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Abstract. Enforcing authorization policy for operations that read and write dis-
tributed datasets can be tricky under the simplest of circumstances. Enforcement
is too often dependent on implementation specifics and on policy detail that is in-
extricable from the data under management. When datasets are distributed across
replicas in a weakly-consistent fashion, for example when updates to policy and
data propagate lazily, the problem becomes substantially harder. Specifically, if
disjoint replicas can make different decisions about the permissibility of a po-
tential modification due to temporary policy inconsistencies, then permanently
divergent state can result. In this paper, we describe and evaluate the design
and implementation of an access-control system for weakly consistent replication
where peer replicas are not uniformly trusted. Our system allows for the specifi-
cation of fine-grained access control policy over a collection of replicated items.
Policies are expressed using a logical assertion framework and access control de-
cisions are logical proofs. Policy can grow organically to encompass new replicas
through delegation. Eventual consistency is preserved despite the fact that access
control policy can be temporarily inconsistent.

1 Introduction

The availability of cheap and portable computing has resulted in a proliferation of com-
puting devices with a profound effect on our personal and professional lives. Although
data communications technology has served to connect many such devices at the net-
work level, users continue to be faced with the task of managing their data across multi-
ple devices, and the problem increases with each new device. While some applications
succeed in managing data in a centralized or well-synchronized fashion, there remain
many which do not. As a result, users routinely deal with data that is replicated, in-
tentionally or unintentionally, across multiple computing devices with (at best) weak
guarantees about consistency.

Numerous protocols and applications have been proposed for creating order from
distributed disorder. Although techniques for constructing tightly synchronized systems
such as state-machine replication [1] are well understood, we choose to examine sys-
tems with loose synchronization semantics as these have fewer operational constraints.
For example, tools such as Groove [2] provide file replication between directories lo-
cated on multiple machines. Microsoft’s Sync Framework [3] offers a general plat-



form for providing multi-node synchronization of arbitrary datatypes. Directory ser-
vices such as Grapevine [4] and Active Directory [5] support lazy propagation of up-
dates between distributed servers. All of these systems can be categorized as peer-to-
peer in the sense that updates to replicated state can propagate through peer replicas;
point-to-point links between all communicants are not required. The systems that we
consider are weakly consistent, with no guarantees as to the temporal equality of repli-
cas. However, these systems do support eventual consistency: replicas eventually con-
verge to identical states and are guaranteed to do so if updates cease.

In this paper, we consider the problem of providing access control in the context
of weakly consistent replication where replicas are not equally trusted. While there are
numerous examples of systems that use replication to provide a distributed service with
restricted access to clients (including some of the aforementioned systems), we know
of little work that discusses how to support differing levels of trust within such a service
so that some peers have only limited authority to read, author, and propagate updates.
This is an important problem because in real life collections of cooperating devices are
not homogeneous. A user might trust his home machine more than a cloud server, or
his web server less than the machine where his finances are kept, or his cell phone less
than his laptop. A replica serving a particular naming domain might be trusted only to
update names within that domain. There might be good reason to give a photo-sharing
service access to only a subset of a user’s replicated photo collection. And, of course,
with portable devices becoming such an important part of the digital lifestyle, we must
realize that such devices are easily lost and hence open to compromise. Even as these
devices join in replicated systems, we need techniques to allow trust in them to be
constrained and revoked.

Deploying meaningful access control policy where there is only weak consistency
presents three primary challenges.

– Policy must be distinguishable, and enforcement implementation-independent.
– Policy must evolve seamlessly as new replicas and data are added.
– Access control must not prevent eventual consistency.

The first challenge requires additional explanation. In many systems, for example
file systems, policy is not stated explicitly but rather encoded in a multiplicity of ac-
cess control lists (ACLs) that are not easily separable from ordinary data. Moreover,
ACL enforcement is highly implementation dependent. As we will see, neither of these
properties works well in a system in which there are temporal policy inconsistencies.

