other options
introduce an intentional bug into the specification so that we can verify that the model
checker actually finds a counterexample for that bug.

The data types follow fairly closely to the description of system concepts in Chap-
ter 3. The main additions are in regard to the definition of a replica and of overall
state. Much of the interesting detail of the specification appears in the definition of
what happens with a replica. The overall state maintains extra information about the
“truth” of the collection so that invariants can be checked with regard to “truth”. The
overall state also maintains some commentary about how the state was produced to aid
in understanding a model execution history. This helps withdebugging.

Invariants appear starting on page 51. Invariants are statements that are true in any
reachable state.

Temporal assumptions appear starting on page 54 and temporal properties on page 55.
Temporal properties are statements regarding an entire execution sequence that are true
of any execution sequence that satisfies the temporal assumptions.

The state view appears on page 56 and the actual specificationon page 57. The state
view controls what the model checker considers when deciding when two states are the
same state. We eliminate debugging information from the state view. As is typical
when writing a TLA+ specification, the actual specification is a simple conjunction of
the initial state, the next state relation, the liveness condition, and various temporal
assumptions.

4.1 Model checking
Running the TLC model checker on a specification requires supplying a configuration
file that provides model values and indicates which definitions form various parts of

21

configuration sec states depth error

B.4 BugAuthBounceForever 67 7421 24 Temporal properties were violated

B.5 BugContainFilter 44 21782 14 Invariant InvDataFilter is violated

B.6 BugLearnSend 466 172839 12 Invariant InvDataFilter is violated

B.7 BugLearnStore 297 116456 11 Invariant InvDataFilter isviolated

B.8 BugOmitDiscardAuthSsin 8 736 20 Temporal properties were violated

B.9 BugOmitDiscardDataOof 39 5812 17 Temporal properties were violated

B.10 BugOmitIndMoveouts 1245 176737 12 Invariant InvHaveDataSuperseder is violated

B.11 BugOmitMoveouts 27 4754 16 Invariant InvHaveDataSuperseder is violated

B.12 BugOmitRebuildOnUnshrink 3 200 5 Invariant InvDataFilter is violated

B.13 BugUnionFreeisk 4 532 13 Invariant InvStoreMw is violated

B.14 BugUnshrinkLearn 15 9768 8 Invariant InvDataFilter isviolated

B.15 BugUnshrinkMoveout 124 53999 18 Invariant InvDataFilter is violated

Table 4.1: Finding counterexamples for bugs.

the specification.
The interesting model values that have to be provided are thesets of item identifiers,

replica identifiers, and version contents. These sets definehow large a configuration is
to be modeled.

Then there are a number of model values that constrain the state space in various
ways by limiting the number of various actions that can be explored. Furthermore,
there are separate per-replica and total system constraints. This is tedious, but this
array of constraints is needed in order to guide the model checker into exploring paths
that lead to counterexamples for various bugs.

Appendix B lists a number of configuration files. Section B.1,B.2, and B.3 list
some small configurations that can be explored fully. No violations of invariants or of
temporal properties were found for these small configurations.

4.2 Finding counterexamples for known bugs
When running the TLC model checker, it is nice to see that noneof the invariants are
violated for the size of the model that TLC can check. However, there is always the
possibility that a bug lurks over the horizon. This is especially important for the CIM-
Sync specification, since only very small configurations canbe checked exhaustively.
One way to get more confidence is to introduce a known bug on purpose and see if
TLC finds a counterexample execution.

For this purpose, options were written into the specification to introduce various
bugs. By setting the constraints to guide the model checker,a counterexample model
execution can often be found fairly quickly. Table 4.1 givesthe results. Each line in
the table lists a configuration, the number of seconds of execution time required by the
model checker to find a counterexample, the number of states examined and the depth
reached, and the error reported by the model checker. The corresponding configuration
files are listed in Appendix B.

Some of the bugs cause violations of temporal properties. For example, B.4 BugAu-
thBounceForever interferes with auth concentration (see Section 3.6.4). In this bug, the

22

auth store and auth knowledge are transferred whenever the target’s filter contains the
source’s filter, rather than only when the target is the parent of the source. This is a bug,
because if two non-root replicas have equal filters, their filters each contain the other
and so auth store and knowledge could bounce forever betweenthem, never reaching
the root.

23

Bibliography

[1] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

[2] P. Mahajan, R. Kotla, C. C. Marshall, V. Ramasubramanian, T. L. Rodeheffer, D. B.
Terry, and T. Wobber. Effective and efficient compromise recovery for weakly
consistent replication. InEuroSys ’09: Proceedings of the fourth ACM european
conference on Computer systems, pages 131–144, New York, NY, USA, 2009.
ACM.

[3] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-Sullivan, T. Wob-
ber, C. C. Marshall, and A. Vahdat. Cimbiosys: A platform forcontent-based
partial replication. InUSENIX Symposium on Networked Systems Design and Im-
plementation (NSDI’09), pages 261–276, Apr. 2009.

[4] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, and
T. Wobber. Fidelity-aware replication for mobile devices.In Proceedings of Mo-
biSys 2009, June 2009.

24

Appendix A

CIMSync specification

MODULE CIMSync

Specification of theCIM Synchronization protocol.

EXTENDSNaturals , Sequences , FiniteSets , TLC

VARIABLE state

Useful definitions not part of standard TLA.

a ⊇ b
∆

= b ⊆ a superset

a ⊂ b
∆

= (a ⊆ b) ∧ (a 6= b) proper subset

a ⊃ b
∆

= b ⊂ a proper superset

Abort(x)
∆

= Assert(FALSE, x)
AbortType(x)

∆

= Abort(〈“type violation”, x 〉)

OPTIONS

Options for this specification. These are defaults that can be overridden in a particular model. Some of
these options control how various constraints restrict theelaboration of the state space graph. Other options
introduce a bug so that we can verify that the model checker produces a counterexample.

Permit a replica to request a sync with itself. Since generally this does not produce any interesting interac-
tions but does increase the state space, the default is to disable this option.

OptSelfSync
∆

= FALSE

What to count for a replica’s parent change. Having each replica count its changes permits us to constrain
the number of changes both per-replica and over the entire system. The default is 0, which means that we do
not count changes.

25

Parentinc
∆

= 0 what to count for a parent change

Maximum per-replica values of various counters.

CONSTANTMaxVersnum maximum per-replica version number

CONSTANTMaxSyncact maximum per-replica number of active syncs

CONSTANTMaxFilternum maximum per-replica filter changes

CONSTANTMaxParentnum maximum per-replica parent changes

Maximum count of replicas that have non-zero values of various counters.

CONSTANTMaxNzVersnum maximum replicas non-zero version number

CONSTANTMaxNzSyncact maximum replicas non-zero active syncs

CONSTANTMaxNzFilternum maximum replicas non-zero filter changes

CONSTANTMaxNzParentnum maximum replicas non-zero parent changes

Maximum total values of various counters.

CONSTANTMaxTotalVersnum maximum total version number

CONSTANTMaxTotalSyncact maximum total number of active syncs

CONSTANTMaxTotalFilternum maximum total filter changes

CONSTANTMaxTotalParentnum maximum total parent changes

Omit to rebuild data item-set knowledge from stored versions when the replica unshrinks its filter. (Unshrink
is a change that might not be a shrink.) This introduces a bug,because changing a filter in this way could
make a version we know about come inside the new filter but the version is not stored because it is outside
the old filter.

BugOmitRebuildOnUnshrink
∆

= FALSE

Omit to perform moveouts. This introduces a bug, because moveouts are necessary in some situations.

BugOmitMoveouts
∆

= FALSE

Assume that the target replica’s filter does not unshrink between requesting a sync and processing the corre-
sponding sync data. This introduces a bug, because if the target’s filter does unshrink it could bring versions
inside the target’s filter that the source thought were outside, thus making the moveouts and consequently
the learned item-set knowledge invalid.

BugUnshrinkMoveout
∆

= FALSE

BugUnshrinkIndMoveout
∆

= FALSE

BugUnshrinkLearn
∆

= FALSE

Instead of checking that the target replica’s filter did not unshrink between requesting a sync and process-
ing the corresponding sync data, check that the target replica’s filter at the former time contains the target
replica’s filter at the latter time. This introduces a bug, because the target’s filter could shrink, causing the
target to discard data versions that fell out of its filter, and then the target’s filter could unshrink back to
where it was.

