Abductive Authorization Credential Gathering

Moritz Y. Becker!

Jason F. Mackay?

Blair Dillaway?

"Microsoft Research, Cambridge, UK, moritzb@microsoft.com
2Microsoft Corporation, Redmond, WA, USA, {jmackay,blaird}@microsoft.com

Abstract

A central task in the context of logic-based decentralized autho-
rization languages is that of gathering credentials from creden-
tial providers, required by the resource guard’s policy to grant a
user’s access request. This paper presents an abduction-based
algorithm that computes a specification of missing creden-
tials without communicating with remote credential providers.
The specification is used to gather credentials from credential
providers in a single pass, without involving any communica-
tion with the resource guard. The credentials gathered thus are
pushed to the resource guard at authorization time. This ap-
proach decouples authorization from credential gathering, and,
in comparison to server-side pull methods, reduces the number
of messages sent between participants, and allows for environ-
ments in which some credential providers are unknown or un-
available to the resource guard at authorization time.

1 Introduction

Large-scale decentralized systems present unique challenges for
authorization and access control. Several logic-based authoriza-
tion policy languages specialized for such environments have
emerged which leverage the concept of delegated authority in
order to remove the need for centralized control (e.g. [5, 8, 2]).
Credentials in these systems are not stored in a central location
but rather in a distributed manner. In fact, they may be stored
anywhere as long as they are made available to the resource
guard at the time of authorization. Requiring that users gather
the credentials themselves and push them to the resource guard
has been considered problematic [4], as the expressiveness of
policy languages makes it difficult for a human to understand
precisely what kinds of credentials are required. Furthermore,
the user generally does not, and should not need to, know the
policy. An automated method for gathering the right credentials
is therefore desirable.

Previous work in this area has focused on server-side on-
demand pull methods [4, 1, 9, 5, 7] to take the burden off the
user. In these approaches, the resource guard attempts to con-
struct a proof for the access request based on local policy and
a set of provided credentials. Whenever a required credential
is not locally available during the proof process, an attempt is
made to retrieve it from some remote credential provider. Con-
sider the following example (written in SecPAL [2]):

Srv says x can read f if x is a Mgr in dept, dept owns f.

Srv says Bob can say x is a role in dept.

When Alice requests to read a file foo, the proof process first
tries to prove that she is a manager of some arbitrary department
dept. Authority over role memberships is delegated to Bob (by

the second assertion), so in the absence of relevant local infor-
mation, the resource guard attempts to pull all credentials of the
form Bob says Alice is a Mgr in dept from a suitable remote cre-
dential provider (e.g. Bob). When the credentials have arrived,
the proof can proceed with the second condition, dept owns foo.
There are two problems with the pull-based approach:

1. Communication cost. The proof of the second condition
may fail based on local information, in which case the costly
communication with the credential provider was futile. Sim-
ilarly, the second condition may turn out to force a constraint
on dept, which could have made the remote query narrower
and more efficient, if the constraint had been known in ad-
vance. Finally, the proof of the second condition may itself
require missing credentials from the same provider, resulting
in multiple, separate message exchanges.

2. Connectivity requirements. The proof process fails (or be-
comes inaccurate) if any of the credential providers required
during the proof happens to be unavailable to the resource
guard at authorization time, for example due to unexpected
downtime, or because the provider is behind a firewall, or
because human interaction is required at the provider’s site.
Also, there are cases where the location of a missing creden-
tial is not discoverable by the resource guard, but is deter-
mined by another part of the workflow.

This paper presents a novel push-based method for gathering
credentials in distributed systems that addresses these two prob-
lems and yet does not require the user (or any principal other
than the resource guard) to know the policy. To deal with the first
problem, we present an algorithm for statically precomputing
a complete specification of missing credentials, without requir-
ing remote communication. This goal-directed algorithm per-
forms logical abduction over constrained Datalog, using memo-
ization to improve efficiency. To deal with the second problem,
we present a distributed single-pass protocol for collecting cre-
dentials, based on the abductive specification, that does not in-
volve the resource guard (or any other central pull-mechanism)
at all, and therefore does not require simultaneous availability
of providers at access time or at any other time. In fact, the
protocol makes only very weak assumptions on the connectivity
of participating parties: arbitrary communication paths through
the providers are supported, enabling a wider variety of sce-
narios and minimizing communications overhead compared to
the server-side pull approach. The credentials gathered thus are
pushed to the resource guard at access time and are guaranteed
to sufficiently support the query, as long as the policy is not
modified during the run of the protocol.

We describe the algorithms and protocols in the context of
SecPAL [2], a highly expressive policy language that can be
translated into constrained Datalog, but are applicable to any
similar language of equal or lesser expressiveness, as long as it
supports decentralized delegation.

SecPAL is reviewed in Section 2. Section 3 presents an ab-
ductive algorithm for computing a specification of missing cre-
dentials. Section 4 describes a protocol which, given such a
specification, incrementally gathers satisfying credentials from
a set of credential providers. Section 5 illustrates the proto-
col in the context of an example scenario based on electronic
health records. Related work is discussed in Section 6. Section
7 concludes the paper with a discussion of limitations and future
work.

2 Security Policy Assertions

In this section we briefly review the core of SecPAL, an autho-
rization language we are developing for large-scale federated
systems. For a more detailed treatment, see [3, 2], which de-
fines a formal proof-theoretic semantics.

A SecPAL policy P is a set of assertions o of the form

e says fact if fact, ..., fact, where c.

