CIMSync Protocol Specification

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

June 19, 2009



Abstract

Cimbiosysis a novel peer-to-peer replication platform that permashedevice
to define its own content-based filter criteria. Cimbiosygias two properties not
achieved by previous systems: (1) eventually, every desticees exactly those items
whose latest version meets its arbitrary filter criteri@ependent of any hierarchical
namespace and (2) eventually, every device can summasizgeitadata in a compact
form, with size proportional to the number of devices rathan the number of items.
The first property is a matter of correctness; the second &nwdtefficiency.

This report describes and presents a specification of th®iGays synchronization
protocol,CIMSync The specification is written in TLA+ and checked with the TLC
model checker.



Contents

1 Introduction 1
2 Overview 3
3 System concepts 5
3.1 Collection . . . . . .. e 5
3.2 ldentifiersandversions . . . . . .. ... 5
3.2.1 Replicaandreplicaidentifier . . . . . .. ... ... ..... 5
3.2.2 ltemanditemidentifier. . . ... ... ... ... ...... 6
3.2.3 Version . ... 6
3.2.4 \Versionidentifier . . . . . ... Lo o 6
3.2.5 Compactsummary of knowledge . ... ... ..... ... 6
3.2.6 Supersededversions . . .. .. ... 7
3.2.7 Conflictandresolution . . . ... ... ... ......... 7
3.2.8 Extendedidentifier . . . ... .. ... ... ... ... 7
3.3 \Version metadataandcontent . . . . . ... ... ... L. 8
3.3.1 Made-withknowledge . . ... ... ... .......... 8
3.3.2 Versionheader . .. .. ... ... ... ... . .. ..... 8
3.3.3 Versioncontent . . . .. ... .. ... ... .. ... ..., 8
3.4 Formsofknowledge . ... . ... ... ... . ... ... 8
341 Knowledge . . ... .. ... . ... . 9
3.4.2 lItem-setknowledge . . . . .. ... ... ... ... .... 9
3.4.3 Staritem-setknowledge . . ... ... ... .. ....... 9
3.4.4 Promotion of ordinary knowledge . . . . ... ... ..... 10
35 Filters . . . . . e 10
3.5.1 Filter . . . . 10
3.5.2 Filtercontainment . ... ... ... ... ... .. ..... 10
3.5.3 Starfilter . . .. ... 11
3.54 Filterchange . . ... ... ... .. .. ... ... ..., 11
3.5.5 Filtershrinkandunshrink . . .. ... ............ 11
3.5.6 Filterhierarchy . . . .. ... ... ... L 12
3.6 Areplica’'sstoreand knowledge . . ... ... ... .. ... ..., 21
3.6.1 Datastoreanddataknowledge . . . ... ... ........ 13
3.6.2 Directand indirect data knowledge . . . ... ... ... .. 14



3.6.3 Authstore and authknowledge . . . . . ... ... ...... 14

3.6.4 Authconcentration . . ... .................. 15
3.6.5 Data knowledge compaction . . . .. ... ... .. ..... 15
3.6.6 Made-with knowledge densification . . . .. .. ... .... 15
3.6.7 Conflict-free knowledge . . . . ... ... ... ... .... 16
3.7 Synchronizationprotocol . . . . .. .. ... .. ... . ... . ... 61
3.7.1 Dataversions . . . ... .. .. 17
3.7.2 Move-out . . . ... 17
3.7.3 Directmove-out . . . ... ... 18
3.7.4 Indirectmove-out. . . . . ... ... 18
3.7.5 The target’s set of extended identifiers . . . . . ... . ... 19
3.7.6 Learnedknowledge . . . .. .. ... ... ... ... ... . 19
3.7.7 Authtransfer . . ... ... ... .. ... ... .. .. ... 19
3.7.8 Conflict-free knowledge accumulation . . . . . . .. .. .. 20
3.7.9 Targetfilterskew . . . . . ... ... L oL 20
4 Tour of the specification 21
4.1 Modelchecking . . . . . . . .. 21
4.2 Finding counterexamples for knownbugs . . . .. ... ... ... 22
A CIMSync specification 25
B Model configurations 58
B.1 Model configurationibx . . .. ... ... .. ... ......... 59
B.2 Model configurationicy . . . . . . . .. ... o 60
B.3 Model configurationjbx . . . . ... ... ... L oL 61
B.4 Model configuration BugAuthBounceForever . . . .. ... ... 62
B.5 Model configuration BugContainFilter . . . . . .. ... ... .. 63
B.6 Model configurationBugLearnSend . . . . .. ... ......... 4 6
B.7 Model configuration BugLearnStore . . . . .. ... ... ..... 65
B.8 Model configuration BugOmitDiscardAuthSsin . . . . . . .. .. 66
B.9 Model configuration BugOmitDiscardDataOof . . . . ... ... 67
B.10 Model configuration BugOmitindMoveouts . . . . . .. ... .. 68
B.11 Model configuration BugOmitMoveouts . . . . .. ... ... ... 69
B.12 Model configuration BugOmitRebuildOnUnshrink . . . . . . .. 70
B.13 Model configuration BugUnionFreeisk . . . . . . ... ... ... 71
B.14 Model configuration BugUnshrinkLearn . . . . . ... ... ... 72

B.15 Model configuration BugUnshrinkMoveout . . . . . .. ... .. 73



Chapter 1

Introduction

Cimbiosyq2, 3, 4] is a peer-to-peer replication platform for sharérm@pllectionof data
itemsamong a number of devices. Each device stomepkca of the collection. Since
a device may participate in several collections or even nane snultiple replicas of
the same collection, we shift our attention from the deviodhke replicas. We consider
replicas as the active agents in the collection.

A replica can be dull replica, which is interested in all items in the collection, or a
partial replica, which is interested in only a subset of the items. The subs#fined
by a per-replica content-basétter. A filter can be interpreted as a query over the
items contained in the collection. #ar filter matches all items regardless of content.
A full replica can be considered as having a star filter. Aiogpinay change its filter,
thus changing the subset of items in which it is interested.

A replica may create new items in the collection and may ereptiated/ersions
of existing items. An updated versisupersedeany existing version or versions that
it was derived from. Although the latest, unsupersededaeisf each item is what is
ultimately important to the collection, each replica penfs updates independently of
the other replicas and so the collection is owlyakly consistenReplicassynchronize
with each other from time to time in order to pass informatbout new versions from
one replica to another. Cimbiosys does not attempt to maiatay ordering between
updates to different items in the collection.

The main contribution of Cimbiosys is in demonstrating h@apermit content-
based filtering among peer replicas while providing theofelhg two important system
properties.

e Eventual filter consistencyOver time, each replica receives all items that fall
into its interest set (that is, all items that match its catteased filter) and dis-
cards all items that fall out of its interest set, so that éwelty a partial replica
stores precisely those items of the entire collection wlmseent version is of
interest.

Eventual consistency has long been demanded by applisadimh provided in
replication systems, but it is more challenging to ensuresgstem that permits
peer-to-peer synchronization between content-basedpeaplicas. Not only



may a replica change its filter, thus changing the subseteafstthat are of
interest to the replica, but also a replica may update an, itkas changing the
set of replicas that find the item of interest. Eventual fitt@nsistency is a matter
of correctness

e Eventual knowledge singularityThe metadata that replicas exchange during
synchronization, which is used to determine which new weasione replica
needs to learn about from its more-informed peer, eventaahverges to a size
that is roughly proportional to the number of replicas in $iygtem rather than
the number of stored items, even for partial replicas.

Eventual knowledge singularity conveys the importanceahpact metadata
in making efficient use of bandwidth and system resourcesatticular, this
property allows Cimbiosys to utilize brief intervals of gmttivity between peer
replicas and also permits more frequent exchanges betwgatar synchroniza-
tion partners, thereby reducing convergence delays. Hatkbhowledge singu-
larity is a matter offficiency

This report describes and presents a specification of théiGsys synchronization
protocol, CIMSync. The specification is written in TLA+ andecked with the TLC
model checker [1]. The remainder of this report is organiasdfollows. Chap-
ter 2 presents an overview of the synchronization protosiigia simplified example.
Chapter 3 describes the system concepts of Cimbiosys arsyttedaronization pro-
tocol. Chapter 4 gives a brief tour through the specificatind discusses the model
checking results. A listing of the full specification appear Appendix A and model
configuration files in Appendix B.

Acknowledgement

The Cimbiosys synchronization protocol was developed sgeeral years by Douglas
Terry, Venugopalan Ramasubramanian, Thomas RodeheffénVbbber, Dan Peek,
and Meg Walraed-Sullivan, as part of the Community InfoioraManagement project
at Microsoft Research. Originally, we thought it would berightforward matter to
extend existing total replication schemes to support cuarttased partial replication.
Many, many dicussions went into discovering and addressiagvarious problems
that came up. The protocol or parts of the protocol were impleted several times in
different ways by different people. The final result is tralgroup effort.

The author distilled the protocol into this TLA+ specificatiso that an accessible
and fairly complete representation could be published. defgcts in the specification
are solely the fault of the author.



Chapter 2

Overview

CIMSync is a simple, two-step synchronization protocol tinaolves two replicas,

a source replicaand atarget replica First, the target sends a request to the source,
informing the source of the target’s current filter and stdtkenowledge about the col-
lection. Second, the source sends a response to the tapgleting the target's state
of knowledge about the collection via new versions and oitifermation. CIMSync
brings the target replica up-to-date with respect to theoreplica. To fully synchro-
nize two replicas, it is sufficient to repeat the protocolia teverse direction.

Figure 2.1 shows a simplified example. Each replicakmasvledgeof a set of ver-
sions, dilter that specifies the contents of items itis interested in, astdracontaining
current versions of items. Items are designated, dsk. Replicas are designated as
A, B, C. Versions are designated 43, A2, C'1. Contents of items are abbreviated as
simply w, z, y. A filter is specified by showing the set of possible item catge¢hat it
matches.

In the first step of the synchronization protocol, the targptica4 sends its current
knowledge and filter to replic®, requesting new information. Currently, repliga
knows about versiond1, A2, B1,andC1. The replica’s knowledge includes versions
it stores, versions that it knows have been superseded, astbns that it knows do
not match its filter.

In this example, replical is storing three versionsd1, A2, andC1. Version Al
is a version of itemi that has contents; versionA2 is a version of iteny that has
contentsw, and versionC'1 is a version of itenk that has contents. Since replicad
knows about versio1 but does not store it, versiail must either be superseded or
not match replicad’s filter. ReplicaA'’s filter matches contents andz. Note that it
is not possible for replical to tell what itemB1 might be a version of. All replical
knows is that versioi3 1 is either superseded or does not matchfilter.

In the second step of the synchronization protocol, thecsoreplicaB processes
the request fromd and examines its knowledge and stored versions in light’sf
current knowledge and filter. Based on this examinatioegtypes of information are
sent back to replical: new versions of items of interest t, move-outgor items that
A is storing but which have been updated and the new versioatisfrinterest toA4,
andlearned knowledge



request

Al A2 B1 {:}

[

D

S

2o

%’

c

g 2
8

i o

()
S
n
response
Replica A Replica B Replica A
(target) (source) (afterwards)

Figure 2.1: Cimbiosys synchronization protocol (simptijie

In this example, replicaB identifies versionC2 of item ¢ as a new version of
interest to replical, determines that a move-out is needed for ifgrand then informs
replicad that it has learned everything that repliBaknows.

Finally, the target replical processes the response from the source and updates
its knowledge and store accordingly. The updates from tlisgssing are considered
to be performed as a single atomic transaction. The regudtiate of replicad is
shown on the right-hand side of Figure 2.1. Observe thatazg now has the same
knowledge as replic& and has the same set of versions in its store, except forkitem
the latest version of which does not match replicafilter.

Many essential details have been omitted from this simgliflastration. The next
chapter goes into much more detail.



Chapter 3

System concepts

In this chapter we describe the system concepts of Cimbjdeyisg the groundwork
for the synchronization protocol specification which appéa Appendix A. Since the
specification explains all details of the protocol at a dertavel of abstraction, the
trick is to find a level of abstraction that provides insightiaclarity without getting
bogged down in endless detail.

The system concepts described here are structured acgaodime protocol speci-
fication in Appendix A. This structure differs somewhat fridme published description
of the Cimbiosys implementation [3], being more abstractdme ways and more de-
tailed in others. The most significant change appears iride8t6, where we provide
a different and more detailed description of a replica’sestnd knowledge. Related
changes appear in our description of the synchronizatiotopol messages in Sec-
tion 3.7. Replicas in Cimbiosys have content-based filtems ¢an be changed at will,
and this causes interesting problems regarding the pexf@iof updates, the perpet-
uation of conflicts, and the compaction of knowledge.

3.1 Collection

A collectionis a set of data items that share a database schema. Thetioallisc
replicated over a number oéplicas each of which stores a subset of the items. We
say that each repligaarticipatesin the collection.

Since each participating replica can independently create items and update
existing items, the collection igeakly consistent Replicas synchronize with each
other to spread information and thus eventually bring gllicas into a consistent state.

3.2 Identifiers and versions
3.2.1 Replica and replica identifier

A replicais the active entity that stores items in a collection. A iapkan indepen-
dently create new items and update existing items. Repfigashronize with each
other in a pair-wise fashion to spread information abom#¢o all replicas participat-
ing in the collection.

A replica is labeled with a uniqueplica identifier In this report we are not con-
cerned with how replica identifiers are fashioned, with haplicas are created or



authenticated, or with how replicas locate or communicatie @ach other. We assume
that these problems are solved, and that each replica ieaftire set of replica iden-
tifiers of all replicas in the collection. For simplicity, wese the letters!, B, C, and
so on as replica identifiers.

3.2.2 Item and item identifier
An itemis a particular data item in a collection. An item existy@rsions an item is
created by creating an initial version and updated by argatpdated versions.

An item is distinguished by a uniquiem identifiewhich labels all versions of the
item. In this report, we are not concerned with how item idms are fashioned. For
simplicity, we use the letters j, k£, and so on as item identifiers.

