
A Typed Intermediate Language for Supporting Interfaces

Juan Chen
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
juanchen@microsoft.com

ABSTRACT
Object-oriented languages such as Java and C# provide in-
terfaces to support a restricted form of multiple inheritance.
Existing low-level typed intermediate languages for object-
oriented languages, however, either do not support interfaces
or require non-standard interface implementations. This pa-
per describes a low-level typed intermediate language that
can express the standard interface implementation strate-
gies based on interface tables (itables). The language can
faithfully model itables, the standard itable-based interface
method invocation, and interface cast. The type system is
sound and the type checking is decidable.

1. INTRODUCTION
Object-oriented languages that allow only single inheri-

tance between classes, e.g. Java and C#, use interfaces to
support a restricted form of multiple inheritance. Compila-
tion from the source languages (Java and C#) to typed inter-
mediate languages (Java bytecode [16] and .NET CIL [11])
preserves types, including interfaces, so that we can verify
bytecode and CIL to guarantee type safety. Proof-Carrying
Code (PCC) [18] and Typed Assembly Language (TAL) [17]
push types further to lower-level intermediate languages,
even assembly languages. This way, we can verify type
safety and memory safety of assembly language programs
and remove the compiler (which is often a large and com-
plicate piece of software) from the trusted computing base.
PCC and TAL require that the type systems of the low-
level intermediate languages be able to express all features
in those languages. Existing lower-level typed intermediate
languages for object-oriented languages, however, either do
not support interfaces or require non-standard and ineffi-
cient implementations.

This paper explains ECI (Encoding for Classes and
Interfaces), a low-level typed intermediate language that
supports both classes and interfaces. ECI is based on LILC ,
a language that addresses only classes and single inheritance
between classes [6]. ECI faithfully models the standard im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-540-6/09/07 ...$10.00.

plementation techniques based on interface tables (itables),
itable-based interface method invocation, and interface cast.
It is the first typed intermediate language that is able to ex-
press these details.

Interfaces are difficult to support because of multiple in-
heritance. An interface may have different offsets in itables
of different classes. Interface method invocation has to look
up the itable at run time for the desired interface. ECI uses
arrays and subclassing-bounded quantification to represent
itables. Interface method invocation and interface cast are
expressed as polymorphic functions in ECI. They can be in-
lined into ECI code compiled from source programs, and the
result program can be optimized and type-checked because
interface method invocation and interface cast are expressed
entirely in ECI.

ECI is sound and its type checking is decidable. The
proofs are in a companion technical report [5]. The tech-
nical report also formalizes a source language and a type-
preserving translation from the source language to ECI. The
source language is roughly Featherweight Java [13] with ex-
tensions of interfaces and arrays. The technical report also
discusses how ECI may be extended to express advanced
interface implementation techniques [14, 12, 8, 9, 10, 1].

The rest of the paper is organized as follows. Section 2
gives an informal overview of ECI. Sections 3 and 4 explain
the syntax and semantics of ECI respectively. Sections 5
discusses related work and Section 6 concludes.

2. OVERVIEW
We first give an informal overview of ECI. For clarity, this

paper focuses on only core object-oriented features that are
related to interfaces. Features such as generics, non-virtual
methods, and null pointers are omitted.

Section 2.1 summarizes the key ideas of the base language
LILC . We refer readers to the previous paper [6] for details
of virtual method invocation, class cast, and arrays. Sec-
tion 2.2 explains how ECI represents itables. Section 2.3 de-
scribes object layout. Section 2.4 addresses interface method
invocation and interface cast.

2.1 Key Ideas of LILC

LILC is a low-level typed intermediate language for com-
piling object-oriented languages with classes. It is lower-
level than bytecode and CIL because it describes implemen-
tation of virtual method invocation and type cast instead of
treating them as primitives.

LILC differs from prior class and object encodings in that
it preserves object-oriented notions such as class names and

1

name-based subclassing, whereas prior encodings compiled
these notions away.

