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Abstract

Strong Nash equilibria and Pareto-optimal Nash equiliarenatural and important strengthenings of the
Nash equilibrium concept. We study these stronger notidrejoilibrium in congestion games, focusing
on the relationships between the price of anarchy for thgadéileria and that for standard Nash equilibria
(which is well understood). Fa@ymmetriaccongestion games with polynomial or exponential latenaycfu
tions, we show that the price of anarchy for strong and Pamgtional equilibria is much smaller than the
standard price of anarchy. On the other hand, for asymmatrigestion games with polynomial latencies
the strong and Pareto prices of anarchy are essentiallyges #& the standard price of anarchy; while for
asymmetric games with exponential latencies the Paretstandard prices of anarchy are the same but the
strong price of anarchy is substantially smaller. Finaliyhe special case of linear latencies, we show that
the strong and Pareto prices of anarchy coincide exactly tivé known valug for standard Nash, but are
strictly smaller for symmetric games.
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1 Introduction

1.1 Background

In algorithmic game theory, therice of anarchy[14] is defined as the ratio of the social cost of a worst
Nash equilibrium to that of a social optimum (i.e., an assignt of strategies to players achieving optimal
social cost). This highly successful and influential conegfrequently thought of as the standard measure
of the potential efficiency loss due to individual selfistg)eshen players are concerned only with their own
utility and not with the overall social welfare. Howeverchese a Nash equilibrium guarantees only that
no single player (as opposed to no coalition) can improveutilisy by moving to a new strategy, the price
of anarchy arguably conflates the effects of selfishnessaakdof coordination. Indeed, for several natural
classes of games, the worst-case price of anarchy is adhava Nash equilibrium in which group of
selfish players can all improve their individual utilitieg Imoving simultaneously to new strategies; in some
cases, the worst Nash equilibrium may not everPareto-optimat—i.e., it may be possible that a group of
players can move to new strategies so thadryplayer is better off (or no worse off) than before.

In this context, two stronger equilibrium concepts perhagider isolate the efficiency loss due only to
selfishness. Atrong Nash equilibriunp5] is defined as a state in which no subset of the players nmaylsi
taneously change their strategies so as to improve all of¢bets. Thestrong price of anarchye.g., [3]) is
the ratio between the cost of the worst strong equilibriurm #ne optimum cost. A weaker concept that is
very widely studied in the economics literature (see, €1§]) is that of aPareto-optimal Nash equilibrium
which is defined as a Nash equilibrium for which there is na&p#iate in which every player is better off.
(Equivalently, one may think of a Pareto-optimal equilifoni as being stable under moves by single players
or the coalition of all players, but not necessarily arlpjireoalitions.) One can argue that Pareto-optimality
should be a minimum requirement for any equilibrium condefgnded to capture the notion of selfishness,
in that it should not be in every player’s self-interest toweto another state. THeareto price of anarchy
is then defined in the obvious way.

A natural question to ask is whether the strong and/or Parétes of anarchy are significantly less than
the standard price of anarchy. In other words, does the nemgent that the equilibrium be stable against
coalitions lead to greater efficiency? We note that this guedas been addressed recently for several
specific families of games in the case of the strong (thoudhPaceto) price of anarchy [2, 3, 10]; see the
related work section below. In this paper, we investigatedhestion for the large and well-studied class of
congestion gamesith linear, polynomial or exponential latency functions.

A congestion gam& ann-player game in which each player’s strategy consists ot afsesources,
and the cost of the strategy depends only on the number afgglaging each resource, i.e., the cost takes the
form > ¢, (f(r)), wheref(r) is the number of players using resourc@nd’, is a non-negative increasing
function. A standard example isr@twork congestion gamen a directed graph, in which each player
must select a path from some source to some destination, aafideglge has an associated cost function,
or “latency”, ¢, that increases with the number of players using it. (Throughwe shall use the term
“latency” even though we will always be discussing genemah{network) congestion games.) Frequently
the latencies are assumed to have a simple form, such as(ihga = «,.+ .t for a,., 5, > 0), polynomial
(¢.(t) is a degreé: polynomial with non-negative coefficients), or exponentia(t) = o for o, > 1).

Congestion games have featured prominently in algorittgaioe theory, partly because they capture a
large class of routing and resource allocation scenarias partly because they are known to possase
Nash equilibria [19]. The price of anarchy for congestiomga is by now quite well understood, starting
with Koutsoupias and Papadimitriou [14] who considered eigivted) congestion game on a set of parallel
edges. The celebrated work of Roughgarden and Tardos [2lished the valué as the price of anarchy
of network congestion games with linear latencies inribeatomiccase (where there are infinitely many

fNote that throughout we are assuming that cost (or utilgy)dn-transferablei.e., players in a coalition cannot share their
costs with each other. If costs can be shared, the situaioery different; see, e.g., [12] for a discussion of thismlative scenario.



players, each of whom controls an infinitesimal amount dfita this was extended to polynomial latencies
in [22]. The more delicate-player case was solved independently by Awerbuch, AzalEgstein [6] and
by Christodoulou and Koutsoupias [8], who obtained thettigﬂueg for the price of anarchy in the linear
case, and a value:(1=°(1)) for the case of polynomial latencies. Subsequently Alarad. ¢1] gave an exact
value for the polynomial case. These works also handle thergéization to the case of weighted players.
Much less is known about strong or Pareto-optimal Nash ibguailin congestion games. Note that
such equilibria need not exist. Holzman and Law-Yone [18k@ sufficient condition for the existence
of a strong equilibrium based on the absence of a certaiotstal feature in the game, and also discuss
the uniqueness and Pareto-optimality of Nash equilibrideuithe same condition. For the strong or Pareto
price of anarchy, however, there appear to be no resultssfoergl congestion games.

1.2 Results

We investigate the strong and Pareto price of anarchy fogestion games with linear, polynomial and
exponential latencies. Roughly speaking, we find that inreginc’ games the resulting price of anarchy
can be much less than the standard (Nash) price of anarchig, iwhsymmetric games the behavior is more
complicated: for linear and polynomial latencies, all thpgices of anarchy are essentially the same, but for
exponential latencies the standard and Pareto prices oftgnare equal, while the strong price of anarchy
is substantially smaller. (We note that this gap betweemnsgiric and asymmetric games does not appear
for standard Nash equilibria. Understanding the reasothfedifference may be worthy of further study.)