3.2.3 Version

A versionis a particular version of an item in a collection. A versisimmutable once
created. Formally, a versianis a tuple

(vi(v),4(v), mw(v), cont(v))
where

e vi(v) is aversion identifiesee Section 3.2.4), which uniquely labels the version,

e ii(v) is anitem identifier(see Section 3.2.2), which identifies which item this
version is a version of,

e mw(v) is amade-with knowledgésee Section 3.3.1), which indicates which
versions of the same item this version supersedes, and

e cont(v) is aversion contenfsee Section 3.3.3), which is the data content of the
version according to the database schema of the collection.

The version identifier and item identifier comprise extended identifie(see Sec-
tion 3.2.8). The version identifier, item identifier, and raaalith knowledge comprise
aversion headefsee Section 3.3.2).

3.2.4 \ersion identifier

Each version is labeled with a uniquersion identifier The version identifier is fash-
ioned by the replica that creates the version by concatenas replica identifier and

a per-replicaversion numberwhich increments with each version the replica creates.
For replicad, we say that it creates versioAs, A2, A3, and so on. Replic® creates
versionsB1, B2, and so on. This design of version identifiers is part of Cosps and

is a common way that weakly-consistent replication systproside for identifying
versions.

3.2.5 Compact summary of knowledge

The reason for identifying versions by replica identifiedarersion number is that
it makes it possible to have a compact summary of what vessioreplica “knows”
about. When a replica has somehow “examined” a set of vessod is storing all
the unsuperseded versions that match its filter, we sayhbatplica “knows” about



that set of versions. One goal of the replication system sptead knowledge until all
replicas “know” about all versions that have ever been egkaQuotation marks are
used because this description omits many essential details

Suppose that replicd has “examined” all versions created by replig¢avith ver-
sion numbers in the rangethrough198, all versions created by repli@a with version
numbers in the rangkethrough247, and all versions created by repli€awith version
numbers in the range through301. This is a lot of information, but replica can
summarize what it “knows” as simply

{B1---198, C1---247, D1---301}

From this summary, a second replica can easily determih&ifiows” of any versions
that are unknown tal. The concept of knowledge is central to Cimbiosys. Many more
details will be described later.

3.2.6 Superseded versions

A version created as an update of one or more existing vesgiban item is said to
supersedehose versions and, transitively, all versions that thassiens supersede.
As described in Section 3.3.1, made-with knowledge is usedietermine which of
two different versions of the same item supersedes the.other

In common with most weakly-consistent replication systemsCimbiosys ver-
sions that have been superseded are no longer of interdst icotlection. The syn-
chronization protocol spreads information about updai¢ksat any superseded version
is eventually removed from all replicas.

3.2.7 Conflict and resolution

Since replicas create versions independently, it is ptes&ib two different versions of
the same item to be created, neither of which supersedeshbe ¢n such a case we
say that the versions are ¢onflict

We say that the conflict between two versiongeisolvedwvhen yet another version
is created that supersedes them both. Technically, thedwiicting versions are still
in conflict, but since the collection retains only unsupdeskversions, the conflict is
no longer of interest.

Typically, a weakly-consistent replication system ha®aflict resolutionprocess
for discovering conflicts and resolving them. In this repa are not concerned with
what this process might be. We are only concerned that thersegsion relation be-
tween versions be maintained properly so that any conflietismhight exist are perpet-
uated until they are resolved.

3.2.8 Extended identifier

Each version is a version of a particular item. We say thav#rsionpertainsto the
item. Note, however, that it is not possible to tell from thersion identifier what
particular item the version pertains to.

Since we often have to associate a version identifier withitéme identifier of the
item the version pertains to, we form artended identifieby concatenating the item
identifier and the version identifier. The extended identifiesignates a particular
version just like a version identifier but it also designdtesitem the version pertains
to.



3.3 \Version metadata and content

Each version of an item consists of metadata, which is howb@igys keeps track of
the version, and content, which is what the user is inteddate

3.3.1 Made-with knowledge

Given two different versions of the same item, it is impottEnbe able to determine
which version, if either, supersedes the other. This is thipgse oimade-with knowl-
edge If neither of two different versions of the same item supdes the other, the
versions are said toonflict

As described in Section 3.2.3, each versiohas a version identifievi(v) and
made-with knowledgeww(v). In Cimbiosys, made-with knowledge is a set of version
identifiers. The made-with knowledgev(v) is defined as follows:

e Given versionw such thawi(w) € mw(v), w # v, andw andv pertain to the
same item, them supersedes.

e \ersionv supersedes no other versions.

Observe that the definition permits the made-with knowletgmclude (1) version
identifiers of versions that pertain to other items and (2)\arsion identifier of the
superseding version itself. The reason for this freedorhasit makes it possible for
replicas to compact the made-with knowledges of storedamess

Made-with knowledge is a form dhowledgeas defined in Section 3.4.

3.3.2 Version header

We call a version’s metadatavarsion headerAlthough metadata may be compacted
across the versions in a replica’s store or the versions iroeo@ol message, in the
abstract each version has its own metadata.

A version header for a versionconsists of an extended identifier conjoined with
made-with knowledge. The extended identifier contains #rsign identifier ofv and
the item identifier of the item to whichpertains. The made-with knowledge represents
the set of versions supersededdy

Version headers are important because in some places ininit@dsys synchro-
nization protocol, only the metadata of a version needs tcobeeyed and the actual
content of the version is immaterial. This is the case foraalimove-out, as described
in Section 3.7.3.

3.3.3 Version content

In addition to the version header metadata, a version amuarsion contenivhich is
the data in which the user is interested. The version contagtbe considered as a set
of attribute-value pairs in some database schema. For isitygh the specification,
version content is represented by abstract values, y and so on.

3.4 Forms of knowledge

Knowledge is a central concept in Cimbiosys and it shows upany different places
and in different forms. Unfortunately, this can be somewdmatfusing. Even in this
report, we use the term “knowledge” loosely within quotatinarks because it is so
convenient. However, careful use of terminology is esaétdiunderstanding the spec-
ification.



3.4.1 Knowledge
As used in the specification,

e knowledges a set of version identifiers

Whatknowledgameans is that you “know” something about the versions idehtby
the version identifiers in the set. For example, in the caseanfe-with knowledge (see
Section 3.3.1), you know that a given version supersedey eiféerent version of the
same item in the set.

When we say that a version identifier is in a knowledgé: we mean simple set
membershipyi € k. Recall that an extended identifier, a version header, aredsion
all contain a version numbef; as a component. By extension, when we say that an
extended identifier, a version header, or a version is in avledgek, we mean that
the component version identifief is in knowledgek.

3.4.2 Item-set knowledge

When a replicad is up-to-date with respect to all updates in the collectiwaying
somehow “examined” all created versions and arranged te #te unsuperseded ones
that match its filter, the replica can claim it “knows” abolltthe updates, as in the
compact summary described in Section 3.2.5. However, ikerdifficulty in convey-
ing what A’s “knowledge” means to another repliéa The difficulty arised because
A "knows” versions with respect td'’s filter, whereasB needs to “know” versions
with respect taB’s filter. And, in general, it is impossible to compute theat&n be-
tween the two filters. Cimbiosys overcomes this difficultyotingh the use otem-set
knowledge

As used in the specification,

e item-set knowledgie a map from item identifier to knowledge

Recall thaknowledges a set of version identifiers. Whiaém-set knowledgaeans is
that for a given item identfier you “know” something about tlegsions identified by
the version identifiers in the corresponding set.

The problem of conveyingd'’s knowledge toB is solved by using item-set knowl-
edge. Regardless of's and B’s filters, A can express what it “knows” as a map from
item identifiers to what it “knows” about the specific versanf that item it is actu-
ally storing, andB can incorporate that knowledge, provided tBatepresents what it
“knows” as item-set knowledge.

When we say that a version identifiet is in an item identfierii component of
an item-set knowledg&k we mean simple set membership,c isk[ii]. Recall that
an extended identifier, a version header, and a version ialhtoa version number
and an item identfiet; as components. By extension, when we say that an extended
identifier, a version header, or a version is in an item-settedgeisk, we mean that
the component version identifief is in the component item identifieir component of
the item-set knowledg&k.

3.4.3 Star item-set knowledge

Recall that item-set knowledge is defined as a map from iteantifiers to knowl-
edge. An implementation would obviously attempt to encaemniset knowledge as



efficiently as possible, perhaps by grouping item idensfibat map to the same knowl-
edge [3]. A particularly efficient grouping results when gmi-set knowledge maps
every item identifier to the same knowledge. Such an itenkssavledge we calstar
item-set knowledge

3.4.4 Promotion of ordinary knowledge

Observe that ordinary knowledge, which is a set of versieniifiers, is not parameter-
ized by item identifier. Therefore ordinary knowledge camphbmmoted to star item-set
knowledge via the obvious transformation.

3.5 Filters
3.5.1 Filter

Each replica has a content-bagitér that selects the items of interest to that replica. A
filter is a predicate on version content. The filter can be iclmmed as a standing query
over all the items in the collection. One goal of Cimbiosyigxecute this query so
that the replica is storing the latest versions of items tinatich its filter.

In contrast to previous work in partial replication systeimavhich the interest
set of a replica is based on a static labeling of items in aahifical namespace, a
Cimbiosys filter is based on the current contents of itemsiséquently, when an item
is updated it can move from outside to inside the interestfssame replicas and from
inside to outside the interest set of other replicas. Wheeptica changes its filter
it can also cause some items to move from outside to insideethica’s interest set
and other items to move from inside to outside the replicatisrest set. Making sure
that replicas are updated appropriately in these situsiioane of the major problems
addressed by the Cimbiosys synchronization protocol.

A replica’s filter can be encoded in a query language and santather replica as
part of the synchronization protocol. For example, in theckyonization request mes-
sage, the target replica sends its filter to the source eeptichat the source replica can
limit its reply to contain only those versions that are oénetst to the target. This saves
much bandwidth when synchronizing with a target replica ttes a narrow interest
set.

For simplicity, in the specification we represent a filtertes et of version content
it matches.

When we say a versionis in a filter f, we mean that the content efmatches the
filter predicate.

3.5.2 Filter containment

When filterf; selects everything that filtgs selects, we say thdt containsf,.

We expect that frequently a filter would be composed of a auatjan of query
terms such asating > 2 and topic = music. SO in some cases it will be possible to
compare filters via inspection.

Of course, in the general case, filter containment is undétéd So, technically,
what we have in Cimbiosys lsxown containmenivhen we know that filtef; contains
filter f5.

Having a filter containment relation, if we know it, helps wat situations. First,
when a replica changes its filter, some items might move froiside to inside the

10



replica’s interest set. As discussed in Section 3.5.4,gfdh filter contains the new
filter then knowledge can be retained that otherwise mustdoaied.

Second, when a source replica is sending information togetaeplica during
synchronization, if the source replica’s filter contains target replica’s filter, then the
source has the advantage of being interested in everythtatget is interested in.
In such a case, the source can also inform the target abaiomerthe source knows
about but does not store. Such versions must not be of intieréise source. Since
the source’s filter contains the target’s filter, the sousre@nclude that such versions
would also not be of interest to the target.

3.5.3 Star filter

A star filteris a filter that is known to select everything. Thereforegafiter is known
to contain any other filter.

3.5.4 Filter change

In Cimbiosis, a replica caohange its filter This can result in some versions moving
from outside to inside the replica’s interest set and otlkesions moving from inside to
outside the replica’s interest set. There is a subtle diffiavith unsuperseded versions
that move from outside to inside the replica’s interest set.

In the following discussion, when we talk about what a repfistores” and what it
“knows”, we are talking about the replicakata storeanddata knowledgeWhat is at
risk when a replica changes its filter is itglirect data knowledgeSee Sections 3.6.1
and 3.6.2.

Suppose that is a version that moves from outside to inside a replica&radt set
when the replica changes its filter. Now, before changindjitey, the replica might
“know” aboutuw, in that it knew thaty had been created so that it was up-to-date in that
regard, but the replica might not be storing it, becawges not of interest. The main
reason why a replica would want to “know” about a version thatas not interested
in storing is that by means of “knowing” such things it canaibta more compact
representation of knowledge, as discussed in Section.3.2.5

However, after changing its filter, in the general case tipdiaa could no longer
claim to “know” aboutv. What if this version happened to be inside the new filter?
Since the replica is not storing it cannot tell if this might be the case or not. Therefore
the replica must discard its claim that it “knows” abautFurthermore, the replica is
in this position regarding any version of which it “knows”tloes not store. The only
safe course of action upon changing its filter is for the reptd discard its “knowledge”
of all versions it does not store.

On the other hand, in the case that the old filter containsefefitter, there cannot
be any versions that match the new filter without matchingaidefilter. So if the
replica knows that the old filter contains the new filter, tlitecan retain everthing it
“knows”.

3.5.5 Filter shrink and unshrink

Changing a replica’s filter when it is known that the old filbentains the new filter is
called afilter shrink As discussed in Section 3.5.4, in this case the replica emr
all of its base knowledge.

11



Changing a replica’s filter when it is not known that the oltkfilcontains the new
filter is called dfilter unshrink This is the general case and is always a safe course of
action. As discussed in Section 3.5.4, in this case theazpiust discard “knowledge”
of all versions it does not store.

3.5.6 Filter hierarchy

Since replicas typically only store versions that matclirtfileer, and they can change
their filters at any time, there is the problem of assuring teasions will eventually
reach all replicas that are interested in them. Cimbiosy#esahis problem by re-
quiring that the replicas eventually fornfilier hierarchy; a tree in which one replica
with a star filter is chosen as the root and each other rephoases a parent whose
filter is known to include its own filter. Furthermore, eacpliea other than the root is
required to synchronize regularly to and from its parent.