This paper presents a new system that addresses these challenges in the context of
weakly-consistent replication. To our knowledge, this is the first system to provide an
authorization framework for weakly-consistent replication without uniform trust. We
specify security policy using the SecPAL logical policy assertion language [6]. Thus,
policy is separate from data and enforcement amounts to proof-generation. Our logic
expressions provide not only a solid foundation for assignment and delegation of au-
thority between existing and new peers, but also a succinct mechanism for propagating
access control state and dealing with any potential inconsistencies that might lead to
data divergence. We have implemented our system in the context of a general-purpose
replication framework, Cimbiosys [7]. However, we expect the methods we describe
here to be applicable to weakly-consistent replication protocols in general.
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Fig. 1. An example replicated collection and policy

The remainder of the paper is organized as follows. Section 2 lays out our system
model and the threat environment our system is designed to tolerate. Section 3 describes
the problem at hand in more detail. Section 4 presents our system design. Section 5
provides additional implementation specifics as well as a brief performance evaluation
and discussion. Section 6 describes related work, and Section 7 concludes.

2 System and threat model

We refer to a dataset subject to replication as a collection. In practice, a collection might
be a file system subtree, a SQL database, a digital calendar, a list of personal contacts,
or some combination of shared data. Figure 1 shows an example collection. Collections
contain sets of items and can appear on one or more replicas. Because of access con-
trols, all data may not appear on all replicas, thus we rely on the presence of partial
replicas, for example as implemented in Cimbiosys [7]. Updates to items can originate
at any replica. Replicas synchronize periodically, that is, a destination replica requests
the enumeration and download of items from a source. We do not constrain the period or
distribution of synchronization events and we expect arbitrary communication patterns
between replicas. However, we do assume that all replicas will ultimately synchronize
(in both directions) with at least one peer.

We assume that any update to data in a collection takes place either through direct
invocation on the replication infrastructure or is observed by a helper application that
then alerts the replication infrastructure. We place only a few constraints on replication
mechanism itself (discussed in Section 4.3). As mentioned earlier, we assume eventual
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Fig. 2. Concurrent policy and data updates

consistency. Updates can arrive out of order or be superseded en route by newer updates
to the same data. Conflicts can occur due to simultaneous updates authored at different
replicas, and conflict resolution need not be automatic. Communications failures are
tolerated as long as network partition is not permanent.

The security principals in our access control system are replicas. The sorts of client
applications we are considering (e.g., productivity and portability apps) typically in-
volve a single human user per replica. Devices or servers that hold replicas for multiple
users are assumed to be capable of restricting replica access to the replica owner. Alter-
natively, an application might build user-level access control on top of our framework.

Since replicas are unequally trusted, our aim is to control access over the replica-
tion protocol operating between them. Figure 1 depicts a small collection with several
replicas. Two types of items are held in this collection: contacts and photos. The figure
also suggests an informal authorization policy that might govern such a collection. In
this policy, own access implies the right to set policy, while write access implies the
right to create or modify. All replicas are allowed to sync with other replicas, however a
sync value of all implies that the named replica should be trusted to provide collection
metadata, for example an accurate enumeration of collection items. The access control
decisions that enforce this policy are carried out during the synchronization operations
implied by the inter-replica arrows.

We assume that items are signed with public keys associated with replicas. The pur-
pose of security policy is to grant appropriate rights to these replica keys. Note that
since data items bear the authoring replica’s signature, a replica can provide a new item
version to a sync partner without write permission as long as the item bears the sig-
nature of an authoring replica that does. Similarly, we can detect attackers who forge
items or author them with insufficient rights. Our controls on reading items and provid-
ing collection metadata depend transitively on the correctness of each replica through
which data can pass. We do not implement cryptographic privacy, although replica keys
could potentially be used for that purpose. In another paper, we describe an archive-
based technique to permit distributed state recovery after replica compromise within
this framework [8]. We do not explicitly deal with denial-of-service attacks.

3 Policy and replication

One difficulty that arises when implementing access control under weakly-consistent
replication is that the access control state at different replicas can vary at any given



time. Inconsistency due to re-ordering of updates can clearly occur since we make no
assumptions about update ordering or global clocks. We must ensure that such tempo-
rary policy inconsistency does not result in permanent inconsistency of replicated state.

In Figure 2, we depict a three-node collection that we use to examine what can
happen when replicas are both inconsistent and mutually suspicious. The dashed lines
represent the normal synchronization relationships between these nodes. The solid lines
represent update flows. The collection initially has policy P . Suppose two updates are
introduced into the system: a policy change P ′ and a data update U ′, where U ′ is valid
under policy P ′ but not P . (A similar problem would arise if U ′ were allowed by P but
disallowed by P ′.) Suppose further that P ′ has not yet propagated to node C. Since our
system places no constraints on update ordering, U ′ can in fact arrive at node C prior to
P ′. In a framework of mutual trust, U ′ will be accepted at C because the critical access
control check takes place where the update enters the system, at B. No other access
checks are needed. However, in a mutually distrustful system, there must be an access
check at every hop and U ′ can be rejected at C although it was accepted at other nodes.
If so, the replica state at C will differ from other replicas, and lacking other action, the
divergence will be permanent.