LILC uses an “exact” notion of classes. A class name in
LILC represents only objects of exactly that class, not in-
cluding objects of subclasses. Each class C has a correspond-
ing record type R(C) that describes the object layout of C,
including the vtable and the fields.

Objects can be coerced to or from records with appropri-
ate record types, without runtime overhead. To create an
object, we create a record and coerce it to an object. To
fetch a field or invoke a method, we coerce the object to a
record and then fetch the field or the method pointer from
the record.

To represent an object of C or C’s subclasses, LILC uses
an existential type ∃α ¿ C. α, read as “there exists α where
α is a subclass of C, and the object has type α”. The type
variable α represents the object’s runtime type and the no-
tation ¿ means subclassing. The type variable α has a
subclassing bound C, which means that the runtime type
of the object is a subclass of C. The subclassing bounds
can only be class names or type variables that will be in-
stantiated with class names. Subclassing-bounded quantifi-
cation and the separation between name-based subclassing
and structure-based subtyping make the type system decid-
able and expressive.

A source class name C is then translated to an LILC type
∃α ¿ C. α. If C is a subclass of class B, then ∃α ¿ C. α
is a subtype of ∃α ¿ B. α, which expresses inheritance—
objects of C or C’s subclasses can be used as objects of B
or B’s subclasses.

A class C has a unique identifier (called tag) represented
as tag(C). The tag has type Tag(C). If two tags are equal,
the corresponding classes are the same.

2.2 Itable Representation
ECI extends the key ideas of LILC naturally to interfaces.

ECI preserves interface names (ranged over by I, J , and
K). Subclassing applies to interfaces: C ¿ I represents
that class C implements interface I, and I ¿ J represents
that interface I is a subinterface of interface J . Type vari-
ables can be bounded by and be instantiated with interface
names. A source interface name I is translated to an ECI
type ∃α ¿ I. α, meaning objects of classes that implement
I. Interface I has a unique identifier tag(I), which has type
Tag(I).

The key data structure of itable-based interface imple-
mentation is the itable. In a common itable representation,
a class includes in its itable an entry for each interface the
class implements. Each interface entry contains two words:
a tag and a pointer to the method table for the correspond-
ing interface. The method table contains a function pointer
for each method declared in the interface. The order of func-
tion pointers in the method table is significant: the order is
the same in all itable entries that correspond to the same
interface. This allows the compiler to use the same offset
for a method in the method table of an interface, no matter
in which class.

Figure 1 illustrates the itable of a class C that implements
two interfaces J and K, each declaring an interface method
mJ and mK respectively. The itable has two entries, one
for J and the other for K. The method table for J contains
only one function pointer, the one for mJ . The method ta-
ble pointer is given an ECI type Imty(J, C), representing

���������� �� 	
 ���
��� ����� �� �
��� �� ����������� ��	
 ���
 ��� �� ����� ���
��� ��� ���������� !�"�#$�������� !�"�# %
Figure 1: Itable of a Class C Implementing J and K

the method table for interface J in class C’s itable. Method
table type Imty(J, C) can be coerced to/from a record type
{mJ : type-of-mJ}, which contains a pointer to mJ ’s imple-
mentation in C. Again, the coercions are runtime no-ops.
The method table type refers to class C, indicating that the
implementation of mJ in the method table can be applied
only to objects of C or C’s subclasses. The class name C
is used in the “this” pointer type of mJ (∃α ¿ C. α). The
method table for K is similar.

For an object whose runtime type is statically unknown,
we cannot determine statically what interfaces its itable con-
tains. Furthermore, the offsets of itable entries cannot be
pre-determined because of multiple inheritance of interfaces.
To invoke an interface method, we need to look up the itable
at run time for the entry of the target interface.