If the filter hierarchy remains stable long enough in the absef updates, Cim-
biosys will reacHilter consistencyknowledge singularityandmade-with singularity

e Filter consistency means that each replica’s data storairmprecisely the un-
superseded versions that match its filter, of all versioes ereated.

e Knowledge singularity means that each replica’s data kadge is star item-set
knowledge.

e Made-with singularity means that for each item with no uohesd conflicts, the
made-with knowledge of all versions of that item at all rep# is identical.

Convergence to a stable filter hierarchy is provided by acgdhyer on top of
Cimbiosys. How it is achieved is not part of the specificatidhe specification only
assumes that it happens eventually.

3.6 Areplica’s store and knowledge

Each replica has a store of versions and it “knows” somethingut how its store
relates to updates performed by various replicas. Althdhghis a simple idea there
are several complications.

e To perpetuate updates, a replica may be required tempotaritore a version
that does not match its filter. For example, if a replica upslan existing ver-
sion to a new version that does not match the replica’s fillter replica cannot
immediately discard the new version because to do so woulskecthe update to
be lost. A related case can result from a replica changirfigtés

e To compact knowledge via range encoding, Cimbiosys musbleeventually
to account for each version number generated by every eepliais problem is
related to perpetuating updates, although what must bespeted in this case
is just the metadata.

¢ Inthe absence of conflicts, it is possible to simplify (dénghe most up-to-date
version’s made-with knowledge, which makes for a more efficiepresentation
of metadata. However, with content-based partial repboait is possible that
of two conflicting versions of an item, one version matchesgdica’s filter and
the other does not. This can lead to some bizarre situations.

12



The published description of the Cimbiosys implementafgjrleals with these com-
plications only in part. The specification in this reportideaith them in full.
We divide the replica’s store into two parts:

e adata storeand its associatedhta knowledgewhich is concerned with keeping
the most up-to-date versions of items that match the régliitir, and

e anauth storeand its associatemuth knowledgewhich is concerned with perpet-
uating updates.

In addition, a replica also maintaiesnflict-free knowledgevhich is used in densify-
ing made-with knowledge. These stores and knowledges arzilded next.

3.6.1 Data store and data knowledge

Each replica has data storeof versions and a correspondidgta knowledgef item-
set knowledge with the following properties.

e The replica “knows” everything it stores. Formally, for eyeersionv in the
data storep and all ofv’s made-with knowledge is in thé(v) component of
data knowledge. Recall that data knowledge is item-set letye, so it has a
component for each item identifier.

e The replica stores every unsuperseded version matchifigatghat it “knows”.
Formally, for every unsuperseded versigrif v matches the filter andis in the
data knowledge, them must be in the data store.

e The replica “knows” no version that supersedes somethistpies. Formally,
for every created version if v is in the data knowledge but not in the data store,
then there is no versiom in the data store supersededdhy

The properties permit a replica’s data store to contain@esshat do not match its
filter. The replica is permitted to discard such versionswgttane. The idea is that the
data store contains versions in the replica’s interestpdes, perhaps a few extra that
the replica has still lying around in its cache since thefilist change.

The properties permit a replica’s data knowledge to contaisions in addition
to the versions it stores. In particular, the replica’s datawledge may contain su-
perseded versions and versions that do not match its filtersidhs that have been
superseded and versions that do not match the replicaisdiléenot of interest to the
replica, so of course the replica should not have to stonmtHdowever, it is impor-
tant for the replica to know about such versions in order foalestrate that it is fully
up-to-date with respect to other replicas.

The data knowledge describes what the replica “knows” abmitrersions in its
data store. The reason that a replica cannot have data kshgevtef any version that
supersedes something in its data store has to do with theo€assuperseding version
that does not match the replica’s filter. The property is meglfor usingconflict-free
knowledgen made-with knowledge densificatiaithout regard for the replica’s filter,
as discussed in Section 3.6.7.

13



3.6.2 Direct and indirect data knowledge

A replica’s data knowledge can be partitioned idimect data knowledgandindirect
data knowledgas follows.

Direct data knowledge. This is data knowledge that can be derived by inspecting the
version identifiers and made-with knowledge of the versiortise replica’s data
store. A replica always has direct data knowledge.

Indirect data knowledge. This is other data knowledge that a replica might have.
Based on the properties of data knowledge, indirect datavlettme must be
of versions that are either superseded or fail to match thlecees filter.

Indirect data knowledge is obtained in two ways. First, ieplica discards a version
from its data store that does not match its filter, the dire¢a dknowledge of that ver-
sion that the replica used to have now becomes indirect dadevledge. Second, a
replica can receive indirect data knowledgdemned knowledges a result of syn-
chronization.

As discussed in Section 3.5.4, a replica must discard alténtildata knowledge
when it performs dilter unshrink

3.6.3 Auth store and auth knowledge

Each replica has aauth storeof versions and a correspondimgith knowledgeof
knowledge with the following properties.

e Permanence. For every unsuperseded versitimere is some replica that has
in its auth store.

e Compaction. For every created versiorthere is some replica that hasn its
auth knowledge.

e The replica “knows” everything it stores. Formally, for edirsionsv in the auth
store,v is in auth knowledge.

e The replica stores every unsuperseded version it “knowstmilly, for every
unsuperseded versianin auth knowledgey is in the auth store.

The idea of the auth store is to hold every unsupersededwvessmewhere, so that
updates do not disappear from the collection even thoughrttag currently only be
known to replicas that are not interested in them. This iselson for the permanence
property.

The idea of the auth knowledge is to maintain knowledge ofyegeeated version
somewhere, so that eventually knowledge can be compactadige all updates are
known. The is the reason for the compaction property.

“Auth” stands for “authoritative”. As originally conceide the replica is authori-
tative for versions in its auth knowledge, any unsupersea®esions of which can be
found in the replica’s auth store. However, we have enougg l@ords in the specifi-
cation already, and “authoritative” is just one too many.

14



3.6.4 Auth concentration

In contrast to the data store and data knowledge, which thehsgnization protocol
tries to spread far and wide to all replicas, the synchrdimagrotocol attempts to
concentrate the auth store and auth knowledge. The idemfér a replica’s auth store
and knowledge to its parent infiéter hierarchy, with everything eventually ending up
at the root. The filter hierarchy is described in Section&.5.

Of course, the concentration is effective only when thegefifter hierarchy. How
a filter hierarchy is achieved is not specified. The specifiogpermits a replica to
change its filter at any time. All that is assumed is that avalht a filter hierarchy is
achieved and remains stable. Prior to that, the specificatitmits of relative chaos
in terms of attempting to concentrate the auth store and letnye. However, it is
controlled chaos, in that nothing is lost.

3.6.5 Data knowledge compaction

Observe that auth knowledge is ordinary knowledge, whightwa promoted to star
item-set knowledge as described in Section 3.4.4. Hen¢ekaawledge is nicer than
data knowledge, which in the general case is cumbersomesi&knowledge.

Careful study of the auth and data store and knowledge piiepevill show that it
is permitted for a replica to “copy” its auth store and knadge into its data store and
knowledge, provided that the replica take care to discapéimeded versions from its
data store (which is always the case when adding to data ledige).

The reason for performing such a “copy” is that it resultsléita knowledge com-
paction The auth knowledge promotes into star item-set knowledgerveopied into
data knowledge, thus working towardlsowledge singularity This is especially ef-
fective if the auth store and knowledge have been conceuitedtthe root of the filter
hierarchy, as discussed in Section 3.6.4.

3.6.6 Made-with knowledge densification

Recall that each version contains made-with knowledgeishased to determine the
supersession relation between versions of the same iterde-Méh knowledge is a
set of version identifiers and in the general case nothirgtlean a set will do, since
there are bizarre scenarios such as the following.

Suppose a replica learns about versigrof some item. It updates this version,
creating version, and spreads it to other replicas. Later, the replica chaitgéker
so thatw, is no longer of interest, so it discards versien Then it unshrinks its filter,
so it has to forget all knowledge @t and also ofy;. Subsequently, the replica learns
again about the old versian from some out-of-date replica. The replica now updates
v1 again, creating versiony. Logically, v andvs ought to be in conflict, since neither
was made with knowledge of the other.

However, in most cases there will not be conflicts, and eveanvthere are con-
flicts we would expect that eventually a conflict resolutioagess would render them
uninteresting. It is cumbersome to have to maintain forevégue made-with knowl-
edge on every version. In fact, when conflicts have beenveddbr a given item it
is legal to replace the made-with knowledge on the latesiorof that item with the
replica’s data knowledge of that item. This replacemenaiiedmade-with knowledge
densification

15



Made-with knowledge densification is especially effectiveen the replica has
achieved knowledge singularity and has the same data kdge/l®r every item.

3.6.7 Conflict-free knowledge

Given an item identifieds, conflict-free knowledgef i is a set of version identifiers
¢fk(it) with the following properties.

e If v; and v, are two conflicting versions ofi in cfk(i), then there exists a
versionwvy of 4 in ¢fk(it) such thatyy supersedes bothy and v,. In other
words, there are no unresolved conflicts among versionsiofcfk (4).

e Aversionv has been created corresponding to every version identifigk {i).
In other words, all the versions itfk (ii) have been created, so there will not ever
be any unreolved conflicts among versiongiah cfk (ii).

Each replica maintainsonflict-free knowledgevhich is item-set knowledge map-
ping each item identifiei; to conflict-free knowledge ofi. Observe that it is safe
to assume that conflict-free knowledge is empty. Howevecewome conflict-free
knowledge is known, it is good forever, so over time it needeneetreat.

Replicas learn conflict-free knowledge in two ways. Fiitds sent via the synchro-
nization protocol, so if a replica receives some that isdoektan what it currently has,
it can (piecewise by item identifier) adopt the better cotfliee knowledge. Second,
if a replica has a star filter, it can examine its data store.items for which its data
store contains no conflicts, the replica’s correspondirig Kaowledge is conflict-free
knowledge of that item.

Replicas use their conflict-free knowledge to perfarmade-with knowledge den-
sification (See Section 3.6.6.) Regardless of a replica’s filter, d@ica’s data store
contains a version such that

e vi(v) is in the replica’s conflict-free knowledge &f v), and

e the replica’s data knowledge af(v) contains the replica’s conflict-free knowl-
edge ofii(v)

then it is permitted to replace the made-with knowledge with the replica’s conflict-
free knowledge ofi(v). The first condition assures thats in the conflict-free knowl-
edge ofii(v) and not superseded by anything the replica “knows”. Therscondi-
tion assures that the replica “knows” everything in the donftee knowledge ofi(v).
Note that the property that a replica’s data knowledge chomatain any version that
supersedes a version in its data store gets used here. Qensgg must be the only
unsuperseded version @fin the replica’s conflict-free knowledge af(v).

3.7 Synchronization protocol

The Cimbiosys synchronization protocGIIMSync¢ is a simple, two-step protocol that
involves two replicas, aource replicaand atarget replica

First, the target sendssynchronization request messagethe source, informing
the source of the target’s current filter and state of knogéedbout the collection.
Specifically, in addition to delivery information such a® tmessage type and identi-
fication of the sender and receiver, the synchronizationesgmessage contains the
following components:

16



¢ the target’s filter,

e the target’s filter unshrink number, a sequence numberrbeginents whenever
the target unshrinks its filter,

e the target’s data knowledge, and
e an optional set of the extended identifiers of the versiotisariarget’s data store.

Second, the source sendsynchronization response messadgéehe target, updating
the target’s state of knowledge about the collection via mevsions and other infor-
mation. Specifically, in addition to delivery informationch as the message type and
identification of the sender and receiver, the synchroitimaequest message contains
the following components:

e a set of data versions,

e a set of transferred auth versions,

¢ transferred auth knowledge,

e accumulated conflict-free knowledge,
e the target’s filter unshrink number,

e a set of direct move-outs,

e a set of indirect move-outs, and

e learned knowledge.

The protocol brings the target replica up-to-date with eesggo the source replica.
To fully synchronize two replicas, it is sufficient to repéia¢ protocol in the reverse
direction.

We assume that the synchronization messages are deliadiaaly. The issue of
failure is beyond the scope of this report. Next we desctilgeconcepts involved in
the messages.

3.7.1 Data versions

Based on the target’s filter and data knowledge, the sourcdermine which of the
versions in its data store are (1) not known to the target 2pdf(interest to the target.
These versions the source sends back to the targidtasversiongo add to its data
store.

3.7.2 Move-out

Because of partial replication, the target might have idétta store an obsolete version
of an item whose updated version is not of interest to thestatfthe source knows of
the updated version, in order to bring the target up-to-airist tell the target about
the situation. We call this mmove-out The target has an obsolete version that it must
move out of its data store in order to become up-to-date.

There are two cases:

17



e adirect move-oytin which the source has the updated version in its data,store
and

e anindirect move-ouytin which the source does not have the updated version in
its data store.

3.7.3 Direct move-out

Thedirect move-outase is easier. The source has the updated version in itstdata
and it can inspect the version content to determine thateiddtedoes not match the
target’s filter. By checking the target's data knowledge, sburce can determine that
the target does not know about the updated version.

The source could speculate that there might be an obsoles®reand that the
target was storing it, but this seems like it would usuallst joe a waste of bandwidth.
Instead, we require that the target also inform the sourdbeExtended identifiers
of the versions in its data store. With this information, sueirce can verify that the
updated version actually does supersede a version thatret has in its data store.
In this case, in order to bring the target up-to-date witrardgo the updated version,
the source must send a move-out to the target.

When sending a direct move-out, the source has the updatgdivé its data store
so it can send the entire version header, containing thei@tentifier, version identifier,
and made-with knowledge. The version content is of coursefrinterest to the target,
since by the definition of a move-out, the version contentsdua# match the target’s
filter. By sending the version header for a direct move-th,target can determine
what has been superseded and it can add the metadata taréstmta knowledge.

3.7.4 Indirect move-out

Theindirect move-outase is harder. Since the source does not have the updated ver
sion in its data store, it has access to neither the versiotenonor its metadata. One
might wonder whether it was even worth worrying about thsegaince the difficulties
are large, but it turns out to be essential, as shown by thaafimig example.