BugContainFilter
∆

= FALSE

26

Permit a source replica to send authoritative knowledge during sync whenever the target replica’s filter
contains the source replica’s filter. This introduces a bug,because if both replicas’ filters are equal they each
contain the other, and the authority could bounce forever between both replicas without ever reaching the
root.

BugAuthBounceForever
∆

= FALSE

Omit to perform indirect moveouts. This introduces a bug, because indirect moveouts are necessary in some
situations.

BugOmitIndMoveouts
∆

= FALSE

During synchronization, for all data versions that the source stores (or sends), the target learns the source’s
knowledge of that item. These are bugs, because the source might know both versions involved in a conflict
but only store one, whereas the other version matches the target’s filter.

BugLearnStore
∆

= FALSE

BugLearnSend
∆

= FALSE

Omit to use authoritative knowledge to make star data item-set knowledge. This introduces a bug, because
without using authoritative knowledge it is not in general possible to achieve eventual knowledge singularity.

BugOmitMakeStar
∆

= FALSE

Omit to make conflict-free item-set knowledge. This introduces a bug, because without making conflict-free
item-set knowledge it is not in general possible to achieve eventual madewith singularity.

BugOmitMakeFreeisk
∆

= FALSE

Take the union of whatever conflict-free knowledge is sent with what I already have. This introduces a bug,
because this is not correct.

BugUnionFreeisk
∆

= FALSE

Omit to use conflict-free item-set knowledge to densify made-with knowledge. This introduces a bug, be-
cause without using conflict-free item-set knowledge it is not in general possible to achieve eventual made-
with singularity.

BugOmitDensifyMw
∆

= FALSE

Omit to discard out-of-filter versions from the data store. This introduces a bug, because it is not in general
possible to achieve eventual filter consistency without discarding out-of-filter versions.

BugOmitDiscardDataOof
∆

= FALSE

Omit to discard superseded versions from inside the auth store. This introduces a bug, because it is not in
general possible to achieve eventual auth supersession without discarding such versions.

BugOmitDiscardAuthSsin
∆

= FALSE

Basic types for this specification.

CONSTANT Itemid item identifiers

27

CONSTANTContent item contents

Versnum
∆

= Nat version numbers

Syncact
∆

= Nat outstanding sync requests

Filternum
∆

= Nat filter change numbers

Filterusn
∆

= Nat filter unshrink number

Parentnum
∆

= Nat parent change numbers

REPLID

A replica id is modeled as an arbitrary value. We have some setof them. There is alsoNullReplid which is
an arbitrary value different from any replid.

CONSTANTReplid set of replica ids

NullReplid
∆

= CHOOSEx : x /∈ Replid something not a replica id

ReplidOrNull
∆

= Replid ∪ {NullReplid} replid or null

VERSID

A versid combines an author replid with a version number.

Each version of an item has a versid that is unique to that version. Therefore each versid pertains to a
particular itemid. However, from the versid you cannot tellwhich itemid it is.

Versid
∆

= [
ri : Replid , author of this versid

vn : Versnum version number relative to the author

]

XTNDID

An xtndid combines anitemid with aversid .

Each version of an item has aversid that is unique to that version. Therefore eachversid pertains to a
particularitemid . However, from theversid you cannot tell whichitemid it is. Thextndid exhibits this
relation.

Xtndid
∆

= [
ii : Itemid ,
vi : Versid

]

KN

Kn is knowledge, a set of versids.

28

Kn
∆

= SUBSETVersid

EmptyKn
∆

= {}

Compute the union of knowledges.

UnionKns(ks)
∆

= UNION {k : k ∈ ks}

Determine if one knowledge contains another.

GeqKn(k1, k2)
∆

= k1 ⊇ k2

Better knowledge with other knowledge.

If the second knowledge is greater than the first, take it; otherwise stay with the first.

BetterKn(k1, k2)
∆

= IF GeqKn(k2, k1) THEN k2 ELSE k1

Make knowledge from a set of versids.

KnMakeFromVersids(vis)
∆

= vis

Make knowledge from a header or version.

KnMakeFromHeader(h)
∆

= {h.xi .vi} ∪ h.mw

KnMakeFromVersion(v)
∆

= KnMakeFromHeader(v .head)

Determine if a versid, header, or version is in knowledge.

IsVersidInKn(vi , k)
∆

= vi ∈ k

IsHeaderInKn(h, k)
∆

= IsVersidInKn(h.xi .vi , k)
IsVersionInKn(v , k)

∆

= IsHeaderInKn(v .head , k)

HEADER

A header combines anxtndid with made-with knowledge.

Made-with knowledge is a set of versids. Each versid pertains to a particular itemid, but from the versid, you
cannot tell which itemid it is.

There are several cases of versids that can appear in made-with knowledge.

(1) if the versionxi is to supersede an earlier versionvi of the same item, thenvi must appear in the
made-with knowledge.

(2) if vi is a version of some other item, thenvi may appear in the made-with knowledge.
(3) the version ofxi itself may appear in the made-with knowledge.

Header
∆

= [
xi : Xtndid ,
mw : Kn

]

29

Determine if headerah supersedes headerbh .

SupersedesHeader(ah, bh)
∆

=
∧ bh.xi .ii = ah.xi .ii same itemid

∧ bh.xi .vi 6= ah.xi .vi different versid

∧ IsVersidInKn(bh.xi .vi , ah.mw) ah made-withbh

VERSION

A version combines a header with content.

Version
∆

= [
head : Header ,
cont : Content

]

Determine if versionav supersedes versionbv . This is based entirely on their headers.

SupersedesVersion(av , bv)
∆

= SupersedesHeader(av .head , bv .head)

ISETKN

Isetkn is item-set knowledge, a map from itemid to knowledge. Recall that knowledge is a set of versids.

Item-set knowledgeisk means that for each itemidii , we know all versids inisk [ii] . Recall that each
versid pertains to a specific itemid, but from the versid you cannot tell which itemid it is.

There are two cases of versids that we can claim to know.

(1) if the versidvi pertains to itemidii , then we can claim to knowvi for itemid ii only if we actually
know it, for whatever it means to know a versid.

(2) if the versidvi pertains to some other itemid thanii , then we can claim to knowvi for itemid ii .

Isetkn
∆

= [Itemid → Kn]

EmptyIsetkn
∆

= [ii ∈ Itemid 7→ EmptyKn]

Compute the union of item-set knowledges.

UnionIsetkns(isks)
∆

=
[ii ∈ Itemid 7→ UnionKns({isk [ii] : isk ∈ isks})]

Determine if one item-set knowledge contains another.

GeqIsetkn(aisk , bisk)
∆

=
∀ ii ∈ Itemid : GeqKn(aisk [ii], bisk [ii])

Componentwise better the first item-set knowledge with the second.

BetterIsetkn(isk1, isk2)
∆

=

30

[ii ∈ Itemid 7→ BetterKn(isk1[ii], isk2[ii])]

Make item-set knowledge from an itemid and knowledge, a header, version, set of headers, or set of versions.

IsetknMakeFromItemidKn(ii0, k)
∆

=
[ii ∈ Itemid 7→ IF ii = ii0 THEN k ELSE {}]

IsetknMakeFromHeader(h)
∆

=
IsetknMakeFromItemidKn(h.xi .ii , KnMakeFromHeader(h))

IsetknMakeFromVersion(v)
∆

= IsetknMakeFromHeader(v .head)

IsetknMakeFromHeaders(hs)
∆

=
UnionIsetkns({IsetknMakeFromHeader(h) : h ∈ hs})

IsetknMakeFromVersions(vs)
∆

=
UnionIsetkns({IsetknMakeFromVersion(v) : v ∈ vs})

Make star item-set knowledge from knowledge.

IsetknMakeStarFromKn(k)
∆

= [ii ∈ Itemid 7→ k]

Determine if we have star item-set knowledge.

IsStarIsetkn(isk)
∆

= ∀ ii1, ii2 ∈ Itemid : isk [ii1] = isk [ii2]

Determine if a header or version is in item-set knowledge.

IsHeaderInIsetkn(h, isk)
∆

= IsHeaderInKn(h, isk [h.xi .ii])
IsVersionInIsetkn(v , isk)

∆

= IsHeaderInIsetkn(v .head , isk)

Get knowledge of an itemid from item-set knowledge.

Isetkn GetItemidKn(isk , ii)
∆

= isk [ii]

FILTER

We specify a filter by specifying the set of version content that the filter accepts.