More specifically, we show that the strong and Pareto pri€asarchy for symmetric congestion games
with polynomial latencies of degrdeare at mos**! (and that this is tight up to a constant factor); this
is in sharp contrast to the Nash price of anarchy:®t—°(1) obtained in [1, 6, 8]. In the special case of
linear latency, we show that the strong and Pareto price axfchly are strictly less than the exact vagje
for standard Nash obtained in [6, 8]. For symmetric gamel wiponential latency”, we show that the
strong and Pareto price of anarchy are at mgsthile the standard Nash price of anarchy is at Ig#ist
where( > 1 is a constant that depends an

On the other hand, for asymmetric games with polynomiahlateof degreé:, we show that the strong
(and therefore also the Pareto) price of anarchyi§°(1)), matching the asymptotic value of the standard
Nash price of anarchy in [6, 8]. Moreover, in the linear cdbtheee prices of anarchy coincide exactly. For
exponential latencies, we show that the Pareto price othapas the same as for standard Nash (which we
show to be exponentially large), and also that the strontppf anarchy is significantly smaller; thus we
exhibit a separation between strong and Pareto prices offantor a natural class of games.

Since strong and Pareto-optimal equilibria do not alwaystewe should clarify the meaning of the
above statements. An upper bound on the strong (respgttRaaieto) price of anarchy for a certain class of
games bounds the price of anarclifienever a strong (respectively, Pareto-optimal) eqrilliin exists A
lower bound means that there is a specific game in the clashdba strong (respectively, Pareto-optimal)
equilibrium achieving the stated price of anarchy.

We now briefly highlight a few of our proof techniques. To abtapper bounds on the Pareto (and
hence also strong) price of anarchy in symmetric games, e #at this price of anarchy can always be
bounded above by the maximum ratio of the costs of indiviglleyers at equilibrium and the same ratio at
the social optimum. This allows us to study the equilibriumd ¢ghe optimum separately, greatly simplifying
the analysis. We note that this fact holds for arbitrary sytrim games, not only congestion games, and
thus may be of wider interest. Our upper bound on the Paréte pf anarchy for linear latencies requires a
much more intricate analysis, and makes use of a mafrix (m;;), wherem,; is the relative cost increase
to player:’s cost at optimum when a new player moves to plgyestrategy. This turns out to be a stochastic
matrix with several useful properties. Finally, our loweund arguments make use of constructions used

A game issymmetridf all players have the same sets of allowable strategies.



in [1, 6, 8], suitably modified so as to handle the strongeuireqnents of strong and Pareto equilibria.
(These constructions typically have the property that thwas optimum is a strong Nash equilibrium, so
they are not applicable in our setting.)

1.3 Related work

Congestion games were introduced in Economics by Rosejithland further studied in an influential
paper by Monderer and Shapley [16]. The concept of “pricenarehy” was introduced by Koutsoupias
and Papadimitriou [14], who analyzed a very simple weightetivork congestion game on parallel links
(with a different definition of social cost based on theximum rather than total or average, player cost).
Roughgarden and Tardos [21, 22] gave tight bounds for tlve pfianarchy in congestion games with linear
and polynomial latencies in the nonatomic or Wardrop mogglifi which there are infinitely many players
each of whom controls a negligible amount of traffic. The pap@, 20] consider the same scenario under
maximum social cost.

Awerbuch et al. [6] and Christodoulou and Koutsoupias [8]stder the price of anarchy for congestion
games with linear and polynomial latencies, obtaining igllaﬂtlvalue% for linear latencies and the approx-
imate valuek*1—°(1)) for polynomial latencies of degree Aland et al. [1] give an exact value for the
polynomial case. Both [6] and [1] extend their results togestion games with weighted players, while [8]
also considers maximum social cost and mixed equilibria.

The strong equilibrium concept dates back to Aumann [5].zhh@ln and Law-Yone [13] explore the
guestion of the existence of strong equilibria in congestiames, and give a structural characterization of
this property for the symmetric case. Rozenfeld and TerwlenfiL8] consider the analogous question in
the case where the “latencies” are monotonically decrgasin

Several authors have considered the strong price of anarathyhe existence of strong Nash equilibria
in various specific classes of games, often deriving sigmtigaps between the strong and standard price
of anarchy. For example, Andelman et al. [3] study job schedwand network creation games, Epstein et
al. [10] cost-sharing connection games, and Albers [2] ngtwlesign games.

Other measures stronger than the standard Nash price ahgrizave been studied recently by various
authors. Anshelevich et al. [4] consider thece of stability which is the ratio of the cost of bestNash
equilibrium to the social optimum, for network design gami&sd Hayrepeyan et al. [12] define and study
the “price of collusion” in analogous fashion to the stromiz@ of anarchy, with the crucial difference that
coalitions aim to minimize not the cost of each of their meral{as with the strong price of anarchy) but
the combined cost of all members.

2 Preliminaries

2.1 Equilibrium concepts and congestion games

A gameconsists of a finite set of playef3 = {1,...,n}, each of which is assigned a finite sestfategies

S; and a cost function; : 57 x - - - x .S, — Nthat he wishes to minimize. A game is callggnmetriaf all of
the S; are identical. Astates = (s1,...,s,) € S1x---x .S, isany combination of strategies for the players.
A states is apure Nash equilibriunif for all playersi, ¢;(s1, ..., Si, ..., Sn) < ¢i(s1,...,8;,...,s,) forall

si € S;; thus at a Nash equilibrium, no player can improve his costrilaterally changing his strategy. Itis
well known that, while every (finite) game hasraxedNash equilibriunt, not every game has a pure Nash
equilibrium. A states = (s1,...,s,) is aPareto-optimal Nash equilibriurif it is a pure Nash equilibrium

$The term was in fact coined later by Papadimitriou [17]

TIn a mixed Nash equilbrium, a player’s strategy can be aniatility distribution over available strategies, and ndividual
player can improve his expected cost by choosing anothéapility distribution.



and there is no other state in which every player has lowerthas ats.!l Thuss is a Pareto-optimal Nash
equilibrium if and only if, for alls’ = (s},...,s},) € S1 x---x Sy, there exists some playgre P such that
ci(s') > ¢j(s). A states = (s1,...,s,) is astrong Nash equilibriunif there does not exist angoalition
of playersC = {i1,...,ix} C P that can move in such a way that every member of the coalitays fpower
cost than at equilibrium. More formally, lef , ... ,s;.k € S, x ---x.S;, be any combination of strategies
for the players irC, and lets’ be the state reached frasnnwhen the players i@’ move to their corresponding
strategiesﬁ-[. Thens is a strong Nash equilibrium if, for all coalition§ and all corresponding’, there
exists someg € C such that;(s") > ¢;(s).