Suppose that there are three replicds,B, and C, arranged in a filter hierarchy
(see Section 3.5.6) wher€ is the parent ofB and B is the parent ofd. By the
definition of a filter hierarchy("s filter containsB’s filter and B’s filter containsA’s
filter. Recall that eventual filter consistency is supposetld assured provided that
each replica other than the root regularly synchronizestbfilom its parent.

Suppose that replicd creates an item that matches its filter and this item spreads
via synchronization to replica8 and C'. Next suppose that replicd updates the item
so that it moves outside @#’s filter. When B next synchronizes frond’, C' will send
a direct move-out telling3 to discard its obsolete version from its data store.

Note that replicad is now storing an obsolete version. Its parent replicknows
about the updated version but is does not have it in its date,ssince it does not
match B’s filter. The question is how replicd ever becomes up-to-date. From the
filter hierarchy rules, replical must regularly synchronize to and from repliBa its
parent, but it never need synchronize from repli¢a The only way to resolve this
situation is for replicaB to send an indirect move-out to replica

There are several conditions required for an indirect mmvie-

18



e The source’s filter must contain the target’s filter.

e There is an item identifieii such that the source’s data knowledgeomponent
contains the target’s data knowledgecomponent. In other words, the source
knows everything about iteri that the target knows.

e The target has a versionof item 7 in its data store. As for the direct move-
out, we require that the target inform the source of the akdridentifiers of
the versions in its data store. With this information, tharse can evaluate this
condition.

e The source does not have versiom its data store.

If all these conditions are satisfied, the source can semitirect move-out for version
v to the target. Since the source does not store versidrdoes not have access to the
version header, but it does have the extended identifiedi@ionv, which it can send.

3.7.5 The target’s set of extended identifiers

In order to avoid speculative direct move-outs, and in otdeznable indirect move-
outs, we require that the target send the set of extendetfideof the versions in its
data store. However, even though this is required, optitioiza are possible.

First, the target does not have to send the set every timie Kt is not sent, then
the source will omit responding with move-outs and consatjyalso omit responding
with learned knowledge.

Second, when requesting from a regular sychronizatiomparthe source could
cache the set enabling the target to send only deltas andigfs most of the time.

3.7.6 Learned knowledge

In the ideal case, synchronization would cause the targleaim everything that the
source knows. Specifically, the source’s entire em data lediye would be copied to
the target. We call thikearned knowledge

Observe that the target gets a lot of data knowledge from gtedata of data ver-
sions and direct move-outs. This is not what we call learmexhtedge here. Learned
knowledge, if it can be sent, is the source’s entire data kedge.

The source must omit sending learned knowledge in the fatigwases.

e The source’s filter does not contain the target’s filter.

e The target omitted to send the set of extended identifierthfoversions in its
data store.

3.7.7 Auth transfer

As described in Section 3.6.4, the synchronization prdtattempts to concentrate
auth store and auth knowledge by transferring them up tonpaegplicas in a filter
hierarchy. So whenever the target is the parent of the spilmesource takes the entire
contents of its auth store and auth knowledge and transfeerghe target.

When the target receives the response message, it inctepdna transferred auth
store and auth knowledge into its auth store and auth kngeled

19



3.7.8 Conflict-free knowledge accumulation

As described in Section 3.6.7, once some conflict-free kadgé is known, it is good
forever. So the source always sends a copy of its currenticefrée knowledge.

When the target receives the response message, it perfaram@onent-wise ex-
amination of the sent conflict-free knowledge to determiritedan improve any com-
ponent of its current conflict-free knowledge.

3.7.9 Target filter skew

When the target receives the synchronization responseagef®m the source, it can
ingest the sent data versions, auth store, auth knowleddezanflict-free knowledge
without any hesitation. However, the sent move-outs anthésbknowledge are based
on the what the target’s filter was at the time the target $enéquest. The target could
have changed its filter since then.

If the target has shrunk its filter, any move-outs and leatk@aivledge remain
valid, since anything that was not of interest to the targetill not of interest. How-
ever, if the target has unshrunk its filter, this may not be.tiyctually, the situation is
even more complicated. If the target has unshrunk its filt@mg time since sending
the request, then there are scenarios in which the moveaodtsearned knowledge
might not be valid. We call this situatidarget filter skew

In order to detect target filter skew, each replica maintaiosunter that increments
each time it unshrinks its filter. The value of this countesasat in the request message
and returned in the response message. If the value in thensspnessage does not
match the target’s current value, them there is target filkew and the target must
ignore the move-outs and learned knowledge of the response.

20



Chapter 4

Tour of the specification

A listing of the TLA+ CIMSync protocol specification is given Appendix A. The
specification is divided into a large number of parts separhy horizontal rules. Ba-
sically, the specification defines options, data types,rii@i state, a constraint, the
next state relation, invariants, temporal assumptiomsptaal properties, a state view,
and finally the actual specification. Next we describe thestspn more detail.

Various options appear starting on page 25. Some optionsatdrow various
constraints are interpreted in restricting the elaboratidhe state graph. Other options
introduce an intentional bug into the specification so thatan verify that the model
checker actually finds a counterexample for that bug.

The data types follow fairly closely to the description o§®m concepts in Chap-
ter 3. The main additions are in regard to the definition of@ica and of overall
state. Much of the interesting detail of the specificatiopesys in the definition of
what happens with a replica. The overall state maintainsaeérformation about the
“truth” of the collection so that invariants can be checkdthwegard to “truth”. The
overall state also maintains some commentary about howdbewsas produced to aid
in understanding a model execution history. This helps débugging.

Invariants appear starting on page 51. Invariants arenstatts that are true in any
reachable state.

Temporal assumptions appear starting on page 54 and telppaparties on page 55.
Temporal properties are statements regarding an enticeiBea sequence that are true
of any execution sequence that satisfies the temporal asisuns\p

The state view appears on page 56 and the actual specificatjperge 57. The state
view controls what the model checker considers when degidimen two states are the
same state. We eliminate debugging information from thesteew. As is typical
when writing a TLA+ specification, the actual specificatisraisimple conjunction of
the initial state, the next state relation, the livenessdd@n, and various temporal
assumptions.

4.1 Model checking

Running the TLC model checker on a specification requireplying a configuration
file that provides model values and indicates which defingiorm various parts of

21



configuration sec states depth  error

B.4 BugAuthBounceForever 67 7421 24 Temporal propertia® wielated

B.5 BugContainFilter 44 21782 14  Invariant InvDataFiltewiolated

B.6 BugLearnSend 466 172839 12 Invariant InvDataFilteratated

B.7 BugLearnStore 297 116456 11 Invariant InvDataFilteriédated

B.8 BugOmitDiscardAuthSsin 8 736 20 Temporal propertiesewolated

B.9 BugOmitDiscardDataOof 39 5812 17  Temporal propertiesawiolated

B.10 BugOmitindMoveouts 1245 176737 12 Invariant InvHaa&Superseder is violated
B.11 BugOmitMoveouts 27 4754 16 Invariant InvHaveDataSsgaer is violated
B.12 BugOmitRebuildOnUnshrink 3 200 5 Invariant InvDatte¥iis violated

B.13 BugUnionFreeisk 4 532 13 Invariant InvStoreMw is vieth

B.14 BugUnshrinkLearn 15 9768 8 Invariant InvDataFiltevislated

B.15 BugUnshrinkMoveout 124 53999 18 Invariant InvDattgfFils violated

Table 4.1: Finding counterexamples for bugs.

the specification.

The interesting model values that have to be provided arsgtseof item identifiers,
replica identifiers, and version contents. These sets defindarge a configuration is
to be modeled.

Then there are a number of model values that constrain the sgace in various
ways by limiting the number of various actions that can belaegnl. Furthermore,
there are separate per-replica and total system constrairitis is tedious, but this
array of constraints is needed in order to guide the modelkerénto exploring paths
that lead to counterexamples for various bugs.

Appendix B lists a number of configuration files. Section B312, and B.3 list
some small configurations that can be explored fully. Noatiohs of invariants or of
temporal properties were found for these small configunatio

4.2 Finding counterexamples for known bugs

When running the TLC model checker, it is nice to see that rudrike invariants are
violated for the size of the model that TLC can check. Howgthere is always the
possibility that a bug lurks over the horizon. This is espligimportant for the CIM-
Sync specification, since only very small configurations lsarchecked exhaustively.
One way to get more confidence is to introduce a known bug opgserand see if
TLC finds a counterexample execution.

For this purpose, options were written into the specificatm introduce various
bugs. By setting the constraints to guide the model cheekepunterexample model
execution can often be found fairly quickly. Table 4.1 giWles results. Each line in
the table lists a configuration, the number of seconds ofigi@ttime required by the
model checker to find a counterexample, the number of statamiaed and the depth
reached, and the error reported by the model checker. Thespamding configuration
files are listed in Appendix B.

Some of the bugs cause violations of temporal propertieseXample, B.4 BugAu-
thBounceForever interferes with auth concentration (82¢i& 3.6.4). In this bug, the

22



auth store and auth knowledge are transferred wheneveauthet's filter contains the

source’s filter, rather than only when the target is the paoftine source. This is a bug,
because if two non-root replicas have equal filters, thaarleach contain the other
and so auth store and knowledge could bounce forever betilieen never reaching

the root.

23



Bibliography

[1] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Harelwar
and Software Engineeré&ddison-Wesley, 2002.

[2] P.Mahajan, R. Kotla, C. C. Marshall, V. Ramasubramayilah. Rodeheffer, D. B.
Terry, and T. Wobber. Effective and efficient compromiseoxery for weakly
consistent replication. I&BuroSys '09: Proceedings of the fourth ACM european
conference on Computer systermpsges 131-144, New York, NY, USA, 2009.
ACM.

[3] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. ¥&ab-Sullivan, T. Wob-
ber, C. C. Marshall, and A. Vahdat. Cimbiosys: A platform éamtent-based
partial replication. IFJSENIX Symposium on Networked Systems Design and Im-
plementation (NSDI'09)pages 261-276, Apr. 2009.

[4] K. Veeraraghavan, V. Ramasubramanian, T. L. RodehefferB. Terry, and
T. Wobber. Fidelity-aware replication for mobile devicés.Proceedings of Mo-
biSys 2009June 2009.

24



Appendix A

CIMSync specification

MODULE CIMSync
Specification of theC'IM Synchronization protocol.
EXTENDS Naturals, Sequences, FiniteSets, TLC

VARIABLE state

Useful definitions not part of standard TLA.

adb=0bCa superset
aCb= (aCb)A(a#b) propersubset
aDb = bCa proper superset

Abort(z) = Assert(FALSE, z)
AbortType(z) = Abort({“type violation”, z))

OPTIONS

Options for this specification. These are defaults that @ouerridden in a particular model. Some of
these options control how various constraints restricetaboration of the state space graph. Other options
introduce a bug so that we can verify that the model checl@ymres a counterexample.

Permit a replica to request a sync with itself. Since gefhetlais does not produce any interesting interac-
tions but does increase the state space, the default isablelithis option.

OptSelfSync = FALSE

What to count for a replica’s parent change. Having eachamlount its changes permits us to constrain
the number of changes both per-replica and over the entitersy The default is 0, which means that we do
not count changes.

25



. A
Parentinc = 0 what to count for a parent change

Maximum per-replica values of various counters.

CONSTANT Max Versnum maximum per-replica version number
CONSTANT MazSyncact maximum per-replica number of active syncs
CONSTANT MazFilternum maximum per-replica filter changes
CONSTANT MazParentnum maximum per-replica parent changes

Maximum count of replicas that have non-zero values of varicounters.

CONSTANT MaxzNzVersnum maximum replicas non-zero version number
CONSTANT MazNzSyncact maximum replicas non-zero active syncs
CONSTANT MaxNzFilternum maximum replicas non-zero filter changes
CONSTANT MaxzNzParentnum maximum replicas non-zero parent changes

Maximum total values of various counters.

CONSTANT MazxTotal Versnum maximum total version number
CONSTANT MaxTotalSyncact maximum total number of active syncs
CONSTANT MazTotalFilternum  maximum total filter changes
CONSTANT MazxTotalParentnum maximum total parent changes

Omit to rebuild data item-set knowledge from stored versiohen the replica unshrinks its filter. (Unshrink
is a change that might not be a shrink.) This introduces a becguse changing a filter in this way could
make a version we know about come inside the new filter but éngian is not stored because it is outside
the old filter.

BugOmitRebuildOnUnshrink = FALSE

Omit to perform moveouts. This introduces a bug, becauseemds are necessary in some situations.
BugOmitMoveouts = FALSE

Assume that the target replica’s filter does not unshriniben requesting a sync and processing the corre-
sponding sync data. This introduces a bug, because if thettafilter does unshrink it could bring versions
inside the target’s filter that the source thought were detsihus making the moveouts and consequently
the learned item-set knowledge invalid.

BugUnshrinkMoveout = FALSE

BugUnshrinkIndMoveout = FALSE

BugUnshrinkLearn 2 FALSE

Instead of checking that the target replica’s filter did neshrink between requesting a sync and process-
ing the corresponding sync data, check that the targetceeglfilter at the former time contains the target
replica’s filter at the latter time. This introduces a bugsdiese the target's filter could shrink, causing the
target to discard data versions that fell out of its filterd dnen the target’s filter could unshrink back to
where it was.

BugContainFilter = FALSE

26



Permit a source replica to send authoritative knowledgéndusync whenever the target replica’s filter

contains the source replica’s filter. This introduces a begause if both replicas’ filters are equal they each
contain the other, and the authority could bounce foreveréen both replicas without ever reaching the
root.

BugAuthBounceForever < FALSE

Omit to perform indirect moveouts. This introduces a bugaose indirect moveouts are necessary in some
situations.

BugOmitIndMoveouts = FALSE

During synchronization, for all data versions that the sewstores (or sends), the target learns the source’s
knowledge of that item. These are bugs, because the sougte kmow both versions involved in a conflict
but only store one, whereas the other version matches tpet'sfilter.