A policy typically consists of locally defined assertions and cre-
dentials (imported assertions, possibly issued by other princi-
pals). The expression e is a principal called the issuer. The fact
before the if-clause is the concluding fact, which is considered
deducible if all facts of the if-clause (the conditional facts) can
be deduced from the policy. The formula c inside the where-
clause is the constraint of the assertion. An assertion with no
if-clause (n = 0) and no constraint is called atomic. Facts and
constraints may contain variables. A syntactic phrase is ground
if it is variable-free. A fact is a simple sentence consisting of a
principal expression (the subject) followed by a verb phrase. A
verb phrase is a typed predicate with parameters, usually writ-
ten in infix notation in order to resemble natural language. Verb
phrases are application-specific; for instance, in Section 1, we
used the verb phrases can read, is a, and owns.

Delegation of authority is expressed with two special verb
phrases with built-in semantics, can say,, and can say,. If A
says B can say., fact and B says fact are both deducible from
the policy, then A says fact is also deducible. Instead of stating
the fact directly, B could also re-delegate with an assertion such
as B says C can say., fact. Now if C says fact then we can again
deduce that A is also saying it. The verb phrase can say,, also ex-
presses delegation of authority, but prohibits re-delegation. So
if A says B can say,, fact is deducible, then A only says the fact
if B says it directly. Section 5 provides examples of SecPAL
policies in the context of an electronic health record system.

A SecPAL query q is an atomic assertion. The answer to a
query is the set of substitutions 6 such that 6(q) is deducible
from the policy P; this is denoted by P F 6(g). Users’ access
requests are mapped to SecPAL queries. Access is granted if
the answer to the corresponding query is non-empty, and denied
otherwise.

Constrained Datalog Translation To evaluate a policy (i.e.,
to check if access is permitted), the query and the policy are
translated into a set of constrained Datalog clauses.

In the remainder of the paper, we write A, B, P, O, R, ... for
atoms (positive literals built from predicate symbols) and ¢ for
constraints. We use vector notation to denote a (possibly empty)
list of atoms, e.g. P, and write Qo = Q for a predicate list with
head element Qp and tail list Q An atom P is an instance of
Q if there exists some substitution 8 such that P = 6(Q). In
constrained Datalog, clauses are of the form P «— P,c where
the atom P is the head, the (possibly empty) list of atoms P the
body, and c the constraint of the clause. A program (is a finite
set of clauses. A constrained Datalog query consists of an atom.
Intuitively, 6(P) is deducible under 8 (we write C + 6(P)) if
0(P;) is deducible from (for all P; € P, and if 8(c) is valid.

For example, the first assertion in Section 1 is translated into

can_read(k,Srv,x, f) < is_a(k, Srv,x,Mgr,dept),
owns(k,Srv,dept, f).

Assertions involving cansay translate into more than one
clause. Again, we refer to [3, 2] for details. For the purpose
of this paper, it is sufficient to note that queries g and policies P
can be translated into equivalent Datalog clauses, denoted by [¢]
and [P]. Any Datalog atom A occurring inside such a translation
can be translated back into an equivalent atomic SecPAL asser-
tion, denoted by ||A||. For example, if A = owns(k, Srv,dept,),
then ||A]| = Srv says dept owns f.

3 Abductive SecPAL Evaluation

This section presents an algorithm that not only decides if a set
of user-submitted SecPAL credentials is sufficient for authoriz-
ing a request, but, in the case of access denial, also computes
a complete specification of which missing credentials would be
sufficient. The computation is entirely local, i.e., it does not
require communication with the providers of the missing cre-
dentials. As such, it can be run before access is required, as a
preparation step for credential gathering, which is described in
Section 4.

On an abstract level, we reduce the problem of computing
the specification of missing credentials to the problem of ab-
duction. Abduction is a term coined by the philosopher Charles
Peirce in the late 19th century, who used it to describe how ob-
servations can be explained, given a set of rules known about
the world. More specifically, abduction is the process of finding
a set of facts that, together with the rules, explain the observa-
tion. For example, given the rule “whenever it rains, the grass
is wet,” the observation that the grass is wet could be explained
by a hypothetical fact that it has rained. Abduction is thus dual
to deduction, where from a given set of rules and facts, the ex-
pected observations (or conclusions) can be logically derived.
Logic-based abduction has been extensively used in fault diag-
nosis, automated planning, and other Al applications [6]. Ap-
plying these concepts to authorization, rules correspond to the
local policy, facts to submitted credentials, and observations to
queries. In this framework, deduction then corresponds to de-
ciding if access should be granted, and abduction to deciding

which missing credentials would result in access being granted.

Constrained Tabled Abduction The first step of the evalu-
ation procedure translates the assertions (from the local policy
and supporting credentials) and the query corresponding to the
access request into constrained Datalog. Then the problem of
finding a complete specification of missing credentials reduces
to an abduction problem in constrained Datalog. More precisely,
we now have to find sets of atoms, each of which would make
the query provable if added to the program.

The basic idea behind our abduction algorithm for SecPAL is
this: during the resolution proof, whenever an attempt to prove a
goal fails, the corresponding atom is nevertheless assumed to be
true (it is then said to be abduced) and the proof resumes from
there. The algorithm keeps track of these assumptions, so that
each subgoal can be associated with a set of abduced assertions
its proof depended on. The algorithm constructs a forest of proof
trees. Each tree consists of a root node, intermediate goal nodes,
and answer nodes as leaf nodes, defined as follows.

