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Abstract

This paper addresses the issue of automatically extracting keyphrases from document. Previ-
ously, this problem was formalized as classification and learning methods for classification were
utilized. This paper points out that it is more essential to cast the keyphrase extraction problem
as ranking and employ a learning to rank method to perform the task. As example, it employs
Ranking SVM, a state-of-art method of learning to rank, in keyphrase extraction. Experiments
conducted on three datasets show that Ranking SVM significantly outperforms the baseline meth-
ods of classification, indicating that it is better to exploit learning to rank techniques in keyphrase
extraction.
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1. Introduction

In this paper we address automatic extraction of keyphrases from document. By keyphrases
of a document we mean the words and phrases that can precisely and compactly represent the
content of the document. Keyphrases are useful for various applications such as document sum-
marization [5, 33], document retrieval [14, 20], document categorization and clustering [12]. In
digital library the keyphrases of a scientific paper can help users to get a rough sense of the paper.
In web search the keyphrases of a web page can serve as metadata for indexing and retrieving
the web page [10, 16]. In Web 2.0 applications keyphrases can be used as candidates for people
to tag web pages.

Many documents do not have manually assigned keyphrases. Ideally, we would use a tool to
automatically assign keyphrases to the documents. In general, keyphrases of a document do not
necessarily appear in the document. In this paper, for simplicity we only consider the cases in
which we identify keyphrases from the body of the document. Keyphrase extraction consists of
two steps: candidate phrase identification and keyphrase selection.

Much work was conducted on keyphrase extraction [1, 8, 11, 15, 16, 22, 25, 26, 27, 28, 29,
30, 31], with many of them leveraging machine learning techniques. The problem was basically
formalized as classification in which a classifier was trained and used to categorize phrases as
keyphrases or non-keyphrases. Documents as well as their keyphrases assigned by authors or
annotators were utilized as training data. Classification methods such as decision tree and Naive
Bayes were employed.

Recently, machine learning technologies for ranking called ‘learning to rank’ have been in-
tensively studied (e.g., [2, 3, 4, 9, 13, 18, 32]). Different from classification and regression, the
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goal of learning to rank is to learn a function that can rank objects according to their degree of
preferences, importance, or relevance defined in an application. So far, learning to rank methods
were mainly applied to document retrieval. To the best of our knowledge, it was not applied to
keyphrase extraction.

We point out that keyphrase extraction is by nature a ranking problem rather than a classi-
fication problem, and it is better to employ a learning to rank method for keyphrase extraction
than a classification method. The reasons are as follows. First, it is more natural to consider
the likelihood of a phrase’s being a keyphrase in a relative sense than in an absolute sense. Sec-
ond, by employing the ranking approach we can avoid the difficulty of making hard decisions
on keyphrases or non-keyphrases, which plagues the classification approach. Third, information
(features) for determining whether a phrase is a keyphrase is also relative.

In this paper, we employ Ranking SVM [13] as our learning to rank method to perform
keyphrase extraction. Specifically, Ranking SVM takes ranked phrase pairs as examples, indi-
cating which phrases are more likely to be keyphrases than other phrases. It creates a linear
ranking model by means of SVM, uses the linear model for ranking the candidate phrases of a
new document, and selects the top ranked phrases as keyphrases.

We conducted experiments to verify the effectiveness of our approach with three datasets.
The first dataset is composed of research papers and their keyphrases assigned by the authors.
The second dataset consists of web pages and their associated tags provided by internet users.
The third dataset is a set of web pages in the TREC .Gov corpus and their keyphrases labeled by
human annotators. Experimental results show that Ranking SVM statistically significantly out-
performs the baseline classification methods of Naive Bayes and SVM on all the three datasets.
The experimental results strongly indicate that it is better to employ a ranking approach to key-
phrase extraction than the conventional classification approach.

Although the idea of using ranking for keyphrase extraction is simple, we know of no exist-
ing work which studied the problem. We think, therefore, that our work reported in this paper
represents an enhancement on the state-of-the-art for this important topic.

