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Abstract

This paper presents a language, based on transaction
logic, for specifying dynamic authorisation policies, i.e.,
rules governing actions that may depend on and update
the authorisation state. The language is more expressive
than previous dynamic authorisation languages, featuring
conditional bulk insertions and retractions of authorisation
facts, non-monotonic negation, and nested action defini-
tions with transactional execution semantics. Two comple-
mentary policy analysis methods are also presented, one
based on AI planning for verifying reachability properties
in finite domains, and the second based on automated
theorem proving, for checking policy invariants that hold
for all sequences of actions and in arbitrary, including
infinite, domains. The combination of both methods can
analyse a wide range of security properties, including
safety, availability and containment.

1. Introduction

Security policy should be separated from its actual en-
forcement. In the context of access control, this allows
the authorisation policy to be configured without requiring
costly and error-prone modifications of the reference moni-
tor. To facilitate the separation, a multitude of authorisation
languages and logics has been developed over the past 15
years (e.g. [1], [10], [19], [31], [28], [32], [9], [7], [24]).

However, despite the increasing expressiveness of such
languages, there is an important class of authorisation
policies that most languages cannot adequately express:
dynamic policies, or policies governing actions that both
depend on and update the authorisation state. Consider, for
instance, the following policy rule for initiating a cheque
payment (written in SecPAL [7]):

canInitPayment(x,p) :
Bank says x is a manager,
¬∃y(Bank says y has initiated p)

According to this policy fragment, managers can initiate a
payment p that has not been already initiated. Therefore,
the precondition for granting the action checks for the

absence of has initiated facts in the authorisation state. But
for this scheme to work as intended, a granted payment
initiation action must have the side effect of inserting a
has initiated fact into the state. As such effects cannot be
expressed in the language, it has to be hard-coded into the
reference monitor, as illustrated in pseudocode below.

handleRequests(Action a, Params ps) {
if (Policy.permits(a, ps) {
if (a==’canInitPayment’) {
Policy.insert(ps[0] has initiated ps[1]);

} [...]
execute(a, ps);

} [...]
}

As dynamic updates of the authorisation state are arguably
part of the policy (and may be subject to frequent policy
changes), we see that the separation of policy and enforce-
ment mechanism has not been fully achieved.

This paper proposes a new, dynamic, authorisation logic,
DYNPAL, to help factoring out both the static and dynamic
aspects of a policy from the reference monitor. The logic
has a number of unique features:
• Parameterised predicates with variables ranging over

a possibly infinite domain. This is crucial in de-
centralised settings, where the set of principals and
objects are generally unbounded.

• Negated predicates with negation as failure semantics
(as opposed to standard or linear negation), which is
needed for testing the absence of facts in the autho-
risation state, e.g. in separation of duty constraints.

• Two primitives for updates: conditional bulk insertions
and retractions of authorisation facts of the form
±{A1 : A2} (insert/retract all facts of the form A1
such that A2 holds), e.g. for expressing cascading
revocation.

• Actions, updates and purely static conditions are
treated uniformly as logical literals and can be inter-
spersed in any order, to express not just preconditions,
but also postconditions and intermediate conditions.
This is useful e.g. for expressing integrity constraints.
Action definitions can be nested, leading to more
succinct and modular policies.

• Transactional execution semantics (based on trans-
action logic [12], [11]) ensuring that actions with



multiple updates are executed atomically (either all
or none are committed).

This feature set facilitates a wider range of dynamic
policies than previous dynamic languages (such as [9],
[14], [8]), as illustrated in Section 4.

The consequences of a dynamic policy are generally
much harder to foresee than those of a purely static policy.
With dynamic policies, it is not sufficient to consider
a single action; rather, we have to consider sequences
of actions of arbitrary length, performed by a possibly
infinite coalition of agents. The increased complexity calls
for computer-assisted techniques for policy debugging and
verification. There has been some work on analysing dy-
namic policies (see Section 2), but only on less expressive
authorisation languages and only for fixed, finite coalitions
of agents. Apart from the design of DYNPAL, the main
technical contributions of this paper are novel automated
reasoning techniques for solving two complementary prob-
lems in analysing DYNPAL policies.

The first problem is reachability: given a policy, a
domain (of involved principals and other objects) and an
initial state, is there a sequence of actions that leads to a
state satisfying the goal property? For infinite domains, this
problem is shown to be undecidable. For finite domains, an
algorithm is presented for translating a reachability query
into a PDDL specification [22], a language for describing
AI planning [21], [44] problems. The main benefit of this
approach is that it avoids the difficulties of devising and
implementing a dedicated, efficient search algorithm. As
AI planning has matured over decades, highly optimised
goal-directed heuristics to avoid constructing the entire
model, as implemented in existing AI planners (such as
FF [26]), can be effectively leveraged.

The second problem is that of checking policy in-
variants, safety properties that remain unaffected under
any sequence of actions of arbitrary length and in any
arbitrary domain, including unbounded and infinite ones
(for example, the property that, in a conference system,
authors may never review their own papers, even if an
unbounded number of principals are collaborating). This
paper presents a translation from a given policy and an
invariance hypothesis into a validity problem of first order
logic (FOL) over finite structures. Again, this solution
enables the use of existing tools, in this case FOL theorem
provers (such as Prover9-Mace4 [37]).

The two analyses are complementary: if reachability
analysis fails to produce a sequence of actions leading
to the specified (safe or unsafe) goal state, invariance
analysis may be able to prove that no such sequence exists
in any domain. Vice versa, if the invariance hypothesis
is proven wrong, reachability analysis may provide a
specific sequence of actions that violates the property. Both
analyses together cover a wide range of security queries

(including effective permissions, safety, availability, con-
tainment and correspondence queries, in both finite and
infinite domains).

The remainder of the paper is organised as follows.
Related work on previous dynamic authorisation languages
and on dynamic policy analysis is reviewed in Section
2. DYNPAL’s syntax is introduced in Section 3. Section
4 provides examples of dynamic policies written in the
language and motivates the design choices behind it. A
formal semantics and a proof system are given in Section 5.
The two analysis methods are described in Sections 6 and
7. The paper concludes with a discussion of experimental
results and limitations in Section 8.

2. Related work
Dynamic authorisation languages. SMP [8] is a pre-
cursor of DYNPAL, but lacks conditional bulk updates,
stratified negation, and nested action definitions. A mem-
oing backward-chaining algorithm is used for analysing
reachability in finite domains. Cassandra [9] is an au-
thorisation language that defines the actions of activating
a role and deactivating a role, along with a transition
system that updates the authorisation state by inserting and
retracting corresponding ‘hasActivated’ facts. Users can
thus write state-dependent and implicitly state-updating
access control policies, but this rather ad-hoc approach is
inflexible and not very user-friendly. In a similar spirit,
dynFAF [14] keeps track of the history of user requests by
dynamically adding facts (with a time-stamp parameter) to
the logic program. In dynFAF, facts are never removed;
instead, permissions are signed, and permission revocation
is modelled by adding a fact with a negative permission.
Jagadeesan et al. [27] use a sub-language of Timed De-
fault Concurrent Constraint Programming for modelling
dynamic policies. Their language, being almost a full-
fledged procedural programming language, can express
state changes triggered by both user requests as well as
environmental changes. This high expressiveness comes
at a price: policies are generally harder to analyse, and
evaluation may not terminate.

Dynamic policy analysis. To the best of my knowledge,
this paper is the first to study invariance analysis of
dynamic policies in the context of unknown, unbounded
or infinite domains. The rest of this section focusses on
prior work on reachability analysis for dynamic policies,
which is also studied in this paper.