Finally, for any given state, we will define thesocial costc(s) to be the sum of the players’ costssn
i.e.,c(s) = > ,cpci(s). Astate that minimizes the social cost in a game is callsdcial optimum

We will focus on the class of games knowncamgestion gameg hese games are known to always pos-
sess a pure Nash equilibrium [19], though not necessarilyoag or Pareto-optimal equilibrium. In a con-
gestion game, players’ costs are based on the shared usagerafmon set afesourcesk = {ry,...,r,}.

A player’s strategy se; C 2 is an arbitrary collection of subsets &f his strategys; € .S; will there-
fore be a subset ak. Each resource € R has an associated non-decreasing cost or “latency” functio
¢, {1,...,n} — N; if ¢ players are using resouree they each incur a cost &f.(¢t). Thus in a state

s = (81,...,8n), the cost of playep; is c¢;(s) = >_,.,, €-(fs(r)), where fs(r) is the number of players
using resource unders (i.e., fs(r) = [{j : 7 € s;}).

Of particular interest are congestion games where thedgtemctions are linearl((t) = .t + 3,),
polynomial ¢.(t) is a degrede polynomial int with non-negative coefficients), or exponentigl(¢) = o’
for 1 < a, < «.) For simplicity of notation, we shall assume tiatt) = ¢ for all » in the linear case,
¢.(t) = t* for all r in the polynomial case, ang}(t) = o for all r in the exponential case. This will not
affect our lower bounds, which are based on explicit corsitsas of this restricted form, and it is not hard
to check that the upper bounds go through as well; for exantptestraightforward to incorporate general
non-negative coefficients by replicating resources. We tmidetails, which are technical but standard.

2.2 Efficiency of equilibria

As is standard, we measure the relative efficiency loss fgeaiic type of equilibrium for a given family
of gamegj as the maximum possible ratio, over all games in the familh® social cost of an equilibrium
statee in that game to the cost of a social optimurof the same game, or

c(e)

Ge o)’
This measure is known as thece of anarchy(or coordination ratig in the case of Nash equilibria, and the
strong price of anarchyvhen discussing strong Nash equilibria. In addition to ¢éhege will also consider
the case of Pareto-optimal Nash equilibria, in which casealléhe above ratio thBareto price of anarchy
Clearly the strong price of anarchy is no larger than thetBgméce of anarchy, which in turn is no larger
than the standard (Nash) price of anarchy.

We note that, for the classes of congestion games we consigleng and Pareto-optimal equilibria
may not exist, and games may also have Pareto-optimal Naslibeg but no strong Nash equilibria (see
Section A.1 of the appendix for an example of the latter). sSTtuhen we state an upper bound on the
strong (respectively, Pareto) price of anarchy for a centéass of games, it should be understood that this
bound holds for any game in which a strong (respectivelyet®amptimal) equilibrium exists. When we
state a lower bound, we mean that there exists a specific gathe iclass that has a strong (respectively,
Pareto-optimal) equilibrium achieving the stated pricarmdrchy.

ISome definitions of Pareto-optimality require there to bether state in which no player has higher cost thanaatd at least
one player has lower cost. It is easy to check that our resailty over to this alternative definition with minor modifiicas to the
proofs.



3 Symmetric games

In this section we prove upper bounds on the strong and Paret of anarchy for symmetric congestion
games with polynomial and exponential latency functionse diNall see that these are much smaller than
the known values for the standard Nash price of anarchy. htiee case of symmetric games, increased
stability leads to greater efficiency.

3.1 The basic framework

The main vehicle for these proofs is a very simple framewhbek allows us to bound the price of anarchy
in terms of the maximum ratio of the player costs at equilibriand the maximum ratio of the player costs
at a social optimum. This is the content of the following tten, which we note applies tl symmetric
games, not only congestion games.

Theorem 3.1 Given a particular symmetric game withplayers, let the state be a Pareto-optimal Nash
equilibrium ands be any other state. Let. be defined amax; ; c;(e)/c;j(e) over all playersi, j, andp, be
similarly defined asnax; j ¢;(s)/c;(s). Then

Cc(S
Proof: By symmetry, we can assume without loss of generality thatpllayers are ordered by cost in
both e and s: that is,ci(e) < -+ < ¢p(e) andey(s) < -+ < ¢u(s). Thuse,(e)/ci(e) = pe, and
cn(8)/c1(s) = ps. We now start frome, and consider the hypothetical move in which every playeaoves
from e; to his corresponding strategy in s. Sincee is Pareto-optimal, there must exist some plajyéor
whome;(s) > cj(e).

We now upper bound the social cost of equilibriur(g) = 3. c;(e), and lower bound the social cost
c(s) = >, ci(s) of states. Consider first the:;(e) values. We have;(e) < --- < ¢je) < --- <
cn(e) = peci(e). The sum); c;(e) is therefore maximized wheey(e) = ca(e) = --- = ¢j(e) and
cir1(e) = -+ = peci(e), giving an upper bound ofc;j(e) + (n — j)pecj(e). Similarly, for thec;(s)
values, we have;(s) < --- < ¢j(s) < -+ < pscp(s). The sumy_, ¢;(s) is minimized where; (s) =
-~ =cj-1(8) = ¢j(s)/ps andc;(s) = --- = c,(s), and is therefore at Iea&% +(n—7+1)ci(s).
Recalling that;(s) > ¢;j(e) and combining the two bounds, we obtain

Sicile) - gei(s) +(n=pecsls) i+ (=i

Yiicls) T UEUGO) 4 — 4 1)g(s) T LM b (-t 1)

(1)

Differentiating with respect tg, we find that this expression is maximizedjat 1 or j = n. In the former

. . (n—1)pe - .
case the quotient is at moléf"nip < pe, While in the latter case it is at mom < ps. O

By restrictings to be a social optimum in the above theorem, we obtain a datppoach to bounding
the Pareto price of anarchy (and therefore also the stroog gfanarchy) in a family of symmetric games. If
we can find valuep. andp, such that for any Pareto-optimal Nash equilibriunve havec;(e)/c;j(e) < pe,
and for any social optimura we havec;(0)/c;j(0) < p,, then the Pareto price of anarchy for the family of
games will be at mosthax{p., p,}. We now proceed to do this for the families of symmetric cctiga
games with polynomial and exponential latencies.