Definition 3.1 (Proof nodes). A root node is of the form (P). A
goal node is a quintuple of the form (P; Q;R;A ;¢). The atom P
is the index of the goal node, Q are the subgoals, R is an instance
of P called the partial answer, A are the abductive assumptions,
and c is the constraint of the goal node. A goal node with an
empty list of subgoals is an answer node. O

Starting from some root node (P), resolution with program
clauses produces goal nodes with index P. As the subgoals Q
are processed one by one, new P-indexed goal nodes are created
with the remaining subgoals and with increasingly instantiated
variants of P as partial answer. A proof branch ends when no
subgoals are left, i.e., in the case of an answer node.

An answer node (P; | };R;A;c) has the following property for
all ground substitutions 7y such that y(c) is true: if the set of ab-
ductive assumptions ¥(A) had been supplied together with [2].
a successful proof of y(R) (which is a ground instance of P)
could have been constructed. The list A thus corresponds to a
set of missing atomic assertions, constrained by c. In the de-
generate case where Alis empty, Y(R) can be proved without any
abductive assumptions, corresponding to access granted.

Fig. 1 shows the pseudocode of the algorithm. Underscores
denote distinct anonymous variables (and can be read as ‘don’t
care’). The auxiliary function resolve and the subsumption re-
lation < are defined below in Definitions 3.2 and 3.3. As in
standard memoing deductive evaluation algorithms [2], our ab-
ductive algorithm utilizes two initially empty tables (i.e., par-
tial functions), Ans and Wait: Ans(P) holds the set of answer
nodes that have so far been found for the goal indexed by P, and
Wait(P) contains the set of goal nodes that are suspended and
waiting for future answers to P.

The algorithm consists of three procedures that each take a
proof node as input. The RESOLVE-CLAUSE procedure takes as
input a root node (P) and creates a new proof tree for it by ini-
tializing an entry in the answer table (Line 1). It then proceeds
by resolving P against the clauses in [?P] (Line 2 —4). The re-
solved clauses are processed further by PROCESS-NODE (Line

5). Additionally, RESOLVE-CLAUSE implements the abductive
base case: it “invents” a trivial answer for P by simply assum-
ing P to hold; this is tracked by adding P to the list of abductive
assumptions of the new answer node, which is then further pro-
cessed by PROCESS-ANSWER (Line 6,7).

PROCESS-NODE takes as input a goal node nd and first
checks if it is an answer node, in which case it is further pro-
cessed by PROCESS-ANSWER Line 1 — 3). Otherwise, the left-
most subgoal Qg is chosen to be solved next (Line 4). If the
answer table already contains an entry for some Qj, that is more
general than Qg (Line 5,6), then the currently existing and fu-
ture answers of (0}, are candidates for resolving against nd (Line
7 —10). Otherwise, a new root node is spawned for Qp, whose
proof tree should eventually provide answer nodes to be re-
solved against nd (Line 12,13).

PROCESS-ANSWER takes as input an answer node
(P;[J;5-5¢) and adds it to the answers of P, if it is not
subsumed by any already existing answer (Line 1 — 3). Fur-
thermore, it attempts to resolve the new answer against all
suspended goal nodes waiting for it (Line 4 — 6).

The algorithm differs from the standard deductive evalua-
tion algorithm in three respects. Firstly, resolving a goal node
against an answer node requires the assumptions and constraints
from both nodes to be merged. Abductive answers may be non-
ground and may contain constraints, so these have to be com-
bined as well. The abductive resolve function is defined as fol-
lows.

Definition 3.2 (Resolution). Let mgu(A,B) denote a most gen-
eral unifier of atoms A and B, if one exists, and be undefined
otherwise. Let ndy = (Py; Qo :: Q;RO;XO;CO) be a goal node,
and let (Pi;[};Rl;Xl;q) be a fresh renaming of an answer
node nd;. Then resolve(ndy,nd;) exists iff 6 = mgu(Qo,R;)
is defined and ¢ = B(co A ¢1) is satisfiable, and its value is
(Po:6(0):0(R0):0(A0) UB(A))sc). O

Secondly, the procedure RESOLVE-CLAUSE is extended by
an if-clause (Line 6,7), which creates a new abductive answer
for the subgoal P if P is abducible, i.e., if it is amongst the
atoms that are allowed as an assumption in an abductive answer.
For example, in delegation policies, one is often only interested
in abducing atomic assertions said by someone other than the
local authority; in this case, only atoms corresponding to such
assertions would be deemed abducible. This abducibility filter
effectively prunes the space of possible abductive proofs the al-
gorithm will consider.