To represent an itable that holds statically unknown in-
terfaces with unknown ordering, ECI uses an array type,
where each element corresponds to an itable entry. Each
entry has two words, represented by a record type with two
fields. ECI uses an existential type to abstract the interface
to which each entry corresponds. An itable entry for class C
has type ∃α À C. {tag : Tag(α), mtable : Imty(α, C)}. The
type variable α indicates the interface to which the entry
corresponds. C implements the interface, therefore C ¿ α
and α is given the lower bound C. The body of the exis-
tential type is a record type with two fields labeled tag and
mtable, meaning the tag for the interface α and the method
table respectively.

The itable entry array for class τ then has type array(∃α À
τ.{tag : Tag(α), mtable : Imty(α, τ)}), often abbreviated as
ITY (τ). The itable of class τ has a record type {length :
int, table : ITY (τ)}. The field “length” records the number
of itable entries (used by itable search). The field “table” is
the entry array.

Interface method invocation searches the itable for the
target interface by comparing the tag in each entry with the
tag of the target interface. If an entry for the target in-
terface is found, the method table in the entry is coerced
to the record type that contains methods of the target in-
terface. The desired interface method can be fetched at a
pre-determined offset from the record type.

Interface cast searches the itable in a similar way. Suppose
the itable of an object with runtime type τ contains an entry
for interface I. The subclassing bound in the itable entry
type indicates that I À τ . Thus the object can be cast to
interface I.

2.3 Object Layout
Object layout—the organization of fields, methods, and

runtime tags—in ECI is standard. Each object contains a
pointer to the vtable and the fields. The vtable contains the
tag, a pointer to the itable, and virtual method pointers.
The rest of the paper uses records and pointers to records
interchangeably. It should be clear from the context which
one is being used.

2

Suppose a class C has fields f1, . . . , fn of types s1, . . . , sn

respectively, and virtual methods m1, . . . , mk of types t1, . . . , tk

(with explicit “this” pointer types) respectively. The layout
of C is represented by the following record type:

R(C) = {vtable : {tag : Tag(C),
itable : {length : int, table : ITY (C)},
m1 : t1, . . . , mk : tk},

f1 : s1, . . . , fn : sn}

The tag of C has type Tag(C). The itable type is ex-
plained in Section 2.2. Each virtual method in the vtable
has an explicit “this” pointer as the first parameter. The
“this” pointer has type ∃α ¿ C. α to guarantee that only
objects of C or C’s subclasses can be passed to the meth-
ods.

2.3.1 Approximation of Object Layout
Layouts of objects whose runtime types are statically un-

known can be approximated. Suppose an object has runtime
type α where α is a subclass of the above class C. The object
contains at least the fields and methods of C. The object
layout can be represented as follows:

ApproxR(α, C) =
{vtable : {tag : Tag(α),

itable : {length : int, table : ITY (α)},
m1 : t1, . . . , mk : tk},

f1 : s1, . . . , fn : sn}
For objects with source type I, the approximation record

contains only the tag and the itable, no fields or methods.
We cannot represent the entry for I in the itable because
we cannot statically determine where the entry is located or
what other entries the itable has.

ApproxR(α, I) =
{vtable : {tag : Tag(α),

itable : {length : int, table : ITY (α)}}}
R and ApproxR are not type constructors in ECI, but

macros used by the type checker. ECI can adopt other lay-
out strategies by changing the macros.

Objects of type C (or α where α ¿ C) are coerced to
records of type R(C) (or ApproxR(α, C)) before field fetch
or virtual method invocation.

2.4 Interface Method Invocation and
Interface Cast

We can now describe the itable lookup process during in-
terface method invocation as a polymorphic function in ECI
(Figure 2). Note that without coercions (which are runtime
no-ops anyway), it is exactly the standard implementation.

The function ILookup takes two type parameters—the
target interface α and the runtime type β of the object,
and two value parameters—the tag of the target interface
and the object. ILookup returns the method table for the
target interface α in class β if α is found. Otherwise an error
occurs.