The rest of the paper is organized as follows. Section 2 introduces related work on keyphrase
extraction and learning to rank. Section 3 describes our method of keyphrase extraction using
Ranking SVM. Experimental results are reported in Section 4. Finally, Section 5 concludes this
paper and discusses the future work.

2. Related Work

2.1. Keyphrase Extraction
Many methods have been proposed for keyphrase extraction. Most of them are based on

machine learning techniques.
Turney [27] proposed viewing keyphrase extraction as classification. In this approach, phrases

are extracted from documents and are labeled as keyphrases or non-keyphrases. The documents
and labeled phrases are then used as training data for creating a keyphrase classifier. Two learning
methods are applied: the decision tree learning algorithm of C4.5 [24] and a genetic algorithm
called GenEx. Features such as phrase frequency, position in document are utilized in the clas-
sifiers. The classifiers are then used to categorize phrases of a new document as keyphrases
or non-keyphrases. Experimental results show that GenEx can achieve better performance than
C4.5.

Kea is a tool for keyphrase extraction based on Naive Bayes [8, 30]. In one version of
Kea [30], only two features are used: TF-IDF (term frequency-inverse document frequency),
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and position of the first occurrence. The numerical values of the features are discretized and
used to build the Naive Bayes model. In extraction, candidate phrases are ranked according to
their probabilities of being keyphrases, and top-ranked phrases are treated as keyphrases. Ex-
perimental results show that Kea can achieve a performance comparable to GenEx. Frank et
al. [8] extended the Kea model by adding another feature called keyphrase-frequency, which is
the frequency of a phrase’s being keyphrase in all the documents in the corpus. This feature is
effective in domain-specific keyphrase extraction. Turney [28] further improved the Kea model
by replacing this domain-specific feature with a number of new features based on co-occurrence
measures.

Hulth [15, 16] tried three approaches to candidate phrase identification and employed a rule
induction system to classify the candidate phrases. Wang et al. [29] used neural network and the
back propagation algorithm in keyphrase extraction. For other related work, see [1, 11, 22, 25,
31]

To evaluate the accuracy of the keyphrase extraction methods, measures such as precision and
recall are used. Human annotated keyphrases are usually used as positive examples. Turney [26]
and Jones and Paynter [19] also proposed ways of human evaluation on the keyphrases extracted
by GenEx and Kea.

2.2. Learning to Rank

Ranking is the central problem for many information retrieval applications, such as docu-
ment retrieval and collaborative filtering. Recently a new research area is emerging in machine
learning, which is called learning to rank. Learning to rank aims at automatically creating a
model (function) that can perform ranking on instances, using training data and machine learn-
ing techniques. Many learning to rank methods have been developed and applied to information
retrieval.

There is one typical approach to learning to rank, referred to as the pairwise approach. This
approach formalizes the ranking problem as that of classifying instance pairs into two categories:
correctly ranked and incorrectly ranked. Herbrich et al. [13] proposed a pairwise method called
Ranking SVM. Ranking SVM employs Support Vector Machines (SVM) in classifying the in-
stance pairs. Joachims [18] applied Ranking SVM to document retrieval, where documents pairs
are generated from click-through data. Cao et al. [3] adapted Ranking SVM to document re-
trieval by modifying the hinge loss function of SVM to better meet the requirements of IR. Other
pairwise methods include RankBoost [9], RankNet [2], etc. In this paper, we take Ranking SVM
as an example method for ranking.

3. Ranking SVM for Keyphrase Extraction

In this section, we first describe the motivation on employing a learning to rank method in
keyphrase extraction. Then we introduce our method of using Ranking SVM. Finally, we list the
features used in the Ranking SVM model.

3.1. Motivation

Keyphrase extraction has been previously formalized as classification. Although this ap-
proach has certain advantages such as theoretical soundness, it still has some drawbacks. It is
more essential to formalize the problem as ranking and employ a learning to rank method to
carry out the task. There are three major reasons.
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Figure 1: (a) and (b) show the scatterplots of instances over two features in the case of classification and ranking,
respectively. (c) and (d) show the distribution of the data projected on the directions found by linear discriminant analysis.
All the data come from ten documents with human-labeled keyphrases randomly selected from TREC .Gov dataset.