The earliest dynamic model of access control probably
is HRU [25]. The state is represented as a standard access
control matrix. Actions are preconditioned on the state and
may define a series of elementary updates: modifying cells
in the matrix and adding or removing rows or columns
(corresponding to creating or destroying principals or re-



sources). The reachability problem in HRU is undecidable.
HRU can be modelled in DYNPAL with infinite domain,
which would provide an alternative proof of the current
paper’s undecidability result (Proposition 6.5).

Li et al. [33] study role-based policies (written in
RT [32]) where role-membership rules may be added
or removed by principals, under specifiable restrictions
(e.g. that membership for certain roles may only grow or
shrink). This induces a system where role membership can
change dynamically. They investigate the complexity of
various specific queries in such a system, including role
membership reachability (‘can P ever become a member
of role R?’) and containment (‘does every principal having
role R1 always also have role R2?’). This is one of the
very few examples of prior work that does not assume
the set of principals to be known and finite. Apart from
that, the setting in their work is rather different from the
current paper’s, in that the RT fragments they consider are
of relatively limited expressiveness, and they do not study
state-changing actions governed by policy.

Bandara et al. [3] model Ponder [15] policies with
obligations (which trigger state changes) in the Event
Calculus [29]. They encode potential policy bugs (such as
breach of separation of duty) as goals, and use abduction
over the Event Calculus policy to find sequences of actions
that satisfy the goal. Only finite domains are considered.

Sasturkar et al. [40] analyse reachability and availability
properties in Administrative Role-Based Access Control
(ARBAC [39]) policies. In terms of expressiveness, AR-
BAC is roughly equivalent to DYNPAL rules without
parameters and variables, where actions may only have
preconditions, and each action may only either add a
single user-role membership or revoking it. Reachability
and availability analysis is proven to be PSPACE-complete;
as in the current paper, their result is proven by establishing
a connection to AI planning. If negative preconditions are
disallowed, the analysis becomes tractable, and similarly
when role revocation and disjunctive preconditions are dis-
allowed. Only finite ARBAC models are considered. The
computational complexity of ARBAC is further studied by
Stoller et al. [42], showing that mixed roles (roles that
appear both as positive and negative preconditions) are
mainly responsible for intractability. The problem becomes
polynomial in the input size when the number of mixed
roles is kept constant. They also present a plan searching
algorithm for ARBAC. It would be interesting to see how
its performance compares with general-purpose planners.

Dougherty et al. [16] study reachability, availability and
containment queries for dynamic access control policies
where the static part of the policy is specified in Datalog
(but without negative preconditions), but state updates are
not specified in a language; rather, they are represented
as transitions in a finite state machine. This way, environ-

mental changes not effected by a user can be modelled as
well. They prove that reachability is in NLOGSPACE via
an encoding in linear temporal logic. Subsequent work by
the same authors [17] focusses on policies with obligations
which they abstractly define as stateful constraints on
execution paths. They explore a wide range of analyses
using Büchi automata, but again only in finite domains.

Barth and Mitchell [4] focus on stateful policies for
digital rights management which, for example, govern how
often a song may be played on a device. They investigate a
problem that is quite different from our reachability prob-
lem, namely deciding if a particular sequence of actions
is authorised. This question is non-trivial in their setting
due to nondeterminism: exercising a right may consume a
number of different licenses to choose from. They show
that this problem is NP-complete (for finite domains), and
propose an algorithm for evaluating sequences of actions
based on propositional linear logic that is monotonic in the
sense that more flexible digital licenses also permit more
actions.

In the RW framework [45], a state is a set of proposi-
tional variables, and actions may only set or unset one spe-
cific state variable. Preconditions are expressed in propo-
sitional logic (which is sufficient as they only consider
finite domains). Postconditions, intermediate conditions, or
nested actions are not supported by RW (or any other
modelling mechanism cited in this section). RW also in-
cludes a complex query language for sequences of actions
that allows specification of coalitions and nested goals; for
example, it is possible to ask “can Alice and Bob together
perform actions that leads to a state where Charlie can
perform some actions such that eventually Doris can delete
a file?”. RW can also specify preconditions for reading the
value of a property. This plays a role in their distinction
between strategies and guessing strategies. In the former,
only those actions are allowed where the acting principal
knows (by having read the relevant properties) that she
is permitted to perform them. Guessing strategies do not
have this restriction. The authors have developed their own
model checking tool, AcPeg, which, however, only works
for finite domains.

3. DYNPAL Syntax

DYNPAL is designed to be minimalistic, and focusses
specifically on the dynamic aspects of authorisation poli-
cies; as such, it does not include some features that would
be useful in a complete authorisation language such as
parameter types, delegation primitives, variable constraints
and a natural-language-like syntax. It is designed such that
its primitives for expressing dynamic state updates can be
easily added to other logic-based authorisation languages
(such as SecPAL [7], see Section 8).



Static literals 〈Lst〉 ::= Ast | ¬Ast

Dynamic literals
〈
Ldy

〉
::= Ady

| +{pex(~x) : Ast}
| −{pex(~x) : Ast}

Literals 〈L〉 ::= Lst | Ldy

Static rules 〈Rst〉 ::= Ain←~Lst

Dynamic rules
〈
Rdy

〉
::= Ady←~L

Figure 1. Above, ~x is a sequence of distinct variables,
pex ∈Predex, Ast ∈Atomst, Ady ∈Atomdy, Ain ∈Atomin. A
dynamic literal of the form ±{A1 : A2} is an elementary
update, and A2 is its guard. In a rule, the atom to the
left of the arrow is called the head, and the sequence of
literals to the right is called the body. Syntactically sugared
abbreviations, based on this syntax, are defined in the text.

Syntax. We start with a few technical preliminaries. The
notation ~X is used to denote a (possibly empty) sequence
of items X1, ...,Xn. The syntax of DYNPAL is based on a
first order function-free signature Σ = (Const,Pred) with
(possibly infinitely many) constants Const, and a finite
set of predicate names Pred. The latter can be divided
into two disjoint sets: static (Predst) and dynamic (Preddy)
predicate names. The static predicate names can be further
divided into two disjoint sets: intensional (Predin) and
extensional (Predex) predicate names. This induces the set
of atoms (predicate names applied to expressions of appro-
priate arity), denoted as Atom, which can also be divided
into static (Atomst) and dynamic (Atomdy) atoms, and the
static ones into intensional (Atomin) and extensional atoms
(Atomex) in the obvious way.

Definition 3.1 (Syntax). Elementary updates, static and
dynamic literals and rules, and the terms guard, head and
body are defined in Fig. 1. A state B is a set of ground
(i.e. variable-free) extensional atoms. A policy P is a finite
set of rules.

Definition 3.2 (Variables). The free variables of a syntactic
phrase W are denoted by fv(W ). The definition is standard
(all variables are free variables) apart from the case of
elementary updates: fv(±{p(~x) : A}) = fv(A)\~x. (Hence,
the variables ~x are implicitly bound by the set builder
construction.) A phrase is ground if no variables occur
in it, and closed if it does not have any free variables.

Informal overview. As in many static authorisation
languages, a policy in DYNPAL is a set of declarative
Datalog-like rules built from predicates. Predicates are
used for a variety of purposes. Dynamic predicate names
represent actions (or access requests), and dynamic rules
define the conditions and state updates associated with
actions, hence dynamic rules are also called action defi-

nitions. For example, Bob’s request to read a file may be
represented by read(Bob,Foo), and his request to initiate
a payment by init(Bob,Payment42). The policy on a
system supporting these requests will likely contain action
definitions of the form read(x,y)←~L and init(x,y)←~L′.
Extensional predicates represent the current state, and are
thus facts that may change over time. Updates, i.e. inser-
tions and retractions, only apply to extensional atoms. For
example, the extensional atom initiated(Bob,Payment42)
may represent the fact that Bob has initiated that particular
payment in the past. As in Datalog [13], intensional
predicates are used to define more complex relations over
the extensional atoms in the state; these can then be used
as conditions inside dynamic rules.