3.2 Polynomial latencies

For the case of polynomial latencies, where each resauhas latency functior, (t) = t*, we show the
following:



Theorem 3.2 For symmetric congestion games with polynomial latencfedegreek, the Pareto price of
anarchy (and hence also the strong price of anarchy) is attr2/os!.

Remarks: (i) Note that the Pareto price of anarchy is much smaller thakrben value oft*(1—°(1) for

the standard Nash price of anarchy [6, 8,(i]. It is not hard to verify that the upper bound in Theorem 3.2
is tight up to a constant factor. To see this, consider a geplaymmetric game with, = 2* resources
{r1,...,mm}, and the following four strategies{ry,ro}, {r1,73,75}, {re,r4,r¢}, and{rs,rq, ..., rm}.
The social optimum occurs when the two players chdesers, 5} and{rq, r4, 7}, for a total cost of 6. On
the other hand, the state in which the players chdesers} and{rs,r4,...,r,} is a strong equilibrium,

and its cost isn. The price of anarchy is thu§ = %

Proof of Theorem 3.2: Following the framework of Theorem 3.1, it suffices to deniygper bounds on the
ratios of player costs both at equilibrium and at a sociahayin. This we do in the following two claims.

Claim 3.3 In the situation of Theorem 3.2, we havex; jcp %4 < 2k,

cile) =

Proof: Consider any two playersandj at an equilibriume, and the hypothetical move in which player
switches from his current strategyto j's strategye;, resulting in the new staté.
We now bound:;(¢’) in terms ofc;(e). Note that

a€) =D fo) = > (fer)+ 1)+ Y felr)F <D (felr)+ DE.

ree; reej\ei ree;ne; ree;

(This captures the intuition that in switching ¢¢, player: pays at most what playgrwould pay if there
were one more player using each resource.) From this, avislthat

ZTEej (fe("”) + 1)k (felr) + 1)
ZTEej fe(’l")k T rEej fe(T‘)k =

<
Sincee is a Nash equilibrium, we must havge) < ¢;(e’), and thus:;(e) < 2F¢;(e). O

Claim 3.4 In the situation of Theorem 3.2, we havex; jcp EJ(T"O% < 2kFL,
Proof: As in the proof of Claim 3.3, consider any two playénd; at a social optimuna. Assume that
ci(0) > ¢j(o0) as the claim is immediately true otherwise. Again, considermove in which moves from
his current strategy; to ;s strategyo;, resulting in the new state.

Sinceo is a social optimum, the social cost@fmust be at least that of i.e.,) , ¢;(0') — >, ¢;(0) > 0.
Using the fact tha} ", ¢;(s) = Y, fs(r)¥*+1! for any states, we have

Z fo’(r)k+l - Z fo(’r)k—i_l
_ Z fol(r)k+1— Z fo(T)k+l

0

IA

r€o;do; r€o;do;
= D (L) + D = S ) = 3 (fo)™ = (fo(r) = D),
r€0j\0; r€0;\0;

where the second line follows singg (r) = f,(r) for r € o; @ o;.



We combine this with the observation thato) = 3=, fo(r)" = 3, con0, fo(1) 30, coin0, o),
which we add to both sides of the above:

ci(0) < D ((folr) + P = fo(r)F ) = D7 (folr) T = (folr) =DM = L")+ D0 folr)”

T€0;\0; r€0:\0; r€0;Noj
< D ((folm) + DM = L))+ 0 folr),
rEo]'\oi re€o;MNoj

as it can be verified that the second term in the first line isgdsat most zero.
Sincec;(0) = Zreoj\oi Jo(r)F + ZTEOiﬂoj fo(r)¥, we have
60) _ Lreopio(folr) + DM = folrV ) 4 Frcy g, Fol)*
cj(o) — Zreoj\oi fo(r)k + Zreoinoj fo(r)®
> reop\oi (folr) + 1R — fo(r)FH1)
= 5 reonor JolT)F

(fo(r) + 1)k+1 - fo(r)k+1
= Tg;?iioi fo(’r)k ’

where the second line follows because the ratio of the firassn the numerator and denominator is greater
than 1. This last quantity can be seen to be at 2bst, proving the claim. O

Finally, combining Claims 3.3 and 3.4 with Theorem 3.1 costgd the proof of Theorem 3.2. O

3.3 Exponential latencies

For the case of exponential latencies, where each resoascé@tency functiort,.(t) = of, we show the
following upper bound on the Pareto and strong prices ofclyar The proof of this follows the same
structure as that of Theorem 3.2 and is left to the appendix.

Theorem 3.5 For symmetric congestion games witlplayers and exponential latencies, the Pareto price
of anarchy (and hence also the strong price of anarchy) is@gtmax{c,n}.

For comparison purposes with the above upper bound, we now 8fat the price of anarchy for stan-
dard Nash equilibria in exponential congestion games isnarger—indeed, exponential in

Proposition 3.6 For symmetric congestion games with exponential lateneiethe (standard Nash) price
i a/2—1 i
of anarchy is at Ieas((%)a( «—1 )" wheren is the number of players.