First, keyphrases can only be identified in a relative sense. That is to say, it is usually easy
to determine whether a phrase is more like a keyphrase than the other phrase than to determine
whether a phrase is a keyphrase or not. This is even true for humans.

Second, the setting of classification does not fit well with keyphrase extraction. Classification
methods need to make hard decisions in keyphrase extraction. However, this is difficult because
there are always many boundary cases in the task (even for humans). Moreover, the number
of keyphrases is usually much smaller than the number of non-keyphrases, as pointed out by
Turney [27] and shown in Figure 1. The highly skewed sample distribution makes the learning
hard. For instance, a classifier of predicting all the instances to be non-keyphrases can still have
a high classification accuracy. To conquer this problem, techniques such as sampling from the
training data or modifying the loss function have been tried. However, they do not seem to form
fundamental solutions.

In contrast, learning to rank methods can more naturally tackle the problem. When applied
to keyphrase extraction, a learning to rank method tries to learn and utilize a ranking function
that sorts phrases based on their degree of being keyphrases. In other words, it directly treats
keyphrases in a relative sense in the framework.

Third, the information (features) that helps make keyphrase or non-keyphrase decisions is rel-
ative to documents. Classification methods use absolute feature values, while (pairwise) ranking
methods use differences of feature values. Difference in feature values is a kind of normalization
and is more meaningful across documents. For example, it is hard to say how likely a phrase is
a keyphrase based on the absolute value of its TF-IDF feature. In contrast, it is safer to say that
if the TF-IDF value of a phrase is larger than that of the other phrase, then the former is more
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likely to be a keyphrase than the latter. As a result, the features in a ranking method have more
discriminative power for keyphrase extraction than the features in a classification method.

In this paper, we employ the linear Ranking SVM method. As baseline, we also use the linear
SVM method. The two methods actually use the same set of features, but different feature values
(the former absolute values, the latter differences between values). To test the discriminative
abilities of the feature values, we conducted analysis on some randomly selected data. Figure 1
(a)(b) shows the plots of the instances in two feature space (First occurrence and TF-IDF) for
the classification and ranking data. (For the ranking data, ‘correctly ranked’ is viewed as positive
class, and ‘incorrectly ranked’ is viewed as negative class. See Section 3.2 for details.) From
the figures, we can see that the distribution patterns of the data are very different. It would be
easier for the ranking approach to separate the positive and negative classes. Note that there are
far more instances in ranking than in classification, due to its use of instance pairs.

We also conducted a linear discriminant analysis on the data using all the features. Linear dis-
criminant analysis provides a way of presenting data in a lower dimension space [6]. Specifically
for binary case, it gives a direction on which the projected data has the maximal between-class
variance as well as the minimal within-class variance, i.e., the direction that optimizes the class
separability. Figure 1 (c)(d) shows the distributions of data projected on the discriminant direc-
tions for classification and ranking. The overlap between the densities of classes is greater in
classification than in ranking (the estimated overlapped areas for classification and ranking are
32% and 14% respectively), which means the instances are more separable in the ranking case
than in the classification case. The reason seems to be that the ranking approach implicitly con-
ducts normalization on feature values and makes the feature values more discriminative. This
strongly indicates that ranking is more likely to achieve better performance than classification in
keyphrase extraction. (As will be seen later, this is true).

3.2. Method

The first step of keyphrase extraction is to identify candidate phrases from the document.
We use the existing NLP technologies to extract all the base noun phrases in the document as
candidate phrases. We then conduct stemming (using Poter’s stemmer [23]) and normalization
on the candidate phrases. Next, we create a feature vector for each candidate phrase.

In training, human judges label candidate phrases as keyphrases or non-keyphrases for each
of the training documents. We train a keyphrase extraction model by using the labeled training
data (feature vectors of phrases) and machine learning techniques. In extraction, given a new
document and its associated candidate phrases we use the trained model to select keyphrases
from them.