BugLearnStore = FALSE

BugLearnSend = FALSE

Omit to use authoritative knowledge to make star data itetrkisowledge. This introduces a bug, because
without using authoritative knowledge it is not in generasgible to achieve eventual knowledge singularity.

BugOmitMakeStar = FALSE

Omit to make conflict-free item-set knowledge. This introelsia bug, because without making conflict-free
item-set knowledge it is not in general possible to achieemtial madewith singularity.

BugOmitMakeFreeisk = FALSE

Take the union of whatever conflict-free knowledge is serti wihat | already have. This introduces a bug,
because this is not correct.

BugUnionFreeisk = FALSE

Omit to use conflict-free item-set knowledge to densify madth knowledge. This introduces a bug, be-
cause without using conflict-free item-set knowledge itasin general possible to achieve eventual made-
with singularity.

BugOmitDensifyMw = FALSE

Omit to discard out-of-filter versions from the data storgislintroduces a bug, because it is not in general
possible to achieve eventual filter consistency withoutatiding out-of-filter versions.

BugOmitDiscardDataOof = FALSE

Omit to discard superseded versions from inside the autk.sithis introduces a bug, because it is not in
general possible to achieve eventual auth supersessibautitiscarding such versions.

BugOmitDiscardAuthSsin = FALSE

Basic types for this specification.
CONSTANT [ltemid item identifiers

27



CONSTANT Content  item contents

Versnum = Nat version numbers
Syncact £ Nat outstanding sync requests
Filternum = Nat filter change numbers
Filterusn = Nat filter unshrink number
Parentnum = Nat parent change numbers
|
REPLID

A replica id is modeled as an arbitrary value. We have somefshem. There is als&/ullReplid which is
an arbitrary value different from any replid.

CONSTANT Replid set of replica ids

NullReplid = CHOOSEZ : ¢ Replid something not a replica id
ReplidOrNull = Replid U { NullReplid}  replid or null

VERSID
A versid combines an author replid with a version number.

Each version of an item has a versid that is unique to thatiorersTherefore each versid pertains to a
particular itemid. However, from the versid you cannot ¢etiich itemid it is.

Versid = |
ri : Replid, author of this versid
on : Versnum version number relative to the author
!
XTNDID

An ztndid combines antemid with a versid .

Each version of an item haswrsid that is unique to that version. Therefore eaehrsid pertains to a
particularitemid. However, from theversid you cannot tell whichitemid it is. The ztndid exhibits this
relation.

Xtndid = |
7 : Itemad,
vi : Versid

]

KN

Kn is knowledge, a set of versids.

28



Kn £ SUBSET Versid
EmptyKn = {}

Compute the union of knowledges.

UnionKns(ks) = UNION {k: k € ks}

Determine if one knowledge contains another.

GegKn(k1, k2) = k1D k2

Better knowledge with other knowledge.

If the second knowledge is greater than the first, take iemtise stay with the first.
A

BetterKn(k1, k2) = IF GeqKn(k2, k1) THEN k2 ELSE k1

Make knowledge from a set of versids.
KnMakeFrom Versids(vis) = vis

Make knowledge from a header or version.

KnMakeFromHeader(h) = {h.zi.vi} U h.mw
KnMakeFrom Version(v) = KnMakeFromHeader(v.head)

Determine if a versid, header, or version is in knowledge.
IsVersidInKn(vi, k) vi €k

IsHeaderInKn(h, k) IsVersidInKn(h.xi.vi, k)
IsVersionInKn(v, k) = IsHeaderInKn(v.head, k)

o IIs e

HEADER
A header combines an:tndid with made-with knowledge.

Made-with knowledge is a set of versids. Each versid pestaima particular itemid, but from the versid, you
cannot tell which itemid it is.

There are several cases of versids that can appear in médé&nwivledge.

(1) if the versionz: is to supersede an earlier version of the same item, them: must appear in the
made-with knowledge.

(2) if vi is a version of some other item, theimay appear in the made-with knowledge.

(3) the version oft: itself may appear in the made-with knowledge.

Header = |
zi  : Xtndid,
mw : Kn

29



Determine if headeah supersedes headgh .
SupersedesHeader(ah, bh) =

A bh.zi.ii = ah.xi.it same itemid
A bh.xi.vi # ah.xi.vi different versid
A IsVersidInKn(bh.zi.vi, ah.mw)  ah made-withbh

VERSION
A version combines a header with content.

Version = |
head : Header,
cont : Content

Determine if versiomuv supersedes versidn . This is based entirely on their headers.

Supersedes Version(av, bv) = SupersedesHeader(av.head, bv.head)

ISETKN
Isetkn is item-set knowledge, a map from itemid to knowledge. Rehat knowledge is a set of versids.

Item-set knowledgesk means that for each itemid , we know all versids insk[iz] . Recall that each
versid pertains to a specific itemid, but from the versid yaorot tell which itemid it is.

There are two cases of versids that we can claim to know.

(1) if the versidwvz pertains to itemidiz , then we can claim to knows for itemid iz only if we actually
know it, for whatever it means to know a versid.
(2) if the versidvi pertains to some other itemid than, then we can claim to know for itemid 4 .

Isetkn = [Itemid — Kn)
Emptylsetkn = [ii € Itemid — EmptyKn]

Compute the union of item-set knowledges.

Unionlsetkns(isks) £
[ € Itemid — UnionKns({iskl[ii] : isk € isks})]

Determine if one item-set knowledge contains another.
Geglsetkn(aisk, bisk) =
Vii € Ttemid : GeqKn(aisk[it], bisk|[ii])

Componentwise better the first item-set knowledge with duosd.
Betterlsetkn (isk1, isk2) =

30



[ € Ttemid — BetterKn(isk1[ii], isk2[ii])]

Make item-set knowledge from an itemid and knowledge, a&eaersion, set of headers, or set of versions.

IsetknMakeFromItemidKn(ii0, k) =
[#6 € Itemid — IF ii = 70 THEN k ELSE {}]

IsetknMakeFromHeader(h) =
IsetknMakeFromItemidKn(h.xzi.ii, KnMakeFromHeader(h))

IsetknMakeFrom Version(v) = IsetknMakeFromHeader(v.head)

IsetknMakeFromHeaders(hs) =
Unionlsetkns({IsetknMakeFromHeader(h) : h € hs})

IsetknMakeFrom Versions(vs) =
Unionlsetkns({ IsetknMakeFrom Version(v) : v € vs})

Make star item-set knowledge from knowledge.

IsetknMakeStarFromKn(k) = [ii € Ttemid — k]

Determine if we have star item-set knowledge.
IsStarIsetkn(isk) = Yiil, ii2 € Itemid : isk[ii1] = isk[ii2]

Determine if a header or version is in item-set knowledge.

IsHeaderInIsetkn(h, isk) = IsHeaderInKn(h, isk[h.zi.ii))
IsVersionInIsetkn (v, isk) = IsHeaderInIsetkn(v.head, isk)

Get knowledge of an itemid from item-set knowledge.
Isetkn_GetltemidKn(isk, i) = isk[ii]

FILTER
We specify a filter by specifying the set of version conteat the filter accepts.

An implementation would have to give a query predicate. Bseacomparison of predicates is not com-

putable, an implementation cannot always tell whether dtex fiontains another. We do not specify that.

However, with a rich enough set of version content, pairsl@irfi can be incomparable, which has the same
effect as the comparison being incomputable.

Filter = SUBSET Content

A star filter.
StarFilter = Content

31



Determine iff is a star filter.

IsStarFilter(f) = f = StarFilter

Determine if a version is in a filter.

IsVersionInFilter(v, f) = v.cont € f

Determine if one filter includes another, assuming we cdnlfele cannot tell, then the result BALSE.

GeqFilter(af , bf) = IsStarFilter(af) V bf C af

Determine if one filter equals another, assuming we canlfelle cannot tell, then the result B\LSE

A

EqFilter(af, bf) = GeqFilter(af, bf) A GeqFilter(bf, af)

MESSAGE

Message - request sync.

MsgRequestSync = |

type : {"request sync”},
recvri  : Replid,

sendri : Replid,

tf : Filter,

tfusn  : Filterusn,
tdataisk : Isetkn,

txis : SUBSET Xtndid,
trisyes : BOOLEAN

Message— sync data.
MsgSyncData = |

type : {“sync data"},
recori  : Replid,

sendri : Replid,

datavs : SUBSET Version,
authvs : SUBSET Version,
authk : Kn,

freeisk : Isetkn,

tf : Filter,

tfusn  : Filterusn,
movehs : SUBSET Header,
movevis : SUBSET Versid,
learn  : Isetkn

target's filter

target’s filter unshrink number
target's data item-set knowledge
xtndids that target stores

including target’s full set of xtndids

data versions
auth versions
transferred authoritative knowledge

accumulated conflict-free item-set knowledge

target’s filter (only to exhibit a bug)
target’s filter unshrink number
direct move-outs

indirect move-outs

learned isetkn

32



Message

Msg = {}
U MsgRequestSync
U MsgSyncData

REPLICA

State of a replica.

The store consists of (1) a data versions store and (2) arvarglons store. It is legal, and in fact sometime
required, for the same version to be in both the data versitme and the auth versions store. Presumably
an implementation would optimize storage in such a case img usferences.

We have knowledge about versions in our data versions dfone know about a version that matches our
filter, it must be in the data versions store. Nothing we haweur data versions store can be superseded by
anything within our knowledge. It is legal for our data verss store to contain versions that do not match
our filter; however, eventually such versions will be disleat.

We have authority about versions in our auth versions sttfreve authority about a version that is not
superseded, it must be in the auth versions store. It is aké&ate authority about a superseded version.
Authority and the corresponding versions are passed upiwardr parent.

The data item-set knowledge comprises (1) direct data getand (2) indirect data item-set knowledge.

Direct data item-set knowledge comprises item-set knogdeabout every version in the data store, whether
or not that version matches our filter.

Indirect data item-set knowledge comprises whatever getrknowledge we might have learned from move-
outs or as declared learned item-set knowledge or from Bfilter versions that we used to have in our data
store. Indirect data item-set knowledge evaporates wieenves unshrink our filter.

To assist in model checking, we can limit the number of times a
replica is permitted to change its filter. For this purposehe
replica maintains a countgilternum that is incremented on each filter change.

To assist in model checking, we can limit the number of times a

replica is permitted to change its parent. For this purpeaeh

replica maintains a counterarentnum that can be incremented on each parent change. The increment
value is the model paramtdtarentinc . If Parentinc is 0, the number of parent changes is not tracked
and therefore is unconstrained. Even so, the state graghriweyrow without bound, since eventually all
possible parents will be tried in all possible situatiorfsPhrentinc is 1, the number of parent changes is
tracked and therefore also constrained.

Various replica operations construct new replica valueh wiessages to be sent enqueued@indmsgq .
Then when the new value representing the replica is updateklihto the main state, the sent messages are
transferred taecumsggq in the proper destination

replica. This might seem complicated, but it makes writimg t

replica operations much easier. Observe traidmsgq is always empty at the beginning of each action.

To assist in model checking, we limit the number of sync retgithat a replica is permitted to launch without
processing an answer. For this purpose, we track the nunfiloetsianding sync requests.

Replica = |
7l : Replid, my replica id
versnum : Versnum, last version number used
datavs : SUBSET Version, data store

33



dataisk

authvs
authk

freeisk

filter
filterusn
filternum

parentri
parentnum

recumsgq
sendmsgq

syncact

: Isetkn,

: SUBSET Version,
: Kn,

: Isetkn,

: Filter,
: Filterusn,
: Filternum,

: ReplidOrNull,

: Parentnum,

: Seq(Msg),
: Seq(Msyg),

: Syncact

data item-set knowledge

auth store
auth knowledge

conflict-free item-set knowledge

current filter
filter unshrink number
number of filter changes

my parent (might be null)
number of parent changes

queue of messages received
gueue of messages sent

outstanding sync requests

Initial state for replicar: with parentpri and filterf .

InitReplica(ri, pri, f) =

[

Determine if a replica thinks it is the root.

T
versnum

datavs
dataisk

authvs
authk

freeisk

filter
filterusn
filternum

parentri
parentnum

Tecumsgq
sendmsgq

syncact

— 7,
— 0,

= {}7

— Emptylsetkn,

—{}

— EmptyKn,
— Emptylsetkn,
=/

— 0,

— 0,

— pri,

— 0,

34



DoesReplica ThinkItsRoot(r) =
A r.parentri = NullReplid I do not have a parent
A IsStarFilter(r.filter) I have a star filter

Get the set of recv messages of a replica.

GetRecuMsgsOfReplica(r) = {r.recumsgq[i] : i € DOMAIN r.recumsgq}

Get the set of all versions present in a replica.

GetVersionsInReplica(r) =

LET
dmsgs = {msg € GetRecuvMsgsOfReplica(r) : msg € MsgSyncData}
mvs = UNION {msg.datavs U msg.authvs : msg € dmsgs}

IN

r.datavs U r.authvs U muvs

Add new data headers to a replica.

Superseded versions are discarded from the data storeetdem@ added to data item-set knowledge.
ReplicaAddDataHeaders(r, hs) =

LET
keep(v) = —3h € hs : SupersedesHeader (h, v.head)
sk = IsetknMakeFromHeaders(hs)

IN
[r EXCEPT

l.datavs = {v € Q: keep(v)},
l.dataisk = Unionlsetkns({Q, isk})

]

Add versions to a replica’s data store.

We add versions that are not already in the replica’s data-set knowledge. This ensures that we do not
add a version for which we know a superseder. Then we addeali¢haders, which increases the replica’s
data item-set knowledge and discards superseded versions.