The third difference is in PROCESS-ANSWER where a newly
found answer is added to the answer table only if it is not
subsumed by an existing answer. Intuitively, an abductive an-
swer is subsumed by a second answer if providing the miss-
ing atoms specified by the former also always provides those
specified by the latter. Having already found the second an-
swer, it is therefore not desirable to add the first answer,
which is harder to satisfy and thus less useful. For exam-
ple, an answer node with abductive assumptions [Charlie
says Doris is a user], [Charlie says Doris is a admin] and
constraint True is subsumed by an answer node with abductive

RESOLVE-CLAUSE((P))

01 Ans(P):=0;

02 foreach (Q — 0,c) € [P] do

03 if nd = resolve((P; Q :: Q;Q;[];c), (P;[];P;[];True))
04 exists then

05 PROCESS-NODE(nd);

06 if P is abducible then

07 PROCESS-ANSWER((P;[]; P; [P]; True))

PROCESS-ANSWER (nd)

01 match nd with (P;[];;_;¢) in

02 if there is no ndy € Ans(P) such that nd < ndy then
03 Ans(P) := Ans(P) U {nd};

04 foreach nd’ € Wait(P) do

05 if nd” = resolve(nd’,nd) exists then

06 PROCESS-NODE(nd")

PROCESS-NODE(nd)
01 match nd with (P; 0;_; Zc)in
02 if 0 =[] then

03 PROCESS-ANSWER (nd)

04 else match Qwith Qo ::_in

05 if there exists Q) € dom(Ans)

06 such that Qg is an instance of Q6 then
07 Wait(Q)) := Wait(Q)) U{nd};

08 foreach nd’ € Ans(Qy,) do

09 if nd” = resolve(nd, nd') exists then
10 PROCESS-NODE(nd")

11 else

12 Wait(Qo) := {nd};

13 RESOLVE-CLAUSE({Qo))

Figure 1: Deductive evaluation algorithm with abductive extension

assumption {[Charlie says Doris isa r]} and the constraint
(r matches adm*). Clearly, any set of atoms satisfying the first
set also covers the second set. Formally, subsumption between
answer nodes is defined as follows.

Definition 3.3 (Node subsumption). Let ndy =
(Pos|];RO;XO;CO) and nd; be answer nodes, and let
(Prs]];Rl;ll;q) be a fresh renaming of nd;. Then ndy
is subsumed by nd; (we write ndy =< nd) iff |14_'Q‘ > |Xl|
and there exists a substitution 6 such that Ry = 6(R;) and
Ap D G(A_l) and 6(0(cy)) is true for all substitutions ¢ for which
6(co) is true. O

Running the Algorithm The algorithm takes as input a query
q and a set of supporting credentials Ay,,, that is combined
with the service’s local policy P, to form the input policy P =
Proc U Agp. The entry point is a call to RESOLVE-CLAUSE((Q)),
where Q = [¢]. On termination, Ans(Q) contains a complete set
of answers of the form (Q;];R;X; ¢), where R is a (not necessar-
ily ground) instance of Q. Such an answer can be interpreted as
follows: if some ground instantiation (satisfying the constraint
¢) of the atoms in A had been in the original set of clauses [?]
(or had been derivable from that set), then R, under the same
ground instantiation, could have been proven.

From Ans(Q), we construct a set of templates of
the form (0 Aweg; Aucq;c), one for each answer node
(Os[iR:{A1,....Ap}ic) € Ans(Q), where o = [[R]], Arq =
{llA1]],-.., ||An|l} specifies the requirements, and Ayeq = Agyp is
the set of already acquired credentials, equal to the set of sup-
porting credentials submitted as part of the input.

Definition 3.4. A set of credentials 4 satisfies (O Areq; Aucqs)
where 4., = {0, ..., 0, } iff there exists a ground substitution y
such that 4 + y(o;) (for all i = 1...n) and y(c) is true. O

The main correctness property of the algorithm is that any set
of credentials satisfying one of the returned templates is suffi-
cient for supporting the original access request. Hence the tem-
plate set is a complete specification of the missing credentials:

Proposition 3.5. Let (0t; Aeq; Aucq; c) be one of the return val-
ues from the algorithm (with local policy P, and query gq).

Then o is an instance of ¢. Furthermore, for all sets of cre-
dentials 4 that satisfy the template, Ppc U Ayeq UA v(o) for
some ground substitution . O

The next section shows how the returned template set is used
to encode the state of a distributed protocol for collecting satis-
fying sets of credentials along a path of credential providers.

4 Credential Gathering Protocol

We now present a protocol for the distributed collection of cre-
dentials prior to an access request. The protocol does not re-
quire involvement of the resource guard from the time after the
abductive answer is returned, up until the time when the user
requests access. When access is requested, the collected cre-
dentials are pushed to the resource guard, which can then, again
completely locally, verify that the requested access is permitted.
This protocol therefore decouples the distributed task of collect-
ing credentials (which obviously requires communication, al-
beit not with the resource guard) from the local authorization
task. Communication overhead is minimized, thus the protocol
is applicable in environments where each single credential fetch
request may take a long time, for example when human interac-
tion is involved, or when there is no simultaneous connectivity
between the resource guard and the credential providers.

Overview The initial setting is as follows: a user Uj,; intends
to start a workflow which will eventually require access by some
Ugace (Which may be identical to Uj,;) to some resource on ser-
vice Uy, (the resource guard). The access by U, will take place
at some future time 7T called access time. Uj,; does not know
what supporting credentials are required by the policy at Uy, for
this access. Therefore, at some point in time Typq < Ty called
abduction time, U;y,; contacts Us,, in order to receive a complete
specification for credentials required for the proposed access re-
quest. If the specification is empty, early failure is reported back
to Uy,. If the specification is non-empty, Uj,; initiates an au-
tomated process which visits a number of credential providers
in turn, each of which may provide either stored credentials or
new credentials issued on behalf of some provider-specific set of

principals. In practice, providers may include Ujy,;’s local store,
directory services, firewalled security token servers, etc.