An implementation would have to give a query predicate. Because comparison of predicates is not com-
putable, an implementation cannot always tell whether one filter contains another. We do not specify that.
However, with a rich enough set of version content, pairs of filters can be incomparable, which has the same
effect as the comparison being incomputable.

Filter
∆

= SUBSETContent

A star filter.

StarFilter
∆

= Content

31

Determine iff is a star filter.

IsStarFilter(f)
∆

= f = StarFilter

Determine if a version is in a filter.

IsVersionInFilter(v , f)
∆

= v .cont ∈ f

Determine if one filter includes another, assuming we can tell. If we cannot tell, then the result isFALSE.

GeqFilter(af , bf)
∆

= IsStarFilter(af) ∨ bf ⊆ af

Determine if one filter equals another, assuming we can tell.If we cannot tell, then the result isFALSE.

EqFilter(af , bf)
∆

= GeqFilter(af , bf) ∧ GeqFilter(bf , af)

MESSAGE

Message - request sync.

MsgRequestSync
∆

= [
type : {“request sync”},
recvri : Replid ,
sendri : Replid ,
tf : Filter , target’s filter

tfusn : Filterusn, target’s filter unshrink number

tdataisk : Isetkn, target’s data item-set knowledge

txis : SUBSETXtndid , xtndids that target stores

txisyes : BOOLEAN including target’s full set of xtndids

]

Message− sync data.

MsgSyncData
∆

= [
type : {“sync data”},
recvri : Replid ,
sendri : Replid ,
datavs : SUBSETVersion, data versions

authvs : SUBSETVersion, auth versions

authk : Kn, transferred authoritative knowledge

freeisk : Isetkn, accumulated conflict-free item-set knowledge

tf : Filter , target’s filter (only to exhibit a bug)

tfusn : Filterusn, target’s filter unshrink number

movehs : SUBSETHeader , direct move-outs

movevis : SUBSETVersid , indirect move-outs

learn : Isetkn learned isetkn

]

32

Message

Msg
∆

= {}
∪ MsgRequestSync

∪ MsgSyncData

REPLICA

State of a replica.

The store consists of (1) a data versions store and (2) an authversions store. It is legal, and in fact sometime
required, for the same version to be in both the data versionsstore and the auth versions store. Presumably
an implementation would optimize storage in such a case by using references.

We have knowledge about versions in our data versions store.If we know about a version that matches our
filter, it must be in the data versions store. Nothing we have in our data versions store can be superseded by
anything within our knowledge. It is legal for our data versions store to contain versions that do not match
our filter; however, eventually such versions will be discarded.

We have authority about versions in our auth versions store.If we authority about a version that is not
superseded, it must be in the auth versions store. It is okay to have authority about a superseded version.
Authority and the corresponding versions are passed upwardto our parent.

The data item-set knowledge comprises (1) direct data item-set and (2) indirect data item-set knowledge.

Direct data item-set knowledge comprises item-set knowledge about every version in the data store, whether
or not that version matches our filter.

Indirect data item-set knowledge comprises whatever item-set knowledge we might have learned from move-
outs or as declared learned item-set knowledge or from out-of-filter versions that we used to have in our data
store. Indirect data item-set knowledge evaporates whenever we unshrink our filter.

To assist in model checking, we can limit the number of times a
replica is permitted to change its filter. For this purpose, each
replica maintains a counterfilternum that is incremented on each filter change.

To assist in model checking, we can limit the number of times a
replica is permitted to change its parent. For this purpose,each
replica maintains a counterparentnum that can be incremented on each parent change. The increment
value is the model paramterParentinc . If Parentinc is 0, the number of parent changes is not tracked
and therefore is unconstrained. Even so, the state graph does not grow without bound, since eventually all
possible parents will be tried in all possible situations. If Parentinc is 1, the number of parent changes is
tracked and therefore also constrained.

Various replica operations construct new replica values with messages to be sent enqueued onsendmsgq .
Then when the new value representing the replica is updated back into the main state, the sent messages are
transferred torecvmsgq in the proper destination
replica. This might seem complicated, but it makes writing the
replica operations much easier. Observe thatsendmsgq is always empty at the beginning of each action.

To assist in model checking, we limit the number of sync requests that a replica is permitted to launch without
processing an answer. For this purpose, we track the number of outstanding sync requests.

Replica
∆

= [
ri : Replid , my replica id

versnum : Versnum, last version number used

datavs : SUBSETVersion, data store

33

dataisk : Isetkn, data item-set knowledge

authvs : SUBSETVersion, auth store

authk : Kn, auth knowledge

freeisk : Isetkn, conflict-free item-set knowledge

filter : Filter , current filter

filterusn : Filterusn, filter unshrink number

filternum : Filternum, number of filter changes

parentri : ReplidOrNull , my parent (might be null)

parentnum : Parentnum, number of parent changes

recvmsgq : Seq(Msg), queue of messages received

sendmsgq : Seq(Msg), queue of messages sent

syncact : Syncact outstanding sync requests

]

Initial state for replicari with parentpri and filterf .

InitReplica(ri , pri , f)
∆

=
[

ri 7→ ri ,
versnum 7→ 0,

datavs 7→ {},
dataisk 7→ EmptyIsetkn,

authvs 7→ {},
authk 7→ EmptyKn,

freeisk 7→ EmptyIsetkn,

filter 7→ f ,
filterusn 7→ 0,
filternum 7→ 0,

parentri 7→ pri ,
parentnum 7→ 0,

recvmsgq 7→ 〈〉,
sendmsgq 7→ 〈〉,

syncact 7→ 0
]

Determine if a replica thinks it is the root.

34

DoesReplicaThinkItsRoot(r)
∆

=
∧ r .parentri = NullReplid I do not have a parent

∧ IsStarFilter(r .filter) I have a star filter

Get the set of recv messages of a replica.

GetRecvMsgsOfReplica(r)
∆

= {r .recvmsgq[i] : i ∈ DOMAIN r .recvmsgq}

Get the set of all versions present in a replica.

GetVersionsInReplica(r)
∆

=
LET

dmsgs
∆

= {msg ∈ GetRecvMsgsOfReplica(r) : msg ∈ MsgSyncData}
mvs

∆

= UNION {msg.datavs ∪ msg.authvs : msg ∈ dmsgs}
IN

r .datavs ∪ r .authvs ∪ mvs

Add new data headers to a replica.

Superseded versions are discarded from the data store. Headers are added to data item-set knowledge.

ReplicaAddDataHeaders(r , hs)
∆

=
LET

keep(v)
∆

= ¬∃ h ∈ hs : SupersedesHeader(h, v .head)
isk

∆

= IsetknMakeFromHeaders(hs)
IN

[r EXCEPT

!.datavs = {v ∈ @ : keep(v)},
!.dataisk = UnionIsetkns({@, isk})
]

Add versions to a replica’s data store.

We add versions that are not already in the replica’s data item-set knowledge. This ensures that we do not
add a version for which we know a superseder. Then we add all the headers, which increases the replica’s
data item-set knowledge and discards superseded versions.

Note that there is no requirement to check that the versions match the replica’s filter. Such versions can later
be discarded at any time as out-of-filter versions.

ReplicaAddDataVersions(r , vs)
∆

=
LET

addv(v)
∆

= ¬IsVersionInIsetkn(v , r .dataisk)
IN

[[r 7→ r] EXCEPT

!.r .datavs = @ ∪ {v ∈ vs : addv(v)},
!.r = ReplicaAddDataHeaders(@, {v .head : v ∈ vs}),
!.r = @
].r

35

Discard any versions from replica’s data store that match a versid.

ReplicaDiscardDataVersids(r , vis)
∆

=
[r EXCEPT !.datavs = {v ∈ @ : v .head .xi .vi /∈ vis}]

Add versions to a replica’s auth store.

ReplicaAddAuthVersions(r , vs , ak)
∆

=
[[r 7→ r] EXCEPT

!.r .authvs = @ ∪ vs ,
!.r .authk = @ ∪ {v .head .xi .vi : v ∈ vs} ∪ ak ,
!.r = @
].r

Copy the auth store into the data store and copy the auth knowledge into star data item-set knowledge.

ReplicaMakeStar(r0)
∆

=
LET

copyauthdata(r)
∆

= ReplicaAddDataVersions(r , r .authvs)

copyauthknow(r)
∆

= [r EXCEPT !.dataisk =
UnionIsetkns({@, IsetknMakeStarFromKn(r .authk)})]

IN

[[r 7→ r0] EXCEPT

!.r = copyauthdata(@),
!.r = copyauthknow(@),
!.r = @
].r

Discard out-of-filter versions from the data store.