The situation becomes more complicated if access control policy is not separable
from data under management. For example, if an access control list carried in one item
can reference group names whose membership is represented by other items, then a
reordering in the update flow of such items can again cause unintended states, incor-
rect access decisions, and violation of eventual consistency. As more collection-specific
state becomes involved, and as the actual policy to be enforced depends more on imple-
mentation detail, determining and producing a consistent state can become difficult.

A final scenario can also cause trouble. It is sometimes necessary in replicated sys-
tems to download an entire replica from another, possibly due to failure or to the cre-
ation of a new replica. What should happen during such a download if the policy that
allowed for the authorship of an item has been changed and the item is thus no longer
approved by the current policy? In other words, do we enforce policy exactly once when
the item is first encountered, or check whether items are valid for only as long as the
policy that validates them is extant?

We address these concerns in Section 4.3 below.

4 System design

In this section we describe the design of our access control system. We refer the three
challenges introduced in the Introduction and organize this material to reflect how our
system handles these separate challenges. We conclude the section with a discussion
that motivates our design.

4.1 Policy encoding and enforcement

Collections, items, and labels. Our principals are replicas and we identify them with
public keys. We call the initial replica of a collection its collection manager, and the
collection is named with its key. The collection manager is the de-facto trusted root



authority for the collection. The collection manager secret key can be maintained either
offline or online. In the offline case, the collection manager state resides on storage
media (such as a flash key) that can be secured offline. Initial replica bootstrap (as
described in Section 4.2) is performed by a single program that reads both the collection
manager state and the new replica state into memory. In the online case, the collection
manager takes the form of an online server that accepts requests for bootstrap. In either
case, sufficient authority can be delegated to online entities to assure progress in the
collection manager’s absence.

Collection items are signed with the public key of the authoring replica. That is,
when a user or application issues an update to an item either directly through the repli-
cation framework API or as observed by the replication software, a new version of the
item is generated and signed with the key of the local replica. The numbering of item
versions and the mechanism for determining dominance between versions is handled by
the replication framework. Thus, item version numbers do not appear in access control
policy (except for revocation).

We control three specific operations during replica synchronization: write, read,
and sync. An author replica must be able to prove (to other replicas) that it is entitled
to write an item in order for such an item to be considered valid. Each replica must be
able to prove during synchronization that it is entitled to read items from the requested
collection (or subset). Finally, in order for a replica to trust collection metadata from its
peer, for example an accurate enumeration of items, that replica must have sync rights
on the collection.

The resources subject to access control in our system are policy labels. Labels repre-
sent explicit classes of items. Policy grants replicas access rights over labels and hence
over the items bound to these labels. Policy labels are defined in a hierarchical names-
pace where the empty string is the root path and ‘.’ is the path arc separator. Rights
over a parent in the hierarchy imply rights over its children. We use the special label all
as a synonym for the root path.

Policy binding requires care. If an untrusted replica can change a policy label on an
item, it can assign a policy label that gives itself access rights, and this is tantamount to
forging an item. Hence, we bind a policy label into each item by creating a secure item
identifier that contains a cryptographic hash of the item’s identifier and its policy label.
The hash value is checked as part of every access control decision. Thus, an attacker
cannot change the item policy without creating either an invalid update or a new item.
The cost of this technique is that once created, an item cannot be re-bound to a different
policy label. However, as discussed next, the set of policy claims that apply to a given
label can and do change.

Claims. We use logic to formalize access control policy and to construct logical proofs
that correspond to access control decisions. Numerous logical frameworks have been
proposed in the literature that would suffice for our purposes. We choose to use the Sec-
PAL framework because it offers particular flexibility with respect to constraints on del-
egation of authority. Furthermore, Microsoft has released a free public toolkit that can
represent and evaluate a substantial subset of SecPAL. This toolkit translates policy and
queries written in SecPAL, or its corresponding XML object model, into Constrained



Datalog [9] expressions. In general, queries represent assertions to be proved, and pol-
icy represents a set of evidentiary claims. SecPAL’s evaluator attempts to construct a
logical proof using the Datalog expressions derived from these entities. This evaluator
has been shown to be both sound and complete, and it always terminates [6].