Step 1) coerces obj to a record c2r(obj) and fetches the
vtable and then the itable from the record. Step 2) gets the
entry array from the itable. Step 3) gets the length of the
itable and step 4) calls loop to iterate over the entry array.

Function loop is a polymorphic function with the same
type parameters as ILookup. It has three additional param-
eters: arr for the interface entry array, i for the index of the
current entry, and len for the length of the itable. Step 5)
tests if the search reaches the end of the itable. If so, an er-
ror is returned. Otherwise, step 6) fetches the ith entry from
the entry array. Step 7) opens the entry and introduces a
fresh type variable γ′ for the interface corresponding to the
entry. Step 8) compares the tag in the entry (entryi′.tag
with type Tag(γ′)) with the target interface’s tag (tα with
type Tag(α)). If the tags are the same, then γ′ = α. The
method table in the entry (with type Imty(γ′, β)) is returned
as a value of type Imty(α, β). Otherwise, step 9) calls loop
for the next iteration.

The following example demonstrates interface method
invocation—how to invoke the method mJ on an object obj
with source type J in Figure 1:

//open object. obj : ∃α ¿ J. α, obj′ : β
1) (β, obj′) = open(obj)

//lookup itable. mtable : Imty(J, β)
2) mtable = ILookup[J, β](tag(J), obj′)

//coerce mtable. r : {mJ : type of mJ}
3) r = im2r(mtable)

//fetch method. m : type of mJ

4) m = r.mJ

//invoke the method.
5) m(obj′)

The source type J is translated to ECI type ∃α ¿ J. α,
the type of obj. Step 1) opens the existential type and in-
troduces a fresh type variable β for the runtime type of obj.
The opened object obj′ is an alias of obj and has type β.
Step 2) calls ILookup to search for the interface J . The
return value is the method table for J in class β, which has
type Imty(J, β). Step 3) then coerces the method table to
a record r that lists all J ’s methods. Step 4) fetches the
method mJ from r and step 5) calls the method with obj′

as the “this” pointer.
ECI can express without difficulties optimizations of itable

lookup such as caching and move-to-front. The caching
strategy caches the last entry looked up successfully in the
itable. The cached entry can have the same type as the
itable entries. The move-to-front strategy moves the last
found entry to the front of the itable. It can also be ex-
pressed because ECI’s array representation of itables does
not care about the orders of itable entries.

2.4.1 Interface Cast
Interface downward cast may cast an object of an arbi-

trary (class or interface) type to an interface. A typical
implementation of interface downward cast searches at run
time for an itable entry that corresponds to the target inter-
face. The downward cast is represented by a polymorphic
function similar to ILookup (see the companion technical
report).

3. SYNTAX OF ECI
This section explains the syntax of types and expressions

in ECI. Class, interface, and program declarations are ex-
plained in the technical report. We underline new interface-
related constructs to distinguish them from those introduced
in the base language LILC .

3

fix ILookup〈α, β〉
(

tα : Tag(α), //tag of target interface α
obj : β //object

)
: Imty(α, β)

1) itable : {length : int, table : ITY (β)} = c2r(obj).vtable.itable in //get itable
2) arr : ITY (β) = itable.table in //get entry array
3) len : int = itable.length in //get itable length
4) loop[α, β](tα, obj, arr, 0, len) //start search

fix loop〈α, β〉




tα : Tag(α), //tag of target interface α
obj : β, //object of type β
arr : ITY (β), //interface entry array
i : int, //index of the current entry
len : int //the array length


 : Imty(α, β)

5) if(i ≥ len) then error[Imty(α, β)] else //not found
6) entryi : ∃γ À β. {tag : Tag(γ), mtable : Imty(γ, β)} = arr[i] in //get the ith entry
7) (γ′, entryi′) = open(entryi) in //γ′ À β, entryi′ : {tag : Tag(γ′), mtable : Imty(γ′, β)}
8) ifEqTagImty(α,β)(entryi′.tag, tα) then entryi′.mtable else //γ′ = α
9) loop[α, β](tα, obj, arr, i + 1, len) //next iteration