Traditionally, a classifier is employed and the phrases classified as positive are selected as
keyphrases, as explained above. In this paper, we instead employ a ranking model, specifically,
Ranking SVM, to sort the candidate phrases and to select the top ranked phrases as keyphrases.

Let X ⊆ Rp denote the input feature space, and Y = {r1, r2, . . . , rm} denote the output rank
space, where p is number of features, {r1, r2, . . . , rm} is a set of ranks, and m is number of ranks.
In this paper, usually m = 2. There exists a total order among the ranks: rm � rm−1 � . . . � r1,
where � denotes preference relation. Let x and y denote elements of X and Y respectively. In this
paper, we assume to use a linear ranking function f :

f (x) = 〈ω, x〉 (1)
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where ω is vector of coefficients and 〈·, ·〉 denotes inner product.
In keyphrase selection, the ranking function f determines the preference relations between

feature vectors of phrases in a given document

f (xi) > f (x j)⇔ 〈ω, xi − x j〉 > 0⇔ yi � y j (2)

We then select the top k ranked phrases as the keyphrases of the documents.
Suppose that we have a collection of M documentsD = {d1, d2, . . . , dM}, and each document

dk has Nk candidate phrases. The training data is then given by {(xk,i, yk,i) | k = 1, 2, . . . , M; i =

1, 2, . . . ,Nk}, where xk,i denotes the feature vector of the ith candidate phrase of the kth document
and yk,i denotes the corresponding rank. The goal of learning is to train a ranking function f ∗

that can best rank the phrases in a new document.
In Ranking SVM, we convert the training data of labeled phrases into that of ordered phrase

pairs, while preserving their preference relations:

T ′ = {(xk,i − xk, j, zk,i j) | k = 1, 2, . . . , M; i, j = 1, 2, . . . ,Nk}
where (xk,i − xk, j) denotes difference between feature vectors of ith and jth candidate phrases
in kth document, and zk,i j denotes their preference relationships: zk,i j = +1 if yk,i � yk, j and
zk,i j = −1 if yk,i ≺ yk, j. In the simplest case, there are only two ranks (keyphrases and non-
keyphrases) and we create a pair from each of the ranks. Next, we train a SVM model on the
training set T ′, which can be formalized as the following optimization problem:

min
ω,ξk,i j

1
2
‖ω‖2 + C

∑

i, j,k

ξk,i j

s.t. zk,i j〈ω, xk,i − xk, j〉 ≥ 1 − ξk,i j, ξk,i j ≥ 0, ∀i, j, k

(3)

where ω denotes weights of ranking function and ξk,i j denotes slack variables, and C denotes
parameter. Problem (3) is a Quadratic Programming problem and can be solved by the standard
SVM techniques.

Suppose the optimal solution to (3) is obtained and denoted as ω∗, then the resulting ranking
function becomes

f ∗(x) = 〈ω∗, x〉 (4)

f ∗(x) can then be used in keyphrase selection.

3.3. Features
We explain the features used in the Ranking SVM model. In this paper we try to use as many

existing features as possible.

TF-IDF
TF (term frequency) represents number of times the phrase appears in the document. DF

(document frequency) represents number of documents containing the phrase in the corpus. TF-
IDF score is computed as

TF-IDF =
T F
Nd
× log

Nc

DF
(5)

where Nd is number of words in document and Nc is number of documents in the corpus. In our
experiments, we used TF, IDF, and TF-IDF as three features. Intuitively, the more frequently a
phrase occurs the more likely the phrase is a keyphrase.
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Phrase length
The feature is simply number of words contained in the phrase.

First occurrence
The feature is calculated as number of words that precede the phrase’s first appearance in the

document, divided by total number of words of the document. Intuitively, the earlier the phrase
occurs in the document, the more likely the phrase is a keyphrase.

Phrase distribution
The feature is proposed in [34]. The intuition is that a keyphrase tends to be uniformly

distributed in the document, and entropy can be used to measure this uniformity. Suppose a
document is divided into n parts. Then the probability of a phrase appearing in the ith part is
pi = TFi/TF, where TFi is frequency of phrase in ith section and TF is frequency in whole
document. Entropy of phrase is defined as

entropy = −
n∑

i=1

pi log pi (6)

In this paper, we set n = 10.

