
Abductive Authorization Credential Gathering

Moritz Y. Becker1 Jason F. Mackay2 Blair Dillaway2

1Microsoft Research, Cambridge, UK, moritzb@microsoft.com
2Microsoft Corporation, Redmond, WA, USA, {jmackay,blaird}@microsoft.com

Abstract

A central task in the context of logic-based decentralized autho-

rization languages is that of gathering credentials from creden-

tial providers, required by the resource guard’s policy to grant a

user’s access request. This paper presents an abduction-based

algorithm that computes a specification of missing creden-

tials without communicating with remote credential providers.

The specification is used to gather credentials from credential

providers in a single pass, without involving any communica-

tion with the resource guard. The credentials gathered thus are

pushed to the resource guard at authorization time. This ap-

proach decouples authorization from credential gathering, and,

in comparison to server-side pull methods, reduces the number

of messages sent between participants, and allows for environ-

ments in which some credential providers are unknown or un-

available to the resource guard at authorization time.

1 Introduction

Large-scale decentralized systems present unique challenges for

authorization and access control. Several logic-based authoriza-

tion policy languages specialized for such environments have

emerged which leverage the concept of delegated authority in

order to remove the need for centralized control (e.g. [5, 8, 2]).

Credentials in these systems are not stored in a central location

but rather in a distributed manner. In fact, they may be stored

anywhere as long as they are made available to the resource

guard at the time of authorization. Requiring that users gather

the credentials themselves and push them to the resource guard

has been considered problematic [4], as the expressiveness of

policy languages makes it difficult for a human to understand

precisely what kinds of credentials are required. Furthermore,

the user generally does not, and should not need to, know the

policy. An automated method for gathering the right credentials

is therefore desirable.

Previous work in this area has focused on server-side on-

demand pull methods [4, 1, 9, 5, 7] to take the burden off the

user. In these approaches, the resource guard attempts to con-

struct a proof for the access request based on local policy and

a set of provided credentials. Whenever a required credential

is not locally available during the proof process, an attempt is

made to retrieve it from some remote credential provider. Con-

sider the following example (written in SecPAL [2]):

Srv says x can read f if x is a Mgr in dept, dept owns f .

Srv says Bob can say0 x is a role in dept.

When Alice requests to read a file foo, the proof process first

tries to prove that she is a manager of some arbitrary department

dept. Authority over role memberships is delegated to Bob (by

the second assertion), so in the absence of relevant local infor-

mation, the resource guard attempts to pull all credentials of the

form Bob says Alice is a Mgr in dept from a suitable remote cre-

dential provider (e.g. Bob). When the credentials have arrived,

the proof can proceed with the second condition, dept owns foo.

There are two problems with the pull-based approach:

1. Communication cost. The proof of the second condition

may fail based on local information, in which case the costly

communication with the credential provider was futile. Sim-

ilarly, the second condition may turn out to force a constraint

on dept, which could have made the remote query narrower

and more efficient, if the constraint had been known in ad-

vance. Finally, the proof of the second condition may itself

require missing credentials from the same provider, resulting

in multiple, separate message exchanges.

2. Connectivity requirements. The proof process fails (or be-

comes inaccurate) if any of the credential providers required

during the proof happens to be unavailable to the resource

guard at authorization time, for example due to unexpected

downtime, or because the provider is behind a firewall, or

because human interaction is required at the provider’s site.

Also, there are cases where the location of a missing creden-

tial is not discoverable by the resource guard, but is deter-

mined by another part of the workflow.

This paper presents a novel push-based method for gathering

credentials in distributed systems that addresses these two prob-

lems and yet does not require the user (or any principal other

than the resource guard) to know the policy. To deal with the first

problem, we present an algorithm for statically precomputing

a complete specification of missing credentials, without requir-

ing remote communication. This goal-directed algorithm per-

forms logical abduction over constrained Datalog, using memo-

ization to improve efficiency. To deal with the second problem,

we present a distributed single-pass protocol for collecting cre-

dentials, based on the abductive specification, that does not in-

volve the resource guard (or any other central pull-mechanism)

at all, and therefore does not require simultaneous availability

of providers at access time or at any other time. In fact, the

protocol makes only very weak assumptions on the connectivity

of participating parties: arbitrary communication paths through

the providers are supported, enabling a wider variety of sce-

narios and minimizing communications overhead compared to

the server-side pull approach. The credentials gathered thus are

pushed to the resource guard at access time and are guaranteed

to sufficiently support the query, as long as the policy is not

modified during the run of the protocol.

We describe the algorithms and protocols in the context of

SecPAL [2], a highly expressive policy language that can be

translated into constrained Datalog, but are applicable to any

similar language of equal or lesser expressiveness, as long as it

supports decentralized delegation.

SecPAL is reviewed in Section 2. Section 3 presents an ab-

ductive algorithm for computing a specification of missing cre-

dentials. Section 4 describes a protocol which, given such a

specification, incrementally gathers satisfying credentials from

a set of credential providers. Section 5 illustrates the proto-

col in the context of an example scenario based on electronic

health records. Related work is discussed in Section 6. Section

7 concludes the paper with a discussion of limitations and future

work.

2 Security Policy Assertions

In this section we briefly review the core of SecPAL, an autho-

rization language we are developing for large-scale federated

systems. For a more detailed treatment, see [3, 2], which de-

fines a formal proof-theoretic semantics.

A SecPAL policy P is a set of assertions α of the form

e says fact if fact1, ..., factn where c.