Proof: Our construction is based on that of Christodoulou and Kaugis [8] for the case of linear laten-
cies. Our game contains groups of resources, amd= mt players. The players are divided evenly into
equivalence classes, labelgd . .., m}, with ¢ players per class. Each of thegroups of resources consists
of (7,?) resources, each labeled with a differéntuple of equivalence classes. The available strategies fo
all players are to take either (1) all resources in a singbeigiof resources, or (2) for anyin {1,...,m},
all resources that are labeled with

Given the value ofy, we choosen andk such thatm < 1 + (% — 1)a; for example, we can choose
k = 5 andm = « — 1 for integera > 4. It can be verified that, with these settings, the state irchvieach
player takes all resources labeled with his equivalencesatamber is a Nash equilibrium, while the state
in which each player takes the group of resources corregpgnd his equivalence class (i.e., a player in
classi takes all resources in groupis a social optimum. A straightforward calculation theowh that the

ratio of a player’'s Nash cost to his cost at social optimuri&*—1), which |S(%)a( 1) for the above
values ofk andm. O



For completeness, we show that this same price of anarclsgdndard Nash is upper boundedddy.

Proposition 3.7 For asymmetric (and hence also symmetric) congestion gantle®xponential latencies,
the (standard Nash) price of anarchy is at mast

Proof (sketch): As in the proofs of related results in [6, 8, 1], in a game witehcy functiong(t), we
can prove an upper bound on the price of anarchy by finding, > 0 such that the inequality/(x + 1) <
crzl(z) + coyl(y) holds for all0 < 2 < n,1 < y < n; this implies a price of anarchy of at mo§i20—l.
When/(t) = o, this clearly holds withe; = 0 andcy = o® < o O

Remark: With some extra work, the bound in Proposition 3.7 can be avel toO(a!~2)").

4 Asymmetric games

In this section we extend the investigation of the previceion to asymmetric games, and find that the
situation is quite different. First we will see that, for aayetric congestion games with polynomial laten-
cies, the strong (and therefore also the Pareto) price athpds essentially the same as the standard Nash
price of anarchy. We will then go on to consider exponent#grcies, where we find that the Pareto price
of anarchy is the same as standard Nash, but the strong paceuchy is significantly smaller.

We begin by considering polynomial latencies.

Theorem 4.1 For asymmetric congestion games with polynomial latentiiethe strong price of anarchy
is at least| @, |*, where®;, is the positive solution dfr 4 1)* = ¢+,

Remark: ®;, is a generalization of the golden ratio (which is jdst); its value is@(l + 0(1)). Hence
the lower bound of Theorem 4.1 is of the forehi! —°(1) which is asymptotically the same value for the

Nash price of anarchy obtained in [6, 8], and very close tattact value obtained by Aland et al. [1].

Proof: Our lower bound construction is based on that of Aland eeatended so as to handle the stricter
requirement of a strong equilibrium. Consider an (asymicjegame withn players & assumed sufficiently
large). Each playef has exactly two possible strategies,ando;. There aren + m resources labeled
{r1,...,mn+m}, Wherem is a constant to be chosen later. For each playstrategyo; consists of the
single resource;. (We shall modify this slightly for some of the players shojtStrategye; consists of the
resourcegr; i1, ..., i+m}- (Thus for most players; consists of exactlyn resources.)

We claim that the state = (ey, ..., e,) is a strong Nash equilibrium. To see this, note that urdbe
cost for playeri is ¢;(e) = Z;J;ﬁrl min{j — 1, m}*. If now playeri moves to his alternative strategy, re-
sulting in a new state(®), his cost becomes(e() = min{i, m+1}*. To show that is a Nash equilibrium,
we need to show thag (e(®) > ¢ (e) for all i.

Now note that, for all players > m + 1, we havec;(e) — ¢;(e) = (m + 1)¥ — m**+1, Thus if we
choosem = | @] to be the smallest integer such tifat + 1)* > m**!, we ensure that;(e”) > ¢;(e)
for all i > m + 1. To obtain the same condition for players< ¢ < m, we append to the strategy the
minimum numbe; of additional resources (unique @pso thatc;(e®”) = i* 4 a; > ¢;(e). (Note that all
thea; are less tham**1.) This ensures thatis a Nash equilibrium.

To see that it is a strong equilibrium, consider a move by hitrary coalition of players to their alterna-
tive strategie®;. We claim that the lowest numbered player in the coalitioesdaot see an improvement in
cost. This follows because the resourgewhich i occupies undew;, is still occupied by the same players
as undeke, so by the Nash propertys cost does not decrease.

Thus the strong price of anarchy is bounded below?@. But c(e) > (n — m)m*, andc(o) <

mmF*tt + (n —m). Thus
c(e) (n —m)m*

c(o) = mF24n—m

This completes the proof. O

— |®]F asn — .



We now turn to exponential latencies. Our next result shdasthe Pareto price of anarchy is equal to
the standard Nash price of anarchy (which we showed to benexpial inn in Proposition 3.6).

Theorem 4.2 For asymmetric congestion games with exponential latencigthe Pareto price of anarchy
is bounded below by, and hence is equal to, the standard Nashgf anarchy.

Proof: Consider any:-player congestion game with exponential latenciésLet statec be a Nash equi-
librium for this game. We create a modified game in which the®eprice of anarchy is only @ — O(%))—
factor smaller than the Nash price of anarchy of the origyzahe.

To do this, we first replace each resource in the original gaittea set ofn resources in the modified
game; strategies in the modified game correspond to thodeeiriginal game, except that the former
include alln copies of the resources of the latter. This has the effectubfiplying player costs by a factor
of n, but does not change the set of Nash and Pareto-optimal Nasdibga.

We then add one more playet,+ 1, to the modified game; this player has a single strategy
consisting of new resourceg’; : i = 1,...,n}. Also, for playersl,...,n, we append resourcg to
every strategy of player except for the equilibrium strategy. Note that this makes the modified game
asymmetric even if the original one is not. There is an obwigijection between states of the original game
and those of the modified game, and we shall abuse notaticfebyifying them. Also, we shall write(s)
andd/(s) for the social costs of statein the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibrienftogether with strategy,, .1 for playern+1) is
a Pareto-optimal equilibrium for the modified game: plaiblgmains a Nash equilibrium, and any coalition
move results in a cost increase for player 1. Moreover, we have'(e) = nc(e) +n > nc(e), and for any
states, ¢/(s) < nc(s) + 2na?, since the occupancy of each new resource is at most two. TieuBdreto

price of anarchy for the modified game is at leastx, 28 > C(Oj(f%a% whereo is a social optimum of

the original game. But clearly(o) > na, so the Pareto price of anarchy is at | 95 (sz%a) = 1+1% %
Thus the Pareto price of anarchy grows arbitrarily closénéoNash price of anarchy asincreases. This
completes the proof. O

Finally, we exhibit a separation between the Pareto andgipace of anarchy by showing that the latter
(while still exponential) is significantly smaller than thelue we obtained for the standard Nash price of an-
archy in Proposition 3.6. We make the reasonable assumghiddnhe number of resources is polynomially
bounded in the number of players, as is the case in our lowerdoonstruction in Proposition 3.6.