Note that there is no requirement to check that the versiatshihe replica’s filter. Such versions can later
be discarded at any time as out-of-filter versions.
ReplicaAddDataVersions(r, vs) =
LET
addv(v) = —IsVersionInIsetkn (v, r.dataisk)
IN
[[r — r] EXCEPT
Lr.datavs = QU {v € vs : addv(v)},
l.r = ReplicaAddDataHeaders(Q, {v.head : v € vs}),
Llr=@
l.r

35



Discard any versions from replica’s data store that matcérsid.

ReplicaDiscardData Versids(r, vis) =
[r EXCEPT!.datavs = {v € Q : v.head.zi.vi ¢ vis}]

Add versions to a replica’s auth store.
ReplicaAddAuth Versions(r, vs, ak)
[[r — r] EXCEPT
Lr.authvs = QU vs,
Lr.authk = QU {v.head.xi.vi : v € vs} U ak,
lr=aQ

|.r

2

Copy the auth store into the data store and copy the auth kdoelinto star data item-set knowledge.

ReplicaMakeStar(r0) =
LET
copyauthdata(r) = ReplicaAddDataVersions(r, r.authvs)

copyauthknow(r) = [r EXCEPT!.dataisk =
Unionlsetkns({Q, IsetknMakeStarFromKn(r.authk)})]

IN
[[r — r0] EXCEPT
l.r = copyauthdata(Q),
l.r = copyauthknow (@),
Lr=@Q
|.r

Discard out-of-filter versions from the data store.

ReplicaDiscardDataOof (r) =
[r EXCEPT!.datavs = {v € Q : IsVersionInFilter(v, r.filter)}]

Discard superseded versions from inside the auth store.

ReplicaDiscardAuthSsin(r) =
LET
ssin(v, vs1) = Jvl € vsl : Supersedes Version(vl, v)
IN
[r EXCEPT!.authvs = {v € @Q : =ssin(v, @Q)}]

Make conflict-free knowledge at a replica if possible.

ReplicaMakeFreeisk(r) 2
LET

Versions of itemidiz in data store. Recall that the data store never containsvamyersions such that
one supersedes the other.

36



dvsii(ii) = {v € r.datavs : v.head.zi.ii = ii}

Itemid 4 is conflict-free in data store.
freeii(ii) = Ywl, v2 € dusii(ii) : v1 = v2

Made conflict-free knowledge for itemid. Note that the fact that an itemid is conflict-free in our data
store is meaningless unless we also have a star filter.

mfreek(ii) = IF A IsStarFilter(r.filter)
A freeii(ii)
THEN Isetkn_GetItemidKn(r.dataisk, i)
ELSE EmptyKn

Made conflict-free item-set knowledge.
mfreeisk = [ii € Ttemid — mfreek(ii)]
IN
[r EXCEPT!. freeisk = BetterIsetkn(Q, mfreeisk))

Use conflict-free knowledge to densify made-with knowledge

Any version in the data store that is within conflict-free wiedge and about whose itemid we have data
knowledge that contains the corresponding conflict-freenltedge can have its made-with knowledge re-
placed from the conflict-free knowledge.

Any version in the auth store that is also in the data storebeatnansformed in the same way.
ReplicaDensifyMuw(r) =

LET
datakv(v) = Isetkn_GetItemidKn(r.dataisk, v.head.xi.ii)
freekv(v = Isetkn_GetltemidKn(r.freeisk, v.head.zi.ii)
datav(v) = \F A IsVersionInKn(v, freekv(v))
A GeqgKn(datakv(v), freekv(v))
THEN [v EXCEPTLhead.mw = freekv(v)]
ELSE v
authv(v) = 1\F3dv € r.datavs : v.head.zi.vi = dv.head.zi.vi
THEN datav(v)
ELSE v
IN
[r EXCEPT

l.datavs = {datav(v) : v € @},
lauthvs = {authv(v) : v € Q}

]

Replica send message.

This is a simple operation. We write it up this way so that wetgee checking on the message at a point
near to where it is created, rather than much later.
ReplicaSendMsg(r, msg) =

IF ¢ Replica THEN AbortType(r) ELSE

37



IF msg ¢ Msg THEN AbortType(msg) ELSE

[r EXCEPT!.sendmsgq = @ o (msg)]

Replica receive message - request sync.
ReplicaRecuMsgRequestSync(r, msg) =

LET
tri = msg.sendri
tf 2 msg.tf
tfusn = msg.tfusn
tdisk = msg.tdataisk
tzis = msg.lxis
tzisyes = msg.txisyes

tGeqF £ GegFilter(tf, r.filter)
tLeqF £ GegFilter(r.filter, tf)

A
V8 = r.datavs

Source and target data item-set knowledge.

siik(ii) = Isetkn_GetItemidKn(r.dataisk, i)
tiik(ii) = Isetkn_GetltemidKn(tdisk, ii)

Determine if we should send authority on this sync reply.

doa = IF BugAuthBounceForever THEN
A tGeqF
A = DoesReplica ThinkItsRoot(r)
ELSE
r.parentri = tri

Compute auth versions and knowledge to send.

IF doa THEN r.authvs ELSE {}
IF doa THEN r.authk ELSE {}

authvs =
authk =

Compute data versions to send.

| should send every version in my data store that (a) matdfeetarget filter and¥( is not already in
the target data item-set knowledge.

dosend(v) = A IsVersionInFilter(v, tf)
A —IsVersionInIsetkn (v, tdisk)

datavs = {v € vs : dosend(v)}

38



Compute direct move-out headers.

| should send a move-out derived from every version in my dtiee that (a) does not match the target
filter and () supersedes something that the target has in its data store.

However, there is no need to send a move-out derived fromaavégasion that | have already planned
to send.
movevs =

IF BugOmitMoveouts THEN { } ELSE
{vews:
A —IsVersionInFilter(v, tf)
A3Jxi € tais : xi.vi € v.head. mw
+\ datavs

movehs = {v.head : v € movevs}

Compute indirect move-out versids.

For every xtndid the target has in its data store, if

(a) my filter contains the target filter and

(b) I know everything about that itemid that the target knowsd an

(c) I do not store that xtndid and

(d) I am not already planning to send a superseder of thatdktnd

then | should send an indirect move-out telling the targetisoard that xtndid.

movexis =
IF BugOmitMoveouts THEN {} ELSE
IF BugOmitIndMoveouts THEN {} ELSE

{zi € tais :
A tLeqF covert.filter
N GeqKn(siik(zi.i1), tiik(xi.ii)) know more ofii
A—dv € vs: v.head.xi.vi = xi.vi do not store version

A=3Jv € datavs : xi.vi € v.head.mw no supersede version
A —~Jv € movevs : xi.vi € v.head.mw no supersede move-out

} A

movevis = {zi.vi : xi € movexis}

Compute learned item-set knowledge.
learn = LET

iw(v) = v.head.xi.ii
kv(v) = Isetkn_GetItemidKn(r.dataisk, iiv(v))
iskv(v) = IsetknMakeFromItemidKn(iw(v), kv(v))

IN  Unionlsetkns

(

If my filter contains the target filter and the target includsientire set of xtndids, then the target
learns everything that | know.

IF tLeqF' A tzisyes THEN r.dataisk ELSE Emptylsetkn,

39



BUG: For all versions in my data versions store, the targenie my knowledge of that item. This
is a bug, because | might know both versions involved in a mirfuit only store one, whereas the
other version matches the target's filter.

IF BugLearnStore THEN Unionlsetkns({iskv(v) : v € r.datavs})
ELSE Emptylsetkn,

BUG: For all versions | send, the target learns my knowledgéat item. This is a bug, because
I might know both versions involved in a conflict but only stayne, whereas the other version
matches the target's filter.

IF BugLearnSend THEN Unionlsetkns({iskv(v) : v € datavs})
ELSE Emptylsetkn,

Emptylsetkn

)

Construct the message.

dmsg = |

type — “sync data”,

recurt > tri,

sendrt > .70,

datavs +— datavs,

authvs +— authuvs,

authk  +— authk,

freeisk — r.freeisk,

tf — tf,

tfusn  +— tfusn,

movehs +— movehs,

MOVeVIs — Movevis,

learn s learn

]
IN

Process.
[[r — r] EXCEPT
l.r = ReplicaSendMsg(Q, dmsg), send the message
l.r.authk = Q\ authk, discard sent auth knowledge
l.r.authvs = @\ authuvs, discard sent auth versions
Llr=aQ
|.r

40



Replica receive message sync data.
ReplicaRecvMsgSyncData(r, msg0) =
LET

usn = \F BugContainFilter THEN GeqFilter(msg0.tf, r.filter) ELSE

r.filterusn = msg0.tfusn

msg =
[msg0 EXCEPT

The source created this message based on an assumptiontehyfieer was. If at any time since

then | ever unshrunk my filter, then what the source thinksghdtio move-out might now actually

be inside my filter. And if | cannot accept the source’s movepthen | cannot accept what the
source tells me as learned item-set knowledge either.

Incidentally, it is not sufficient to check that my currenteilis contained in my filter as assumed by
the source. | could have shrunk my filter, discarded an odittef version, and then unshrunk my
filter back to what it was. In such a case, the source could senigéarned knowledge that includes
the discarded version but without sending me the discardesion.

l.movehs = IF usn V BugUnshrinkMoveout ~ THEN @ ELSE {},
l.movevis = IF usn V BugUnshrinkIndMoveout THEN @ ELSE {},
lllearn = IF usn V BugUnshrinkLearn THEN @Q ELSE Emptylsetkn

]
IN
Process.
[r — r] EXCEPT
Lr.syncact = @Q — 1,
l.r = ReplicaAddDataVersions(Q, msg.datavs),
l.r = ReplicaAddAuthVersions(Q, msg.authvs, msg.authk),
l.r = ReplicaAddDataHeaders(Q, msg.movehs),
l.r = ReplicaDiscardDataVersids(Q, msg.movevis),
l.r.dataisk = Unionlsetkns({Q, msg.learn}),

l.r.freeisk = IF BugUnionFreeisk THEN Unionlsetkns({Q, msg.freeisk})
ELSE Betterlsetkn(Q, msg.freeisk),

Lr=@

l.r

Replica receive message.

ReplicaRecvMsg(r, msg) =
CASE
msg € MsgRequestSync — ReplicaRecvMsgRequestSync (r, msg)
msg € MsgSyncData — ReplicaRecvMsgSyncData (r, msg)
OTHER — Assert(FALSE, (“unknown msg”, msg))

O
O

41



STATE

State = |
replica : [Replid — Replica],  array of replicas
truth : SUBSET Version, all versions ever created
debug : Any helpful debugging stuff

]

The initial state with parent maprim and filter mapfm .

InitState(prim, fm) = |
replica — [ri € Replid — InitReplica(ri, prim[ri], fm[ri])],
truth  — {},
debug +— ()

]

Get the replica for a given replid from a state.

GetReplicaFromState(ri, s) = s.replica[ri)

Count number of non-zeros given by replica id map.

NzOfReplidMap(rm) =

LET sum|ris € SUBSET Replid, s € Nat] =
LET
ri = CHOOSETi € ris : TRUE
val(z) = IFz =0 THEN O ELSE 1
IN

IF ris = {} THEN s ELSE sum/[ris \ {ri}, s + val(rm[ri])]
IN

sum|Replid, 0]

Count number of non-zero replicas in a state.
NzFilternumlInState(s) =
NzOfReplidMap([ri € Replid — s.replica[ri].filkernum])

NzParentnumlInState(s) =
NzOfReplidMap([ri € Replid — s.replicalri].parentnum])

2

NzVersnumlInState(s)
NzOfReplidMap([ri € Replid — s.replica[ri].versnum])

2

NzSyncactInState(s)
NzOfReplidMap([ri € Replid — s.replica[ri].syncact))

42



Sum of nats given by replica id map.
SumOfReplidMap(rm) =
LET sum|ris € SUBSET Replid, s € Nat]
LET 7 = CHOOSET: € 115 : TRUE
IN IF ris = {} THEN s ELSE sum|ris \ {ri}, s + rm[ri]]
IN  sum[Replid, 0]

=

Total of various per-replica counters in a state.

TotalFilternumInState(s) =
SumOfReplidMap([ri € Replid — s.replica[ri].filternum])

TotalParentnumInState(s) =
SumOfReplidMap([ri € Replid — s.replica[ri].parentnum])

Total VersnumlInState(s) =
SumOfReplidMap([ri € Replid — s.replica[ri].versnum])

TotalSyncactInState(s) =
SumOfReplidMap([ri € Replid — s.replica[ri].syncact])

Verify that all replicas have formed a proper tree in statéhis encompasses the requirements:

(1) every child’s filter is contained in its parent’s filter,
(2) if a replica does not have a parent it has a star filter,
(3) every path of parent links is finite, and

(4) there is at most one replica without a parent.