Figure 2: Itable Lookup

3.1 Kinds and Types

(kind) κ ::= Ωc | Ω
(type) τ ::= int | α | array(τ) | (τ1, . . . , τn) → τ

| {lφ1
1 : τ1, . . . , l

φn
n : τn}

| C | Tag(τ) | ∀α ¿ τ . τ ′ | ∃α ¿ τ . τ ′

| {{lφ1
1 : τ1, . . . , l

φn
n : τn}}

| I | Imty(τ1, τ2) | ∃α À τ . τ ′

(lbl ann) φ ::= I | M

A special kind Ωc classifies class and interface names and
type variables that will be instantiated with class or interface
names. The well-formedness rules of types use this kind
to guarantee that certain type constructors (e.g. Tag) are
applied to only class and interface names and type variables.
Kind Ω classifies all types. Ωc is a subkind of Ω, that is, a
type that has kind Ωc also has kind Ω.

Standard types include the integer type, type variable“α”,
array type “array(τ)”, function type “(τ1, . . . , τn) → τ”, and

record type “{lφ1
1 : τ1, . . . , l

φn
n : τn}”. In a record type, each

field label is annotated with either “I” or “M”, represent-
ing immutable and mutable respectively. “I” is often omit-
ted. Vtables, itables, and virtual methods are all immutable
fields in their enclosing record types. LILC introduced class
name “C”, tag type “Tag(τ)”, subclassing-bounded quanti-
fied types “∀α ¿ τ . τ ′” and “∃α ¿ τ . τ ′”, and exact record
type“{{lφ1

1 : τ1, . . . , l
φn
n : τn}}”(which represents records that

have and only have the specified fields). R(C) is an exact
record type to rule out extra fields.

New types for interfaces include interface names“I”, inter-
face method table type “Imty(τ1, τ2)”, and existential type
“∃α À τ . τ ′”which specifies a lower subclassing bound τ for
its type variable α. The new existential type is used in itable
types, as shown in Section 2.2.

3.2 Values and Expressions
Word-sized values include integer “n”, heap label “`”, ob-

ject of class C “C(v)” (coerced from record v), tag of class
C “tag(C)”, and packed word-sized value “pack τ as α ¿
τu in (v : τ ′)”. The packed value has type ∃α ¿ τu. τ ′.

(val) v ::= n | ` | C(v) | tag(C)
| tag(I) | r2im[I, C](v)

| pack τ as α ¿ τu in (v : τ ′)
| pack τ as α À τu in (v : τ ′)

(expr) e ::= x | n | ` | tag(C) | tag(I) | C(e) | c2r(e)

| r2im[τ1, τ2](e) | im2r(e) | error[τ]

| new[τ]{li = ei}n
i=1 | e.l | e1.li := e2 in e3

| new[e0, . . . , en−1]
τ | e1[e2]

| e1[e2] := e3 in e4

| x : τ = e1 in e2 | x := e1 in e2

| e[τ1, . . . , τm](e1, . . . , en)
| (α, x) = open(e1) in e2

| pack τ as α ¿ τu in (e : τ ′)
| pack τ as α À τu in (e : τ ′)
| ifParentτ (e) then bind (α, x) in e1 else e2

| ifEqTagτ (et1, et2) then e1 else e2

New word-sized values include tag of interface I “tag(I)”,
method table for interface I in class C “r2im[I, C](v)” (co-
erced from a record v containing C’s implementations of
methods in I), and packed values with lower subclassing
bounds“pack τ as α À τu in (v : τ ′)”. The value r2im[I, C](v)
has type Imty(I, C).