Theorem 4.3 For asymmetric congestion games witplayers and exponential latencia$, in which every

strategy contains at mogtn) resources for some fixed polynomjglthe strong price of anarchy is at most
(L 4o(1)n

a3 .

Proof: Lete be a strong equilibrium state amdoe a social optimum state. As before, we will consider
moves in which subsets of players move from their equililorgtrategieg; to their strategies at optimumn;.
Let ¢, (o) denote the maximum cost of any player in state

We will make use of the following technical lemma:

Lemma 4.4 Let S be a subset of players each of whose strategiescantains at least one resource that is
shared by at least. players ate (i.e., for alli € S, Ir € ¢; such thatf.(r) > u.). Then at least one of the
following must be true: (1" < ¢, (0); or (2) there exist at least, = u. —log,, p(n) —log,, c.(0) players
outside ofS, each of whose strategies @tontains a resource that is shared by at leasplayers not inS.

Proof: Consider the move frormain which the players € S each adopt their strategiesin o, resulting in
a new states in which their new costs arg(s). For alli € S, we will denote by; (s) the cost to player at

states due only to the players iff; formally, ¢;(s) = >, afs) wheref,(r) = |{j € S : 7 € s;}].
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Sincee is a strong equilibrium, there must be some player S for whom¢;(s) > ¢;(e). This might
happen ifé;(s) > ¢;(e), in which case since;(o) > ¢(s) ande¢;(e) > atc, condition (1) of the lemma
holds. Otherwise, we must haeg(s) < c;(e) < ¢;(s). Sincec;(e) > a', there must be some resource

r € o; for which ofs(") > % or equivalently, for whichf,(r) > log, c;(e) — log, p(n). However,

note that becausé(s) < c;(o) < ci(o), we havef,(r) < log, ¢.(0). Hence in states there must be
fs(r) — f(r) > log, ci(e) — log, p(n) — log, c«(0) players not inS that also use resource Since
ci(e) > ate, condition (2) of the lemma holds. ©

Suppose now that there exists a strong equilibriuin a game fitting the description of the theorem

such that%(eo) > " for a social optimune. Then there must exist a playgfor whome;(e) > %c*(o).
Thuse; must contain a resouraefor which f,.(e) > log,, (%@(0)) = on + log, c.(0) —log, (np(n)).

Let .S denote the players holding this resource. Consider the mowéich we try to move all players
in S, to their strategies at. Applying Lemma 4.4 to these players, we find that eithero(l) < np(n), in
which case the theorem is proven; or (2) there exist- log,, (np*(n)) additional players, each of whose
equilibrium strategies contains a resource shared by sittleat many players not ifi;. Let these additional
players form the sefs. Since the game hasplayers, this implies that

n > |51 US| > 20n + log, ¢.(0) — log, (n’p(n)?). 2

We can then apply Lemma 4.4 againgpU S5, which again yields two possible outcomes. In case (1),
we have that™™ < c,(o)np(n)?, or én < log, c.(0) + log,, (np(n)?). Combining this with inequality (2)
gives3én < n+log, (n®p(n)®), ord < %Jro(l), as claimed. In case (2), we are guaranteed the existence of
dn —log,, c«(0) — log, (np(n)?) players not inS; U Sz. Combining this with the lower bound d§; U S|
from (2), we must have at lea86n — log, (n>p(n)%) players. Since this cannot exceedwe find that
§ < 1+0(1), again as claimed. O

5 Linear latencies
This section presents more detailed results for the speasa of linear latencies.

Exact price of anarchy for asymmetric games.We first show that the strong (and thus also the Pareto)
price of anarchy for asymmetric congestion games with litegncies coincides exactly with the standard
Nash price of anarchy, which is known to §¢6 8]. To do this, it is sufficient to exhibit a lower bound §>f

on the strong price of anarchy. This is the content of the@Walhg theorem.

Theorem 5.1 For asymmetric linear congestion games, the strong pricnafchy is at Ieasg.

The proof of this refines the construction in the proof of Tiemo 4.1, and is left to the appendix.

Upper bound for symmetric games.We now show that, fosymmetridinear congestion games, the Pareto
(and hence also strong) price of anarchy is less than therknaWeg for standard Nash equilibria in both
symmetric and asymmetric games. For linear latencies rémedwork of Theorem 3.1 only gives an upper
bound of3, so we must resort to a more involved analysis. We prove th@fimg, stressing that our goal
is not to find the best possible upper bound, but to show tleatiiper bound is strictly less thgn

Theorem 5.2 For symmetric congestion games with linear latencies, Hret® price of anarchy (and hence
also the strong price of anarchy) is strictly less th%n

The proof of this theorem is quite involved and is left to tippendix; we briefly outline the ideas here.
We begin as in the proof of Theorem 3.1 by sorting the strategt equilibriume and optimumno by cost.
A key ingredient in the earlier proof is the hypothetical radkom e in which every player moves from his
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current strategy; to his strategy; ato, and the realization that at least one player must pay higbsrato
than ate. Here we extend that idea to a more complicated sequencay#moves, and again use the fact
that at least one player must pay higher cost at the end o$élgisence than he did at equilibrium.

One of the key concepts in this proof is the mattik = (m;;), wherem,; is the relative cost increase
to player: at optimum when a new player moves to play®rstrategyo;. Using properties of\/, we are

able to identify three disjoint subsets of playérsH’, andR satisfying: < j < kforall: € L,j € H and

k € Rin such a way that, for all players inc H’, the ratiog; def 2%3 > g while for playersi € L U R,

¢; < 2. Thus to bound the Pareto price of anarchy, we must upperdothennumber of high-ratio players
|H'| relative to the number of low-ratio playefs| + |R).