IsProperTreelnState(s) =

LET
r(ri) = GetReplicaFromState(ri, s) replicari
rf(ri) = r(ri).filter ri's filter
pri(ri) = r(ri).parentri ri's parent replid
npri(ri) = pri(ri) = NullReplid 7i has no parent
pr(ri) = r(pri(ri)) parent replica
prf(ri) = pr(ri).filter parent’s filter

=

FiniteParentPath[ri € Replid, ris € SUBSET Replid]

IF 72 € ris THEN FALSE ELSE
IF npri(ri) THEN TRUE ELSE
FiniteParentPath[pri(ri), ris U {ri}]

IN

AN ri € Replid : —npri(ri) = GeqFilter(prf(ri), rf(ri))

AY ri € Replid : npri(ri) = IsStarFilter(rf(ri))

AY ri € Replid : FiniteParentPath[ri, {}]

AV ril, ri2 € Replid : (npri(ril) A npri(ri2)) = ril = ri2

43



Transfer all messages from replicas’ sendmsg queues telthent recvmsg queues.
State TransferMsgs(s0) =

LET zfer[s € State] =
LET
sq(ri) = s.replica[ri).sendmsgq
sendris = {ri € Replid : Len(sq(ri)) > 0}
sendri = CHOOSEri € sendris : TRUE
msg £ Head(sq(sendri))
recori = msg.recuri
s1 £ [s EXCEPT
l.replicalsendri].sendmsgq = Tail(Q),
l.replicalrecuri].recomsgqg = @ o (msg)
]
IN
IF sendris = {} THEN s ELSE zfer[s1]
IN
zfer|[s0]

Update a replica. Then transfer all messages.
StateUpdateReplica(s, r) =
State TransferMsgs([s EXCEPT Lreplica[r.ri] = r])

Add new version to truth.
StateAddVersionToTruth(s, v) = [s EXCEPT!.truth = @ U {v}]

Add debug info.
StateAddDebug(s, ) = [s EXCEPT!.debug = ]

CONSTRAIN

In order to restrict exploration to a reasonably small fisié&of executions, we constrain various things that
could lead to a large or unlimited number of distinct stafégese things are

(1) the creation of a new version by a replica

(2) the number of unanswered syncs a replica has active
(3) the changing of a replica’s filter

(4) the changing of a replica’s parent

Constrain(s) =
A NzFilternumInState(s) < MazNzFilternum
A NzParentnumlInState(s) < MaxNzParentnum
A NzSyncactInState(s) < MaxNzSyncact
A NzVersnumlInState(s) < MaxzNzVersnum

44



A TotalFilternumlInState(s) < MaxzTotalFilternum
A TotalParentnumiInState(s) < MaxTotalParentnum
A TotalSyncactInState(s) < MaxTotalSyncact
A TotalVersnumlInState(s) < MazTotalVersnum
AV ri € Replid :

LET

r = GetReplicaFromState(ri, s)

IN

A r.filternum < MazxFilternum

A r.parentnum < MaxParentnum

A r.syncact < MazSyncact

A r.versnum < MaxVersnum

INITIAL STATE SPECIFICATION

Start with any assignment of parents and filters that makes@eptree. Since replicas are all equivalent, it
does not matter which one is the root, so we also restrict onsideration of initial states to those in which
one particular (arbitrarily chosen) replica is the root.

Init =
Iprim € [Replid — ReplidOrNull] :
Ifm € [Replid — Filter] :
A state = InitState(prim, fm)
A IsProperTreelnState(state)

N LET
rootri = CHOOSEri € Replid : TRUE an arbitrary root
rootr = GetReplicaFromState(rootri, state)
IN

rootr.parentri = NullReplid

NEXT STATE RELATIONS

A replica changes its filter.

NextChangeFilter(ri) =
dnf € Filter :
LET
T = GetReplicaFromState(ri, state)
f £ r filter
shrink = GeqFilter(f, nf)  definitely shrinking the filter
rl = [r EXCEPT

I.filterusn = @Q + IF shrink THEN O ELSE 1,

45



Ifilternum = @Q + 1,

l.dataisk =
IF shrink THEN Q ELSE
IF BugOmitRebuildOnUnshrink THEN Q ELSE
IsetknMakeFrom Versions(r.datavs)

]

debug = IF shrink THEN “shrink filter” ELSE “unshrink filter”

s1 = StateUpdateReplica(state, 1)

s2 = StateAddDebug(s1, (debug, i, f, nf))
IN
Af # nf suppress no change in filter
A state’ = s2

A replica changes its parent.
NextChangeParent(ri) =
Jnpri € ReplidOrNull :
LET
r = GetReplicaFromState(ri, state)
pri = r.parentri

rl = [r EXCEPT
l.parentri = npri,
l.parentnum = Q + Parentinc

]

State UpdateReplica(state, r1)
StateAddDebug(s1, (“change parent”, ri, pri, npri))

s1
52
IN
A pri # npri suppress no change in parent
A pri # ri do not pick self as parent
A state’ = s2

e 11>

Create a new item. We can use any content and any itemid.

Using an itemid that is already in use creates a root-leveflict but is perfectly allowable in the specifi-
cation. It has the benefit of allowing the model-checker tol@e conflict scenarios without having first to
establish the root version and then subsequently derivedahfiicting versions.
NextCreateltem(ri) =

Jcont € Content :

dii € Itemid :

LET
r < GetReplicaFromState(ri, state)
on = roversnum + 1
A
2}

46



vi = [ri —rori,on —on |

v = [i e, vi — v ]

head = [xi '+ zi, mw — mw ]

v £ [head — head, cont — cont]

r1 = [r EXCEPT .versnum = vn]

r2 = ReplicaAddAuthVersions(r1, {v}, EmptyKn)

sl = StateUpdateReplica(state, r2)

s2 = StateAddVersionToTruth(s1, v)

s3 = StateAddDebug(s2, (“create item”, i, v))
IN
A state’ = s3

Update a version.

NextUpdate Version(ri) =
LET
r = GetReplicaFromState(ri, state)
on = roersnum + 1

Itemids of versions in my data versions store.

iis = {v.head.zi.ii : v € r.datavs}

IN
Ji € dis
Juvs € SUBSET{v € r.datavs : v.head.zi.ii = i1} :
Jcont € Content :
LET
Compute made-with knowledge of new version.

mw = UNION {{v.head.zi.vi} Uv.head.mw : v € uvs}

vi = [ri o rori,on —on |

vi = [i —ii, vi o— v ]

head = [zi '+ zi, mw — mw |

v £ [head — head, cont — cont]

r1 = [r EXCEPT!.versnum = vn]

r2 = ReplicaAddAuthVersions(r1, {v}, EmptyKn)

sl = StateUpdateReplica(state, r2)

s2 = StateAddVersionToTruth(s1, v)

s3 = StateAddDebug(s2, (“update version”, i, v))
IN
A uvs # {} non-empty set of versions to update
A state’ = s3

Use authoritative knowledge to make star knowledge.

a7



=

NextMakeStar(ri)
LET

T
rl

GetReplicaFromState(ri, state)
ReplicaMakeStar(r)

e[l

s1
52
IN
A = BugOmitMakeStar
Ar#rl
A state’ = s2

StateUpdateReplica(state, r1)
StateAddDebug(s1, (“make star”, ri))

e [1>

Make conflict-free knowledge at a replica if possible.
NextMakeFreeisk(ri) =

LET
r < GetReplicaFromState(ri, state)
rl = ReplicaMakeFreeisk(r)
sl = State UpdateReplica(state, r1)
s2 = StateAddDebug(s1, (“make freek”, ri))
IN
A —~BugOmitMakeFreeisk
Ar#£rl
A state’ = s2

Use conflict-free knowledge to densify made-with knowledge
NextDensifyMuw(ri) =

LET
r = GetReplicaFromState(ri, state)
r1 = ReplicaDensifyMuw(r)
sl = StateUpdateReplica(state, 11)
s2 = StateAddDebug(s1, (“densify madewith”, ri))
IN
A = BugOmitDensifyMw
Ar#rl
A state’ = s2

Discard out-of-filter versions from the data store.
NextDiscardDataOof (1) =

LET
r < GetReplicaFromState(ri, state)
r1 = ReplicaDiscardDataOof (1)
s1 = StateUpdateReplica(state, r1)

48



s2 = StateAddDebug(s1, (*discard data oof”, ri))

IN

A =~ BugOmitDiscardDataOof
Ar#rl

A state’ = s2

Discard superseded versions from inside the auth store.

NextDiscardAuthSsin(ri) =

LET
r < GetReplicaFromState(ri, state)
r1 = ReplicaDiscardAuthSsin (r)
sl = StateUpdateReplica(state, 1)
s2 = StateAddDebug(s1, (“discard auth ssin”, ri))
IN
A = BugOmitDiscard AuthSsin
Ar#£rl
A state’ = s2

Request sync.

NextRequestSync(targetri, sourceri, txisyes) =
LET
r = GetReplicaFromState(targetri, state)
rl = [r EXCEPT!.syncact = @ + 1]
tris = IF trisyes THEN {v.head.zi : v € r.datavs} ELSE {}
msg = |
type — “request sync”,
recury  +— sourcert,
sendri  +— 1.7,
tf — r.filter,
tfusn  +— r.filterusn,
tdataisk — r.dataisk,
txis — txis,
trisyes +— twisyes
]
r2 = ReplicaSendMsg(rl, msg)
sl = StateUpdateReplica(state, 12)
s2 = StateAddDebug(s1, (“request sync”, targetri, sourceri))
IN
A = OptSelfSync = targetri # sourceri
A state’ = s2

Initiate sync upto my parent. Provided | have a parent, haests a sync from me. There is no need for my
parent to send me his full set of xids.

49



NeztInitiateSync UptoParent(ri) =

LET

r = GetReplicaFromState(ri, state)
pri = r.parentri
IN

A pri # NullReplid
A NextRequestSync(r.parentri, ri, FALSE)

Initiate sync from my parent. Provided | have a parent, | estja sync from him. | must send my full set of
xis in order to get learned knowledge.

NextInitiateSyncFromParent(ri)
LET
r
pri
IN
A pri # NullReplid
A NextRequestSync(ri, r.parentri, TRUE)

=

GetReplicaFromState(ri, state)
r.parentri

1> 1>

Process message.
NextProcessMsg(ri) =

LET
r = GetReplicaFromState(ri, state)
msg = Head(r.recmsgq)
rl = [r EXCEPT!.recumsgq = Tail(Q)]
r2 = ReplicaRecvMsg(r1, msg)
sl = StateUpdateReplica(state, 12)
s2 = StateAddDebug(sl, (“process msg”, ri, msg))
IN
A Len(r.recvmsgq) > 0
A state’ = s2

Put all the alternatives together into one next state celati

Various replica bookkeeping next state relations haveipyim order to hold down the state graph explosion
during model checking.

PrioMakeStar = 37 € Replid : NextMakeStar(ri)
PrioMakeFreeisk = 37 € Replid : NextMakeFreeisk(ri)
PrioDensifyMw 2 Jri € Replid : NextDensifyMw(ri)
PrioDiscardDataQof = 3ri € Replid : NextDiscardDataOof (i)
PrioDiscardAuthSsin = 3ri € Replid : NextDiscardAuthSsin (ri)
NeaztAny =

IF ENABLED (PrioMakeStar) THEN PrioMakeStar ELSE

IF ENABLED (PrioMakeFreeisk) THEN PrioMakeFreeisk ELSE

50



IF ENABLED (PrioDensifyMuw) THEN PrioDensifyMuw ELSE
IF ENABLED (PrioDiscardDataQof ) THEN PrioDiscardDataQOof ELSE
IF ENABLED (PrioDiscardAuthSsin) THEN PrioDiscard AuthSsin ELSE

V 3ri € Replid :
V NexztChangeF'ilter(ri)
V NextChangeParent(ri)

V NextCreateltem(ri)
V NextUpdate Version(ri)

V NextMakeStar(ri)

V NexztMakeFreeisk(ri)

V NextDensifyMuw(ri)

V NextDiscardDataOof (1)
V NextDiscardAuthSsin(ri)

V NextInitiateSyncUptoParent(ri)
V NextInitiateSyncFromParent(ri)
V NextProcessMsg(ri)

V Jtri, sri € Replid
Jtzisyes € BOOLEAN :
NextRequestSync(tri, sri, tzisyes) arbitrary topology sync

Conjoin the next state relation with a constraint on the nites The constraint restricts the elaboration of
the state space graph in order to enable model checking.

Next = NextAny A Constrain(state’)

INVARIANTS

The state is of the proper type.
InvType = state € State

Every created version has either been superseded or isrehta some replica’s store or in some sync data
message.

InuNoLoss =
YV tv € state.truth :
Vv 3 tvl € state.truth : SupersedesVersion(tvl, tv)
V 3ri € Replid :

LET
r = GetReplicaFromState(ri, state)
vs = GetVersionsInReplica(r)

51



IN
dv € vs : v.head.xi.vi = tv.head.xi.vi

Every created version is contained in some replica’s aiigtive knowledge or in the authoritative knowl-
edge of some sync data message.

InuNoLossAuth =
Yov € state.truth :
Jri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
V IsVersionInKn(v, r.authk)
V 3msg € GetRecvMsgsOfReplica(r) :
A msg € MsgSyncData
A IsVersionInKn(v, msg.authk)

All versions a replica has must be identical to true versiemnsept that its made-with knowledge can be a
superset.

InvStore Truth =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vv € GetVersionsInReplica(r) :
Jtv € state.truth :
A [v EXCEPTLhead.mw = {}] = [tv EXCEPT!.head.mw = {}]
A GegKn(v.head.mw, tv.head.mw)

All versions a replica has must have made-with knowledge hitlwveach versid listed must either be (1)
included in the made-with knowledge of the true version{i@)versid of the version itself, or (3) the versid
of a true version of a different item.

InvStoreMw =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vv € GetVersionsInReplica(r) :
dtv € state.truth :
A v.head.xi.vi = tv.head.zi.vi
AVwvil € v.head.mw :
V vil € tv.head.mw
V vil = v.head.zi.vi
VvV dtvl € state.truth :
A tvl.head.zi.vi = vil
A tvl.head.xi.ii # v.head.zi.ii

52



If areplica ha in its data store, it must have data knowledge of version

InvKnowData =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vv € r.datavs : IsVersionInlsetkn(v, r.dataisk)

If areplica has in its data store, it must not have data knowledge of any eertiat supersedes

InvHaveDataSuperseder 2
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vv € r.datavs :
Vtv € state.truth :
SupersedesVersion(tv, v) = —IsVersionInlsetkn(tv, r.dataisk)

If a replica has auth knowledge ofbut does not have in its auth store, it must have a supersedev af
its auth store.

InvHaveAuthSuperseder =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)

miss(tv) 2
A IsVersionInKn(tv, r.authk)
A—=3Jv € r.authvs : v.head.xi.vi = tv.head.xi.vi

IN
Vtv € state.truth : miss(tv) =
Jtvl € state.truth :
A SupersedesVersion(tvl, tv)
A 3wl € r.authvs : vl.head.xi.vi = tvl.head.zi.vi

If a replica knows versiomw, which is not superseded and which matches the replicaes fitien the replica
must storev.