Any distributed credential gathering protocol must involve
such a set of providers to be consulted for missing credentials.
While previous credential retrieval protocols require the exis-
tence of one or more providers which can directly communicate
with all other providers, our protocol assumes only that each
credential provider is able to decide which provider should be
consulted next and to communicate with that next provider. The
protocol is agnostic as to the method used by each provider to
make this decision. (The tradeoffs of this generalization are dis-
cussed in Section 7.) In practice, the next credential provider in
the path may depend on the network topology, the application
workflow, and information on credential locations (e.g. with the
issuer, with the subject, type-based [9], or policy-based [5]).

At time step T1 > T,p4, Uini sends the credential specification
(from Uy,,) to some credential provider C;. Based on this spec-
ification, C; collects matching local credentials that it is willing
to disclose and generates matching credentials that it is willing
to issue. Cj also decides on the credential provider next on the
path, C,. The specification, together with the credentials, is then
sent to C; at time 75. This is repeated at each step of the protocol,
until the last credential provider Cy is reached at step Ty < Tyee
(for some N > 1), after which either all required credentials have
been successfully collected, or else the protocol reports failure.

Detailed Description At time step Tpq, Uiy requests from
Us,, a specification of missing credentials for U,..’s future re-
source access. This specification is the result of running the
abduction algorithm from Section 3. Recall that the algorithm
takes as input a policy P and a query g,p4. In this case, P con-
sists of Uy,,’s local policy together with a (possibly empty) set
Ay of supporting credentials submitted by Uj,;. The query gupq
is the one associated with the access request at 7. and may be
provided, for example, manually by Uj,;, by some piece of task-
specific software, or by the service Uy, when some exposed API
is called by Ujy;. At time step T,p4, some of the values occurring
in the actual access query ¢qc (run at time 7,..) may not yet
be known, therefore the query gupq given to Uy, at T,pg may
contain variables in places where ¢, has concrete values; more
precisely, g,»4 must be such that g, is an instance of gpy.

Recall that the result of the abduction algorithm is a set of
templates of the form (0; Ayeq; Ao;c). If the set is empty, Uy is
notified that the future request will fail, no matter which addi-
tional credentials are provided. Otherwise the set is processed
by C; (which may be identical to Uj;,;) and subsequently used to
encode the state of the protocol.

At each time step 7; (for i = 1,...,N — 1), the creden-
tial provider C; receives a template set 7 and executes the
procedure PROCESS-TEMPLATE-SET(Z) (Fig. 2), which at-
tempts to partially satisfy as many templates as possible,
and send it to the next credential provider. At the final
time step Ty, Cy receives a template set 7 and executes
PROCESS-FINAL-TEMPLATE-SET(T), which will finalize the
supporting credential set, to be used for the access query gucc-

The procedures in Fig. 2 make use of a number of auxiliary

functions and procedures defined below.

Definition 4.1. Let A4 be a set of assertions, A, a set of possi-
bly unsafe atomic assertions, 0 a substitution, and ¢ a constraint.

— credsc; (Aum,c) returns a set of triples (A.,,;0;c’) such that
A n C 0(Aum) and 0(c) A is satisfiable. Furthermore, no
fact of the form inst(_, _) occurs in 4,,,.
— addinst(A,,) is the set of assertions obtained by augment-
ing each a0 € Ay, with a conditional fact inst(hash,,x) for
each distinct variable x occurring in .. The expression hash,
stands for a constant that is unique for every variable x and

for this particular run of the protocol.

— issue(A4) is a procedure that issues all assertions in 4, i.e.,
it creates signed credentials corresponding to those assertions
(or retrieves existing credentials from the local store), and re-
turns them.

— instFacts(4) is the set of (concluding or conditional) facts of
the form inst(_,_) occurring in 4.

— instAssrts(4) is the set of assertions in 4 whose concluding
facts are of the form inst(_,_).

The function credsc; is specific to each credential provider
C;. Given a constrained set of atomic assertions (Agmm,,c) as in-
put, it returns a set of triples (4.,,;0;c’). Each triple represents
a set of credentials that the provider is willing and able to pro-
vide and that match a subset of the input specification (including
the constraint ¢). These credentials may be from a local store,
or freshly issued and may contain variables that are constrained
by ¢/. They may be more instantiated than the input specifica-
tion, hence the function also returns a substitution 0 that par-
tially maps the input specification onto the output.

The definition of credsc, is intentionally kept abstract and
general to cover a wide range of possible implementations. In
practice, C; would decide according to a local issuance and dis-
closure policy which credentials are returned by credsc,. Any
authorization mechanism, including SecPAL, could be used to
implement such a policy; in fact, the policy decision may even
involve human interaction (see Section 5). We only assume that
the returned triples in credsc; contain the largest, least instanti-
ated and least constrained assertion sets that conform to the local
issuance and disclosure policy and partially match the input. For
example, if the input is

({alice says Bob can read f,

Bob says Charlie can read [}, True)

and the provider’s policy allows the disclosure of the first asser-
tion in that set without further constraints, then it should also
return it without instantiating the variable f to a more concrete
value than necessary. If the provider returned an assertion with
f bound to some concrete value, then the shared variable f in
the remaining second assertion would also be bound to the same
value, and subsequent credential providers may not be willing or
able to provide a credential with that particular value for f. The
protocol thus attempts to defer the instantiation of variables to
the latest possible step, when Cy, the final provider in the path,
has been reached.