Besides values, ECI expressions include variable “x”, co-
ercing a record e (with type R(C)) to a C object “C(e)”,
coercing an object e to a record “c2r(e)”, runtime error ex-
pression “error[τ]” (an expression of type τ is expected in
normal execution), record creation “new[τ]{li = ei}n

i=1”,
field access “e.l”, field assignment “e1.li := e2 in e3”, ar-
ray creation “new[e0, . . . , en−1]

τ”, array subscript “e1[e2]”,
array element assignment “e1[e2] := e3 in e4”, let binding
“x : τ = e1 in e2” (τ specifies x’s type), variable assignment
“x := e1 in e2”, function call“e[τ1, . . . , τm](e1, . . . , en)”, open
expression “(α, x) = open(e1) in e2”, pack expression
“pack τ as α ¿ τu in (e : τ ′)”, fetching-parent-tag expres-
sion“ifParentτ (e) then bind (α, x) in e1 else e2”, and tag com-
parison expression “ifEqTagτ (et1, et2) then e1 else e2”. The
“ifParent” expression is used in class downward casts [6].
The “ifEqTag” expression compares two tags et1 and et2. If
they are equal, the types identified by the tags are the same.

4

The true branch e1 is type-checked assuming that the two
types are the same.

ECI introduces two new expressions to describe coercions
between interface method tables and records. Expression
“r2im[τ1, τ2](e)” coerces a record e containing methods for
interface τ1 in class τ2 to a method table (of type Imty(τ1, τ2)).
Expression “im2r(e)” coerces a method table e to a record.

To introduce values of existential types with lower sub-
classing bounds, a second pack expression “pack τ as α À
τu in (e : τ ′)” coerces an expression e to type ∃α À τu. τ ′,
by hiding type τ (where τ À τu) with type variable α. The
packed values can be unpacked by the existing “open” ex-
pression.

4. ECI SEMANTICS
This section focuses on the semantics related to interfaces.

The rest of the rules can be found in the technical report.
ECI maintains a declaration table Θ that maps class and

interface names to their declarations. A kind environment
∆ tracks type variables in scope and their bounds. Each
entry in ∆ introduces a new type variable and an upper or
lower bound of the type variable. The bound is a class name,
an interface name, or another type variable introduced pre-
viously in ∆. A heap environment Σ maps heap labels to
types. A type environment Γ maps variables to types. Sub-
stitution τ/α means replacing α with τ .

4.1 Types
The kinding judgment Θ;∆ ` τ : κ means that, under

environments Θ and ∆, type τ has kind κ.
Non-standard kinding rules are those related to Ωc, the

kind that classifies class and interface names. All type vari-
ables have kind Ωc. The tag constructor can be applied only
to types with kind Ωc. Bounds of type variables in quantified
types must have kind Ωc.

Interface names have kind Ωc. Type Imty(τ1, τ2) requires
that both τ1 and τ2 have kind Ωc. The new kinding rules
are as follows:

I ∈ domain(Θ)

Θ; • ` I : Ωc

Θ;∆ ` τ1 : Ωc Θ;∆ ` τ2 : Ωc

Θ;∆ ` Imty(τ1, τ2) : Ω

Θ;∆ ` τ : Ωc Θ;∆, α À τ ` τ ′ : Ω

Θ;∆ ` ∃α À τ . τ ′ : Ω

The subclassing judgment Θ;∆ ` τ1 ¿ τ2 means that, un-
der environments Θ and ∆, τ1 is a subclass of τ2. Subclassing
tracks the source-level inheritance hierarchy. Subclassing is
reflexive and transitive. Subclassing between interfaces or
between classes and interfaces are as follows:

J is a superinterface of I

Θ;∆ ` I ¿ J

C implements I

Θ;∆ ` C ¿ I

The subtyping judgment Θ;∆ ` τ1 ≤ τ2 means that, un-
der environments Θ and ∆, τ1 is a subtype of τ2. As ex-
pected, there are standard structural record prefix and depth
subtyping, function subtyping, reflexivity, and transitivity.
Exact record types are subtypes of normal record types with
same fields. Structural subtyping between quantified types
is similar to Castagna and Pierce’s ∀ − top rule [3], where
the checker ignores the bounds of type variables (relax it to

Topc, the superclass of any other class) when checking sub-
typing between the body types. Contrary to ECI, Castagna
and Pierce’s bounded quantification was based on subtyp-
ing, and did not have the minimal type property [2].