A policy typically consists of locally defined assertions and cre-

dentials (imported assertions, possibly issued by other princi-

pals). The expression e is a principal called the issuer. The fact

before the if-clause is the concluding fact, which is considered

deducible if all facts of the if-clause (the conditional facts) can

be deduced from the policy. The formula c inside the where-

clause is the constraint of the assertion. An assertion with no

if-clause (n = 0) and no constraint is called atomic. Facts and

constraints may contain variables. A syntactic phrase is ground

if it is variable-free. A fact is a simple sentence consisting of a

principal expression (the subject) followed by a verb phrase. A

verb phrase is a typed predicate with parameters, usually writ-

ten in infix notation in order to resemble natural language. Verb

phrases are application-specific; for instance, in Section 1, we

used the verb phrases can read, is a, and owns.

Delegation of authority is expressed with two special verb

phrases with built-in semantics, can say∞ and can say0. If A

says B can say∞ fact and B says fact are both deducible from

the policy, then A says fact is also deducible. Instead of stating

the fact directly, B could also re-delegate with an assertion such

as B says C can say∞ fact. Now if C says fact then we can again

deduce that A is also saying it. The verb phrase can say0 also ex-

presses delegation of authority, but prohibits re-delegation. So

if A says B can say0 fact is deducible, then A only says the fact

if B says it directly. Section 5 provides examples of SecPAL

policies in the context of an electronic health record system.

A SecPAL query q is an atomic assertion. The answer to a

query is the set of substitutions θ such that θ(q) is deducible

from the policy P ; this is denoted by P ⊢ θ(q). Users’ access

requests are mapped to SecPAL queries. Access is granted if

the answer to the corresponding query is non-empty, and denied

otherwise.

Constrained Datalog Translation To evaluate a policy (i.e.,

to check if access is permitted), the query and the policy are

translated into a set of constrained Datalog clauses.

In the remainder of the paper, we write A, B, P, Q, R, ... for

atoms (positive literals built from predicate symbols) and c for

constraints. We use vector notation to denote a (possibly empty)

list of atoms, e.g. ~P, and write Q0 :: ~Q for a predicate list with

head element Q0 and tail list ~Q. An atom P is an instance of

Q if there exists some substitution θ such that P = θ(Q). In

constrained Datalog, clauses are of the form P ← ~P,c where

the atom P is the head, the (possibly empty) list of atoms ~P the

body, and c the constraint of the clause. A program C is a finite

set of clauses. A constrained Datalog query consists of an atom.

Intuitively, θ(P) is deducible under θ (we write C ⊢ θ(P)) if

θ(Pi) is deducible from C for all Pi ∈ ~P, and if θ(c) is valid.

For example, the first assertion in Section 1 is translated into

can read(k,Srv,x, f)← is a(k,Srv,x,Mgr,dept),
owns(k,Srv,dept, f).

Assertions involving can say translate into more than one

clause. Again, we refer to [3, 2] for details. For the purpose

of this paper, it is sufficient to note that queries q and policies P

can be translated into equivalent Datalog clauses, denoted by [[q]]
and [[P]]. Any Datalog atom A occurring inside such a translation

can be translated back into an equivalent atomic SecPAL asser-

tion, denoted by ‖A‖. For example, if A = owns(k,Srv,dept, f),
then ‖A‖= Srv says dept owns f .

3 Abductive SecPAL Evaluation

This section presents an algorithm that not only decides if a set

of user-submitted SecPAL credentials is sufficient for authoriz-

ing a request, but, in the case of access denial, also computes

a complete specification of which missing credentials would be

sufficient. The computation is entirely local, i.e., it does not

require communication with the providers of the missing cre-

dentials. As such, it can be run before access is required, as a

preparation step for credential gathering, which is described in

Section 4.

On an abstract level, we reduce the problem of computing

the specification of missing credentials to the problem of ab-

duction. Abduction is a term coined by the philosopher Charles

Peirce in the late 19th century, who used it to describe how ob-

servations can be explained, given a set of rules known about

the world. More specifically, abduction is the process of finding

a set of facts that, together with the rules, explain the observa-

tion. For example, given the rule “whenever it rains, the grass

is wet,” the observation that the grass is wet could be explained

by a hypothetical fact that it has rained. Abduction is thus dual

to deduction, where from a given set of rules and facts, the ex-

pected observations (or conclusions) can be logically derived.

Logic-based abduction has been extensively used in fault diag-

nosis, automated planning, and other AI applications [6]. Ap-

plying these concepts to authorization, rules correspond to the

local policy, facts to submitted credentials, and observations to

queries. In this framework, deduction then corresponds to de-

ciding if access should be granted, and abduction to deciding

which missing credentials would result in access being granted.

Constrained Tabled Abduction The first step of the evalu-

ation procedure translates the assertions (from the local policy

and supporting credentials) and the query corresponding to the

access request into constrained Datalog. Then the problem of

finding a complete specification of missing credentials reduces

to an abduction problem in constrained Datalog. More precisely,

we now have to find sets of atoms, each of which would make

the query provable if added to the program.

The basic idea behind our abduction algorithm for SecPAL is

this: during the resolution proof, whenever an attempt to prove a

goal fails, the corresponding atom is nevertheless assumed to be

true (it is then said to be abduced) and the proof resumes from

there. The algorithm keeps track of these assumptions, so that

each subgoal can be associated with a set of abduced assertions

its proof depended on. The algorithm constructs a forest of proof

trees. Each tree consists of a root node, intermediate goal nodes,

and answer nodes as leaf nodes, defined as follows.