In Datalog, queries are evaluated with respect to a
program (a set of rules) and an extensional database (a
set of ground atoms). The head of a rule can be deduced
if all body literals can be deduced from the logical closure
of the program together with the extensional database. In
DYNPAL, the policy corresponds to the program, and the
state takes the position of the extensional database. The
main difference from Datalog is that deducing dynamic
body literals has a side effect on the state. Intuitively,
+{A1 : A2} inserts all atoms A1 for which A2 currently
holds into the current state. Similarly, −{A1 : A2} retracts
atoms from the state. The deduction (or, equivalently,
execution) of a dynamic atom A defined by a rule instance
A←~L succeeds if all L ∈~L can be deduced from left to
right: if L is static, it is recursively deduced from the policy
and the intermediate state at that point in time. If, on the
other hand, L is dynamic, it is executed, but its effects
are not committed until the end; therefore, the effects of
executing an action are atomic.

DYNPAL also features negation as failure: ¬A holds if
A cannot be deduced. Negation as failure is useful, as many
dynamic policies are non-monotonic; in conjunction with
retractions, it allows conditions that check for the absence
of certain facts in the state. Negation can be problematic in
the context of a language with recursive rules, as it leads
to non-unique minimal models. We restrict policies to be
stratified (adapted from stratified logic programs [38], [2])
in order to separate negation from recursion. Henceforth,
we use the term policy to refer to a stratified set of rules.

Definition 3.3 (Stratification). A set of rules P is stratified
iff there exists a function σ from Pred to natural numbers
such that, for all rules p(~t)←~L in P and all literals L
occurring in ~L (possibly within an elementary update), the
following holds:

1) If L≡ q(~u), then σ(q)≤ σ(p).
2) If L≡ ¬q(~u), then σ(q) < σ(p).

Abbreviations. The set of language constructs is de-



signed to be minimal. For practical purposes, it is useful
to define some syntactically sugared abbreviations. The
equality sign (=) can be used as a built-in predicate, as
syntactic equality can be defined as a rule. In the body
of a rule, we allow negation not just in front of a single
atom, but also in front of a possibly existentially quantified
conjunction of static atoms. Similarly, the guard A2 in
an update may also be a possibly existentially quantified
conjunction of static literals. Each occurrence of such an
abbreviation can be expanded at the expense of introducing
a new intensional predicate name and a rule. For example,
p(x)←¬∃y,z (q(x,y),r(z)) is an abbreviation for the two
rules p(x) ← ¬α(x) and α(x) ← q(x,y),r(z). We write
±p(~t) as abbreviation for ±

{
p(~x) : ~x =~t

}
. Some of these

abbreviations are used in the examples in the next section.

4. Dynamic Policy Idioms

Policy idioms are abstract reusable solutions to recurring
problems in building policies, just like design patterns in
software engineering. This section illustrates how some
common dynamic policy idioms can be expressed in DYN-
PAL, before its semantics is formally specified in the
following section.

Role sessions. In Cassandra [9], role activation and
deactivation within dynamic sessions are special actions
inserting and retracting corresponding hasAct(user,role)
atoms into and from the state. In DYNPAL, such effects
can be specified explicitly. The intensional preconditions
canAct and canDeact may be defined by other rules.

act(x,r)← canAct(x,r),¬hasAct(x,r),+hasAct(x,r)
deact(x,r)← canDeact(x,r),hasAct(x,r),−hasAct(x,r)

Cascading role revocation. Cassandra also features a
special predicate isDeact for specifying automated deacti-
vation of roles triggered by user-induced role deactivation.
This feature can also be mimicked explicitly, by replacing
the deactivation rule above by the following one, which
uses DYNPAL’s conditional bulk update feature.

deact(x,r)← canDeact(x,r),hasAct(x,r),
−{hasAct(x′,r′) : isDeact(x′,r′,x,r)} ,
−hasAct(x,r)

For example, with the rule isDeact(x,Stu,y,Supvsr)←
hasAct(x,Stu),hasAct(y,Supvsr), the deactivation of a
supervisor role causes all student roles to be deactivated.

Separation of Duty (SoD). SoD policies come in many
variants, many of which depend on a notion of state. Here
is an example of dynamic history-based SoD, based on
the informal example from Section 1. The first rule states
that managers can initiate payments that have not yet

been initiated. (The predicate init is used for the action
of initiating the payment, and initiated is used to record
successful payment initiations in the state.)

init(x, p)← isMgr(x), ¬∃y (initiated(y, p)),
+initiated(x, p)

Initiated payments can be cancelled if not yet authorised:

cancel(x, p)← isMgr(x), initiated(y, p),
¬∃z (authorised(z, p)),
−{initiated(v,w) : w = p, initiated(v,w)}

Managers can authorise payments not initiated by them-
selves:

auth(x, p)← isMgr(x), ¬∃z (authorised(z, p)),
initiated(y, p), ¬initiated(x, p),
+authorised(x, p)

This is also an example of order-dependent SoD, because
the various steps within the workflow have to be performed
in a specified order. The other variants of dynamic SoD cat-
egorised by Simon and Zurko [41] can also be expressed.

Appointment. With the action app(x,y,r), a user x
appoints user y to be a member of role r. Appointment is
also a feature in administrative role-based access control
(ARBAC [39]), and is the most frequently used policy
idiom in the Cassandra Electronic Health Record (EHR)
case study [5].

app(x,y,r)← canApp(x,y,r),¬∃x′(hasApp(x′,y,r)),
+hasApp(x,y,r)

The hasApp predicate can then be used as a precon-
dition for activating roles, for example as in the rule
canAct(x,r) ← hasApp(y,x,r). Appointments can be re-
voked with unapp:

unapp(x,y,r)←
canUnapp(x,y,r),hasApp(x′,y,r),
−{hasApp(u,v,w) : v = y,w = r,hasApp(u,v,w)}

To transitively revoke appointments made by revoked ap-
pointees, we can use the unapp action from above as a
module to compose a new action:

unappTrans(x,y,r)←
unapp(x,y,r),
−{hasApp(x′,y′,r′) :

r′ = r,hasAppTrans(y,y′,r′),hasApp(x′,y′,r′)}

The hasAppTrans predicate used by unappTrans is defined
to capture all appointments transitively made by a princi-
pal:

hasAppTrans(x,y,r)← hasApp(x,y,r)
hasAppTrans(x,y,r)← hasAppTrans(x,y′,r),

hasApp(y′,y,r)



Sealed envelopes. In the EHR system currently being
developed in the UK [36], patients can hide data from clin-
icians who would otherwise have read access, by putting
the item into a digital sealed envelope. Several different
options for sealed envelope policies have been identified
[6]; the following two rules shows a simple policy where
the sealed envelope has two parameters, a target principal
and target object.

canRead(x,o)←¬sealed(x,o)
seal(x,y,o)← canSeal(x,y,o),+sealed(y,o)

Integrity constraints. Most action definitions have
preconditions, i.e., constraints that have to be satisfied
prior to performing the state updates. But in some cases,
especially when an action is composed of several other
actions, it is useful to have a postcondition (or intermediate
conditions) on the updates in the rule. In the example
below, action 1 first calls actions 2 and 3 which are defined
somewhere else, and then checks that everyone who is a
manager also is a user (a containment property, requiring
nested stratified negation). If the postcondition fails, the
entire action aborts with no effect on the state.
doAcn1(x,o)← doAcn2(x,o),doAcn3(x,o),¬notOK()
notOK()← isMgr(x),¬isUsr(x)

5. DYNPAL Semantics and Proof System

At first sight, inserting and retracting a single atom (±A)
in DYNPAL is reminiscent of the ‘assert’ and ‘retract’
operations in Prolog. However, the Prolog operations do
not provide an adequate semantics for elementary updates
in a dynamic authorisation language. All side effects of an
action request are required to be atomic: if the deduction
process for a request fails midway, all intermediate updates
must be rolled back. For this reason, DYNPAL’s semantics
is based on transaction logic (TR) [12], [11], an extension
of first order logic that can handle negation as failure, has
a notion of state and supports transactional state updates.