Is in title or not
The feature takes two values on whether the phrase occurs in the title of the document. Usu-

ally the phrases appearing in title are likely to be keyphrases.

Maximum and minimum word frequencies
The features represent the maximum and minimum frequencies of words in the phrase. This

is because a keyphrase often contains high frequency words.

4. Experiments

We conducted experiments on keyphrase extraction using three datasets, and examined the
performances of Ranking SVM as well as the two baseline classification methods: Kea (Naive
Bayes) and SVM. For Kea we used the program that is publicly available1. The tool S V Mlight2 [17]
was utilized for Ranking SVM and SVM. The default parameter setting in S V Mlight was used,
except that the cost factors in SVM were tuned to balance the class proportion (For boosting the
performances of SVM this is very necessary).

In learning, each dataset was separated into training data and test data. The methods were
trained with the training data and then were evaluated with the test data. Note that the ways of
using Ranking SVM and the baseline methods are similar: a score is assigned to each candidate
phrase, the phrases are sorted on the scores, and the top n phrases with highest scores are selected
as keyphrases.

1http://www.nzdl.org/Kea/
2http://svmlight.joachims.org/
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Table 1: Statistics on the datasets
Ave. No. ± Dev. Perc. of keyphrases

Document type Source No. of docu-
ments

No. of words per
document

No. of keyphrases
per document

In text In candidate
phrases

Research Paper Academic search 341 7,222±4,074 4.8±2.2 94.4% 86.9%
Web page Social Tagging 600 3,813±5,872 17.9±6.6 64.8% 57.0%
Web page .Gov 300 438±155 5.14±1.44 100% 100%

4.1. Evaluation Measures
The performances of Ranking SVM and the two baseline methods were evaluated in terms

of the following measures.

Precision@n
Suppose that each candidate phrase has a binary label: positive or negative. For document dk,

there are Nk candidate phrases sorted by their scores in descending order. We denote the label of
phrase at position i as yk,(i). Precision at n measures rate of positive examples at top n position:

Pk(n) =

∑n
i=1 yk,(i)

n
(7)

where yk,(i) takes values of 0 and 1, representing negative or positive examples. For a collection
of documents, we average Pk(n) over all the documents.

Mean Average Precision (MAP)
First, average precision of document dk is given by

APk =

∑Nk
i=1 yk,(i)Pk(i)
∑Nk

i=1 yk,(i)
(8)

MAP is defined as APk averaged over all documents.

Kendall’s Tau
Kendall’s tau is a statistics to measure the degree of correspondence between two rankings:

τk =
2P

1
2 Nk(Nk − 1)

− 1 (9)

where P denotes number of concordant pairs in two rankings, and 1
2 Nk(Nk − 1) is total number

of pairs. The value of τ ranges from −1 (perfect inversion) to +1 (perfect agreement).

4.2. Experiment with Research Paper Data
In this experiment, we randomly selected 341 research papers with author-given keyphrases

from an academic search engine. Statistics on the dataset are shown in Table 1.
During the experiment, candidate phrases were extracted from the documents and their fea-

tures were calculated as described in Section 3.3. The candidate phrases were assigned binary
labels by matching with the author-given keyphrases. For Ranking SVM, pairs of candidate
phrases as well as their preference relations were generated, such that each pair is composed of
one keyphrases and one non-keyphrases, and the keyphrase is preferred to the non-keyphrase.
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Figure 2: Keyphrase extraction accuracies on research paper data

For Kea the same dataset was used as SVM. Note that in the tool of Kea only two features are
utilized.

We divided the documents into three even subsets and conducted a 3-fold cross-validation
experiment. The experimental results averaged over three trials are reported in Figure 2.