ReplicaDiscardDataOof (r)
∆

=
[r EXCEPT !.datavs = {v ∈ @ : IsVersionInFilter(v , r .filter)}]

Discard superseded versions from inside the auth store.

ReplicaDiscardAuthSsin(r)
∆

=
LET

ssin(v , vs1)
∆

= ∃ v1 ∈ vs1 : SupersedesVersion(v1, v)
IN

[r EXCEPT !.authvs = {v ∈ @ : ¬ssin(v , @)}]

Make conflict-free knowledge at a replica if possible.

ReplicaMakeFreeisk(r)
∆

=
LET

Versions of itemidii in data store. Recall that the data store never contains any two versions such that
one supersedes the other.

36

dvsii(ii)
∆

= {v ∈ r .datavs : v .head .xi .ii = ii}

Itemid ii is conflict-free in data store.

freeii(ii)
∆

= ∀ v1, v2 ∈ dvsii(ii) : v1 = v2

Made conflict-free knowledge for itemidii . Note that the fact that an itemid is conflict-free in our data
store is meaningless unless we also have a star filter.

mfreek(ii)
∆

= IF ∧ IsStarFilter(r .filter)
∧ freeii(ii)

THEN Isetkn GetItemidKn(r .dataisk , ii)
ELSE EmptyKn

Made conflict-free item-set knowledge.

mfreeisk
∆

= [ii ∈ Itemid 7→ mfreek(ii)]
IN

[r EXCEPT !.freeisk = BetterIsetkn(@, mfreeisk)]

Use conflict-free knowledge to densify made-with knowledge.

Any version in the data store that is within conflict-free knowledge and about whose itemid we have data
knowledge that contains the corresponding conflict-free knowledge can have its made-with knowledge re-
placed from the conflict-free knowledge.

Any version in the auth store that is also in the data store canbe transformed in the same way.

ReplicaDensifyMw(r)
∆

=
LET

datakv(v)
∆

= Isetkn GetItemidKn(r .dataisk , v .head .xi .ii)
freekv(v)

∆

= Isetkn GetItemidKn(r .freeisk , v .head .xi .ii)

datav(v)
∆

= IF ∧ IsVersionInKn(v , freekv(v))
∧ GeqKn(datakv(v), freekv(v))

THEN [v EXCEPT !.head .mw = freekv(v)]
ELSE v

authv(v)
∆

= IF ∃ dv ∈ r .datavs : v .head .xi .vi = dv .head .xi .vi
THEN datav(v)
ELSE v

IN

[r EXCEPT

!.datavs = {datav(v) : v ∈ @},
!.authvs = {authv(v) : v ∈ @}
]

Replica send message.

This is a simple operation. We write it up this way so that we get type checking on the message at a point
near to where it is created, rather than much later.

ReplicaSendMsg(r , msg)
∆

=
IF r /∈ Replica THEN AbortType(r) ELSE

37

IF msg /∈ Msg THEN AbortType(msg) ELSE

[r EXCEPT !.sendmsgq = @ ◦ 〈msg〉]

Replica receive message - request sync.

ReplicaRecvMsgRequestSync(r , msg)
∆

=
LET

tri
∆

= msg.sendri

tf
∆

= msg.tf
tfusn

∆

= msg.tfusn

tdisk
∆

= msg.tdataisk
txis

∆

= msg.txis
txisyes

∆

= msg.txisyes

tGeqF
∆

= GeqFilter(tf , r .filter)
tLeqF

∆

= GeqFilter(r .filter , tf)

vs
∆

= r .datavs

Source and target data item-set knowledge.

siik(ii)
∆

= Isetkn GetItemidKn(r .dataisk , ii)
tiik(ii)

∆

= Isetkn GetItemidKn(tdisk , ii)

Determine if we should send authority on this sync reply.

doa
∆

= IF BugAuthBounceForever THEN

∧ tGeqF

∧ ¬DoesReplicaThinkItsRoot(r)
ELSE

r .parentri = tri

Compute auth versions and knowledge to send.

authvs
∆

= IF doa THEN r .authvs ELSE {}
authk

∆

= IF doa THEN r .authk ELSE {}

Compute data versions to send.

I should send every version in my data store that (a) matches the target filter and (b) is not already in
the target data item-set knowledge.

dosend(v)
∆

= ∧ IsVersionInFilter(v , tf)
∧ ¬IsVersionInIsetkn(v , tdisk)

datavs
∆

= {v ∈ vs : dosend(v)}

38

Compute direct move-out headers.

I should send a move-out derived from every version in my datastore that (a) does not match the target
filter and (b) supersedes something that the target has in its data store.

However, there is no need to send a move-out derived from a data version that I have already planned
to send.
movevs

∆

=
IF BugOmitMoveouts THEN {} ELSE

{v ∈ vs :
∧ ¬IsVersionInFilter(v , tf)
∧ ∃ xi ∈ txis : xi .vi ∈ v .head .mw

} \ datavs

movehs
∆

= {v .head : v ∈ movevs}

Compute indirect move-out versids.

For every xtndid the target has in its data store, if
(a) my filter contains the target filter and
(b) I know everything about that itemid that the target knows and
(c) I do not store that xtndid and
(d) I am not already planning to send a superseder of that xtndid

then I should send an indirect move-out telling the target todiscard that xtndid.

movexis
∆

=
IF BugOmitMoveouts THEN {} ELSE

IF BugOmitIndMoveouts THEN {} ELSE

{xi ∈ txis :
∧ tLeqF covert .filter

∧ GeqKn(siik(xi .ii), tiik(xi .ii)) know more ofii

∧ ¬∃ v ∈ vs : v .head .xi .vi = xi .vi do not store version

∧ ¬∃ v ∈ datavs : xi .vi ∈ v .head .mw no supersede version

∧ ¬∃ v ∈ movevs : xi .vi ∈ v .head .mw no supersede move-out

}
movevis

∆

= {xi .vi : xi ∈ movexis}

Compute learned item-set knowledge.

learn
∆

= LET

iiv(v)
∆

= v .head .xi .ii
kv(v)

∆

= Isetkn GetItemidKn(r .dataisk , iiv(v))
iskv(v)

∆

= IsetknMakeFromItemidKn(iiv(v), kv(v))
IN UnionIsetkns

({

If my filter contains the target filter and the target includedhis entire set of xtndids, then the target
learns everything that I know.

IF tLeqF ∧ txisyes THEN r .dataisk ELSE EmptyIsetkn,

39

BUG: For all versions in my data versions store, the target learns my knowledge of that item. This
is a bug, because I might know both versions involved in a conflict but only store one, whereas the
other version matches the target’s filter.

IF BugLearnStore THEN UnionIsetkns({iskv(v) : v ∈ r .datavs})
ELSE EmptyIsetkn,

BUG: For all versions I send, the target learns my knowledge of that item. This is a bug, because
I might know both versions involved in a conflict but only store one, whereas the other version
matches the target’s filter.

IF BugLearnSend THEN UnionIsetkns({iskv(v) : v ∈ datavs})
ELSE EmptyIsetkn,

EmptyIsetkn

})

Construct the message.

dmsg
∆

= [
type 7→ “sync data”,
recvri 7→ tri ,
sendri 7→ r .ri ,
datavs 7→ datavs ,
authvs 7→ authvs ,
authk 7→ authk ,
freeisk 7→ r .freeisk ,
tf 7→ tf ,
tfusn 7→ tfusn,
movehs 7→ movehs ,
movevis 7→ movevis ,
learn 7→ learn

]
IN

Process.

[[r 7→ r] EXCEPT

!.r = ReplicaSendMsg(@, dmsg), send the message

!.r .authk = @ \ authk , discard sent auth knowledge

!.r .authvs = @ \ authvs , discard sent auth versions

!.r = @
].r

40

Replica receive message− sync data.

ReplicaRecvMsgSyncData(r , msg0)
∆

=
LET

usn
∆

= IF BugContainFilter THEN GeqFilter(msg0.tf , r .filter) ELSE

r .filterusn = msg0.tfusn

msg
∆

=
[msg0 EXCEPT

The source created this message based on an assumption of what my filter was. If at any time since
then I ever unshrunk my filter, then what the source thinks I ought to move-out might now actually
be inside my filter. And if I cannot accept the source’s moveouts, then I cannot accept what the
source tells me as learned item-set knowledge either.