Claims are policy statements made by principals. A principal is a public key or a
special hardcoded entity. There are two special principals: LA and Anonymous. The first
is the universally-trusted local authority (e.g., the ground truth). Any direct claim by LA
is believed, and most if not all such claims are hard-coded policy axioms. Every access
control decision is an attempt to deduce, by chaining together claims, that LA says that
the desired action is permitted. Anonymous is the principal without credentials. It can
be used for giving limited rights to “everyone”.

Claims can be conditional on either other facts or constraints. A fact is a statement
about a principal, often inferring the right to perform an action, usually concerning a
policy label. Facts can contain unbound variables for both principals and labels (e.g.,
%p and %l which link direct and conditional facts in a claim. Each claim can bear
an optional, author-relative claimId to permit subsequent revocation. Facts come in
four forms and those forms connote: grant of authority (“can”); delegation of authority
(“can say”); revocation (“revokes”); and delegation of revocation authority (“can say
... revokes”). Hence, this is a monotone logic in which rights can only be added, but
that supports revocation of specific claims by the claim author or a delegate. Facts, in
general, are not revokable.

We defined the action verbs read, write, and sync in the previous section. Here we
axiomatically define the verb own which connotes full authority over a label including
the right to delegate all rights. 1

LA says %p can {read, write, sync} %l if %p can own %l
LA says %p can say %q can {own, read, write, sync} %l if %p can own %l

In other words, if a principal owns a label, he can read, write, or sync. Furthermore,
he can say that another principal can do any of the above. We will not present the full
claim syntax here. In brief, it includes a means for specifying groups of principals, a
constraint grammar that can represent abstractions such as time, pattern matching, and
hierarchical path comparison, and a means for limiting recursion when delegating.

As the root of authority, we introduce a collection manager CM and write a claim
that grants it authority over the entire collection.

LA says CM can own all

The collection manager, whether online or offline, can then write claims concerning
collection policy. Following the example in Figure 1, it gives all rights to the HomePC
by writing:

CM says HomePC can own all

1 The {x,y,z} syntax is not part of SecPAL. We use it as an abbreviation for an iterated expression
formed by substituting each of the elements within the braces into the encapsulating text line.



The collection manager can now be taken out of the picture if desired since it has
delegated all its authority. To continue the example, HomePC then mints a new replica
Laptop and gives it control over contacts items. It also creates replicas for the Cloud
store and for the MediaPlayer, and gives them distinguished rights. Similarly, the new
Laptop replica can delegate some of its rights, and so on. Note that the delegation from
Laptop to Mobile is an example of a more limited form of delegation than ownership.

HomePC says Laptop can {read,write,sync} all
HomePC says Laptop can own contacts
HomePC says Cloud can {read,sync} all
HomePC says MediaPlayer can read photos
Laptop says Work can {read,write} contacts
Laptop says Mobile can {read,write} contacts
Laptop says Mobile can say %p can {read,write} contacts
Mobile says Spouse-Mobile can read contacts

So, each replica can issue policy claims determining the authority of other replicas
over resources in the collection. Such claims are signed with the key of issuing replica
and can thus be verified. The claims above complete the example policy from Figure 1.
The overall collection policy is the union of all the replica claims.

Authorization. When a replica makes an access control decision, it must produce a
proof indicating that the requested action is allowed by policy. Such proofs are mechan-
ically generated (or a decision is made that no proof is possible) using the collection
policy currently available at the authorizing replica. There are three situations in which
we perform access control checks. The logical assertions that represent the conditions
we want to prove can be expressed as follows.

LA says R can write Label(Item)
LA says R can read Label(Item)
LA says R can sync all

In the first case, the proof context is that of a replica’s synchronization engine check-
ing the validity of an updated item. R is the key that signed the update and the target is
the policy label bound to the item. In the second case, the prover is a replica attempting
to validate that a partner replica can download an item during synchronization. R is the
key that authenticated the synchronization request, and again the target is the policy
label of the item being considered. In the last case, the proof context is that of a replica
deciding whether the synchronization partner can be trusted to supply collection meta-
data. Such metadata might be used, for example, to implement local deletion of items
that have been expunged from the collection. R is a key authenticating the partner. The
well-known label all is used, since all of our current examples of collection metadata
apply to an entire replica, not a specific item.