From the figure, we can see that Ranking SVM outperforms SVM, and significantly outper-
forms Kea in terms of all measures. We conducted sign test. The results show that the improve-
ments of Ranking SVM over Kea in terms of all measures are statistically significant (p-value ¡
0.05). Furthermore, the improvement of Ranking SVM over SVM in terms of MAP is statisti-
cally significant. The improvements on Kea come from the fact that more effective features are
used in Ranking SVM. We conducted an additional experiment and found that when the same
features are used as in Kea, the performance of Ranking SVM (and also SVM) is still better.
This demonstrates that the use of Support Vector Machine is better than the use of Naive Bayes
in keyphrase extraction. Since Ranking SVM uses the same information as SVM does, the better
performance of it indicates that the ranking approach is more powerful than the classification
approach for the task.

4.3. Experiment with Social Tagging Data

In this experiment, data was collected from a social bookmark web site. We randomly se-
lected URL’s from the URL list provided at the site and crawled their source web pages. Each
web page is accompanied by a list of tags (single words) added by users at the site. In addition,
frequency information of tags is also available, which reflects the popularity of the tags.

We took advantage of the data to construct the training data and test data for keyphrase extrac-
tion. The web pages were transformed to plain texts. For the classification methods, the tagged
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Figure 3: Keyphrase (tag) extraction accuracies on social tagging data

candidate words were treated as keywords and the non-tagged candidate words were treated as
non-keywords. For the ranking method, preference relations between any two candidate words
were produced by comparing their frequencies, such that candidate words with higher frequen-
cies are preferred to candidate words with lower frequencies.

We used 600 web pages in this experiment. Statistics on the dataset are shown in Table 1.
A 3-fold cross validation experiment was conducted to test the performances of the three

methods: Kea, SVM, and Ranking SVM. Experimental results are reported in Figure 3.
From the figure, we can see that Ranking SVM outperforms the baseline classification meth-

ods in terms of Kendall’s Tau, MAP, and precisions. The differences are all statistically signifi-
cant in sign test (p-value ¡ 0.05). We conclude that Ranking SVM makes proper use of the tagging
information and achieves significant performance enhancement in keyphrase (tag) extraction.

4.4. Experiment with TREC .Gov Data

In this experiment, we randomly selected 300 web pages from the TREC .Gov dataset and
asked human annotators to label the keyphrases in them. Statistics on the dataset are shown in
Table 1.

The human-labeled data was used for both training and testing. Moreover, two annotation
methods, referred to as pointwise method and pairwise method, were exploited. For the pointwise
method, 50 candidate phrases were extracted from each document, and the annotators were asked
to pick up keyphrases from the candidates (mark ‘1’ for keyphrase and ‘0’ for non-keyphrase).
For the pairwise method, 250 pairs of phrases were extracted from each document, and the
annotators were asked to specify the preference relation for each pair, i.e., identify which phrase
is more like a keyphrase (mark ‘¿’ as better, ‘¡’ as worse, ‘=’ as equal, and ‘?’ as unknown). A
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tool with graphical user interface was developed to facilitate the annotating work. Six annotators
participated in the annotation task and separated into two groups. Each group annotated half of
the documents using the pointwise method and the other half using the pairwise method. Each
document in the data has six records: three pointwise annotations by one group and three pairwise
annotations by the other group. (This was to make each annotator to label a document only once,
either pointwise or pairwise, to reduce the possibilities of bringing bias into annotation).

We measured the level of agreements among the annotators. We used Fleiss’ kappa, a com-
monly used measure, to asses the degree of agreement between the annotators [7]:

κ =
P̄ − P̄e

1 − P̄e
(10)

where P̄ represents average rate of agreement, and P̄e is degree of agreement achieved by chance.
κ typically takes a value between 0 and 1, and κ = 1 means a complete agreement and κ < 0
means no agreement.

Table 2: Inter-annotator agreement measured by Fleiss’ kappa statistics
Pointwise method Pairwise method

Group1 0.425 0.409
Group2 0.463 0.379

Table 2 shows the agreements for both two groups and two annotation methods. We can see
that there exist certain agreements between the annotators for the two methods. We think that
the agreements at this level are acceptable (cf., [21]). The pointwise method has slightly higher κ
values than the pairwise method. Note that the results on the two methods are based on different
data, and thus are not directly comparable.