Incidentally, it is not sufficient to check that my current filter is contained in my filter as assumed by
the source. I could have shrunk my filter, discarded an out-of-filter version, and then unshrunk my
filter back to what it was. In such a case, the source could sendme learned knowledge that includes
the discarded version but without sending me the discarded version.

!.movehs = IF usn ∨ BugUnshrinkMoveout THEN @ ELSE {},
!.movevis = IF usn ∨ BugUnshrinkIndMoveout THEN @ ELSE {},
!.learn = IF usn ∨ BugUnshrinkLearn THEN @ ELSE EmptyIsetkn

]
IN

Process.

[[r 7→ r] EXCEPT

!.r .syncact = @ − 1,
!.r = ReplicaAddDataVersions(@, msg.datavs),
!.r = ReplicaAddAuthVersions(@, msg.authvs , msg.authk),
!.r = ReplicaAddDataHeaders(@, msg.movehs),
!.r = ReplicaDiscardDataVersids(@, msg.movevis),
!.r .dataisk = UnionIsetkns({@, msg.learn}),

!.r .freeisk = IF BugUnionFreeisk THEN UnionIsetkns({@, msg.freeisk})
ELSE BetterIsetkn(@, msg.freeisk),

!.r = @
].r

Replica receive message.

ReplicaRecvMsg(r , msg)
∆

=
CASE

msg ∈ MsgRequestSync → ReplicaRecvMsgRequestSync (r , msg) 2

msg ∈ MsgSyncData → ReplicaRecvMsgSyncData (r , msg) 2

OTHER → Assert(FALSE, 〈“unknown msg”, msg〉)

41

STATE

State
∆

= [
replica : [Replid → Replica], array of replicas

truth : SUBSETVersion, all versions ever created

debug : Any helpful debugging stuff

]

The initial state with parent mapprim and filter mapfm .

InitState(prim, fm)
∆

= [
replica 7→ [ri ∈ Replid 7→ InitReplica(ri , prim[ri], fm[ri])],
truth 7→ {},
debug 7→ 〈〉

]

Get the replica for a given replid from a state.

GetReplicaFromState(ri , s)
∆

= s .replica[ri]

Count number of non-zeros given by replica id map.

NzOfReplidMap(rm)
∆

=
LET sum[ris ∈ SUBSETReplid , s ∈ Nat]

∆

=
LET

ri
∆

= CHOOSEri ∈ ris : TRUE

val(x)
∆

= IF x = 0 THEN 0 ELSE 1
IN

IF ris = {} THEN s ELSE sum[ris \ {ri}, s + val(rm[ri])]
IN

sum[Replid , 0]

Count number of non-zero replicas in a state.

NzFilternumInState(s)
∆

=
NzOfReplidMap([ri ∈ Replid 7→ s .replica[ri].filternum])

NzParentnumInState(s)
∆

=
NzOfReplidMap([ri ∈ Replid 7→ s .replica[ri].parentnum])

NzVersnumInState(s)
∆

=
NzOfReplidMap([ri ∈ Replid 7→ s .replica[ri].versnum])

NzSyncactInState(s)
∆

=
NzOfReplidMap([ri ∈ Replid 7→ s .replica[ri].syncact])

42

Sum of nats given by replica id map.

SumOfReplidMap(rm)
∆

=
LET sum[ris ∈ SUBSETReplid , s ∈ Nat]

∆

=
LET ri

∆

= CHOOSEri ∈ ris : TRUE

IN IF ris = {} THEN s ELSE sum[ris \ {ri}, s + rm[ri]]
IN sum[Replid , 0]

Total of various per-replica counters in a state.

TotalFilternumInState(s)
∆

=
SumOfReplidMap([ri ∈ Replid 7→ s .replica[ri].filternum])

TotalParentnumInState(s)
∆

=
SumOfReplidMap([ri ∈ Replid 7→ s .replica[ri].parentnum])

TotalVersnumInState(s)
∆

=
SumOfReplidMap([ri ∈ Replid 7→ s .replica[ri].versnum])

TotalSyncactInState(s)
∆

=
SumOfReplidMap([ri ∈ Replid 7→ s .replica[ri].syncact])

Verify that all replicas have formed a proper tree in states. This encompasses the requirements:

(1) every child’s filter is contained in its parent’s filter,
(2) if a replica does not have a parent it has a star filter,
(3) every path of parent links is finite, and
(4) there is at most one replica without a parent.

IsProperTreeInState(s)
∆

=
LET

r(ri)
∆

= GetReplicaFromState(ri , s) replicari

rf (ri)
∆

= r(ri).filter ri ’s filter

pri(ri)
∆

= r(ri).parentri ri ’s parent replid

npri(ri)
∆

= pri(ri) = NullReplid ri has no parent

pr(ri)
∆

= r(pri(ri)) parent replica

prf (ri)
∆

= pr(ri).filter parent’s filter

FiniteParentPath[ri ∈ Replid , ris ∈ SUBSETReplid]
∆

=
IF ri ∈ ris THEN FALSE ELSE

IF npri(ri) THEN TRUE ELSE

FiniteParentPath[pri(ri), ris ∪ {ri}]
IN

∧ ∀ ri ∈ Replid : ¬npri(ri) ⇒ GeqFilter(prf (ri), rf (ri))
∧ ∀ ri ∈ Replid : npri(ri) ⇒ IsStarFilter(rf (ri))
∧ ∀ ri ∈ Replid : FiniteParentPath[ri , {}]
∧ ∀ ri1, ri2 ∈ Replid : (npri(ri1) ∧ npri(ri2)) ⇒ ri1 = ri2

43

Transfer all messages from replicas’ sendmsg queues to the relevant recvmsg queues.

StateTransferMsgs(s0)
∆

=
LET xfer [s ∈ State]

∆

=
LET

sq(ri)
∆

= s .replica[ri].sendmsgq

sendris
∆

= {ri ∈ Replid : Len(sq(ri)) > 0}
sendri

∆

= CHOOSEri ∈ sendris : TRUE

msg
∆

= Head(sq(sendri))
recvri

∆

= msg.recvri

s1
∆

= [s EXCEPT

!.replica[sendri].sendmsgq = Tail(@),
!.replica[recvri].recvmsgq = @ ◦ 〈msg〉
]

IN

IF sendris = {} THEN s ELSE xfer [s1]
IN

xfer [s0]

Update a replica. Then transfer all messages.

StateUpdateReplica(s , r)
∆

=
StateTransferMsgs([s EXCEPT !.replica[r .ri] = r])

Add new version to truth.

StateAddVersionToTruth(s , v)
∆

= [s EXCEPT !.truth = @ ∪ {v}]

Add debug info.

StateAddDebug(s , x)
∆

= [s EXCEPT !.debug = x]

CONSTRAIN

In order to restrict exploration to a reasonably small finiteset of executions, we constrain various things that
could lead to a large or unlimited number of distinct states.These things are

(1) the creation of a new version by a replica
(2) the number of unanswered syncs a replica has active
(3) the changing of a replica’s filter
(4) the changing of a replica’s parent

Constrain(s)
∆

=
∧ NzFilternumInState(s) ≤ MaxNzFilternum

∧ NzParentnumInState(s) ≤ MaxNzParentnum

∧ NzSyncactInState(s) ≤ MaxNzSyncact

∧ NzVersnumInState(s) ≤ MaxNzVersnum

44

∧ TotalFilternumInState(s) ≤ MaxTotalFilternum

∧ TotalParentnumInState(s) ≤ MaxTotalParentnum

∧ TotalSyncactInState(s) ≤ MaxTotalSyncact

∧ TotalVersnumInState(s) ≤ MaxTotalVersnum

∧ ∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , s)
IN

∧ r .filternum ≤ MaxFilternum

∧ r .parentnum ≤ MaxParentnum

∧ r .syncact ≤ MaxSyncact

∧ r .versnum ≤ MaxVersnum

INITIAL STATE SPECIFICATION

Start with any assignment of parents and filters that makes a proper tree. Since replicas are all equivalent, it
does not matter which one is the root, so we also restrict our consideration of initial states to those in which
one particular (arbitrarily chosen) replica is the root.