Translating a DYNPAL rule into a TR formula is
straightforward: all free variables of the rule are universally
quantified at the outer-most level, and each conjunction
symbol (‘,’) is replaced by the sequential operator ⊗
from TR. This ensures that multiple elementary updates
are executed sequentially and from left to right. In TR,
there are no predefined elementary updates. Instead, TR
is parameterised by a transition oracle transP, a function
from pairs of states to sets of closed elementary updates. To
complete the translation of DYNPAL into TR, we have to
define an instance of such a transition oracle that specifies
the meaning of ±{A1 : A2}.

Definition 5.1 (Transition oracle). Let Pst be the set of
static rules in a policy P. We write B |=str

P L iff the ground

static literal L is entailed by Pst (a stratified Datalog pro-
gram) and B (according to the standard stratified semantics
[2]). The transition oracle transP is a function from pairs
of states to sets of closed elementary updates, defined as
the smallest function satisfying the following equations,
where ±{A1 : A2} below is closed:

+{A1 : A2} ∈ transP(B,B′) iff B′ = B∪
{

A1 : B |=str
P A2

}
−{A1 : A2} ∈ transP(B,B′) iff B′ = B\

{
A1 : B |=str

P A2
}

The embedding into TR provides DYNPAL with a
model theory, an operational semantics, and various op-
tions for extending the language. For lack of space, we do
not describe the model theory (for details, see [11]).

Instead, we present a proof system for DYNPAL in
Fig. 2 that, for the purpose of this paper, is simpler to
use. It defines judgements of the form P,B0, ...,Bn `~L,
expressing the fact that the sequence of ground literals ~L
can be executed in the context of policy P, starting from
the initial B0 and terminating in Bn.

Example 5.2. Consider the SoD example from Sec-
tion 4. Starting from the initial state B0 = {isMgr(A),
isMgr(B), initiated(A,P)}, the action auth(A,P) fails be-
cause ¬initiated(A,P) does not hold in B0. However, the
sequence of actions ~L = cancel(A,P), init(B,P), auth(A,P)
succeeds. By the proof rules, P,B0,B1,B2,B3 `~L, where
B1 = B0\{initiated(A,P)}, B2 = B1∪{initiated(B,P)}, and
the final state B3 = B2∪{authorised(A,P)}.

Deterministic access requests. In most authorisation
systems, the effects of actions should be finite and deter-
ministic; in other words, only finitely many atoms in the
state should be affected by an action, and which atoms are
affected should only depend on the action parameters and
the current state. To achieve this, we define a syntactic
safety condition to rule out policies that would cause
infinite or non-deterministic effects (e.g. rules such as
a() ← +q(x), which would insert q(x) for all possible
instantiations of x; or a()← p(x),+q(x), where the effect
depends on the choice of how p(x) is proven).

Definition 5.3 (Safety). A static rule is safe if the follow-
ing holds. (i) Any variable in the head occurs in a positive
atom in the body. (ii) Any variable in a negated body atom
occurs in a preceding (further to the left) positive atom in
the body.

A dynamic rule is safe if the following holds. (iii) Any
free variable in a dynamic literal in the body occurs in the
head. (iv) Any variable in a negated body atom occurs in
the head or in a preceding (further to the left) positive atom
in the body. (v) For all elementary updates ±{A1 : A2} in
the body, fv(A1)⊆ fv(A2).

A policy P is safe if all its rules are safe, and if for all
dynamic rules p(~t)← ~A in P, there is no other rule in P



(STA)
B |=str

P L L is ground and static
P,B ` L

(DYN)
P,~B `~L A←~L is a closed instance of a dynamic rule in P

P,~B ` A

(UPD)
L ∈ transP(B0,B1)

P,B0,B1 ` L
(SEQ)

P,B0, ...,Bm ` L P,Bm, ...,Bn `~L 0≤ m≤ n

P,B0, ...,Bn ` L,~L
(EMP)

P,B ` []

Figure 2. DYNPAL proof system.

with p in its head.

Requirement (i) resembles Datalog’s safety condition
[13] which ensures a finite number of ground answers
for positive static atoms. Together with (v), this ensures
that each elementary update inserts or retracts only a finite
number of ground state atoms. Requirements (ii) and (iv)
ensure that negation is non-floundering, i.e., the negated
atom is fully instantiated when it is evaluated (assuming
a left-to-right order). Finally, requirement (iii), together
with the restriction that a policy may hold at most one
definition for each dynamic predicate, guarantees that the
side effects caused by a successful action request are
unique and deterministic.

Proposition 5.4 (Determinism). Let P be a safe policy and
B0 a finite state. For all ~B, ~B′, and ground~L: if P,B0,~B `~L
and P,B0,~B′ `~L then ~B =~B′, and all states in ~B are finite.

Proof (sketch). The hard part of the proof is coming up with
a stronger proposition that can be proven by induction:
for all ~B, ~B′, variable assignments γ and γ′ (complete
mappings replacing free variables with constants), and
literal sequences ~L: if ~L has the property that all dynamic
literals are ground, and all variables in negated atoms occur
in preceding positive static atoms, and if P,B0,~B ` γ(~L)
and P,B0,~B′ ` γ′(~L), then ~B =~B′, and all states in ~B are
finite. This stronger proposition is then proven by standard
rule induction.

6. Reachability and Planning

This section describes a technique for analysing reachabil-
ity in the context of a DYNPAL policy, by modelling it as
an AI planning problem [21], [44].

Understanding and analysing dynamic policies is much
harder than static policies, because one has to consider
sequences of actions of arbitrary lengths, possibly per-
formed by multiple principals. In this context, policy
analysis amounts to the problems of reachability (‘is there
a sequence of actions that leads to a state satisfying the
goal property?’) and its dual, safety (‘do all sequences
of actions lead to a state satisfying the goal property?’).
A wide range of common (and less common) security
properties can be phrased in terms of reachability and

safety, including effective permission (‘can X eventually do
Y?’), availability (‘can X always do Y?’), containment (‘are
all managers also always users?’) and correspondence
queries (‘if a payment has been authorised, has it always
been initiated?’).

More formally, a reachability problem consists of a set
of constants Const, a safe policy P, an initial state B0
and an extensional formula ϕ (a first order formula over
extensional atoms). A solution to the reachability problem
is a sequence of ground actions ~A (with all its constants in
Const) such that there exist a sequence of states B1, ...,Bn
(n≥ 0) satisfying

P,B0, ...,Bn ` ~A and Bn |= ϕ.

(As usual, the notation B |= ϕ expresses that the state B
satisfies, i.e. is a (Herbrand) model of, the formula ϕ.)