PROCESS-TEMPLATE-SET(T)

01 T':=0;

2 foreach (0i; Areq: Aucqic) € T do

03 foreach (4;0;c¢’) € credsc, (A, c) do

o

04 ":=0(c)N{C;

05 ’q;eq = e(ﬂ"l’q) \ ﬂ;

06 F :=instFacts(addinst(2) UB(A,y));

07 Ay = Ay, \ instAssIts(0(Arey));

08 Aoy = ALy U{(Cis1 says fact) : fact € F};

09 Ainst = {C; says Ci11 can say,, fact : fact € F };
10 Ay = Aacg Uissue(addinst(A)) Uissue(Ains)3
1 T = T U{(0(00); Appgs Aeqi) 1

12 send T’ to Ciy1;

PROCESS-FINAL-TEMPLATE-SET(7)
01 foreach (0 Arey; Aucqic) € T do
02 foreach (;6;¢’) € credsc, (Ayq.c) do

03 ":=0(c)nc's

04 -q;eq = e(ﬂreq) \4;

05 if 4, \ instAssrts(6(A,)) = 0 and 3 y such that
06 (y(c") is true and y(ov) is an instance of gucc)

07 then

08 F :=instFacts(addinst(2) UB(Ay));

09 Ajnst = {C; says y(fact) : fact € F};

10 Ares := Aucq Uissue(addinst(A)) Uissue(Aing:);
1 send Ay t0 Ugees

12 return;

13 report failure;

Figure 2: Processing template set information

This requirement introduces a problem: it is generally not in
C;’s interest to issue a blanket assertion with uninstantiated vari-
ables; rather, it should be made sure that the variables will be
bound to concrete values by the end of the protocol run, and that
these values can only be chosen by credential providers down
the path of this particular protocol run (provided that down-
stream providers are trusted by upstream). To solve this prob-
lem, each variable x occurring in any unsafe atomic assertion
in 4, is guarded by a conditional fact inst(hashy,x); this is
performed by the function addinst. Furthermore, C; also dele-
gates authority over the fact inst(hashy,x) to Ci1; and adds a
new requirement that C; 11 should instantiate the fact. Both the
delegation and the requirement are handed down the path, so it
is only when Cy is reached that concrete values for the uninstan-
tiated variables are chosen and all outstanding inst facts issued.
The details of this process are described in the following.

The purpose of PROCESS-TEMPLATE-SET(7) is to partially
satisfy the templates in 7" using locally stored or freshly issued
credentials which can then be removed from the set of require-
ments. We assume that when the procedure starts, C; knows the
identity of, and can communicate with, Cj .

First, an empty template set 7" is initialized which acts as an
accumulator for the new templates to be sent to the next creden-
tial provider, Ciy1 (Line 1). The procedure then loops through
all triples (4;0;¢’) returned by credsc, that match any template
in 7 (Lines 2,3). The purpose of the code inside the loop is to
construct a new template to be added to 7’. The constraint ¢’
of this new template is the conjunction of the original constraint
c (renamed by 0) and ¢’ (Line 4). As a first step towards con-
structing the new set ﬂT’gq of requirements, A is removed from
the original requirements (Line 5) and in exchange issued and
added to the new set of acquired credentials (augmented by inst-
conditions, Line 10). All original inst-requirements (which, by
construction, are of the form C; says inst(hash,,x) for some x)
are removed as well (Line 7) and replaced by identical assertions
said by Cj1. Similar inst-requirements are also added for each
inst-condition in addInst(4). This finalizes the new set of re-
quirements (Lines 8). Finally, C;;; must also be given authority
over these inst-requirements; the corresponding delegation cre-
dentials are issued and added to the set of acquired credentials
(Lines 9,10). In essence, Lines 7 — 9 implement the process of

deferring instantiation of unsafe variables in 4. The new tem-
plate is added to 7’ (Line 11), and at the end of the loop, T’ is
sent to Cjy at time step 7.

Each application of PROCESS-TEMPLATE-SET conserves the
original property from Proposition 3.5, namely that any set of
credentials satisfying a template in ‘7 will be a sufficient set of
supporting credentials for an instance of the original query. At
time step 7Ty, when the final credential provider Cy is reached
(and we assume that Cy is aware of this fact), Cy executes
PROCESS-FINAL-TEMPLATE-SET(7). We assume that at this
point Cy knows the identity of and is able to communicate with
U,cc (in most cases, Cy and U, are in fact identical). Further-
more, we assume that Cy knows the final access query guc.-

PROCESS-FINAL-TEMPLATE-SET(T) also starts by partially
satisfying the templates in 7 (Lines 1 —4). However, the goal
now is not to produce a new template set, but to find one tem-
plate which can be fully satisfied. This must be a template with
requirements A,,, which, after removal of 4 (Line 4), only con-
tains inst-requirements (Line 5). Moreover, a ground variable
substitution 7y has to be found that satisfies the constraint ¢”. It
must also be ensured that the resulting instance y(o) of the orig-
inal query gquq is an instance of the actual access query qucc
made by U, at time step Ty, (Line 6). If these conditions are
met, Cy can instantiate all inst-requirements using Y (Lines 8,9)
and assemble the final set of acquired credentials 4., (Line 10)
that is then sent to Uy, (Line 11). If the conditions are not met
by any of the templates, the protocol fails.

Due to the invariance conserved by the protocol, the resulting
set of credentials 4, is guaranteed to be a sufficient set of sup-
porting credentials for the access query g .. at time Ty, granted
that Us,,’s local policy has not changed in the meantime.