The subtyping rule for existential types with lower sub-
classing bounds is shown as follows:

Θ;∆ ` u2 ¿ u1 Θ;∆, α ¿ Topc ` τ1 ≤ τ2

Θ;∆ ` (∃α À u1. τ1) ≤ (∃α À u2. τ2)

4.2 Expressions
The typing judgment Θ;∆; Σ; Γ ` e : τ means that, under

environments Θ, ∆, Σ and Γ, expression e has type τ . Rules
related to interfaces are as follows.

Θ;∆;Σ; Γ ` e : RI(I, C)

Θ;∆;Σ; Γ ` r2im[I, C](e) : Imty(I, C)

Θ;∆;Σ; Γ ` e : Imty(I, τ)

Θ;∆;Σ; Γ ` im2r(e) : RI(I, τ)

I ∈ domain(Θ)

Θ;∆;Σ; Γ ` tag(I) : Tag(I)

Θ;∆;Σ; Γ ` e1 : ∃β À τu. τ
α /∈ domain(∆) α /∈ free(τ ′)

Θ;∆, α À τu; Σ; Γ, x : τ [α/β] ` e2 : τ ′

Θ;∆;Σ; Γ ` (α, x) = open(e1) in e2 : τ ′

Θ;∆ ` τu ¿ τ α /∈ domain(∆) Θ;∆;Σ; Γ ` e : τ ′[τ/α]

Θ;∆;Σ; Γ ` pack τ as α À τu in (e : τ ′) : ∃α À τu. τ ′

RI is a macro used by the type checker to represent record
types that correspond to method tables, similar to R and
ApproxR. Suppose interface I declares methods m1, . . . , mk

of type τ1, . . . , τk respectively. RI(I, τ) is defined as RI(I, τ) =
{m1 : τ1, . . . , mk : τk} where τi refers to τ in the “this”
pointer types.

Expression r2im[I, C](e) coerces a record e of type RI(I, C)
to method table type Imty(I, C). Expression im2r(e) co-
erces a method table e with type Imty(I, τ) to record type
RI(I, τ) where τ can be a type variable or a class name.

ECI has additional typing rules for the open and pack
expressions that eliminate and introduce existential types
with lower subclassing bounds respectively.

4.3 Dynamic Semantics
The evaluation rules for the new expressions are as fol-

lows. The notation e ; e′ means e steps to e′. Expressions
“r2im[τ1, τ2](v)” and “im2r(v)” coerce between records and
interface method tables. The open expression can eliminate
new packed values of existential types with lower subclassing
bounds.

im2r(r2im[I, C](v)) ; v
(α, x) = open(pack τ as β À τu in (v′ : τ ′)) in e0 ;

e0[τ/α] with x 7→ v′

4.4 Properties of ECI
We have proved that ECI has the following properties:

Theorem 1 (Soundness). ECI is sound.

5

Proof sketch: by proving the standard progress and preser-
vation lemmas.

Theorem 2 (Decidability). Type checking ECI is de-
cidable.

Proof sketch: by proving decidability of the algorithmic
typing rules and decidability of subtyping.

Theorem 3 (Type-preserving Translation). Well-
typed source language programs are translated to well-typed
ECI programs.