Init
∆

=
∃ prim ∈ [Replid → ReplidOrNull] :
∃ fm ∈ [Replid → Filter] :
∧ state = InitState(prim, fm)
∧ IsProperTreeInState(state)
∧ LET

rootri
∆

= CHOOSEri ∈ Replid : TRUE an arbitrary root

rootr
∆

= GetReplicaFromState(rootri , state)
IN

rootr .parentri = NullReplid

NEXT STATE RELATIONS

A replica changes its filter.

NextChangeFilter(ri)
∆

=
∃nf ∈ Filter :
LET

r
∆

= GetReplicaFromState(ri , state)
f

∆

= r .filter

shrink
∆

= GeqFilter(f , nf) definitely shrinking the filter

r1
∆

= [r EXCEPT

!.filter = nf ,
!.filterusn = @ + IF shrink THEN 0 ELSE 1,

45

!.filternum = @ + 1,
!.dataisk =

IF shrink THEN @ ELSE

IF BugOmitRebuildOnUnshrink THEN @ ELSE

IsetknMakeFromVersions(r .datavs)
]

debug
∆

= IF shrink THEN “shrink filter” ELSE “unshrink filter”

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈debug, ri , f , nf 〉)
IN

∧ f 6= nf suppress no change in filter

∧ state ′ = s2

A replica changes its parent.

NextChangeParent(ri)
∆

=
∃npri ∈ ReplidOrNull :
LET

r
∆

= GetReplicaFromState(ri , state)
pri

∆

= r .parentri

r1
∆

= [r EXCEPT

!.parentri = npri ,
!.parentnum = @ + Parentinc

]

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈“change parent”, ri , pri , npri〉)
IN

∧ pri 6= npri suppress no change in parent

∧ pri 6= ri do not pick self as parent

∧ state ′ = s2

Create a new item. We can use any content and any itemid.

Using an itemid that is already in use creates a root-level conflict, but is perfectly allowable in the specifi-
cation. It has the benefit of allowing the model-checker to explore conflict scenarios without having first to
establish the root version and then subsequently derive theconflicting versions.

NextCreateItem(ri)
∆

=
∃ cont ∈ Content :
∃ ii ∈ Itemid :
LET

r
∆

= GetReplicaFromState(ri , state)
vn

∆

= r .versnum + 1
mw

∆

= {}

46

vi
∆

= [ri 7→ r .ri , vn 7→ vn]
xi

∆

= [ii 7→ ii , vi 7→ vi]
head

∆

= [xi 7→ xi , mw 7→ mw]
v

∆

= [head 7→ head , cont 7→ cont]

r1
∆

= [r EXCEPT !.versnum = vn]
r2

∆

= ReplicaAddAuthVersions(r1, {v}, EmptyKn)

s1
∆

= StateUpdateReplica(state, r2)
s2

∆

= StateAddVersionToTruth(s1, v)
s3

∆

= StateAddDebug(s2, 〈“create item”, ri , v〉)
IN

∧ state ′ = s3

Update a version.

NextUpdateVersion(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
vn

∆

= r .versnum + 1

Itemids of versions in my data versions store.

iis
∆

= {v .head .xi .ii : v ∈ r .datavs}
IN

∃ ii ∈ iis :
∃ uvs ∈ SUBSET{v ∈ r .datavs : v .head .xi .ii = ii} :
∃ cont ∈ Content :
LET

Compute made-with knowledge of new version.

mw
∆

= UNION {{v .head .xi .vi} ∪ v .head .mw : v ∈ uvs}

vi
∆

= [ri 7→ r .ri , vn 7→ vn]
xi

∆

= [ii 7→ ii , vi 7→ vi]
head

∆

= [xi 7→ xi , mw 7→ mw]
v

∆

= [head 7→ head , cont 7→ cont]

r1
∆

= [r EXCEPT !.versnum = vn]
r2

∆

= ReplicaAddAuthVersions(r1, {v}, EmptyKn)

s1
∆

= StateUpdateReplica(state, r2)
s2

∆

= StateAddVersionToTruth(s1, v)
s3

∆

= StateAddDebug(s2, 〈“update version”, ri , v〉)
IN

∧ uvs 6= {} non-empty set of versions to update

∧ state ′ = s3

Use authoritative knowledge to make star knowledge.

47

NextMakeStar(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
r1

∆

= ReplicaMakeStar(r)

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈“make star”, ri〉)
IN

∧ ¬BugOmitMakeStar

∧ r 6= r1
∧ state ′ = s2

Make conflict-free knowledge at a replica if possible.

NextMakeFreeisk(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
r1

∆

= ReplicaMakeFreeisk(r)

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈“make freek”, ri〉)
IN

∧ ¬BugOmitMakeFreeisk

∧ r 6= r1
∧ state ′ = s2

Use conflict-free knowledge to densify made-with knowledge.

NextDensifyMw(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
r1

∆

= ReplicaDensifyMw(r)

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈“densify madewith”, ri〉)
IN

∧ ¬BugOmitDensifyMw

∧ r 6= r1
∧ state ′ = s2

Discard out-of-filter versions from the data store.

NextDiscardDataOof (ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
r1

∆

= ReplicaDiscardDataOof (r)

s1
∆

= StateUpdateReplica(state, r1)

48

s2
∆

= StateAddDebug(s1, 〈“discard data oof”, ri〉)
IN

∧ ¬BugOmitDiscardDataOof

∧ r 6= r1
∧ state ′ = s2

Discard superseded versions from inside the auth store.

NextDiscardAuthSsin(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
r1

∆

= ReplicaDiscardAuthSsin(r)

s1
∆

= StateUpdateReplica(state, r1)
s2

∆

= StateAddDebug(s1, 〈“discard auth ssin”, ri〉)
IN

∧ ¬BugOmitDiscardAuthSsin

∧ r 6= r1
∧ state ′ = s2

Request sync.

NextRequestSync(targetri , sourceri , txisyes)
∆

=
LET

r
∆

= GetReplicaFromState(targetri , state)
r1

∆

= [r EXCEPT !.syncact = @ + 1]

txis
∆

= IF txisyes THEN {v .head .xi : v ∈ r .datavs} ELSE {}
msg

∆

= [
type 7→ “request sync”,
recvri 7→ sourceri ,
sendri 7→ r .ri ,
tf 7→ r .filter ,
tfusn 7→ r .filterusn,
tdataisk 7→ r .dataisk ,
txis 7→ txis ,
txisyes 7→ txisyes

]
r2

∆

= ReplicaSendMsg(r1, msg)

s1
∆

= StateUpdateReplica(state, r2)
s2

∆

= StateAddDebug(s1, 〈“request sync”, targetri , sourceri〉)
IN

∧ ¬OptSelfSync ⇒ targetri 6= sourceri

∧ state ′ = s2

Initiate sync upto my parent. Provided I have a parent, he requests a sync from me. There is no need for my
parent to send me his full set of xids.

49

NextInitiateSyncUptoParent(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
pri

∆

= r .parentri

IN

∧ pri 6= NullReplid

∧ NextRequestSync(r .parentri , ri , FALSE)

Initiate sync from my parent. Provided I have a parent, I request a sync from him. I must send my full set of
xis in order to get learned knowledge.

NextInitiateSyncFromParent(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
pri

∆

= r .parentri

IN

∧ pri 6= NullReplid

∧ NextRequestSync(ri , r .parentri , TRUE)

Process message.

NextProcessMsg(ri)
∆

=
LET

r
∆

= GetReplicaFromState(ri , state)
msg

∆

= Head(r .recvmsgq)

r1
∆

= [r EXCEPT !.recvmsgq = Tail(@)]
r2

∆

= ReplicaRecvMsg(r1, msg)

s1
∆

= StateUpdateReplica(state, r2)
s2

∆

= StateAddDebug(s1, 〈“process msg”, ri , msg〉)
IN

∧ Len(r .recvmsgq) > 0
∧ state ′ = s2

Put all the alternatives together into one next state relation.

Various replica bookkeeping next state relations have priority in order to hold down the state graph explosion
during model checking.