In AI, a plan is a sequence of operations performed
by an agent, or a group of agents, in order to achieve a
specified goal. The planning problem is then the reasoning
task of synthesizing a plan, or else proving that none
exists. A planning problem is specified by an operator
description that defines the preconditions and effects of
the supported operations, and a problem description that
specifies the set of participating agents and objects, the
initial state and the goal property. It is not hard to see
that the reachability problem in the context of DYNPAL
policies naturally corresponds to AI planning, with the
policy corresponding to the operator description.

Planning has been at the core of AI since the beginnings,
and many varieties, techniques and implementations exist.
PDDL [22], a standard language for specifying planning
domains, was developed for the International Planning
Competition (IPC), which has been held biennially since
1998. By translating the reachability problem into PDDL,
we can leverage the search algorithms, heuristics and
optimisations of existing PDDL planners.

Operator description. We start by translating a given
policy P into a PDDL operator description. In PDDL, the
operator description contains a list of operator definitions,
each of which consists of an operator name, a list of
parameters, a precondition consisting of an extensional
formula, and an effect. An effect is a conjunction of
elementary effects which include conditional universally
quantified insertions and retractions. (For brevity, we do



not use PDDL’s concrete syntax here, but note that it is
straightforward to model an elementary update in DYN-
PAL as an elementary effect in PDDL; therefore, for
the remainder of the paper, we pretend that the notation
±{A1 : A2} is part of PDDL’s syntax for effects.) A
parameterised operator can be executed if the appropriately
instantiated precondition holds in the current state (which,
as in DYNPAL, is a set of extensional atoms). If the
precondition has been tested positively, the insertions are
applied to the current state first, followed by the retractions.

Each dynamic rule in DYNPAL is translated into exactly
one equivalent PDDL operator definition. Without loss of
generality, we assume that in each dynamic rule in the
policy P, the head parameters are a sequence of distinct
variables. The head of a rule then corresponds to the
operator name and the list of parameters. The rest of this
section deals with computing the precondition and the
effects of the operator definition. The translation process
is not entirely straightforward for four reasons, to be dealt
with in turn:

1) Intensional and dynamic body literals in DYNPAL
rules may be defined by other rules in the policy.
In contrast, PDDL operators only allow extensional
preconditions and only elementary effects.

2) Static and dynamic body literals may occur in any
mixed order in DYNPAL rules. For example, it is
possible to express postconditions (or intermediate
conditions), as in the body +p(0), p(0) (which will
trivially always succeed). PDDL only allows precon-
ditions.

3) All literals within an action execution in DYNPAL
are interpreted with respect to intermediate current
states that may have been modified by preceding up-
dates. In contrast, conditional effects in PDDL are in-
terpreted with respect to the original state prior to ex-
ecuting the operator. For example, in DYNPAL, exe-
cution of the body +{p(x) : q(x)} ,−{p(x) : p(x)}
in the state {q(0)} results in the same state. In
PDDL, the final state would be {q(0), p(0)}.

4) In DYNPAL, insertions and retractions are executed
sequentially, from left to right; in PDDL, retractions
are always applied after the insertions. For example,
after executing −p(0),+p(0), the atom p(0) would
be in the state in DYNPAL, but not in PDDL.

(1) Unfolding. To deal with the first problem, we have
to restrict policies to tight policies that can be finitely
unfolded into an extensional formula.

Definition 6.1 (Tightness). A policy P is tight iff there
exists a function τ from ground atoms to natural numbers,
such that, for all closed instances (i.e., instances without
free variables) P←~L of rules in P, the following holds:

1) If A ∈~L is a positive atom, then τ(A) < τ(P).

2) If L =±{A1 : A2}, then for all ground instances A
of A2, τ(A) < τ(P).

Policy tightness is adapted from the definition of tight-
ness for standard logic programs [34] and enables inten-
sional literals and dynamic atoms to be finitely eliminated
by a semantics-preserving transformation called unfolding,
also adapted from logic programming [43].

Definition 6.2. Given a safe and tight policy P, the
unfolding of a literal L is an extensional formula defined
inductively:

unfP(Aex) , Aex, where Aex ∈ Atomex

unfP(¬A) , ¬unfP(A)
unfP(±{A1 : A2}) ,±

{
A1 : unfP(A2)

}
unfP(A) ,

∨
∃fv(L1,...,Lk)\fv(A) (unfP(L1), ...,unfP(Lk))

The last equation holds for intensional or dynamic atoms
A. The big disjunction ranges over all A′← L′1, ...,L

′
k in P

such that a most general unifier µ of A and A′ exists and
Li = µ(L′1), for i ∈ {1, ...k}.

(2&3) Interpreting wrt original state. To deal with
the second and third problems, we first consider with
respect to which state a body literal is interpreted. Consider
the execution of a ground action Ag, governed by an
action definition with head A, in the context of a safe
and tight policy P. The unfolding of A yields a (possibly
empty) sequence of elementary updates ‘padded’ by static
formulae, or more precisely,

unfP(A) = ∃~v (ϕ0,U0, ...,ϕn−1,Un−1,ϕn)

for some variables ~v and elementary updates Ui. The ϕi
and the guards in the Ui are (possibly empty) extensional
formulae. Safety of P (in particular the requirement of
having at most one rule per dynamic predicate name)
ensures that the outermost level of the unfolding is not
a disjunction.

Let B0 be the state before executing the action Ag. If
the action can be successfully executed, there is a variable
assignment γ (a complete mapping replacing free variables
with constants) such that Ag = γ(A) and

γ(ϕ0,U0, ...,ϕn−1,Un−1,ϕn)

can be successfully executed, starting from B0. According
to DYNPAL’s semantics, γ(ϕ0) and γ(U0)’s guard are
interpreted with respect to B0; γ(ϕ1) and γ(U1)’s guard
with respect to the state B1 obtained by applying the update
γ(U1) to B0, and so on. Finally, γ(ϕn) is interpreted with
respect to the final state Bn, obtained by applying γ(Un−1)
to Bn−1.

Recall that in PDDL, there are only preconditions
and no postconditions or intermediate conditions; this is
equivalent to requiring that all extensional formulae be



interpreted with respect to the original state B0. Similarly,
the guards in the conditional effects are also interpreted
with respect to B0. The following transformation step
constructs, given Bi+1 and an extensional formula ϕ, a for-
mula ϕ′ such that Bi+1 ` γ(ϕ) (corresponding to DYNPAL
semantics) is equivalent to B0 ` γ(ϕ′) (corresponding to
PDDL semantics). Effectively, it transforms intermediate
conditions and postconditions into preconditions.

Proposition 6.3. Let γ,B0, ...,Bn,U0, ...,Un−1 be charac-
terised as above, and let ϕ be an extensional formula. Then
for all i ∈ {0, ...,n−1}, Bi+1 ` γ(ϕ) iff Bi ` γ(prevUi

(ϕ)),
where prevUi

(ϕ) is a defined as follows.
If Ui is of the form +{p(~x) : ψ}, then prevUi

(ϕ)
is obtained from ϕ by replacing all atoms of the form
p(~t) by p(~t)∨ψ

{
~x 7→~t

}
. Otherwise, Ui is of the form

−{p(~x) : ψ}, and prevUi
(ϕ) is obtained from ϕ by re-

placing all atoms of the form p(~t) by p(~t)∧¬ψ
{
~x 7→~t

}
.