The moves frome we consider consist of two steps: first, each playgoes from his original strategy
e; to his strategy at social optimum; then, we will try to take each of the players ih(which necessarily
includes all players for whom; (o) > ¢;(e)—these players are “unhappy” after the first step) and rgassi
them one-to-one to the strategies of playergiin giving a new state’. It is possible to prove that, under
this scheme, all players iR and H' are better off av’ than ato. Therefore, since is Pareto-optimal, either
this cannot be done (becaudée > |H’|), or some player irl. ends up with higher cost than before.

We then split the proof into two cases. In the first case, pfayeH’ can have ratiog; > 7 for some
thresholdr. Here we can use the properties of the maiidxo show that every player ih will have lower
cost ato’ than ate, and thus it must be th&k| > | H'|, which gives us an overall price of anarchy beléw
In the second case, all playersiifi have ratios of at most. Here, in the most involved part of the analysis,
we use the probabilistic method to lower boydt] in terms of|L|, |H'| andr, which we again show gives
us a price of anarchy beI0\§/.

6 Open problems

We have left open a number of questions, including the fahguw

1. What is the exact strong (and Pareto) price of anarchyyimmsetric congestion games with linear
latencies? From Theorem 5.2 we know that this is less thamalme% of the standard Nash price of
anarchy for these games. It is not too hard to obtain a Iowandbco)f% on this quantity, but we do
not see how to obtain its exact value using the machinery ci@e5.

2. What is the computational complexity of deciding whethetongestion game possesses a strong
or Pareto-optimal equilibrium, and if so of finding one? Fanslard Nash equilibria, the decision
problem is trivial but finding an equilibrium is known to be fhfor symmetric network congestion
games and PLS-complete for general symmetric congestioegfl1].
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Appendix

A.1 Example from Section 2.2

As advertised in Section 2.2, we give an example of asymmetmgestion games with linear, polynomial,
and exponential latencies with integer base (I.g#) = o' for some positive integet) that have Pareto-
optimal Nash equilibria but no strong Nash equilibria.

Consider am-player congestion game with latency functidgtis) which has a Nash equilibriura but
no strong Nash equilibrium; it is easy to construct a Priserigilemma-style game with this property. We
use a similar construction to that in the proof of Theoremtd.@btain a modified game that has a Pareto-
optimal Nash equilibrium but still no strong Nash equiltbri, with the only difference being that here we
replicate each resouree times (instead of.), for a constantn > ¢(2); thusm is larger thare, 2¢ and
o? for linear, polynomial, and exponential latencies respelt We then add the extra player+ 1 and
modify all strategies exactly as before.

Again, there is a natural bijection between states of thgiral game and those of the modified game,
and we again abuse notation by identifying them. We write) andc;(s) for the cost to playef of states
in the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibriefiogether with strategy,,, for playern+1) is
a Pareto-optimal equilibrium for the modified game: plaiblgmains a Nash equilibrium, and any coalition
move results in a cost increase for playet 1.

It remains to show that the modified game does not have anggstiash equilibria. We do this by
showing that if a state is a strong Nash equilibrium in the modified game, it mustespond to a strong
Nash equilibrium in the original game. Consider an arbjtremalition of players in state in the original
game, and an arbitrary group move to some other strategisslting in a new state’; we aim to show
that one of the coalition members has cost/ithat is at least his cost in We do this by examining the
corresponding move in the modified game. Siné®a strong Nash equilibrium there, we must have at least
one player, say player for whomd,(s') > ¢i(s). Sincec,(s’) < me;(s') + £(2), andd;(s) > me;(s), we
obtainme;(s’) + €(2) > me;(s), implying thate; (s") + % > ¢(s).

Since all player costs must be integral with the latency tions we consider, an&i—) < 1, it must be
thatc;(s") > ¢;(s), which is what we needed.

A.2 Proof of Theorem 3.5

To prove Theorem 3.5, we again rely on the framework of ThaoBel and establish the following two
claims, which bound the ratios of player costs at equilirand at social optimum.

Claim A.2.1 In the situation of Theorem 3.5, we havex; jcp ;EZ)) < a.

Proof: Consider an equilibrium stateand a move by player from his current strategy; to player;’s
strategye;, resulting in the new stat€. Clearly for each resourcec ¢, playeri pays at most a factor of
a more thanj pays ate. Hencec;(¢') < ac;(e). Sincee is a Nash equilibrium, we must havge) < ¢;(¢’)
and the claim follows. O

Claim A.2.2 In the situation of Theorem 3.5, we havex; jcp ci(0) < a(n +1).

¢;(0)

Proof: This proof follows along the same lines as that of Claim 3.dn€ider a social optimum, and the
move in which player moves fromo; to player;’s strategyo;. Sinceo is a social optimum, this cannot
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decrease the overall social cost. Hence

> fo(r)a Zf ale)
= 3 Sl = 3 fy(r)al®

0

IN

r€0;Do; r€0;Do;
= Z ((fo(r) + 1)af0(r)+1 - fo(r)af()(r)) - Z (fo(r)af()(r) - (fo(r) - 1)af0(r)_1)'
reoj\o; r€0;\0;j

WIiting ci(0) = 3=, o0, @) + 32, c0,m0, @77 and adding this to both sides, we obtain

Ci(o) < Z ((fo(r) + l)afo(T)-l-l _ fo(r)afo(T)) _ Z (fo(r) _ 1)(()éfo( r) _ fo(r Z Oé

r€o;\o; r€0;\0;j TEOZOOJ
< Y () + DB f ek O) £ T ok
r€0;\0; rEoino;

Combining this with the fact that;(0) = 3, ., a/*) + Zomoj ol we get

Ci(O) < zTEOj\oi((fO( ) + 1)afo fo( )afo ) + ZTGO»LPIOJ afo(r)
Cj(o) B Z:oj\oZ fo(r) 4 zo Noj afo(r)
ZT’EO]‘\Oi((fO( )+ 1)04f0 — folr )afo )
a ZO]'\OZ' afe(r)
< (fo(r) + 1)0[