5 EHR Scenario

This section illustrates the protocol in the context of a scenario
based on electronic health records (EHR). In this scenario, clin-
ician Alice wishes to access patient Bob’s sensitive data on the
EHR server which holds patient-identifiable health data of all
patients across a community. Alice initiates the credential gath-
ering protocol prior to her access, to make sure that she will
possess all required credentials when she needs them.

EHR policy The EHR service’s policy states that access to
a patient y’s sensitive data is granted to a principal x if x is a
clinician, x is treating y, and y has given consent to this access.
The policy also requires that the validity time span of the consent
is contained in the time span of the clinical relationship.

EHR says x can access y’s data if
xisaclinician,
x is treating y (from ¢; until 1),
x has y’s consent (from #3 until #4)
wheret; <3N t4 < 1.

EHR delegates authority over roles (expressed by facts of the
form (e; isa e3)) to the National Health Service (NHS). As
clinical relationships (expressed by (e is treating e, (from e3
until e4))) are not managed centrally, EHR also delegates this
task to individual hospitals. Similarly, patient consent (ex-
pressed by (e, has e;'s consent (from e3 until e4))) is not man-
aged by the EHR either, but by a separate patient health portal
(PP) at which patients can, among other actions, register their
consent for other people to access their sensitive data. EHR
therefore delegates authority over consent facts to PP but re-
quires that the validity time span be at most one year.

EHR says NHS can sayp xisar.
EHR says x can say,, y is treating z (from ¢ until £2) if
xis ahospital,
yisaclinician.
EHR says PP can say,
y has x’s consent (from #; until 7,)
where) —t; < 365 days.

Abductive Evaluation In this scenario, the initiating party
and the accessing party are identical: Uj,; = Uy = Alice. The
protocol starts by initiating an abductive query on the EHR ser-
vice. The EHR service allows all atomic assertions to be ab-
ducible apart from those issued by EHR itself. This definition
of abducibility is useful in the common situation where the prin-
cipal performing the abduction has complete local knowledge
about all self-issued credentials.
Alice submits the abductive query

q = EHR says Alice can access Bob’s data

together with her NHS-issued clinician credential (NHS
says Alice isa clinician). The answer is a template set
containing one template (q; Areq; Aucq;c)} Where Ayeq = {NHS
says Alice isaclinician}, and 4, consists of

NHS says x is a hospital.
x says Alice is treating Bob (from u; until uy).
PP says Alice has Bob’s consent (from u3 until ug).

The constraint ¢ is equal to u; < wuz A ug < up A ug —uz <
365 days.

Since the answer is not empty (which would mean that the
access is not supported no matter which additional credentials
were provided), and the missing-credential specification A, is
not empty (which would mean that Alice already possess all nec-
essary credentials), the protocol proceeds by gathering creden-
tials matching A, and the constraint c.

Credential Gathering Alice is treating Bob in a local hospi-
tal whose credential providing service (HOSP) is behind a fire-
wall, and can thus be directly accessed only by staff. In par-
ticular, it cannot be accessed by EHR, so server-side pull-based
approaches to credential gathering are not applicable.

Alice forwards the returned template set to C; = HOSP which
executes PROCESS-TEMPLATE-SET. The hospital’s credential
disclosure policy allows the disclosure of the locally stored
NHS-issued credential stating that HOSP is a hospital. Further-
more, since Alice has started treating Bob on the date 2008-10-
07, with the therapy lasting six months, credsgosp returns a triple
(4;0;c’), where 4 is the set

{NHS says HOSP is a hospital,
HOSP says Alice is treating Bob (from vy until va)},

0 is the substitution [u; — vy, up — v and ¢’ the constraint
2008-10-07 < vy A vy £2009-04-06. This gives rise to a new
template set 7" containing a single template (g; Z;,,; Ayeq5¢”)-
The new set of acquired credentials A, consists of Ay
unioned with
NHS says HOSP is @ hospital.
HOSP says Alice is treating Bob (from vy until vy) if
inst(hash,, ,v1),
inst(hashy,,v2).
HOSP says PP can say., inst(hash,,,vi).
HOSP says PP can say., inst(hashy,,v7).

The new set of requirements 4/, consists of

req

PP says Alice has Bob’s consent (from u3 until u4).
PP says inst(hash,,,vi).
PP says inst(hash,,, v2).

The new constraint ¢” is equal to 8(c) A ¢/, hence ¢’ = vy < uz
Aty < vy Aug—uz <365 days A 2008-10-07 <v; A v <
2009-04-06.

The new template set is sent to PP, which, be-
ing the last credential provider in the path, executes
PROCESS-FINAL-TEMPLATE-SET. Assuming that Bob
has given consent for Alice to access his sensitive data without
specifying restrictions on the time span, credspp returns a
triple containing {PP says Alice has Bob's consent (from wy
until wy)}, the substitution [u3 — wi, ua — wy], and the
constraint True. In the case where Bob has not given consent
yet, the execution of credspr may involve sending a notification
to Bob and waiting for him to manually give or deny consent.
Pull-based approaches do not cope well with such situations
where some parties are not immediately and simultaneously
available.

Having satisfied the only requirement in 4;,, that does not
involve inst, PROCESS-FINAL-TEMPLATE-SET proceeds by at-
tempting to find any ground variable assignment Y that satisfies
the constraint. One such solution gives rise to the final set of

acquired credentials A consisting of 4, unioned with

PP says Alice has Bob’s consent (from 2008-10-07
until 2008-11-06).