5. RELATED WORK
League et al. proposed a typed intermediate language

JFlint for compiling Java-like languages [15]. JFlint uses
existential quantification over row variables for object en-
codings. There are two approaches to support interfaces.
The first approach uses unordered records for itable entries,
which does not model itable search. The second approach
pairs a specialized itable with an object when casting the
object to an interface. The specialized itable contains only
information of the target interface. The second approach re-
quires non-standard implementation: upcasting is no longer
free.

Chen et al. proposed a model based on guarded recur-
sive datatypes that supports multiple inheritance between
classes [4]. The model preserves class names. Each method
invocation is associated with a sequence of class names, for
identifying methods. This approach encodes objects with
functions, which differs from the standard implementation
of objects as records. As a result, object layouts, including
vtables and itables, cannot be addressed.

SpecialJ is a certifying compiler for Java [7]. It compiles
Java to assembly code with type annotations. The target
language preserves class and interface names, but the pa-
per [7] didn’t discuss how the target type system addresses
itable or interface implementation.

6. CONCLUSION
This paper describes a typed intermediate language that

supports interfaces, a restricted form of multiple inheritance.
The language models itables with array types and subclassing-
bounded quantification. It faithfully models the standard
itable-based implementation of interface method invocation
and interface cast.

7. REFERENCES
[1] B. Alpern, A. Cocchi, S. J. Fink, D. Grove, and

D. Lieber. Efficient implementation of Java interfaces:
Invokeinterface considered harmless. In OOPSLA ’01:
ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications,
pages 108–124, 2001.

[2] G. Castagna and B. C. Pierce. Corrigendum:
Decidable Bounded Quantification.
http://www.cis.upenn.edu/∼bcpierce/papers/fsubnew-
corrigendum.ps.

[3] G. Castagna and B. C. Pierce. Decidable bounded
quantification. In POPL ’94: ACM Symposium on
Principles of Programming Languages, pages 151–162,
1994.

[4] C. Chen, R. Shi, and H. Xi. A typeful approach to
object-oriented programming with multiple
inheritance. In PADL ’04: International Symposium
on Practical Aspects of Declarative Languages, pages
23–38, June 2004.

[5] J. Chen. A typed intermediate language for
supporting interfaces. Technical report, Microsoft
Corporation, March 2009.
http://research.microsoft.com/apps/pubs/?id=80117.

[6] J. Chen and D. Tarditi. A simple typed intermediate
language for object-oriented languages. In POPL ’05:
ACM SIGPLAN Conference on Principles of
Programming Languages, pages 38–49, January 2005.

[7] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and
M. Plesko. A certifying compiler for Java. In PLDI
’00: ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2000.

[8] B. J. Cox and A. Novobilski. Object-Oriented
Programming; An Evolutionary Approach.
Addison-Wesley Longman Publishing Co., Inc., 1991.

[9] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer.
A fast method dispatcher for compiled languages with
multiple inheritance. In OOPSLA ’89: Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 211–214, 1989.

[10] K. Driesen. Selector table indexing sparse arrays. In
OOPSLA ’93: Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 259–270, 1993.

[11] Microsoft Corp. et al. Common Language
Infrastructure. 2002.
http://msdn.microsoft.com/net/ecma/.

[12] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In ECOOP ’91: European
Conference on Object-Oriented Programming, pages
21–38, 1991.

[13] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. on Programming Languages and
Systems, 23(3):396–450, 2001.

[14] A. Krall and R. Grafl. CACAO — A 64-bit JavaVM
just-in-time compiler. Concurrency: Practice and
Experience, 9(11):1017–1030, 1997.

[15] C. League, Z. Shao, and V. Trifonov. Type-preserving
compilation of Featherweight Java. ACM Trans. on
Programming Languages and Systems, 24(2), March
2002.

[16] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1999.

[17] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. ACM Trans. on
Programming Languages and Systems, 21(3):527–568,
May 1999.

[18] G. Necula. Proof-Carrying Code. In POPL ’97: ACM
Symposium on Principles of Programming Languages,
pages 106–119, 1997.

6