In dataset creation, we combined the annotations by majority voting. For each instance
(phrase or pair of phrases), we chose the label given by at least two annotators. The other
instances were discarded. Then we trained SVM and Ranking SVM using the pointwise data, in
the same way as previous experiments. We also used the pairwise data to train Ranking SVM
(note that only Ranking SVM can be trained with pairwise data).

A 3-fold cross validation experiment was conducted to test the performances of the four
methods: Kea, SVM, Ranking SVM trained on pointwise data (denoted as “Ranking SVM
(Pointwise)”) and Ranking SVM trained on pairwise data (denoted as “Ranking SVM (Pair-
wise)”). The performances were evaluated by using both pointwise annotated data in terms of
MAP and precision, and the pairwise annotated data in terms of Kendall’s tau. The results are
given in Figure 4.

As shown in the figure, when evaluated on pairwise data, Ranking SVM (Pairwise) performs
significantly better than the other methods in terms of Kendall’s tau. Furthermore, Ranking
SVM (Pointwise) significantly outperforms the other methods in terms of MAP and precisions,
when evaluated on pointwise data. The improvements are all statistically significant in sign test
(p-value ¡ 0.05). We conclude that again Ranking SVM can outperform SVM, no matter the
training data is pointwise or pairwise.

4.5. Discussion
We conducted analysis on the reason that Ranking SVM performs better than SVM and Naive

Bayes. It seems that the feature values in Ranking SVM have more discriminative power than
those in the other methods, as discussed in Section 3.1.
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Figure 4: Keyphrase extraction accuracies on TREC .Gov dataset with pointwise and pairwise annotated data

We manually checked the keyphrases extracted by Ranking SVM and the other methods. It
appears that Ranking SVM can do a better job than the other methods. We randomly selected six
documents from the three datasets and listed the extracted keyphrases in Table 3.

From the table, we see that Ranking SVM can find a large number of keyphrases in its top 10
positions. Moreover, Ranking SVM can rank the keyphrases at higher positions than the other
methods.

We conducted error analysis on Ranking SVM. We found there are several typical errors in
Ranking SVM. (Note that these errors can hurt other methods as well). (1) Some less useful
phrases were identified as candidate phrases, which affected the ranking results. For instance,
in the first example in Table 3, the phrase “kWh/m3” is not useful for keyphrase extraction but
included in the candidate list. Hence a kind of filtering on phrase candidates may be necessary.
(2) The linear ranking function currently used may not be powerful enough. In a linear model, a
phrase with one or two strong features is easily to be boosted to a high position when the features
have high weights. In the second example of Table 3, the Ranking SVM model gives a large
weight to the feature Is in title or not, and thus the words “query” and “complex” which appear
in the document title are incorrectly ranked high. (3) For web pages, simply converting them
to plain texts would cause loss of information. Making more effective use of information on
the web pages such as formatting and structural information would be necessary. (4) Some top
ranked non-keyphrases were actually good but not labeled as keyphrases by human annotators
(Note that keyphrase annotation is hard for humans as well).
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Table 3: Examples of the top 10 keyphrases extracted from six documents
Title A Small Scale Seawater Reverse Osmosis System with Excellent Energy Efficiency over a Wide Op-

erating Range (a research paper)
Author’s keyphrases Wind, Solar, Photovoltaic, PV, Seawater, Reverse osmosis, Energy recovery, Renewable energy, De-

salination
Kea pump, Clark pump, Desalination, kWh/m3, energy, seawater, membranes, pressure, recovery ratio,

product water
SVM Reverse osmosis, osmosis system, seawater, energy efficiency, wide operating range, excellent energy

efficiency, Desalination, seawater reverse osmosis, small scale, small scale seawater
Ranking SVM Reverse osmosis, Desalination, osmosis system, seawater, energy efficiency, wide operating range,

excellent energy efficiency, small scale, CREST, kWh/m3
Title KCNQ/M Currents in Sensory Neurons: Significance for Pain Therapy (a research paper)
Author’s keyphrases M-current, dorsal root ganglion, neuropathic pain, retigabine, KCNQ, nociceptors
Kea Sensory Neurons, KCNQ, Neurons, Sensory, DRG neurons, KCNQ2/3, retigabine, DRGs, channels,

rats
SVM M-current, sensory neuron, KCNQ, M channel, neuron, Passmore, pain, KCNQ2/3, retigabine,