Proof (sketch). By induction on the structure of ϕ. The
interesting case is the base case ϕ ≡ p(~t). Suppose Ui is
of the form +{p(~x) : ψ}. Let θ be the partial variable
substitution that coincides with γ everywhere except for
~x for which it is undefined. By the definition of transP,
Bi+1 = Bi ∪ B′, where B′ = {p(~x) : Bi ` θ(ψ)}. Hence
Bi+1 |= p(γ(~t)) iff Bi |= p(γ(~t)) or p(γ(~t)) ∈ B′. This
set membership is equivalent to Bi |= (θ(ψ))

{
~x 7→ γ(~t)

}
.

Since θ does not affect ~x and γ is a total mapping,
(θ(ψ))

{
~x 7→ γ(~t)

}
= γ(ψ

{
~x 7→~t

}
). Hence, Bi+1 |= p(γ(~t))

is equivalent to Bi |= γ(p(~t)∨ψ
{
~x 7→~t

}
), as required. The

case for Ui being a retraction is similar.

A corollary of Proposition 6.3 is the fact that Bi+1 `
γ(ϕ) iff B0 ` γ

(
prevU0

(...prevUi
(ϕ)...)

)
. Exploiting this

fact, we obtain a new formula

∃~v (ϕ′0,U
′
0, ...,ϕ

′
n−1,U

′
n−1,ϕ

′
n)

where ϕ′0 = ϕ0 and ϕ′i+1 = prevU0
(...prevUi

(ϕi+1)...),
for i ∈ {0, ...,n−1}. Similarly, U ′0 = U0 and U ′i+1 is
obtained from Ui+1 by replacing the guard Ai+1 by
prevU0

(...prevUi
(Ai+1)...).

This formula takes into account that literals in PDDL
are interpreted with respect to B0, as opposed to the state
obtained by applying all intermediate updates further to
the left. Hence we can safely reorder the literals to obtain

∃~v (ϕ′0, ...,ϕ
′
n, U ′0, ...,U

′
n−1).

(4) Insertions before retractions. Finally, to deal with
the fourth problem, we show how a retraction followed by
an insertion can be converted into an equivalent insertion-
retraction pair. By repeatedly applying this operation to the
formula obtained above, the sequence U ′0, ...,U

′
n−1 can be

transformed into an equivalent one in which all insertions
happen before the retractions.

If the retraction and the insertion affect different predi-
cate names, there is no interference between them, so they
can be swapped without modification. Now we consider the
case where there is interference between the two updates.

Proposition 6.4. Let U− = −{p(~x) : ψ−} and U+ =
+{p(~x) : ψ+} (without loss of generality, we assume that
the same parameter ~x is used for p in both updates). Let
U ′− =−{p(~x) : ψ−∧¬ψ+}. Then applying U− before U+
has the same effect as applying U+ before U ′− (where the
guards are interpreted with respect to the same state).

Proof (sketch). This follows from the definition of transP
(modified to interpret the guard with respect to a given
state) and the set identity A\B∪C = A∪C \ (B\C).

The swapping operation from Proposition 6.4 is applied
repeatedly to yield the formula

∃~v (ϕ′0, ...,ϕ
′
n, U ′′0 , ...,U ′′n−1),

which has the property that all insertions are to the left
of the retractions. By safety of P and by the definition of
unfP, no variable in~v occurs as a free variable in any of the
elementary updates; therefore, the scope of the outermost
existential quantifier can be restricted to the extensional
formulae ϕ′i.

The resulting PDDL operator definition for A has
the precondition ∃~v (ϕ′0,...,ϕ′n) and the conjunctive effect
U ′′0 ,...,U ′′n−1.

Problem description. Recall that a planning problem
consists of an operator description and a problem descrip-
tion. The method described above provides a translation
of a safe and tight policy P into a PDDL operator de-
scription. A PDDL problem description consists of a finite
enumeration of constants Const (e.g. principals, resources,
parameters) that may be used in a plan, a specification of
the initial state (a list of of ground atoms that are initially
true), and a goal property ϕ (any extensional formula).

For example, to check X’s effective permission for
executing the ground action A, we compute the PDDL
preconditions of A using the translation process described
above and use the resulting formula as goal property in
the problem description. Any planner supporting PDDL
can then be used to search for a plan.

Complexity and decidability. The translation to AI
planning also gives us complexity and decidability results
(due to Erol et al. [20]).

Proposition 6.5. Given a set of constants Const, a safe
and tight policy P, a state B0 and an existentially closed
conjunction of extensional atoms ϕ, deciding whether there
exist B1, ...,Bn and ~A (with constants drawn from Const),



such that

P,B0, ...,Bn ` ~A and Bn |= ϕ,

is strictly semi-decidable for infinite Const, and
EXPSPACE-complete for finite Const (where the
input is P, B0 and ϕ). If P is a fixed parameter and
Const is finite, and all operator definitions in the PDDL
translation of P have purely conjunctive preconditions,
the problem is in PSPACE. It is in P if, additionally,
there are no negative preconditions and no retractions. If,
additionally, each operator definition contains at most one
precondition, the problem is in NLOGSPACE.

7. Invariants and Theorem Proving

This section describes a second method for analysing DYN-
PAL policies that complements the planning method from
Section 6. The planning method provides a solution to the
reachability problem: if the answer is positive, a sequence
of actions that leads to a goal state is produced in the form
of a plan. The dual of the reachability problem, safety (‘do
all reachable states satisfy the safety property?’), can also,
in principle, be solved by the planning method: we just
check that no plan exists that leads to a ‘bad’ state.

However, the planning method is of limited use for
verifying safety in practice, because (i) it requires the
initial state and the domain over which variables range
to be specified, and (ii) the specified domain has to be
finite. (Methods based on model checking, e.g. [16], [45],
have the same limitations.) Thus if the answer returned by
the planner is negative, it is only guaranteed that there
exists no plan starting from the given state and using
the given finite list of constants. It does not rule out the
possibility that there may be a plan leading to an unsafe
state involving more constants, for instance for a sequence
of actions performed by a larger coalition of possibly
unknown principals. This limitation can be problematic
in decentralised systems, where the principals interacting
with each other typically are mutual strangers at first, so
their identities are not known a priori, and their number is
unbounded. From Proposition 6.5, we know that checking
non-reachability in infinite domains is undecidable.

Moreover, even though modern planners are equipped
with a library of heuristics to quickly find plans or to
prove that no plan exists, there are still situations where
an exhaustive search is necessary, which is only feasible
for relatively small sets of constants. (Again, finite model
checking suffers from the same problem.)

The method presented in this section checks if a prop-
erty, formulated in first order logic (FOL), is an invariant
of a given dynamic policy, i.e., a safety property that is
preserved over any sequence of actions, with parameters

drawn from any arbitrary domain, including infinite ones.
This is formalised below.

Definition 7.1. An invariant ϕ of a policy P is an exten-
sional formula such that for all B0, ...,Bn,~A the following
holds: if B0 |= ϕ and P,B0, ...,Bn ` ~A then Bn |= ϕ.

Note that ~A is a sequence of (possibly dynamic) atoms,
not literals; in particular, it does not contain any elementary
updates. Therefore, the invariance only has to hold for
sequences of actions defined in the policy, not for any
arbitrary updates.

The remainder of this section describes how a FOL
formula is constructed from an invariant candidate and a
policy. We then prove that this formula is (finitely) valid if
and only if the candidate is indeed an invariant. The invari-
ance problem can thus be solved by any general-purpose
theorem prover that can prove validity and generate finite
counter examples.