Definition 3.1 (Proof nodes). A root node is of the form 〈P〉. A

goal node is a quintuple of the form 〈P;~Q;R;~A;c〉. The atom P

is the index of the goal node, ~Q are the subgoals, R is an instance

of P called the partial answer, ~A are the abductive assumptions,

and c is the constraint of the goal node. A goal node with an

empty list of subgoals is an answer node.

Starting from some root node 〈P〉, resolution with program

clauses produces goal nodes with index P. As the subgoals ~Q

are processed one by one, new P-indexed goal nodes are created

with the remaining subgoals and with increasingly instantiated

variants of P as partial answer. A proof branch ends when no

subgoals are left, i.e., in the case of an answer node.

An answer node 〈P; [];R;~A;c〉 has the following property for

all ground substitutions γ such that γ(c) is true: if the set of ab-

ductive assumptions γ(~A) had been supplied together with [[P]],
a successful proof of γ(R) (which is a ground instance of P)

could have been constructed. The list ~A thus corresponds to a

set of missing atomic assertions, constrained by c. In the de-

generate case where ~A is empty, γ(R) can be proved without any

abductive assumptions, corresponding to access granted.

Fig. 1 shows the pseudocode of the algorithm. Underscores

denote distinct anonymous variables (and can be read as ‘don’t

care’). The auxiliary function resolve and the subsumption re-

lation � are defined below in Definitions 3.2 and 3.3. As in

standard memoing deductive evaluation algorithms [2], our ab-

ductive algorithm utilizes two initially empty tables (i.e., par-

tial functions), Ans and Wait: Ans(P) holds the set of answer

nodes that have so far been found for the goal indexed by P, and

Wait(P) contains the set of goal nodes that are suspended and

waiting for future answers to P.

The algorithm consists of three procedures that each take a

proof node as input. The RESOLVE-CLAUSE procedure takes as

input a root node 〈P〉 and creates a new proof tree for it by ini-

tializing an entry in the answer table (Line 1). It then proceeds

by resolving P against the clauses in [[P]] (Line 2− 4). The re-

solved clauses are processed further by PROCESS-NODE (Line

5). Additionally, RESOLVE-CLAUSE implements the abductive

base case: it “invents” a trivial answer for P by simply assum-

ing P to hold; this is tracked by adding P to the list of abductive

assumptions of the new answer node, which is then further pro-

cessed by PROCESS-ANSWER (Line 6,7).

PROCESS-NODE takes as input a goal node nd and first

checks if it is an answer node, in which case it is further pro-

cessed by PROCESS-ANSWER Line 1−3). Otherwise, the left-

most subgoal Q0 is chosen to be solved next (Line 4). If the

answer table already contains an entry for some Q′0 that is more

general than Q0 (Line 5,6), then the currently existing and fu-

ture answers of Q′0 are candidates for resolving against nd (Line

7− 10). Otherwise, a new root node is spawned for Q0, whose

proof tree should eventually provide answer nodes to be re-

solved against nd (Line 12,13).

PROCESS-ANSWER takes as input an answer node

〈P; []; ; ;c〉 and adds it to the answers of P, if it is not

subsumed by any already existing answer (Line 1− 3). Fur-

thermore, it attempts to resolve the new answer against all

suspended goal nodes waiting for it (Line 4−6).

The algorithm differs from the standard deductive evalua-

tion algorithm in three respects. Firstly, resolving a goal node

against an answer node requires the assumptions and constraints

from both nodes to be merged. Abductive answers may be non-

ground and may contain constraints, so these have to be com-

bined as well. The abductive resolve function is defined as fol-

lows.

Definition 3.2 (Resolution). Let mgu(A,B) denote a most gen-

eral unifier of atoms A and B, if one exists, and be undefined

otherwise. Let nd0 = 〈P0;Q0 :: ~Q;R0; ~A0;c0〉 be a goal node,

and let 〈P1; [];R1; ~A1;c1〉 be a fresh renaming of an answer

node nd1. Then resolve(nd0,nd1) exists iff θ = mgu(Q0,R1)
is defined and c = θ(c0 ∧ c1) is satisfiable, and its value is

〈P0;θ(~Q);θ(R0);θ(~A0)∪θ(~A1);c〉.

Secondly, the procedure RESOLVE-CLAUSE is extended by

an if-clause (Line 6,7), which creates a new abductive answer

for the subgoal P if P is abducible, i.e., if it is amongst the

atoms that are allowed as an assumption in an abductive answer.

For example, in delegation policies, one is often only interested

in abducing atomic assertions said by someone other than the

local authority; in this case, only atoms corresponding to such

assertions would be deemed abducible. This abducibility filter

effectively prunes the space of possible abductive proofs the al-

gorithm will consider.

The third difference is in PROCESS-ANSWER where a newly

found answer is added to the answer table only if it is not

subsumed by an existing answer. Intuitively, an abductive an-

swer is subsumed by a second answer if providing the miss-

ing atoms specified by the former also always provides those

specified by the latter. Having already found the second an-

swer, it is therefore not desirable to add the first answer,

which is harder to satisfy and thus less useful. For exam-

ple, an answer node with abductive assumptions [[Charlie
says Doris is a user]], [[Charlie says Doris is a admin]] and

constraint True is subsumed by an answer node with abductive

RESOLVE-CLAUSE(〈P〉)
01 Ans(P) := /0;