PrioMakeStar
∆

= ∃ ri ∈ Replid : NextMakeStar(ri)
PrioMakeFreeisk

∆

= ∃ ri ∈ Replid : NextMakeFreeisk(ri)
PrioDensifyMw

∆

= ∃ ri ∈ Replid : NextDensifyMw(ri)
PrioDiscardDataOof

∆

= ∃ ri ∈ Replid : NextDiscardDataOof (ri)
PrioDiscardAuthSsin

∆

= ∃ ri ∈ Replid : NextDiscardAuthSsin(ri)

NextAny
∆

=
IF ENABLED (PrioMakeStar) THEN PrioMakeStar ELSE

IF ENABLED (PrioMakeFreeisk) THEN PrioMakeFreeisk ELSE

50

IF ENABLED (PrioDensifyMw) THEN PrioDensifyMw ELSE

IF ENABLED (PrioDiscardDataOof) THEN PrioDiscardDataOof ELSE

IF ENABLED (PrioDiscardAuthSsin) THEN PrioDiscardAuthSsin ELSE

∨ ∃ ri ∈ Replid :
∨ NextChangeFilter(ri)
∨ NextChangeParent(ri)

∨ NextCreateItem(ri)
∨ NextUpdateVersion(ri)

∨ NextMakeStar(ri)
∨ NextMakeFreeisk(ri)
∨ NextDensifyMw(ri)
∨ NextDiscardDataOof (ri)
∨ NextDiscardAuthSsin(ri)

∨ NextInitiateSyncUptoParent(ri)
∨ NextInitiateSyncFromParent(ri)
∨ NextProcessMsg(ri)

∨ ∃ tri , sri ∈ Replid :
∃ txisyes ∈ BOOLEAN :
NextRequestSync(tri , sri , txisyes) arbitrary topology sync

Conjoin the next state relation with a constraint on the new state. The constraint restricts the elaboration of
the state space graph in order to enable model checking.

Next
∆

= NextAny ∧ Constrain(state ′)

INVARIANTS

The state is of the proper type.

InvType
∆

= state ∈ State

Every created version has either been superseded or is contained in some replica’s store or in some sync data
message.

InvNoLoss
∆

=
∀ tv ∈ state.truth :

∨ ∃ tv1 ∈ state.truth : SupersedesVersion(tv1, tv)
∨ ∃ ri ∈ Replid :

LET

r
∆

= GetReplicaFromState(ri , state)
vs

∆

= GetVersionsInReplica(r)

51

IN

∃ v ∈ vs : v .head .xi .vi = tv .head .xi .vi

Every created version is contained in some replica’s authoritative knowledge or in the authoritative knowl-
edge of some sync data message.

InvNoLossAuth
∆

=
∀ v ∈ state.truth :
∃ ri ∈ Replid :

LET

r
∆

= GetReplicaFromState(ri , state)
IN

∨ IsVersionInKn(v , r .authk)
∨ ∃msg ∈ GetRecvMsgsOfReplica(r) :

∧msg ∈ MsgSyncData

∧ IsVersionInKn(v , msg.authk)

All versions a replica has must be identical to true versions, except that its made-with knowledge can be a
superset.

InvStoreTruth
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ GetVersionsInReplica(r) :
∃ tv ∈ state.truth :
∧ [v EXCEPT !.head .mw = {}] = [tv EXCEPT !.head .mw = {}]
∧ GeqKn(v .head .mw , tv .head .mw)

All versions a replica has must have made-with knowledge in which each versid listed must either be (1)
included in the made-with knowledge of the true version, (2)the versid of the version itself, or (3) the versid
of a true version of a different item.

InvStoreMw
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ GetVersionsInReplica(r) :
∃ tv ∈ state.truth :
∧ v .head .xi .vi = tv .head .xi .vi
∧ ∀ vi1 ∈ v .head .mw :

∨ vi1 ∈ tv .head .mw

∨ vi1 = v .head .xi .vi
∨ ∃ tv1 ∈ state.truth :

∧ tv1.head .xi .vi = vi1
∧ tv1.head .xi .ii 6= v .head .xi .ii

52

If a replica hasv in its data store, it must have data knowledge of versionv .

InvKnowData
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ r .datavs : IsVersionInIsetkn(v , r .dataisk)

If a replica hasv in its data store, it must not have data knowledge of any version that supersedesv .

InvHaveDataSuperseder
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ r .datavs :
∀ tv ∈ state.truth :

SupersedesVersion(tv , v) ⇒ ¬IsVersionInIsetkn(tv , r .dataisk)

If a replica has auth knowledge ofv but does not havev in its auth store, it must have a superseder ofv in
its auth store.

InvHaveAuthSuperseder
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)

miss(tv)
∆

=
∧ IsVersionInKn(tv , r .authk)
∧ ¬∃ v ∈ r .authvs : v .head .xi .vi = tv .head .xi .vi

IN

∀ tv ∈ state.truth : miss(tv) ⇒
∃ tv1 ∈ state.truth :

∧ SupersedesVersion(tv1, tv)
∧ ∃ v1 ∈ r .authvs : v1.head .xi .vi = tv1.head .xi .vi

If a replica knows versionv , which is not superseded and which matches the replica’s filter, then the replica
must storev .

InvDataFilter
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)

want(tv)
∆

= ∧ IsVersionInIsetkn(tv , r .dataisk)
∧ ¬∃ tv1 ∈ state.truth : SupersedesVersion(tv1, tv)
∧ IsVersionInFilter(tv , r .filter)

53

have(tv)
∆

= ∧ ∃ v ∈ r .datavs : v .head .xi .vi = tv .head .xi .vi
IN

∀ tv ∈ state.truth : want(tv) ⇒ have(tv)

If a replica has auth knowledge of versionv , and versionv is not superseded, then the replica has versionv

in its auth store.

InvHaveAuth
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ vi ∈ r .authk :
∃ tv ∈ state.truth :
∧ vi = tv .head .xi .vi
∧ ∨ ∃ tv1 ∈ state.truth : SupersedesVersion(tv1, tv)

∨ ∃ v ∈ r .authvs : v .head .xi .vi = tv .head .xi .vi

If a replica has versionv in its auth store, then the replica has auth knowledge of version v .

InvKnowAuth
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ r .authvs : IsVersionInKn(v , r .authk)

TEMPORAL ASSUMPTIONS

Liveness assumption.

Liveness
∆

=
∀ ri ∈ Replid :
∧ WFstate(NextInitiateSyncUptoParent(ri))
∧ WFstate(NextInitiateSyncFromParent(ri))
∧ WFstate(NextProcessMsg(ri))

∧ WFstate(NextMakeStar(ri))
∧ WFstate(NextMakeFreeisk(ri))
∧ WFstate(NextDensifyMw(ri))
∧ WFstate(NextDiscardDataOof (ri))

Eventually we stop creating new versions.

EventualAlwaysFrozenTruth
∆

=
32(state.truth = state ′.truth)

54

Eventually we stop changing the tree.

EventualAlwaysFrozenTree
∆

=
32∀ ri ∈ Replid :

LET

r
∆

= GetReplicaFromState(ri , state)
nr

∆

= GetReplicaFromState(ri , state ′)
IN

∧ r .filter = nr .filter

∧ r .parentri = nr .parentri

Eventually we always have a proper tree.

EventualAlwaysProperTree
∆

=
32IsProperTreeInState(state)

TEMPORAL PROPERTIES

Filter consistency. Each replica stores exactly those non-superseded versions that match its filter.

FilterConsistency
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)

tvs
∆

= state.truth

ntvs
∆

= {tv ∈ tvs : ¬∃ tv1 ∈ tvs : SupersedesVersion(tv1, tv)}
fntvs

∆

= {tv ∈ ntvs : IsVersionInFilter(tv , r .filter)}
IN

{v .head .xi .vi : v ∈ r .datavs} = {tv .head .xi .vi : tv ∈ fntvs}

Eventual filter consistency.

AlwaysEventualFilterConsistency
∆

= 23FilterConsistency

Auth supersession. Each replica contains only non-superseded versions in its auth store.

AuthSupersession
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

∀ v ∈ r .authvs :
¬∃ tv1 ∈ state.truth : SupersedesVersion(tv1, v)

Eventual auth supersession.

55

AlwaysEventualAuthSupersession
∆

= 23AuthSupersession

Knowledge singularity. Each replica’s data item-set knowledge is entirely star knowledge.

KnSingularity
∆

=
∀ ri ∈ Replid :
LET

r
∆

= GetReplicaFromState(ri , state)
IN

IsStarIsetkn(r .dataisk)

Eventual knowledge singularity.

AlwaysEventualKnSingularity
∆

= 23KnSingularity

Made-with singularity. Among versions of items with no unresolved conflicts, the made-with knowledge is
identical at all replicas.