InvDataFilter =
Vri € Replid :
LET

r

II>

GetReplicaFromState(ri, state)

want(tv) = A IsVersionInIsetkn(tv, r.dataisk)
A =T tvl € state.truth : SupersedesVersion(tvl, tv)
A IsVersionInFilter(tv, r.filter)

53



=

have(tv)
IN
YVitv € state.truth : want(tv) = have(tv)

Adwv € r.datavs : v.head.xt.vi = tv.head.xi.vi

If a replica has auth knowledge of versionand versiorv is not superseded, then the replica has version
in its auth store.

InvHaveAuth =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vi € r.authk :
dtv € state.truth :
A vi = tv.head.xi.vi
A V3 twl € state.truth : SupersedesVersion(tvl, tv)
V dwv € r.authvs : v.head.zi.vi = tv.head.xi.vi

If areplica has version in its auth store, then the replica has auth knowledge ofarers

InvKnowAuth =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Vv € r.authvs : IsVersionInKn(v, r.authk)

TEMPORAL ASSUMPTIONS

Liveness assumption.

Liveness =
Vri € Replid :
A WFgaie (NextInitiateSync UptoParent (ri))
A WFgaie (NextInitiateSyncFromParent (ri))
A WFgate (NextProcessMsg(ri))

A WFgioie (NextMakeFreeisk(ri))
A WFga1e (NextDensifyMuw(ri))

(
(
A WFgioie (NextMakeStar(ri))
(
(
A WFgate (NextDiscardDataOof (1))

Eventually we stop creating new versions.

EventualAlwaysFrozen Truth =
OO(state.truth = state’ .truth)

54



Eventually we stop changing the tree.

Eventual AlwaysFrozenTree =
OOV ri € Replid :

LET
r = GetReplicaFromState(ri, state)
nr = GetReplicaFromState(ri, state’)
IN

A r.filter = nr.filter
A r.parentri = nr.parentri

Eventually we always have a proper tree.

EventualAlwaysProper Tree =
&OIsProper TreeInState(state)

TEMPORAL PROPERTIES

Filter consistency. Each replica stores exactly thosesuperseded versions that match its filter.

FilterConsistency =

Vri € Replid :

LET
T = (GetReplicaFromState(ri, state)
tvs = state.truth
ntvs = {tv € tvs : =3 tvl € tvs : Supersedes Version(tvl, tv)}
fatvs = {tv € ntvs : IsVersionInFilter(tv, r.filter)}
IN

{v.head.zi.vi : v € r.datavs} = {tv.head.xi.vi : tv € fntvs}

Eventual filter consistency.
AlwaysEventualFilterConsistency = 0O< FilterConsistency

Auth supersession. Each replica contains only non-sugedseersions in its auth store.
AuthSupersession =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
Yov € r.authvs :
—Jtwl € state.truth : SupersedesVersion(tvl, v)

Eventual auth supersession.

55



AlwaysEventual AuthSupersession = OO AuthSupersession

Knowledge singularity. Each replica’s data item-set kremlge is entirely star knowledge.
KnSingularity =
Vri € Replid :
LET
r = GetReplicaFromState(ri, state)
IN
IsStarlsetkn(r.dataisk)

Eventual knowledge singularity.
AlwaysBventualKnSingularity = 0O KnSingularity

Made-with singularity. Among versions of items with no wswked conflicts, the made-with knowledge is
identical at all replicas.

MuwSingularity =
LET
Non-superseded true versions of itemid

ntvsii(ii) = {tv € state.truth :
A tv.head.zi. i = @
A—Jtvl € state.truth : SupersedesVersion(tvl, tv)

}

There are no unresolved conflicts of itemid
freeii(ii) = Ytvl, tv2 € ntvsii(ii) : tvl = tv2

All stored versions at all replicas.
vs = UNION { GetReplicaFromState(ri, state).datavs : ri € Replid}

All stored versions of items with no unresolved conflicts.

rus = {v € vs : freeii(v.head.xi.ii)}
IN
Vol, v2 € rvs : vl.head.mw = v2.head.mw

Eventual made-with singularity.

AlwaysBventualMwSingularity = 0O MwSingularity

VIEW

The debug component of the state contains commentary on the actianvi@used to arrive at the state.
We disregard this commentary when comparing states forliggirathe state graph.

View = [state EXCEPT!.debug = {}]

56



SPECIFICATION

Spec =
A Init
A O [Next]smte
A Liveness
A EventualAlwaysFrozenTruth
A EventualAlwaysFrozen Tree
A Eventual AlwaysProperTree

THEOREM Spec =
A OInvType
A OInvNoLoss
A OInvNoLossAuth
A OInvStore Truth
A OInvStoreMw
A OInvKnowData
A OInvHaveDataSuperseder
A OInvHaveAuthSuperseder
A OInvDataFilter
A OInvHaveAuth
A OInvKnowAuth
A AlwaysFEventualFilter Consistency
A AlwaysFEventual AuthSupersession
A AlwaysFEventual KnSingularity
A AlwaysFEventual MwSingularity




Appendix B

Model configurations

This chapter lists sample model configurations for the TLAedfication listed in
Appendix A. The first several configurations run to completibecking all invariants
and temporal conditions with no errors found. The remaimogfigurations turn on
various bugs and find counterexample model execution estor

58



B.1 Model configuration ibx

CONSTANT
CONSTANT
CONSTANT

CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT

Itemd = { i }
Replid = { a, b}
Content = { w, x }

Nul | Replid = nri

Parentinc = 1

MaxFilternum= 2
MaxPar ent num =
MaxVer snum = 1
MaxSyncact = 1

[N

MaxNzFi | t er num
MaxNzPar ent num
MaxNzVer snum = 1
MaxNzSyncact = 1

Inn
N

MaxTot al Fi | ter num
MaxTot al Par ent num
MaxTot al Ver snum =
MaxTot al Syncact =

SN

[l |1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency
PROPERTY Al waysEvent ual Aut hSuper sessi on

PROPERTY Al waysEvent ual KnSi ngul arity
PROPERTY Al waysEvent ual MASi ngul arity

59




B.2 Model configuration icy

CONSTANT Itemid = { i }
CONSTANT Replid { a b, ¢}
CONSTANT Content = { w, X, y }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 1
CONSTANT MaxParent num = 1
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 1
CONSTANT MaxNzSyncact = 1

Inn
iy

CONSTANT MaxTotal Filternum
CONSTANT MaxTot al Par ent num
CONSTANT MaxTot al Ver snum =
CONSTANT MaxTot al Syncact =

[l |1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency
PROPERTY Al waysEvent ual Aut hSuper sessi on
PROPERTY Al waysEvent ual KnSi ngul arity
PROPERTY Al waysEvent ual MASi ngul arity

60



B.3 Model configuration jbx

CONSTANT
CONSTANT
CONSTANT

CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT

ltemd = { i, j }
Replid = { a, b}
Content = { w, x }

Nul | Replid = nri

Parentinc = 1

MaxFilternum= 2
MaxPar ent num =
MaxVer snum = 1
MaxSyncact = 1

[N

MaxNzFi | t er num
MaxNzPar ent num
MaxNzVer snum = 1
MaxNzSyncact = 1

Inn
N

MaxTotal Fil ternum= 2
MaxTot al Parent num = 1
MaxTot al Ver snum = 1
MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency
PROPERTY Al waysEvent ual Aut hSuper sessi on

PROPERTY Al waysEvent ual KnSi ngul arity
PROPERTY Al waysEvent ual MASi ngul arity

61




B.4 Model configuration BugAuthBounceForever

CONSTANT Itemd = { i }
CONSTANT Replid { a b, ¢}
CONSTANT Content = { w}

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 1
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 1
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency

CONSTANT BugAut hBounceFor ever = TRUE

62



B.5 Model configuration BugContainFilter

CONSTANT Itenid = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum =
CONSTANT MaxPar ent num =
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

onN

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 1
CONSTANT MaxNzSyncact = 1

Inn
iy

CONSTANT MaxTotal Filternum= 2
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 1
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugCont ai nFilter = TRUE

63



B.6 Model configuration BugLearnSend

CONSTANT Itemd = { i }
CONSTANT Replid { a b, ¢}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugLear nSend = TRUE

64



B.7 Model configuration BugLearnStore

CONSTANT Itemd = { i }
CONSTANT Replid { a b, ¢}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugLearnStore = TRUE

65



B.8 Model configuration BugOmitDiscardAuthSsin

CONSTANT Itemd = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w}

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Aut hSuper sessi on

CONSTANT BugOni t Di scar dAut hSsin = TRUE

66



B.9 Model configuration BugOmitDiscardDataOof

CONSTANT Itenid = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency

CONSTANT BugOni t Di scar dDat aCof = TRUE

67



B.10 Model configuration BugOmitindMoveouts

CONSTANT Itemd = { i }
CONSTANT Replid { a b, ¢}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency

CONSTANT BugOni t | ndvbveouts = TRUE

68



B.11 Model configuration BugOmitMoveouts

CONSTANT Itenid = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

PROPERTY Al waysEvent ual Fi | t er Consi st ency

CONSTANT BugOnmi t Moveouts = TRUE

69



B.12 Model configuration BugOmitRebuildOnUnshrink

CONSTANT Itemd = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w}

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum =
CONSTANT MaxPar ent num =
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

o

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 1
CONSTANT MaxNzSyncact = 1

Inn
iy

CONSTANT MaxTotal Filternum= 1
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 1
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugOni t Rebui | dOnUnshri nk = TRUE

70



B.13 Model configuration BugUnionFreeisk

CONSTANT Itemd = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w}

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum= 0
CONSTANT MaxPar ent num = 0
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
o

CONSTANT MaxTotal Filternum= 0
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugUni onFreei sk = TRUE

71



B.14 Model configuration BugUnshrinkLearn

CONSTANT Itenid = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum =
CONSTANT MaxPar ent num =
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

onN

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 1
CONSTANT MaxNzSyncact = 1

Inn
iy

CONSTANT MaxTotal Filternum= 2
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 1
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugUnshri nkLearn = TRUE

72



B.15 Model configuration BugUnshrinkMoveout

CONSTANT Itenid = { i }
CONSTANT Replid = { a, b}
CONSTANT Content = { w, x }

CONSTANT Nul | Replid = nri

CONSTANT Parentinc = 1
CONSTANT MaxFilternum =
CONSTANT MaxPar ent num =
CONSTANT MaxVer snum = 1
CONSTANT MaxSyncact = 1

o

CONSTANT MaxNzFi | t er num
CONSTANT MaxNzPar ent num
CONSTANT MaxNzVer snum = 2
CONSTANT MaxNzSyncact = 1

Inn
iy

CONSTANT MaxTotal Filternum= 1
CONSTANT MaxTot al Parent num = 0
CONSTANT MaxTot al Ver snum = 2
CONSTANT MaxTot al Syncact = 1

SPECI FI CATI ON Spec
VI EW Vi ew

I NVARI ANT | nvType

I NVARI ANT | nvNoLoss

I NVARI ANT | nvNoLossAut h

I NVARI ANT | nvSt oreTruth

I NVARI ANT | nvSt or eMwv

I NVARI ANT | nvKnowDat a

I NVARI ANT | nvHaveDat aSuper seder
I NVARI ANT | nvHaveAut hSuper seder
I NVARI ANT | nvDat aFi | ter

I NVARI ANT | nvHaveAut h

I NVARI ANT | nvKnowAut h

CONSTANT BugUnshri nkMoveout = TRUE

73



Index

auth knowledge, 13, 14, 19
auth store, 13, 14, 19

change

filter, 11
CIMSync, 16
collection, 1,5
compaction

data knowledge, 15
conflict, 7, 8
conflict resolution, 7
conflict-free knowledge, 13, 16, 20
consistency

filter, 1, 12
consistent

weakly, 1,5
contain, 10
containment

filter, 10
content

version, 6
correctness, 2

data knowledge, 11, 13, 19
data knowledge compaction, 15
data store, 11, 13

data versions, 17

densification, 13, 15

direct data knowledge, 14
direct move-out, 18
dsensification, 16

efficiency, 2
extended identfier, 6
extended identifier, 7

filter, 1, 3, 10
star, 1, 11

filter change, 11

filter consistency, 1, 12
filter containment, 10
filter hierarchy, 12, 15
filter shrink, 11

filter unshrink, 12, 14
full replica, 1

header

version, 6, 8
hierarchy

filter, 12, 15

identifier
extended, 6, 7
item, 6
replica, 5
version, 6
indirect data knowledge, 11, 14
indirect move-out, 18
item, 1, 6
item identifier, 6
item-set knowledge, 9

knowledge, 3, 9
auth, 13, 14, 19
conflict-free, 13, 16, 20
data, 11, 13, 19
direct, 14
indirect, 11, 14
item-set, 9
star, 10
learned, 14, 19
made-with, 6, 8
knowledge promotion, 10
knowledge singularity, 2, 15

learned knowledge, 14, 19

74



made-with knowledge, 6, 8 synchronization request message, 16
made-with knowledge densification, 13, 1§,nchronization response message, 17

16 synchronize, 1
made-with singularity, 12
message target filter skew, 20
request target replica, 3, 16
synchronization, 16 )
response unshrink
filter, 12, 14

synchronization, 17
move-out, 17

i version, 1, 6
ﬁ:;?gctlfiS version content, 6
' version header, 6, 8

number version identifier, 6

version, 6 version number, 6

versions

partial replica, 1 data, 17
participate, 5 _
pertain, 7 weakly consistent, 1, 5
promotion

knowledge, 10

replica, 1, 5
full, 1
partial, 1
source, 3, 16
target, 3, 16
replica identifier, 5
resolution
conflict, 7

shrink
filter, 11
singularity
knowledge, 2, 12, 15
made-with, 12
skew
filter
target, 20
source replica, 3, 16
star filter, 1, 11
star item-set knowledge, 10
store, 3
auth, 13, 14, 19
data, 11, 13
supersede, 1, 7

75