02 foreach (Q← ~Q,c) ∈ [[P]] do

03 if nd = resolve(〈P;Q :: ~Q;Q; [];c〉,〈P; [];P; [];True〉)
04 exists then

05 PROCESS-NODE(nd);
06 if P is abducible then

07 PROCESS-ANSWER(〈P; [];P; [P];True〉)

PROCESS-ANSWER(nd)
01 match nd with 〈P; []; ; ;c〉 in

02 if there is no nd0 ∈Ans(P) such that nd � nd0 then

03 Ans(P) := Ans(P)∪{nd};
04 foreach nd′ ∈Wait(P) do

05 if nd′′ = resolve(nd′,nd) exists then

06 PROCESS-NODE(nd′′)

PROCESS-NODE(nd)

01 match nd with 〈P;~Q; ; ;c〉 in

02 if ~Q = [] then

03 PROCESS-ANSWER(nd)

04 else match ~Q with Q0 :: in

05 if there exists Q′0 ∈ dom(Ans)
06 such that Q0 is an instance of Q′0 then

07 Wait(Q′0) := Wait(Q′0)∪{nd};
08 foreach nd′ ∈Ans(Q′0) do

09 if nd′′ = resolve(nd,nd′) exists then

10 PROCESS-NODE(nd′′)
11 else

12 Wait(Q0) := {nd};
13 RESOLVE-CLAUSE(〈Q0〉)

Figure 1: Deductive evaluation algorithm with abductive extension

assumption {[[Charlie says Doris is a r]]} and the constraint

〈r matches adm*〉. Clearly, any set of atoms satisfying the first

set also covers the second set. Formally, subsumption between

answer nodes is defined as follows.

Definition 3.3 (Node subsumption). Let nd0 =
〈P0; [];R0; ~A0;c0〉 and nd1 be answer nodes, and let

〈P1; [];R1; ~A1;c1〉 be a fresh renaming of nd1. Then nd0

is subsumed by nd1 (we write nd0 � nd1) iff |~A0| ≥ |~A1|
and there exists a substitution θ such that R0 = θ(R1) and
~A0 ⊇ θ(~A1) and σ(θ(c1)) is true for all substitutions σ for which

σ(c0) is true.

Running the Algorithm The algorithm takes as input a query

q and a set of supporting credentials Asup, that is combined

with the service’s local policy Ploc to form the input policy P =
Ploc∪Asup. The entry point is a call to RESOLVE-CLAUSE(〈Q〉),
where Q = [[q]]. On termination, Ans(Q) contains a complete set

of answers of the form 〈Q; [];R;~A;c〉, where R is a (not necessar-

ily ground) instance of Q. Such an answer can be interpreted as

follows: if some ground instantiation (satisfying the constraint

c) of the atoms in ~A had been in the original set of clauses [[P]]
(or had been derivable from that set), then R, under the same

ground instantiation, could have been proven.

From Ans(Q), we construct a set of templates of

the form 〈α;Areq;Aacq;c〉, one for each answer node

〈Q; [];R;{A1, ...,An};c〉 ∈ Ans(Q), where α = ‖R‖, Areq =
{‖A1‖, ...,‖An‖} specifies the requirements, and Aacq = Asup is

the set of already acquired credentials, equal to the set of sup-

porting credentials submitted as part of the input.

Definition 3.4. A set of credentials A satisfies 〈α;Areq;Aacq;c〉
where Areq = {α1, ...,αn} iff there exists a ground substitution γ

such that A ⊢ γ(αi) (for all i = 1...n) and γ(c) is true.

The main correctness property of the algorithm is that any set

of credentials satisfying one of the returned templates is suffi-

cient for supporting the original access request. Hence the tem-

plate set is a complete specification of the missing credentials:

Proposition 3.5. Let 〈α;Areq;Aacq;c〉 be one of the return val-

ues from the algorithm (with local policy Ploc and query q).

Then α is an instance of q. Furthermore, for all sets of cre-

dentials A that satisfy the template, Ploc ∪Aacq ∪A ⊢ γ(α) for

some ground substitution γ.

The next section shows how the returned template set is used

to encode the state of a distributed protocol for collecting satis-

fying sets of credentials along a path of credential providers.

4 Credential Gathering Protocol

We now present a protocol for the distributed collection of cre-

dentials prior to an access request. The protocol does not re-

quire involvement of the resource guard from the time after the

abductive answer is returned, up until the time when the user

requests access. When access is requested, the collected cre-

dentials are pushed to the resource guard, which can then, again

completely locally, verify that the requested access is permitted.

This protocol therefore decouples the distributed task of collect-

ing credentials (which obviously requires communication, al-

beit not with the resource guard) from the local authorization

task. Communication overhead is minimized, thus the protocol

is applicable in environments where each single credential fetch

request may take a long time, for example when human interac-

tion is involved, or when there is no simultaneous connectivity

between the resource guard and the credential providers.

Overview The initial setting is as follows: a user Uini intends

to start a workflow which will eventually require access by some

Uacc (which may be identical to Uini) to some resource on ser-

vice Usrv (the resource guard). The access by Uacc will take place

at some future time Tacc called access time. Uini does not know

what supporting credentials are required by the policy at Usrv for

this access. Therefore, at some point in time Tabd < Tacc called

abduction time, Uini contacts Usrv in order to receive a complete

specification for credentials required for the proposed access re-

quest. If the specification is empty, early failure is reported back

to Uini. If the specification is non-empty, Uini initiates an au-

tomated process which visits a number of credential providers

in turn, each of which may provide either stored credentials or

new credentials issued on behalf of some provider-specific set of

principals. In practice, providers may include Uini’s local store,

directory services, firewalled security token servers, etc.

Any distributed credential gathering protocol must involve

such a set of providers to be consulted for missing credentials.