In all these cases, the party performing the access control check must prove the
corresponding assertion using the current policy, initially believing that only LA can be
trusted. Policy will not include a direct claim by LA that allows the desired result since
all such claims are axioms, not dynamic policy. So, the logical prover must search the
extant collection policy to find a set of claims from which the result can be deduced.
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Encoding. Policy claims are encoded as XML and stored in collection items and these
items are distributed as are all others. Thus, no explicit protocol for propagating policy
is needed. For simplicity, we write all policy claims for a given replica into a single item,
but that is not a requirement. Each replica controls a private policy label that is bound to
the items into which it writes policy. Since only one replica (and the universally-trusted
collection manager) can write items under such labels, there is no possibility of con-
flicting updates on these items. To continue our example from Figure 1, the collection
manager might enable private labels with the following claims.

CM says Anonymous can read policy
CM says HomePC can own policy.homepc

Here we invent a world-readable label called policy that represents collection items
that hold policy claims. The hierarchical relationship between labels is used to control
naming. The claim above gives HomePC ownership of a subspace of all policy items.
Delegates of HomePC can then be given control over a more restrictive subspace (for
example, policy.homepc.laptop).

Policy claims are signed by their issuers and the items that contain claims are signed
as well. Because the claims themselves are signed, the outer item signature on pol-
icy items serves only to detect attempts to overwrite legitimate policy with garbage or
old policy. Thus, although malformed claims can never pass for believable policy, the
replication-level item validity check removes the need for the policy management logic
to recover from attacks that try to install old or corrupt policy.

4.2 Policy evolution

In the previous section, we established a set of policy claims over a collection in an a
priori fashion. In general, this will not be possible. Instead, policy claims for a collec-
tion will accumulate as new replicas and datatypes are added, and as claims are revoked.
Hence, we must deal appropriately with the bootstrap of new replicas and revocation of
existing policy.

Replica bootstrap. The collection manager defines the initial policy for a collection.
We now describe the process of establishing and installing policy in new replicas. The
important steps are depicted in Figure 3. We call the replica with existing policy the
parent replica and the new replica to be endowed with rights the child replica. As we’ve



seen, arbitrary replicas can be given the authority to bootstrap new child replicas. The
same process is used for all bootstraps, whether the first delegation by the collection
manager or a subsequent delegation by a one of its descendants.

When a child replica is created, it cannot perform synchronization without an initial
policy since there will be no policy from which to make access control decisions during
synchronization. Therefore, we provide an API call that serializes the parent replica’s
policy such that it can be injected into the child. Before this can be accomplished, a key
identifying the new replica must be known to the parent. Once the new replica key is
known, appropriate claims for the new replica are written to the parent’s policy item.
All of the existing policy items at the parent are then injected into the child.

Secure transport of the child’s public key to the parent replica is handled out-of-band
and is not addressed by our work. However, there are numerous well-known mecha-
nisms that can be used. In the consumer environment, transfers can often be trusted
due to physical proximity, for example by sharing the same physical medium. Over a
network, the situation is similar to PKI certificate request/response [10]); steps can be
taken to authenticate the new key material. The nature of the authentication protocol can
be deployment-specific (for example, it can be based on existing PKIs, payment for ser-
vice, pre-shared passwords, and knowledge of personal information). Regardless of the
details, bootstrapping can, but doesn’t have to, rely on security by physical proximity
or simple network authentication. A PKI can be used, but is not required.

Revocation. Revocation claims are handled in the same fashion as other policy updates.
However, such claims are tricky in that they can result in the invalidation of previously
valid items. Although it is sometimes useful to invalidate all items that rely on a claim,
it is more often appropriate to honor historical claims and disallow only new dependen-
cies on revoked claims. As with similar replication protocols, Cimbiosys maintains a
monotonically increasing version number per replica. In order to allow items that de-
pend on historical claims to remain valid, revocation claims can be issued with respect
to a vector of version numbers, one element per replica. Hence, a revocation claim need
only apply to those versions newer than the associated version vector.

Although we propagate revocation claims like any other policy, the effect of dis-
covering a new revocation is purely local. We invalidate the affected local items. Other
replicas will eventually learn of the revocation and do the same.