PP says inst(hash,,,2008-10-07).

PP says inst(hash,,,2008-11-06).

These are sent back to Alice who can eventually use them to
support her access query q.

Alternatively, Alice could also have submitted an abduc-
tive query with the patient parameter left uninstantiated: EHR
says Alice can access x’s data. The template set resulting from
this query could then have been reused by Alice for future, sim-
ilar accesses to patients’ sensitive data.

6 Related Work

Previous work on credential gathering has focused on server-
side pull methods, which are not always applicable if commu-
nication cost is high, or credential providers are unknown or
unavailable to the resource guard (as discussed Section 1). This
section briefly reviews these works. The full version of this pa-
per [3] contains a more thorough review.

In QCM [4] and its extension SD3 [5], credential providers
work either in online or in offline signing mode. In the former,
providers create and sign requested credentials on the fly; in the
latter, they return only cached credentials. (Our definition of
creds abstracts away from this distinction.) If a provider is un-
available at access time, approximate answers are returned. In
SD3, credential providers can return intensional answers (pol-
icy rules) as opposed to simple facts. In effect, the provider can
tell the requester that the answer depends on certain other facts
issued by other principals.

Our abstract protocol does not specify how to determine
where a missing credential is stored. QCM and SD3 assume
credentials to be always stored with the issuer. Li et al. [9] use a
type system on role names to constrain the storage locations of
role credentials. Well-typedness of credentials guarantees that
the location of any missing credential will be instantiated to con-
crete values, and thus known, at deduction time.

Bauer et al. [1] present techniques for increasing the effi-
ciency of pull-based constructions of distributed authorization
proofs. One of their techniques is related to our abduction algo-
rithm: during a proof, expensive choice points are delayed and
fetched collectively at the end of the proof. Their techniques are
applicable to authorization languages that are at most as expres-
sive as (unconstrained) Datalog. One of the chief challenges in
the current paper was to design the algorithms in the context of
a more expressive language that supports arbitrary constraints.

Koshutanski and Massacci [7] develop a pull-based abductive
access control framework in which the server requests missing
credentials from the client if the ones submitted by the client
are not sufficient for granting access. In their framework, clients
can define a disclosure policy specifying which credentials they
are willing to submit. This ties in with work on automated trust
negotiation [10], where credentials are exchanged in a multi-
step disclosure process. The policies considered in their frame-
work are written in Datalog without constraints and with vari-
ables ranging over a finite domain; this is too restrictive for de-
centralized authorization, where constraints and infinite-domain
variables are vital. In contrast, our algorithm could be used with
any of the many policy languages that can be translated into con-
strained Datalog.

7 Conclusion

We have presented a push-based protocol for gathering autho-
rization credentials, in the context of constrained authorization
and delegation policies written in SecPAL. Even though it is
push-based, the method does not require the user to know the
resource guard’s policy. In contrast to pull-based methods, as
discussed in Section 1, it is applicable in environments with high
communication cost, and limited connectivity and availability of
credential providers.

However, these properties are achieved at the price of higher
computational complexity and algorithms that are harder to im-
plement. In particular, certain types of policies can cause ab-
duction to be very expensive; future work may attempt to char-
acterize such policies and to find alternative policy idioms that
are “abduction-friendly”. Another potential problem of our ap-
proach is the possibility for the requester (and the participat-
ing credential providers) to gain partial knowledge about the re-
source guard’s (Uy,,) policy through the the template set. This is
problematic if the policy is confidential, but note that the same
level of information could be gained by collaborating credential
providers with the pull-based approach.

Much of the system described in this paper has been imple-
mented as an extension to the SecPAL research prototype. The
full version of this paper [3] gives an overview of the architec-
ture and discusses heuristics for increasing efficiency, and pre-
liminary performance results.

References

[1] L. Bauer, S. Garriss, and M. K. Reiter. Efficient proving for prac-
tical distributed access-control systems. In European Symposium
on Research in Computer Security, 2007.

[2] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and seman-
tics of a decentralized authorization language. In IEEE Computer
Security Foundations Symposium, 2007.

[3] M. Y. Becker, J. F. Mackay, and B. Dillaway. An abduc-
tive protocol for authorization credential gathering in distributed
systems. Technical Report MSR-TR-2009-19, Microsoft Re-
search, 2009. http://research.microsoft.com/apps/pubs/
default.aspx?id=79767.

[4] C. Gunter and T. Jim. Policy-directed certificate retrieval. Soft-
ware: Practice and Experience, 30:1609-1640, 2000.

[5] T.Jim. SD3: A trust management system with certified evalua-
tion. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pages 106-115, 2001.

[6] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduc-
tion in logic programming. In Handbook of Logic in Artificial
Intelligence and Logic Programming, pages 235-324, 1998.

[71 H. Koshutanski and F. Massacci. Interactive access control for
web services. In International Information Security Conference,
pages 151-166, 2004.

[8] N.Liand]J. C. Mitchell. Datalog with constraints: A foundation
for trust management languages. In Practical Aspects of Declar-
ative Languages, pages 58-73, 2003.

[9] N.Li, W. H. Winsborough, and J. C. Mitchell. Distributed creden-
tial chain discovery in trust management. Journal of Computer
Security, 11(1):35-86, 2003.

[10] W. H. Winsborough and N. Li. Towards practical automated trust
negotiation. In IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, 2002.