While previous credential retrieval protocols require the exis-

tence of one or more providers which can directly communicate

with all other providers, our protocol assumes only that each

credential provider is able to decide which provider should be

consulted next and to communicate with that next provider. The

protocol is agnostic as to the method used by each provider to

make this decision. (The tradeoffs of this generalization are dis-

cussed in Section 7.) In practice, the next credential provider in

the path may depend on the network topology, the application

workflow, and information on credential locations (e.g. with the

issuer, with the subject, type-based [9], or policy-based [5]).

At time step T1 > Tabd, Uini sends the credential specification

(from Usrv) to some credential provider C1. Based on this spec-

ification, C1 collects matching local credentials that it is willing

to disclose and generates matching credentials that it is willing

to issue. C1 also decides on the credential provider next on the

path, C2. The specification, together with the credentials, is then

sent to C2 at time T2. This is repeated at each step of the protocol,

until the last credential provider CN is reached at step TN < Tacc

(for some N ≥ 1), after which either all required credentials have

been successfully collected, or else the protocol reports failure.

Detailed Description At time step Tabd, Uini requests from

Usrv a specification of missing credentials for Uacc’s future re-

source access. This specification is the result of running the

abduction algorithm from Section 3. Recall that the algorithm

takes as input a policy P and a query qabd. In this case, P con-

sists of Usrv’s local policy together with a (possibly empty) set

A0 of supporting credentials submitted by Uini. The query qabd

is the one associated with the access request at Tacc and may be

provided, for example, manually by Uini, by some piece of task-

specific software, or by the service Usrv when some exposed API

is called by Uini. At time step Tabd, some of the values occurring

in the actual access query qacc (run at time Tacc) may not yet

be known, therefore the query qabd given to Usrv at Tabd may

contain variables in places where qacc has concrete values; more

precisely, qabd must be such that qacc is an instance of qabd.

Recall that the result of the abduction algorithm is a set of

templates of the form 〈α;Areq;A0;c〉. If the set is empty, Uini is

notified that the future request will fail, no matter which addi-

tional credentials are provided. Otherwise the set is processed

by C1 (which may be identical to Uini) and subsequently used to

encode the state of the protocol.

At each time step Ti (for i = 1, ...,N − 1), the creden-

tial provider Ci receives a template set T and executes the

procedure PROCESS-TEMPLATE-SET(T) (Fig. 2), which at-

tempts to partially satisfy as many templates as possible,

and send it to the next credential provider. At the final

time step TN , CN receives a template set T and executes

PROCESS-FINAL-TEMPLATE-SET(T), which will finalize the

supporting credential set, to be used for the access query qacc.

The procedures in Fig. 2 make use of a number of auxiliary

functions and procedures defined below.

Definition 4.1. Let A be a set of assertions, Aatm a set of possi-

bly unsafe atomic assertions, θ a substitution, and c a constraint.

– credsCi
(Aatm,c) returns a set of triples 〈A ′atm;θ;c′〉 such that

A ′atm ⊆ θ(Aatm) and θ(c)∧ c′ is satisfiable. Furthermore, no

fact of the form inst(,) occurs in A ′atm.

– addInst(Aatm) is the set of assertions obtained by augment-

ing each α ∈ Aatm with a conditional fact inst(hashx,x) for

each distinct variable x occurring in α. The expression hashx

stands for a constant that is unique for every variable x and

for this particular run of the protocol.

– issue(A) is a procedure that issues all assertions in A , i.e.,

it creates signed credentials corresponding to those assertions

(or retrieves existing credentials from the local store), and re-

turns them.

– instFacts(A) is the set of (concluding or conditional) facts of

the form inst(,) occurring in A .

– instAssrts(A) is the set of assertions in A whose concluding

facts are of the form inst(,).

The function credsCi
is specific to each credential provider

Ci. Given a constrained set of atomic assertions (Aatm,c) as in-

put, it returns a set of triples 〈A ′atm;θ;c′〉. Each triple represents

a set of credentials that the provider is willing and able to pro-

vide and that match a subset of the input specification (including

the constraint c). These credentials may be from a local store,

or freshly issued and may contain variables that are constrained

by c′. They may be more instantiated than the input specifica-

tion, hence the function also returns a substitution θ that par-

tially maps the input specification onto the output.

The definition of credsCi
is intentionally kept abstract and

general to cover a wide range of possible implementations. In

practice, Ci would decide according to a local issuance and dis-

closure policy which credentials are returned by credsCi
. Any

authorization mechanism, including SecPAL, could be used to

implement such a policy; in fact, the policy decision may even

involve human interaction (see Section 5). We only assume that

the returned triples in credsCi
contain the largest, least instanti-

ated and least constrained assertion sets that conform to the local

issuance and disclosure policy and partially match the input. For

example, if the input is

({Alice says Bob can read f ,

Bob says Charlie can read f}, True)

and the provider’s policy allows the disclosure of the first asser-

tion in that set without further constraints, then it should also

return it without instantiating the variable f to a more concrete

value than necessary. If the provider returned an assertion with

f bound to some concrete value, then the shared variable f in

the remaining second assertion would also be bound to the same

value, and subsequent credential providers may not be willing or

able to provide a credential with that particular value for f . The

protocol thus attempts to defer the instantiation of variables to

the latest possible step, when CN , the final provider in the path,

has been reached.