The execution of an action typically involves a sequence
of elementary updates. To model such an execution in
FOL, we make the truth values of extensional atoms
before and after each intermediate update explicit. Intu-
itively, each intermediate update within an execution is
taken as a discrete time step, so predicate names are
tagged with time steps to keep track of state changes.
For example, p0 relates to predicates p at time step 0,
p1 is used for p-atoms one update later, and so on.
Formally, let PredN be a countably infinite set of predicate
names disjoint from Pred. We define an injective function
step : Pred×N→ PredN, and write pn as shorthand for
stepn(p). The function step is extended to formulae ϕ over
Pred such that stepn(ϕ) denotes the same formula with
p replaced by pn, for all predicate names p. Similarly,
stepn(B) denotes the state obtained from B by replacing
all predicate names p by pn. We define step−1 : PredN→
N such that step−1(pn) = n. This function is extended
to formulae ϕ over signature (Const,PredN) such that
step−1(ϕ) = max

{
step−1(p) : p occurs in ϕ

}
. The con-

struction requires a couple of auxiliary definitions.

Definition 7.2. If ϕ,ψ1,ψ2 are formulae,
if ϕ then ψ1 else ψ2 is short for the formula
(ϕ→ ψ1)∧ (¬ϕ→ ψ2).

Definition 7.3. For all p ∈ Predex, let framen
p denote∧

q∈Predex,q6=p

∀~x(qn(~x)↔ qn+1(~x)),

where the ~x are distinct and have appropriate arities (de-
pending on the q’s).

The formula framen
p from Definition 7.3 is used in the

translation to express the fact that, at time step n+1, the
truth values of all atoms remain as they were at step n,
apart from p-atoms. It can be seen as a naive, but for our



folPn (p(~t)) , pn(~t) if p ∈ Predex

folPn (¬A) , ¬folPn (A)

folPn (+{p(~x) : A}) , framen
p ∧ ∀~x

(
if folPn (A) then pn+1(~x) else pn(~x)↔ pn+1(~x)

)
folPn (−{p(~x) : A}) , framen

p ∧ ∀~x
(
if folPn (A) then ¬pn+1(~x) else pn(~x)↔ pn+1(~x)

)
folPn (A) ,

∨
∃fv(L1,...,Lk)\fv(A) (folPr1

(L1)∧ ...∧ folPrk
(Lk))

Figure 3. Translating a safe and tight policy P into FOL. The big disjunction in the last equation ranges over all rules
A′← L′1, ...,L

′
k in P such that a most general unifier µ of A and A′ exists and Li = µ(L′1), for i ∈ {1, ...k}. Furthermore,

r1 = n, and ri = step−1(folPri−1
(Li−1)) for i ∈ {2, ...,k}.

purposes feasible way of addressing the frame problem
[35].

Based on these auxiliary definitions, we can now define
the centrepiece of the invariance formula: given a natural
number n, a literal L, and a safe and tight policy P, folPn (L)
is inductively defined in Fig. 3. The first case states that
if the extensional literal p(~t) can be executed successfully
at step n, then it must be true at that step, represented
by pn(~t). The cases for elementary updates state that if
the guard A is true at step n then the affected atom p(~x)
is true at step n + 1 (or false, in the case of retraction);
furthermore, all other atoms remain unaffected. The second
and the last case eliminate intensional and dynamic atoms
by unfolding, as in the previous section, but with time-step
tagging. Note that the definition is well-founded because
P is tight, and hence the unfolding operation of the last
case can only be applied a finite number of times.

Intuitively, folPn (L) models all possible successful ex-
ecutions of L by characterising the truth relationships
between all extensional atoms at each intermediate step,
assuming that the execution starts at step n. It expresses
the strongest postcondition on states for each intermediate
step, irrespective of the concrete initial state or the domain.
It could thus be seen as an abstract representation of the
executions of a literal. The following lemma formalises
this intuition.

Lemma 7.4. For all m, safe and tight policies P, ground
L, and Bm,Bm+1,...,Bn, where n = step−1(folPm(L)), the
following holds:

P,Bm, ...,Bn ` L iff
n⋃

i=m

stepi(Bi) |= folPm(L)

Proof (sketch). By rule induction on the proof system.
The different cases in the definition of folP correspond
directly to the proof rules. In particular, the case definitions
for elementary updates are direct encodings of transP in
first order logic: for any elementary update L, we have
L ∈ transP(Bm,Bm+1) iff stepm(Bm)∪ stepm+1(Bm+1) |=
folPm(L).

Two further auxiliary definitions are needed for the final

step of generating the invariance formula:

Definition 7.5. A formula ϕ is finitely valid, written |=fin ϕ,
if every finite interpretation (i.e., a structure with finite
domain) is a model of ϕ. (Or equivalently, if ¬ϕ has no
finite model.)

Definition 7.6. Given a policy P, let unaP denote the
formula

∧
¬(c1 = c2), where the conjunction ranges over

all pairs of constants c1 6= c2 that occur in P.

The following lemma shows that a property ϕ on the
initial state, together with folP0 (L) and the unique name
assumption unaP (distinct constant symbols are interpreted
as distinct constants), logically implies a property ψ on the
final state (under all finite interpretations) if and only if
for all concrete executions of L starting from any initial
state satisfying ϕ, the execution terminates in a final
state satisfying ψ. The restriction of finite validity and
the unique name assumption are essential for proving the
lemma, as only finite Herbrand models of the implication
are guaranteed to correspond to real executions (where all
intermediate states are finite).

Lemma 7.7. For all extensional formulae ϕ, ψ, safe
and tight policies P, L, and n, where L is ground and
n = step−1(folP0 (L)), the following holds: |=fin step0(ϕ)∧
folP0 (L)∧unaP⇒ stepn(ψ) iff for all B0,...,Bn,

B0 |= ϕ and P,B0, ...,Bn ` L imply Bn |= ψ.

Proof. For the ‘only if’ direction, Lemma 7.4, applied to
the assumption P,B0, ...,Bn ` L, implies

⋃n
i=0 stepi(Bi) |=

folPm(L). Secondly, from the assumption B0 |= ϕ, we
can deduce

⋃n
i=0 stepi(Bi) |= step0(ϕ). Thirdly, since⋃n

i=0 stepi(Bi) is a Herbrand interpretation, it entails unaP.
Fourthly, note that

⋃n
i=0 stepi(Bi) is a finite interpretation.

Combining these four facts with the main assumption
gives

⋃n
i=0 stepi(Bi) |= stepn(ψ). Since step is injective, it

follows that stepn(Bn) |= stepn(ψ), which implies Bn |= ψ.
For the ‘if’ direction, consider any finite model of

step0(ϕ) ∧ folP0 (L) ∧ unaP. This model has a submodel
that is isomorphic to a Herbrand model of the form⋃n

i=0 stepi(Bi) where each Bi is finite. We need to show



that this model satisfies stepn(ψ). Since
⋃n

i=0 stepi(Bi)
satisfies step0(ϕ), so does step0(B0), by injectivity of
step, and hence B0 |= ϕ. Furthermore, by Lemma 7.4,
P,B0, ...,Bn ` L. Thus the implication of the main as-
sumption gives Bn |= ψ, and equivalently stepn(Bn) is a
model of stepn(ψ). By injectivity of step, this model can
be padded with ‘irrelevant’ atoms, thus

⋃n
i=0 stepi(Bi) |=

stepn(ψ).

Finally, Theorem 7.8 constructs the complete formula
for checking invariants:

Theorem 7.8. For all extensional formulae ϕ and safe and
tight policies P the following holds: ϕ is an invariant of P
iff for all p ∈ Preddy,

|=fin ∀~x : step0(ϕ)∧ folP0 (p(~x))∧unaP⇒ stepn(ϕ),

where n = step−1(folP0 (p(~x))) (and ~x has the arity of p).