4.3 Convergence

Because of policy propagation delays, access control failures may arise due to incom-
plete policy replication. If a failure occurs on a read or sync operation, this doesn’t pose
a problem. Synchronization is periodic. Eventually propagation will complete and sub-
sequent operations will succeed. However, what happens if an update fails? The failed
update cannot be incorporated as valid state since most replication systems maintain
only the most recent version at every replica, and that should mean the most recent
valid version. But, the failed update may later succeed when the destination receives
updated policy. Consequently, failed update operations must be retried as long as they
remain valid at the sender. These operations will either eventually succeed, or the sender



will receive new policy that invalidates the pending updates locally. Either way, eventual
consistency is maintained.

Invalidation of existing items in the face of new policy represents the other side of
the coin. The race condition depicted in Figure 2 can produce an spurious access control
failure when the policy update P ′ newly allows data update U ′, but can also require an
invalidation of U ′ when P ′ contains a revocation. We must be prepared to perform such
invalidations at any time and on any data that is in our store.

Our rationale for why these steps give eventual consistency is as follows. We as-
sume that eventual consistency would be achieved in the absence of access control.
Each replica issues its own policy items, and all policy is readable by all replicas. Due
to the monotonicity of the logic and the single root of trust, policy updates cannot con-
flict. Thus, if the system would converge in the absence of access control, it follows
that system policy converges in the presence of access control as well. In the security-
enhanced system, if replica state is consistently re-evaluated when new policy arrives
(e.g., by requiring retransmission or revocation), then that state will also converge.

We want our techniques to apply to eventually consistent systems in general, and
so we wish to avoid constraints on network topology and update periodicity in our de-
sign. However, it is certainly possible to construct access control topologies that prevent
propagation of updates. Reliable update propagation also depends on the correct func-
tioning of replicas in the propagation path. Malfunctioning or compromised replicas
cannot forge the signature of other replicas and, if protocols require item version iden-
tifiers to increase monotonically, they cannot pass off old content as new. However, a
replica that incorrectly implements the replication protocol can inhibit update propa-
gation by hiding new versions of items or passing bogus replica metadata to confuse
its sync partners. This is why we introduced access controls on the sync operation to
specify whether a replica should be trusted to act as the source of a synchronization
operation. Correct update propagation depends on the correct operation of at least one
trusted, transitive sync path between any pair of replicas that share updates. Our design
for compromise recovery [8] can be used to ensure that damage caused by a malfunc-
tioning replica can be recovered if detected, so the temporary absence of a trusted path
can be tolerated.

4.4 Discussion

The collection manager represents a single root of authority over a collection. With-
out a single root, replicas can engage in policy wars where multiple authorities issue
conflicting policy statements. The lazy propagation of policy that our system assumes
exacerbates such conflicts, and so we opt to avoid them.

In our prototype, we make statements directly about replica keys. We chose to do
so to reduce our dependence on external authentication services, but we could just as
well add a layer of indirection and name principals with strings that are authenticated
elsewhere (for example in a PKI or shared-key infrastructure). It is easy, however, to
confuse authentication and authorization. Existing PKI certificates are not sufficient to
express the authorization relationships we provide. In addition, most existing authoriza-
tion systems are not capable of expressing the delegation relationships we need to allow
policy evolution. Furthermore, we benefit from using a declarative policy specification
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that boils down to logic that can be evaluated outside of the context of the system im-
plementation. Not only can we reason about access control decisions in abstract, but we
can potentially construct and distribute access control proofs ahead of time.

We chose to closely bind labels and data items. In the types of applications we
imagine, it is easy enough to create a new item under a different label if reclassification
is necessary. However, using the same framework we could have allowed labels to vary
and set policy limiting such modifications.

In our system, items are only valid for as long as policy permits: a change in policy
can result in the invalidation of existing items. In protocols that attempt to replicate
state rather than an log of operations, this is the only plausible option since there is
no notion of history to help gain consensus about when an update might have been
valid. Even log-based protocols without global ordering suffer from some of the same
problems, moreover logs must ultimately be truncated. Our policy statements are self-
contained, enumerable, and independent from the details of access-control enforcement.
We can quickly determine the effect of a revocation on a replica’s state and thus perform
invalidation efficiently.

5 Implementation

As discussed in Section 2, access control policy is enforced by monitoring replication
protocol operations. We implement our system within the Cimbiosys [7] replication
framework. A high-level component diagram of Cimbiosys is given in Figure 4. The
Cimbiosys API associates items and policy and provides clients to access a persistent
item store. The synchronization engine drives the communication component which
implements the replication protocol.