PROCESS-TEMPLATE-SET(T)
01 T ′ := /0;

02 foreach 〈α;Areq;Aacq;c〉 ∈ T do

03 foreach 〈A ;θ;c′〉 ∈ credsCi
(Areq,c) do

04 c′′ := θ(c)∧ c′;

05 A ′req := θ(Areq)\A ;

06 F := instFacts(addInst(A)∪θ(Areq));
07 A ′req := A ′req \ instAssrts(θ(Areq));
08 A ′req := A ′req∪{〈Ci+1 says fact〉 : fact ∈ F };
09 Ainst := {Ci says Ci+1 can say∞ fact : fact ∈ F };
10 A ′acq := Aacq∪ issue(addInst(A))∪ issue(Ainst);
11 T ′ := T ′∪{〈θ(α);A ′req;A ′acq;c′′〉};
12 send T ′ to Ci+1;

PROCESS-FINAL-TEMPLATE-SET(T)
01 foreach 〈α;Areq;Aacq;c〉 ∈ T do

02 foreach 〈A ;θ;c′〉 ∈ credsCi
(Areq,c) do

03 c′′ := θ(c)∧ c′;

04 A ′req := θ(Areq)\A ;

05 if A ′req \ instAssrts(θ(Areq)) = /0 and ∃ γ such that

06 (γ(c′′) is true and γ(α) is an instance of qacc)
07 then

08 F := instFacts(addInst(A)∪θ(Areq));
09 Ainst := {Ci says γ(fact) : fact ∈ F };
10 Ares := Aacq∪ issue(addInst(A))∪ issue(Ainst);
11 send Ares to Uacc;

12 return;

13 report failure;

Figure 2: Processing template set information

This requirement introduces a problem: it is generally not in

Ci’s interest to issue a blanket assertion with uninstantiated vari-

ables; rather, it should be made sure that the variables will be

bound to concrete values by the end of the protocol run, and that

these values can only be chosen by credential providers down

the path of this particular protocol run (provided that down-

stream providers are trusted by upstream). To solve this prob-

lem, each variable x occurring in any unsafe atomic assertion

in A ′atm is guarded by a conditional fact inst(hashx,x); this is

performed by the function addInst. Furthermore, Ci also dele-

gates authority over the fact inst(hashx,x) to Ci+1 and adds a

new requirement that Ci+1 should instantiate the fact. Both the

delegation and the requirement are handed down the path, so it

is only when CN is reached that concrete values for the uninstan-

tiated variables are chosen and all outstanding inst facts issued.

The details of this process are described in the following.

The purpose of PROCESS-TEMPLATE-SET(T) is to partially

satisfy the templates in T using locally stored or freshly issued

credentials which can then be removed from the set of require-

ments. We assume that when the procedure starts, Ci knows the

identity of, and can communicate with, Ci+1.

First, an empty template set T ′ is initialized which acts as an

accumulator for the new templates to be sent to the next creden-

tial provider, Ci+1 (Line 1). The procedure then loops through

all triples 〈A ;θ;c′〉 returned by credsCi
that match any template

in T (Lines 2,3). The purpose of the code inside the loop is to

construct a new template to be added to T ′. The constraint c′′

of this new template is the conjunction of the original constraint

c (renamed by θ) and c′ (Line 4). As a first step towards con-

structing the new set A ′req of requirements, A is removed from

the original requirements (Line 5) and in exchange issued and

added to the new set of acquired credentials (augmented by inst-

conditions, Line 10). All original inst-requirements (which, by

construction, are of the form Ci says inst(hashx,x) for some x)

are removed as well (Line 7) and replaced by identical assertions

said by Ci+1. Similar inst-requirements are also added for each

inst-condition in addInst(A). This finalizes the new set of re-

quirements (Lines 8). Finally, Ci+1 must also be given authority

over these inst-requirements; the corresponding delegation cre-

dentials are issued and added to the set of acquired credentials

(Lines 9,10). In essence, Lines 7− 9 implement the process of

deferring instantiation of unsafe variables in A . The new tem-

plate is added to T ′ (Line 11), and at the end of the loop, T ′ is

sent to Ci+1 at time step Ti+1.

Each application of PROCESS-TEMPLATE-SET conserves the

original property from Proposition 3.5, namely that any set of

credentials satisfying a template in T will be a sufficient set of

supporting credentials for an instance of the original query. At

time step TN , when the final credential provider CN is reached

(and we assume that CN is aware of this fact), CN executes

PROCESS-FINAL-TEMPLATE-SET(T). We assume that at this

point CN knows the identity of and is able to communicate with

Uacc (in most cases, CN and Uacc are in fact identical). Further-

more, we assume that CN knows the final access query qacc.

PROCESS-FINAL-TEMPLATE-SET(T) also starts by partially

satisfying the templates in T (Lines 1− 4). However, the goal

now is not to produce a new template set, but to find one tem-

plate which can be fully satisfied. This must be a template with

requirements Areq which, after removal of A (Line 4), only con-

tains inst-requirements (Line 5). Moreover, a ground variable

substitution γ has to be found that satisfies the constraint c′′. It

must also be ensured that the resulting instance γ(α) of the orig-

inal query qabd is an instance of the actual access query qacc

made by Uacc at time step Tacc (Line 6). If these conditions are

met, CN can instantiate all inst-requirements using γ (Lines 8,9)

and assemble the final set of acquired credentials Ares (Line 10)

that is then sent to Uacc (Line 11). If the conditions are not met

by any of the templates, the protocol fails.

Due to the invariance conserved by the protocol, the resulting

set of credentials Ares is guaranteed to be a sufficient set of sup-

porting credentials for the access query qacc at time Tacc, granted

that Usrv’s local policy has not changed in the meantime.