MwSingularity
∆

=
LET

Non-superseded true versions of itemidii .

ntvsii(ii)
∆

= {tv ∈ state.truth :
∧ tv .head .xi .ii = ii

∧ ¬∃ tv1 ∈ state.truth : SupersedesVersion(tv1, tv)
}

There are no unresolved conflicts of itemidii .

freeii(ii)
∆

= ∀ tv1, tv2 ∈ ntvsii(ii) : tv1 = tv2

All stored versions at all replicas.

vs
∆

= UNION {GetReplicaFromState(ri , state).datavs : ri ∈ Replid}

All stored versions of items with no unresolved conflicts.

rvs
∆

= {v ∈ vs : freeii(v .head .xi .ii)}
IN

∀ v1, v2 ∈ rvs : v1.head .mw = v2.head .mw

Eventual made-with singularity.

AlwaysEventualMwSingularity
∆

= 23MwSingularity

VIEW

Thedebug component of the state contains commentary on the action that was used to arrive at the state.
We disregard this commentary when comparing states for equality in the state graph.

View
∆

= [state EXCEPT !.debug = {}]

56

SPECIFICATION

Spec
∆

=
∧ Init

∧ 2[Next]state
∧ Liveness

∧ EventualAlwaysFrozenTruth

∧ EventualAlwaysFrozenTree

∧ EventualAlwaysProperTree

THEOREMSpec ⇒
∧ 2InvType

∧ 2InvNoLoss

∧ 2InvNoLossAuth

∧ 2InvStoreTruth

∧ 2InvStoreMw

∧ 2InvKnowData

∧ 2InvHaveDataSuperseder

∧ 2InvHaveAuthSuperseder

∧ 2InvDataFilter

∧ 2InvHaveAuth

∧ 2InvKnowAuth

∧ AlwaysEventualFilterConsistency

∧ AlwaysEventualAuthSupersession

∧ AlwaysEventualKnSingularity

∧ AlwaysEventualMwSingularity

57

Appendix B

Model configurations

This chapter lists sample model configurations for the TLA+ specification listed in
Appendix A. The first several configurations run to completion checking all invariants
and temporal conditions with no errors found. The remainingconfigurations turn on
various bugs and find counterexample model execution histories.

58

B.1 Model configuration ibx
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 2
CONSTANT MaxParentnum = 1
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 2
CONSTANT MaxNzParentnum = 1
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 4
CONSTANT MaxTotalParentnum = 1
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency
PROPERTY AlwaysEventualAuthSupersession
PROPERTY AlwaysEventualKnSingularity
PROPERTY AlwaysEventualMwSingularity

59

B.2 Model configuration icy
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b, c }
CONSTANT Content = { w, x, y }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 1
CONSTANT MaxParentnum = 1
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 1
CONSTANT MaxNzParentnum = 1
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 1
CONSTANT MaxTotalParentnum = 1
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency
PROPERTY AlwaysEventualAuthSupersession
PROPERTY AlwaysEventualKnSingularity
PROPERTY AlwaysEventualMwSingularity

60

B.3 Model configuration jbx
CONSTANT Itemid = { i, j }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 2
CONSTANT MaxParentnum = 1
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 2
CONSTANT MaxNzParentnum = 1
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 2
CONSTANT MaxTotalParentnum = 1
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency
PROPERTY AlwaysEventualAuthSupersession
PROPERTY AlwaysEventualKnSingularity
PROPERTY AlwaysEventualMwSingularity

61

B.4 Model configuration BugAuthBounceForever
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b, c }
CONSTANT Content = { w }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency

CONSTANT BugAuthBounceForever = TRUE

62

B.5 Model configuration BugContainFilter
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 2
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 1
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 2
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugContainFilter = TRUE

63

B.6 Model configuration BugLearnSend
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b, c }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugLearnSend = TRUE

64

B.7 Model configuration BugLearnStore
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b, c }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugLearnStore = TRUE

65

B.8 Model configuration BugOmitDiscardAuthSsin
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualAuthSupersession

CONSTANT BugOmitDiscardAuthSsin = TRUE

66

B.9 Model configuration BugOmitDiscardDataOof
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency

CONSTANT BugOmitDiscardDataOof = TRUE

67

B.10 Model configuration BugOmitIndMoveouts
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b, c }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency

CONSTANT BugOmitIndMoveouts = TRUE

68

B.11 Model configuration BugOmitMoveouts
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

PROPERTY AlwaysEventualFilterConsistency

CONSTANT BugOmitMoveouts = TRUE

69

B.12 Model configuration BugOmitRebuildOnUnshrink
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 1
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 1
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 1
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugOmitRebuildOnUnshrink = TRUE

70

B.13 Model configuration BugUnionFreeisk
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 0
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 0
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 0
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugUnionFreeisk = TRUE

71

B.14 Model configuration BugUnshrinkLearn
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 2
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 1
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 1
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 2
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 1
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugUnshrinkLearn = TRUE

72

B.15 Model configuration BugUnshrinkMoveout
CONSTANT Itemid = { i }
CONSTANT Replid = { a, b }
CONSTANT Content = { w, x }

CONSTANT NullReplid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum = 1
CONSTANT MaxParentnum = 0
CONSTANT MaxVersnum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFilternum = 1
CONSTANT MaxNzParentnum = 0
CONSTANT MaxNzVersnum = 2
CONSTANT MaxNzSyncact = 1

CONSTANT MaxTotalFilternum = 1
CONSTANT MaxTotalParentnum = 0
CONSTANT MaxTotalVersnum = 2
CONSTANT MaxTotalSyncact = 1

SPECIFICATION Spec
VIEW View

INVARIANT InvType
INVARIANT InvNoLoss
INVARIANT InvNoLossAuth
INVARIANT InvStoreTruth
INVARIANT InvStoreMw
INVARIANT InvKnowData
INVARIANT InvHaveDataSuperseder
INVARIANT InvHaveAuthSuperseder
INVARIANT InvDataFilter
INVARIANT InvHaveAuth
INVARIANT InvKnowAuth

CONSTANT BugUnshrinkMoveout = TRUE

73

Index

auth knowledge, 13, 14, 19
auth store, 13, 14, 19

change
filter, 11

CIMSync, 16
collection, 1, 5
compaction

data knowledge, 15
conflict, 7, 8
conflict resolution, 7
conflict-free knowledge, 13, 16, 20
consistency

filter, 1, 12
consistent

weakly, 1, 5
contain, 10
containment

filter, 10
content

version, 6
correctness, 2

data knowledge, 11, 13, 19
data knowledge compaction, 15
data store, 11, 13
data versions, 17
densification, 13, 15
direct data knowledge, 14
direct move-out, 18
dsensification, 16

efficiency, 2
extended identfier, 6
extended identifier, 7

filter, 1, 3, 10
star, 1, 11

filter change, 11
filter consistency, 1, 12
filter containment, 10
filter hierarchy, 12, 15
filter shrink, 11
filter unshrink, 12, 14
full replica, 1

header
version, 6, 8

hierarchy
filter, 12, 15

identifier
extended, 6, 7
item, 6
replica, 5
version, 6

indirect data knowledge, 11, 14
indirect move-out, 18
item, 1, 6
item identifier, 6
item-set knowledge, 9

knowledge, 3, 9
auth, 13, 14, 19
conflict-free, 13, 16, 20
data, 11, 13, 19

direct, 14
indirect, 11, 14

item-set, 9
star, 10

learned, 14, 19
made-with, 6, 8

knowledge promotion, 10
knowledge singularity, 2, 15

learned knowledge, 14, 19

74

made-with knowledge, 6, 8
made-with knowledge densification, 13, 15,

16
made-with singularity, 12
message

request
synchronization, 16

response
synchronization, 17

move-out, 17
direct, 18
indirect, 18

number
version, 6

partial replica, 1
participate, 5
pertain, 7
promotion

knowledge, 10

replica, 1, 5
full, 1
partial, 1
source, 3, 16
target, 3, 16

replica identifier, 5
resolution

conflict, 7

shrink
filter, 11

singularity
knowledge, 2, 12, 15
made-with, 12

skew
filter

target, 20
source replica, 3, 16
star filter, 1, 11
star item-set knowledge, 10
store, 3

auth, 13, 14, 19
data, 11, 13

supersede, 1, 7

synchronization request message, 16
synchronization response message, 17
synchronize, 1

target filter skew, 20
target replica, 3, 16

unshrink
filter, 12, 14

version, 1, 6
version content, 6
version header, 6, 8
version identifier, 6
version number, 6
versions

data, 17

weakly consistent, 1, 5

75