We augmented the existing Cimbiosys framework by adding the security compo-
nent depicted in Figure 4. It monitors both the item store and the replication protocol
and consists of roughly 1000 lines of C# code. Access control policy is created and
maintained in the PolicyMgr component on each replica. This component is responsi-
ble for encoding policy in the form of SecPAL logical expressions and bootstrapping



new replicas. Furthermore, the PolicyMgr stores policy statements as replicable items
and retrieves those items from stable storage when the system restarts.

Because per-replica policy is stored in identifiable items, it is easy for the replication
machinery to tell when policy changes. This proves useful for checking if a received up-
date has become invalid and for caching of access control results. The PolicyMgr can
be viewed as just another client of the Cimbiosys API. In particular, the API contains
a notification mechanism that calls clients when an item changes. This allows the Poli-
cyMgr to be notified when policy items change so that it can, in turn, inform the security
component of new policy.

We depend heavily on the Microsoft Research SecPAL release which is a .NET
library released in binary form that we use without modification. The language parser
included in this release can evaluate statements in the SecPAL grammar, however it does
not support encoding of actual cryptographic keys or signatures on claims. Instead, the
SecPAL library provides an XML object model in which all the claims represented in
the grammar can be expressed. We employ this model since it provides serialization
(to XML) that handles RSA signature creation, as well as signature checking on dese-
rialization. Although it should be possible to build a component that bridges the gap
between the SecPAL language grammar and the XML model, for simplicity we chose
to use the XML model directly. Thus, we offer a procedural interface to policy creation,
rather than direct access to the grammar.

5.1 Performance

Other work has evaluated the performance of Cimbiosys [7]. Here we attempt to justify
that adding a logical policy checker does not add excessive overhead. Assuming policy
changes are relatively infrequent, the most important metric is the cost of deriving an
access control proof, which is almost entirely spent in the SecPAL library trying to
prove logical assertions.

We measured the cost of evaluating various assertions using the policy from Figure 1
as elaborated in Section 4.1. The policy contains 23 claims and we give results for
queries that require different sets of claims. For each query, Table 1 shows number of
steps in the resulting proof, the length of the delegation chain from the collection root,
and the average latency over 1000 tries. Our tests were run under Windows Vista on a
HP xw4400 Workstation with an Intel Core 2 processor at 2.40 GHz.

Query Proof steps Delegations Released (ms.) Optimized (ms.)
HomePC can write all 10 1 42 7.5
MediaPlayer can read photos 13 2 43 7.7
Mobile can write contacts 15 3 56 9.2
Spouse-Mobile can read contacts 20 4 56 9.4

Table 1. Prover performance

On modern hardware, 56 ms. is a very long time. However, there is room for opti-
mism. First, the timings from the Released column of Table 1 correspond to the released



SecPAL implementation which is completely unoptimized. A later, unreleased version
of this code base, for which timings appear in the Optimized column, includes a collec-
tion of performance improvements. Most significantly, the new library contains a claim
indexing framework that enables the solver to make better choices about the set of can-
didate claims for consideration during proof generation. This gives at least a factor of 5
improvement in operation speed.

However, at least one important optimization is still untried. As mentioned earlier,
there is a conversion from our policy representation to Datalog. An optimized imple-
mentation would perform that conversion once for any given policy. However, the Sec-
PAL release we are using does not cache the Datalog representation. Nor does it try
to avoid redundant transformations on policy in the process of deriving the Datalog
representation (such as those required to implement hierarchical resources). Code pro-
filing shows three major components of proving overhead: transformations on policy,
conversion of transformed policy to Datalog, and proof resolution of the Datalog rep-
resentation. The first two of these consume 40-50% of the overhead for the examples
tested here. Thus, an implementation that caches the Datalog representation gains at
least a further factor of two in performance. There are undoubtedly other possible opti-
mizations.

Finally, given the nature of our application, we can easily cache not only Datalog
conversions, but entire access control evaluations. Since changes to policy are clearly
identifiable, any cache of previous results can be accurately invalidated when a claim is
revoked. The prover can be made to output the set of claims involved in any proof, thus
cached results can be indexed by constituent claims making it easy to identify which
results rely on a revoked claim.