5 EHR Scenario

This section illustrates the protocol in the context of a scenario

based on electronic health records (EHR). In this scenario, clin-

ician Alice wishes to access patient Bob’s sensitive data on the

EHR server which holds patient-identifiable health data of all

patients across a community. Alice initiates the credential gath-

ering protocol prior to her access, to make sure that she will

possess all required credentials when she needs them.

EHR policy The EHR service’s policy states that access to

a patient y’s sensitive data is granted to a principal x if x is a

clinician, x is treating y, and y has given consent to this access.

The policy also requires that the validity time span of the consent

is contained in the time span of the clinical relationship.

EHR says x can access y’s data if

x is a clinician,

x is treating y (from t1 until t2),

x has y’s consent (from t3 until t4)

where t1 ≤ t3∧ t4 ≤ t2.

EHR delegates authority over roles (expressed by facts of the

form 〈e1 is a e2〉) to the National Health Service (NHS). As

clinical relationships (expressed by 〈e1 is treating e2 (from e3

until e4)〉) are not managed centrally, EHR also delegates this

task to individual hospitals. Similarly, patient consent (ex-

pressed by 〈e2 has e1’s consent (from e3 until e4)〉) is not man-

aged by the EHR either, but by a separate patient health portal

(PP) at which patients can, among other actions, register their

consent for other people to access their sensitive data. EHR

therefore delegates authority over consent facts to PP but re-

quires that the validity time span be at most one year.

EHR says NHS can say0 x is a r.

EHR says x can say0 y is treating z (from t1 until t2) if

x is a hospital,

y is a clinician.

EHR says PP can say0

y has x’s consent (from t1 until t2)

where t2− t1 ≤ 365 days.

Abductive Evaluation In this scenario, the initiating party

and the accessing party are identical: Uini = Uacc = Alice. The

protocol starts by initiating an abductive query on the EHR ser-

vice. The EHR service allows all atomic assertions to be ab-

ducible apart from those issued by EHR itself. This definition

of abducibility is useful in the common situation where the prin-

cipal performing the abduction has complete local knowledge

about all self-issued credentials.

Alice submits the abductive query

q = EHR says Alice can access Bob’s data

together with her NHS-issued clinician credential 〈NHS
says Alice is a clinician〉. The answer is a template set

containing one template 〈q;Areq;Aacq;c〉} where Aacq = {NHS
says Alice is a clinician}, and Areq consists of

NHS says x is a hospital.

x says Alice is treating Bob (from u1 until u2).

PP says Alice has Bob’s consent (from u3 until u4).

The constraint c is equal to u1 ≤ u3 ∧ u4 ≤ u2 ∧ u4 − u3 ≤
365 days.

Since the answer is not empty (which would mean that the

access is not supported no matter which additional credentials

were provided), and the missing-credential specification Areq is

not empty (which would mean that Alice already possess all nec-

essary credentials), the protocol proceeds by gathering creden-

tials matching Areq and the constraint c.

Credential Gathering Alice is treating Bob in a local hospi-

tal whose credential providing service (HOSP) is behind a fire-

wall, and can thus be directly accessed only by staff. In par-

ticular, it cannot be accessed by EHR, so server-side pull-based

approaches to credential gathering are not applicable.

Alice forwards the returned template set to C1 = HOSP which

executes PROCESS-TEMPLATE-SET. The hospital’s credential

disclosure policy allows the disclosure of the locally stored

NHS-issued credential stating that HOSP is a hospital. Further-

more, since Alice has started treating Bob on the date 2008-10-

07, with the therapy lasting six months, credsHOSP returns a triple

〈A ;θ;c′〉, where A is the set

{NHS says HOSP is a hospital,

HOSP says Alice is treating Bob (from v1 until v2)},

θ is the substitution [u1 7→ v1, u2 7→ v2] and c′ the constraint

2008-10-07≤ v1 ∧ v2 ≤ 2009-04-06. This gives rise to a new

template set T ′ containing a single template 〈q;A ′req;A ′acq;c′′〉.
The new set of acquired credentials A ′acq consists of Aacq

unioned with

NHS says HOSP is a hospital.

HOSP says Alice is treating Bob (from v1 until v2) if

inst(hashv1
,v1),

inst(hashv2
,v2).

HOSP says PP can say∞ inst(hashv1
,v1).

HOSP says PP can say∞ inst(hashv2
,v2).

The new set of requirements A ′req consists of

PP says Alice has Bob’s consent (from u3 until u4).

PP says inst(hashv1
,v1).

PP says inst(hashv2
,v2).

The new constraint c′′ is equal to θ(c)∧ c′, hence c′′ = v1 ≤ u3

∧ u4 ≤ v2 ∧ u4− u3 ≤ 365 days ∧ 2008-10-07 ≤ v1 ∧ v2 ≤
2009-04-06.

The new template set is sent to PP, which, be-

ing the last credential provider in the path, executes

PROCESS-FINAL-TEMPLATE-SET. Assuming that Bob

has given consent for Alice to access his sensitive data without

specifying restrictions on the time span, credsPP returns a

triple containing {PP says Alice has Bob’s consent (from w1

until w2)}, the substitution [u3 7→ w1, u4 7→ w2], and the

constraint True. In the case where Bob has not given consent

yet, the execution of credsPP may involve sending a notification

to Bob and waiting for him to manually give or deny consent.

Pull-based approaches do not cope well with such situations

where some parties are not immediately and simultaneously

available.