Proof. The ‘if’ direction is proven by induction on the
length of ~A (in Definition 7.1). For sequences of length
1, the invariance property is trivially satisfied for non-
dynamic atoms. For dynamic atoms, the statement follows
from the ‘only if’ part of Lemma 7.7 (with ϕ = ψ). For
sequences of greater lengths, the statement follows from
the inductive hypothesis and the (SEQ) rule. The ‘only if’
direction is a corollary of the ‘if’ part of Lemma 7.7 (again
with ϕ = ψ).

The theorem establishes soundness and completeness
of the algorithm and justifies the use of an automated
FOL theorem prover for proving and disproving invariants.
However, it has to be a theorem prover that can not
only prove validity, but, in the case of non-validity, can
also prove the formula is not finitely valid. For instance,
the combination [37] of Prover9 (an automated theorem
prover) and Mace4 (a finite model searcher for FOL) is
suitable for this purpose: Prover9 and Mace4 are typically
run in parallel; if the formula from Theorem 7.8 is proven
valid by Prover9, it follows that it is also finitely valid,
therefore ϕ is an invariant. On the other hand, if Mace4
reports that the formula is not valid, this implies that a
finite counter example exists, hence the formula is not
finitely valid, and so ϕ is provably not an invariant. The
reachability analysis from Section 6 could then be used
to find a concrete sequence of actions that violates the
property.

8. Discussion
Experimental results. The case studies in Zhang et
al. [45] with the RW framework were used for obtaining
some preliminary experimental results. In particular, the
authorisation policies for their conference paper review
system (CRS), their employee information system (EIS) for

managing bonus allocations, and their student information
system (SIS) for managing students’ marks were encoded
in DYNPAL. (For lack of space, these are not described
here.) The encoding was straightforward and in some cases
simpler than the RW version due to DYNPAL’s support of
intensional predicates.

The relevant reachability queries from their paper were
then evaluated, using the AI planner FF [26] and the
theorem prover Prover9-Mace4 [37]. Only very brief de-
scriptions of the queries are provided here (for details, see
[45]): Query 4.2 aims to find a strategy for a conference
chair to promote an agent to be a reviewer of a paper.
Query 4.3 attempts to find a way for an agent to read a
review before having submitted a review for that paper
herself. Query 6.4 asks if two managers can cooperate to
set each other’s bonuses. Query 6.8 tries to find a strategy
where a lecturer appoints two students to be demonstrators
of each other (thereby enabling them to set each other’s
marks).

The computation times alongside the RW results based
on model checking with AcPeg [45] are reported in Fig.
4. Note that the respective computation times cannot be
directly compared, as Zhang et al.’s notion of reachability
takes into account the knowledge state of principals: a
goal is only considered to be reached if the principals
know (by performing read actions) that it has been reached.
In the presence of incomplete knowledge, reading a state
variable may return > or ⊥ (their variables only range over
a boolean domain). It is likely that this nondeterminism
causes their reachability queries to be more complex.
Nevertheless, the numbers in Fig. 4 show that the model
checking approach is very sensitive to the number of agents
and other constants in the environment, as the resulting
model grows exponentially with the size of the domain. In
contrast, the goal-directed heuristics of the planner tend
to find a plan very quickly, irrespective of the size of
the domain. This coincides with the intuition that model
checking is better at proving that no plan exists (but only
for finite domains), whereas AI planning is optimised for
finding plans (although there is a growing body of work
seeking to marry the two approaches [30], [23], [18]).

Most plans found were short (≤ 3 steps); to construct a
problem with a longer plan, Query 4.3 was modified to start
from a state containing only a conference chair person.
The resulting plan consisted of 8 steps, and was computed
in 140 ms. All queries have a positive answer apart from
Query 6.8. Here, the planner failed to prove that no plan
exists within reasonable time, but proving the invariant
that no two students can be demonstrators of each other
(even with infinitely many agents) only took 1,114 ms
(234 ms to generate the invariance formula, and 880 ms to
run the theorem prover). (To be precise, the invariant also
contained the provision that the relation stating that one



Query (from [45]) Constants DYNPAL RW
Query 4.2 7 120 3,600
Query 4.3 4 125 250
Query 6.4 6 120 288
Query 6.4 12 120 22,500
Query 6.4 18 120 177,357
Query 6.8 10 ∞/1,114 33,807

Figure 4. Query evaluation times in ms. Caveat: this
does not serve as a direct comparison, as the notion of
reachability in RW differs somewhat from this paper’s (see
text).

student is in a higher year than another is anti-symmetric.)
Other interesting invariants were also proven in the context
of the CRS, for example that anyone who is reviewing or
subreviewing a paper or has submitted a review for a paper,
is not an author of that paper. Again, the result holds for
any number of papers and agents in the system. Generating
this invariance formula took 990 ms, proving finite validity
3,200 ms.

To demonstrate how DYNPAL’s dynamic features can
be added to existing languages, SecPAL [7] was extended
by a fragment of DYNPAL (essentially, the SMP [8]
fragment). The state was stored in an SQL database to
enable fast lookups and updates. To test the scalability of
the system, the nation-wide health record policy from the
Cassandra case study [5] was implemented, resulting in
46 rules (of which 23 are action definitions), as well as
web-based patient and clinician portals as front ends for
reading, writing and annotating health records, referring
patients, managing sealed envelopes etc. The state was
populated with two million random atoms about records,
patients and clinicians. Despite the large size of the state
and the complexity of the policy, policy evaluation and
update times were insignificantly low.

Limitations and future work. While DYNPAL’s dy-
namic features can be easily added to existing logic-based
authorisation languages, the analysis methods and results
cannot always be carried over, if the base language is more
expressive than Datalog. For example, if the base language
is as expressive as Datalog with constraints (as in SecPAL),
the planning analysis would still work (since the domain is
finite), but the invariance analysis would require theorem
proving over formulas with constraints.

One important topic not discussed here is that of
correctly and efficiently implementing DYNPAL’s transac-
tional execution semantics. In particular, techniques from
database transactions and concurrency control (such as
STM) may be applicable. This issue is largely orthogonal
to the results and discussions in this paper.

DYNPAL is designed to ensure that the effects of

actions are deterministic. Barth and Mitchell [4] argue
that this is not a reasonable property for digital rights
management, where an action (such as playing a song) may
consume or modify one out of several possible existing li-
censes. Such non-deterministic actions can be expressed in
DYNPAL by relaxing the safety condition from Definition
5.3. However, analysis would become much harder; indeed,
as shown by Barth and Mitchell, even just checking if a
given sequence of actions is permitted is intractable.

RW [45] is less expressive than DYNPAL, as it does
not support postconditions, intermediate conditions, and
actions that update more than one fact. However, their
framework supports more complex queries than those
considered in Section 6. Firstly, RW queries can be nested
(e.g. ‘can we reach a state in which ϕ holds, and from
there reach a state in which ψ holds?’). Secondly, explicit
coalitions of agents who may be involved in the actions
may be specified (e.g. ‘can A and B together reach X?’).
Thirdly, RW distinguishes between strategies and guessing
strategies (see Section 2). To support queries with some of
these extended features, it may be possible to pre-transform
the policy appropriately before the method in Section 6 is
applied. The details are beyond the scope of this paper, but
may be addressed in a future paper.

Invariance analysis, as described in Section 7, is use-
ful for debugging and verifying policies. However, as in
program verification, it is often difficult to come up with
correct invariants. Therefore, some form of automated as-
sistance in generating policy invariants would be desirable;
this problem may be pursued in future work.
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