An evaluation cache will clearly be most effective where there are relatively few
subjects and objects of access control decisions. Our system was designed with the in-
tent that policy labels would be relatively few. As more labels are used, the number of
claims that must be represented (and searched) in replica policy increase. Nevertheless,
we believe that in any tractable access control system, the overall number of policies
must be small because otherwise the system will become unmanageable. Most of the
applications we have modeled use only a handful of labels to represent policy. Similarly,
we target applications with relatively few replicas such as home networks and collec-
tions of devices used within a family, small social network, or small business. We also
target collections where many replicas can gain Anonymous access without needing
independent credentials such as large distribution networks where the integrity of the
source is important, and privacy is not a concern.

6 Related work

There is a wealth of related work in the literature. Much of this work breaks down into
two categories: access control in distributed systems and logic-based access control. We
discuss the most directly relevant examples and do not attempt completeness.

Grapevine [4] and Bayou [11] are examples of distributed systems with eventu-
ally consistent replication. Microsoft’s Active Directory [5] is a commercial example
of such a system in widespread deployment. These systems enforce access controls on



clients, however all replicas are equally trusted. In a similar vein, Samarati [12] studies
how access control updates compose when subject to misordering under weak consis-
tency. As above, in this setting each node’s updates are equally trusted.

Most distributed file systems, such as AFS [13], FARSITE [14], Taos [15], provide
a model of a centralized system, even though their implementation can involve multiple
servers and replication of data. Their network servers are equally trusted, or in the case
of FARSITE, untrusted. Peer-to-peer file systems such as Chord/CFS [16] and Ivy [17]
provide distributed or replicated data storage over peer-to-peer networks, but the replica
servers aren’t themselves principals in the corresponding access control scheme. Self-
certifying file names [18] underlie both CFS and Ivy, and also inspire our method for
binding policy labels to items.

Our system is perhaps most closely related to UIA [19]. UIA addresses the similar
problem of joining cooperating devices into an ad hoc naming network. It uses a per-
device log to encode, merge, and ultimately gain agreement on naming across devices.
There is no root of authority in this system, so disputes with revoked principals have to
be resolved manually. Furthermore, UIA currently only manages naming elements such
as groups, names, and links, but does not extend to arbitrary data.

There has been much prior work concerning the use of logic for policy enforcement.
Early logical frameworks for distributed system security [15, 20] used logic to rational-
ize system security design. Later work by Appel and Felten [21] demonstrated that a
logical proof checker can be employed to automate the process of validating encoded
credentials. PolicyMaker [22] showed the value of expressing system policy, not just
authentication credentials, in a precise fashion. SD3 [23] and Binder [24] joined these
threads by expressing policy in a logic-based language that can be evaluated. Subse-
quent systems [6, 25–27], have extended the performance and expressibility inherent in
logical policy frameworks.

Like the Grey system [28] which deployed a logic-based physical access control
system using networks, custom door-locks and cell phones, our work is a demonstration
of the applicability of logic-based security in a distributed setting. Although the problem
domains are different, by way of comparison we are able to take advantage of the more-
powerful logic that SecPAL offers, for example, giving richer control over delegation
of authority. Furthermore, in Grey, considerable work must be done to piece together
assertions scattered about a network, while our system is concerned with propagation
and consistency.

7 Conclusion

Replicated systems that offer only weak consistency are valuable for solving a num-
ber of problems. Most obviously, they add value when connectivity is imperfect, but
they also can benefit environments where there are many devices but no management
infrastructure to coordinate them. Similarly, loosely-organized or ad hoc systems can
be useful for spanning administrative domains when no formal arrangements exist (for
example, where home computing interacts with work-related infrastructure). Data repli-
cation with eventual consistency is a fundamental tool for such applications.



In this paper we have discussed an access control framework for weakly consistent
replication in which replicas are not equally trusted. We demonstrate that there are se-
rious difficulties in building such systems due to ordering of updates and the need to
maintain eventual consistency. To address these difficulties, we encode our security pol-
icy in a logical framework where access control decisions correspond to automatically-
generated, logical proofs. This framework creates a portable and extensible substrate
for expressing security policy in a distributed system. Our policy statements are self-
contained and enumerable items, replicated in the protocol they protect. Rather than
enforce a one-time guard on the admission of valid items, we accept that policy can be
temporarily inconsistent and ensure that the set of valid items always corresponds to the
current policy.

We have shown that our framework of logic-based policy distribution works well for
handling the unpredictable semantics of weakly-consistent replication, and that using it
we have offered solutions to the three-fold challenges of policy specification, evolution,
and consistency.
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