Having satisfied the only requirement in A ′req that does not

involve inst, PROCESS-FINAL-TEMPLATE-SET proceeds by at-

tempting to find any ground variable assignment γ that satisfies

the constraint. One such solution gives rise to the final set of

acquired credentials Ares consisting of A ′acq unioned with

PP says Alice has Bob’s consent (from 2008-10-07

until 2008-11-06).

PP says inst(hashv1
,2008-10-07).

PP says inst(hashv2
,2008-11-06).

These are sent back to Alice who can eventually use them to

support her access query q.

Alternatively, Alice could also have submitted an abduc-

tive query with the patient parameter left uninstantiated: EHR

says Alice can access x’s data. The template set resulting from

this query could then have been reused by Alice for future, sim-

ilar accesses to patients’ sensitive data.

6 Related Work

Previous work on credential gathering has focused on server-

side pull methods, which are not always applicable if commu-

nication cost is high, or credential providers are unknown or

unavailable to the resource guard (as discussed Section 1). This

section briefly reviews these works. The full version of this pa-

per [3] contains a more thorough review.

In QCM [4] and its extension SD3 [5], credential providers

work either in online or in offline signing mode. In the former,

providers create and sign requested credentials on the fly; in the

latter, they return only cached credentials. (Our definition of

creds abstracts away from this distinction.) If a provider is un-

available at access time, approximate answers are returned. In

SD3, credential providers can return intensional answers (pol-

icy rules) as opposed to simple facts. In effect, the provider can

tell the requester that the answer depends on certain other facts

issued by other principals.

Our abstract protocol does not specify how to determine

where a missing credential is stored. QCM and SD3 assume

credentials to be always stored with the issuer. Li et al. [9] use a

type system on role names to constrain the storage locations of

role credentials. Well-typedness of credentials guarantees that

the location of any missing credential will be instantiated to con-

crete values, and thus known, at deduction time.

Bauer et al. [1] present techniques for increasing the effi-

ciency of pull-based constructions of distributed authorization

proofs. One of their techniques is related to our abduction algo-

rithm: during a proof, expensive choice points are delayed and

fetched collectively at the end of the proof. Their techniques are

applicable to authorization languages that are at most as expres-

sive as (unconstrained) Datalog. One of the chief challenges in

the current paper was to design the algorithms in the context of

a more expressive language that supports arbitrary constraints.

Koshutanski and Massacci [7] develop a pull-based abductive

access control framework in which the server requests missing

credentials from the client if the ones submitted by the client

are not sufficient for granting access. In their framework, clients

can define a disclosure policy specifying which credentials they

are willing to submit. This ties in with work on automated trust

negotiation [10], where credentials are exchanged in a multi-

step disclosure process. The policies considered in their frame-

work are written in Datalog without constraints and with vari-

ables ranging over a finite domain; this is too restrictive for de-

centralized authorization, where constraints and infinite-domain

variables are vital. In contrast, our algorithm could be used with

any of the many policy languages that can be translated into con-

strained Datalog.

7 Conclusion

We have presented a push-based protocol for gathering autho-

rization credentials, in the context of constrained authorization

and delegation policies written in SecPAL. Even though it is

push-based, the method does not require the user to know the

resource guard’s policy. In contrast to pull-based methods, as

discussed in Section 1, it is applicable in environments with high

communication cost, and limited connectivity and availability of

credential providers.

However, these properties are achieved at the price of higher

computational complexity and algorithms that are harder to im-

plement. In particular, certain types of policies can cause ab-

duction to be very expensive; future work may attempt to char-

acterize such policies and to find alternative policy idioms that

are “abduction-friendly”. Another potential problem of our ap-

proach is the possibility for the requester (and the participat-

ing credential providers) to gain partial knowledge about the re-

source guard’s (Usrv) policy through the the template set. This is

problematic if the policy is confidential, but note that the same

level of information could be gained by collaborating credential

providers with the pull-based approach.

Much of the system described in this paper has been imple-

mented as an extension to the SecPAL research prototype. The

full version of this paper [3] gives an overview of the architec-

ture and discusses heuristics for increasing efficiency, and pre-

liminary performance results.

References

[1] L. Bauer, S. Garriss, and M. K. Reiter. Efficient proving for prac-
tical distributed access-control systems. In European Symposium
on Research in Computer Security, 2007.

[2] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and seman-
tics of a decentralized authorization language. In IEEE Computer
Security Foundations Symposium, 2007.

[3] M. Y. Becker, J. F. Mackay, and B. Dillaway. An abduc-
tive protocol for authorization credential gathering in distributed
systems. Technical Report MSR-TR-2009-19, Microsoft Re-
search, 2009. http://research.microsoft.com/apps/pubs/
default.aspx?id=79767.

[4] C. Gunter and T. Jim. Policy-directed certificate retrieval. Soft-
ware: Practice and Experience, 30:1609–1640, 2000.

[5] T. Jim. SD3: A trust management system with certified evalua-
tion. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pages 106–115, 2001.

[6] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduc-
tion in logic programming. In Handbook of Logic in Artificial
Intelligence and Logic Programming, pages 235–324, 1998.

[7] H. Koshutanski and F. Massacci. Interactive access control for
web services. In International Information Security Conference,
pages 151–166, 2004.

[8] N. Li and J. C. Mitchell. Datalog with constraints: A foundation
for trust management languages. In Practical Aspects of Declar-
ative Languages, pages 58–73, 2003.

[9] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed creden-
tial chain discovery in trust management. Journal of Computer
Security, 11(1):35–86, 2003.

[10] W. H. Winsborough and N. Li. Towards practical automated trust
negotiation. In IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, 2002.