KCNQ/M Channels
Ranking SVM M-current, sensory neuron, KCNQ, neuron, M channel, KCNQ2/3, DRG neuron, retigabine, neu-

ronal excitability, neuropathic pain
Title DevMaster.net - A Beginner’s Guide to Creating a MMORPG (a web page from social tagging data)
URL http://www.devmaster.net/articles/building-mmorpg/
Tags and tagging frequencies mmorpg (32), games (23), programming (22), gamedev (19), development (18), game (12), tutorial

(9), design (7), gamedesign (5), server (4)
Kea MMORPG, 3D, Database, DevMaster.net, Game, player, Forums, Engines, Beginner, sever
SVM MMORPG, Beginner, need, Server, Game, player, Client, Design, people, use
Ranking SVM MMORPG, Server, Game, Client, Design, programming, step, experience, Beginner, post
Title Pivotal Blabs: HasFinder – It’s Now Easier than ever to create complex, re-usable SQL queries (a web

page from social tagging data)
URL http://pivots.pivotallabs.com/users/nick/blog/articles/284
Tags and tagging frequencies rails (93), activerecord (79), plugin(65), rubyonrails(38), finder(37), sql(35), ruby(28), plugins(25),

finders(6), development(5), gems(5), hasfinder(5), associations (4), has finder (4)
Kea HasFinder, Pivotal, GMT, ActiveRecord, Nick, Blabs, complex, queries, SQL, has finder
SVM HasFinder, query, complex, GMT, has finder, Nick, Pivotal, SQL, work, plugin
Ranking SVM HasFinder, has finder, query, complex, plugin, ActiveRecord, condition, Find, rail, model
Title Adobe Acrobat Instructions (a web page from .Gov archive)
URL http://seer.cancer.gov/acro.html
Annotated keyphrases Adobe Acrobat Reader, Acrobat, Adobe Acrobat Download, Acrobat Reader, browser
Kea Acrobat, browser, PDF, installation, adobe, Adobe Acrobat Instructions, Internet Browser, exit, hard

disk, Acrobat Reader
SVM Acrobat, instruction, Internet Browsers, PDF file, browser, PDF, button, Acrobat Reader, Adobe

Acrobat Download, installation
Ranking SVM (Pointwise) Acrobat, browser, Internet Browsers, PDF file, instruction, Adobe Acrobat Download, Acrobat

Reader, installation, button, PDF
Title Types of Radiation Exposure (a web page from .Gov archive)
URL http://orise.orau.gov/reacts/guide/injury.htm
Annotated keyphrases radioactive material, Radiation, Contamination, External Irradiation, Radiation Exposure, Incorpora-

tion, radiation injury
Kea Radiation, radioactive, Contamination, radioactive materials, Exposure, Irradiation, body, Exter-

nal, Types of Radiation, External Irradiation
SVM exposure, Radiation, radioactive material, Total Body Irradiation, Radiation Accident Patient, Hos-

pital Emergency Care, body, Radiation Exposure, Biological Effects, Incorporation
Ranking SVM (Pointwise) Radiation, exposure, radioactive material, Total Body Irradiation, Radiation Exposure, Radiation

Accident Patient, body, External Irradiation, Incorporation, Hospital Emergency Care
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5. Conclusions and future work

In this paper, we have proposed using a learning to rank method, Ranking SVM, to extract
keyphrases from document. We have discussed that the ranking approach is more essential for
keyphrase extraction than the traditional classification approach. Experimental results based on
three datasets have verified that Ranking SVM can significantly outperform the baseline methods
of Naive Bayes and SVM.

As future work, we plan to apply other learning to rank methods to keyphrase extraction such
as RankBoost [9] and AdaRank [32]. In addition, we plan to test other features; for example,
features from other sources such as anchor texts and tags are likely to be useful for keyphrase
extraction from web pages.
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