Sincef,(r) < n, this completes the proof of the claim. ©

A direct application of Theorem 3.1 to the results of theseént$ gives an overall bound of(n + 1),
which we now improve tanax{«a,n}. We first follow the proof of Theorem 3.1 through inequality),(
where one can see that the ratio on the right-hand side ismiwed when the player whose cost increases
is either playerl or playern. In the former case, the resulting ratio is at mastwhich is« for exponential
latencies. In the latter case, the resulting ratio becom%, or % for exponential latencies.
This is clearly at most. O

A.3 Proof of Theorem 5.1

We construct a family ofi-player games with latencies (¢) = ¢ for all » whose strong price of anarchy
approache% asn — oo. Our construction will be a refined version of that in the prafoTheorem 4.1. For
simplicity, assume is even. There will bex + 3 resourceqry, ..., r,+3}. Each playets has two possible
strategiesg; ando;. Strategyo; consists of the single resoureg except that we add resources, » and
rn+3 10 player 1's strategy;. The strategies; are defined as follows:

{rit1, 12} if iis odd;
€; = ) )
{riv1} if 7 is even.

We claim that the state = (e;) forms a strong Nash equilibrium. To see it is a Nash equiliiri suppose
playeri switches frome; to o;. If i > 1 is odd then his strategy switches frofmn;;1,7;+2}, at a cost of
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1+ 2 =3,to{r;} atacost of 3. (This calculation follows from the fact thae filayers occupying;, ;+1
andr;,o undere are respectivelyfi — 2,7 — 1}, {i} and{i+ 1,7+ 2}.) Hence there is no cost improvement.
Similarly, if i is even then his strategy switches frgm}, at a cost of 2, tdr;}, at a cost of 2, again
giving no improvement. Finally, if = 1 then his strategy switches frofm; 1,712}, atacostofl +2 = 3,

to {r;, rnt2, 43}, atacostofl +1+1 = 3, again giving no improvement. Heneés a Nash equilibrium.

To see that it is a strong equilibrium, suppose that an aritsubset of the players switch from their
strategies; to o;. Then the lowest-numbered playien the subset experiences no cost improvement. This
follows as in the proof of Theorem 4.1 because the resourb&hwoccupies undes; are still occupied by
the same players as underso by the Nash propertys cost does not decrease.

The price of anarchy of this game is therefore at Iéc%t But in o each player occupies one resource

alone (except for player 1, who occupies three resources)o$ = n + 2. And in e each odd-numbered
player occupies one resource alone and one resource shiéinexhather player, while each even-numbered
player occupies one resource shared with another players dte) = 3 if 7 is odd, and:;(e) = 2 if i is

even, sax(e) = 2. Hence the price of anarchy is at Ief%%g — Sasn — occ. O

A.4 Proof of Theorem 5.2

Setting. From this point on, as in the proof of Theorem 3.1, we will adas an equilibrium state and a
social optimum state, both of which have the players sorted in increasing orderost; that isc;(e) <
- < cyle)andei(o) < -+ < ¢y(0).

A key consideration in the earlier proof is the hypotheticedve frome in which every player moves
from his current state; to his corresponding strategy ato, and the realization that at least one player must
pay higher cost at. Here we extend that idea to a more complicated set of moves described later, and
again use the fact that at least one player must still payehigbst at the end of this sequence than he did at
equilibrium.

We now describe a number of preliminary concepts and claimsAill set up the proof of Theorem 5.2.
Yeco;no; ((fo(r)+1)=fo(r))

2reo; folr)
This can be seen to ﬂ%%' where|o; N 05| is the number of resources used in botfando;. Intuitively,
m;; is the relative cost increase to playis costc; (o) when a new player moves to strategy Further,

we will denote byg; the ratio<{?) | and letgmax andgmin be the maximum and minimum such values;of

ci(o)’

Note thatgn,in < 1 sincee is Pareto-optimal, and we can assume that. > % — ¢ for some smalk > 0

First, for the state, we will define an associated matriX = (m;;), wherem,; =

or else the theorem is trivially true; let,.. andin;, refer to a player that has ratig,., and a player that
has ratiog,,in, respectively. As a matter of notation, for an integand a set of integerS, we will say that
i < S (ori > S)if ¢is smaller (or larger) than every element®fSimilarly we will write S; < Ss if every
element ofS] is less than every element 65.

We begin with the following lemma, which spells out some keyperties of this setup.

Lemma A.4.1 Consider an equilibrium stateand a social optimum statein the setting described above.
Then the following properties hold.

(@) Foralli,j, 2c;i(e) > cj(e).

(b) For all 4, Zj m;; = 1, and for alli, j, m;; > m;;.
(c) Foralli, j, (2 +my)ci(o) > ¢;(o).

(d) imax < imin, and hencey,., < 3.

(e) There exists > 0 such that, if players, j with ¢ < j have ratiosg;, ¢; > % — ¢, then for all players
kwithi < k < j, gr > 2.
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Proof:

(a) Atthe equilibrium state, consider the move in which playg¢moves to playei’s strategy. The new

cost for playerj will be at mosty . (fe(r) +1) < 237 .. fe(r) < 2ci(e). Sincee is a Nash
equilibrium, this must be at leasj(e).

(b) Since}_; o; Noj| = >_,.c,. fo(r) = ci(o), we have) , m;; = 1. Itis also evident thafo; N o;] is
maximized whery = i, and hencen;; > m,; for all j.

(c) Starting from the social optimum stateconsider the move in which playgmoves fromo; to o;;
the total social cost cannot decrease as a result. We thittksomove as occurring in two phases:
when playerj moves away from strategy;, the total social cost decreases by at least), when he
moves to strategy;, the social cost increases BY,.,, ((fo(r) + 1)* = fo(r)?) = 2., (2fo(r) +
1) = 2¢i(o) ' [
loi| = myici(0), we put this together to find thag (o) < (2 + my;)ci(o).

(d) Note that for any playej with j < i, We have thale;(e) = 2¢;cj(0) > gmaxCin.. (0) DY (8)
above. Thug; > qmaxwx() > qm% > 1. Sinceqmin < 1, imin Must be larger that}, ay.

cjl0) = —
To see thatmax < 3, observe that;  (e) < ¢, () < ¢i. (0) < (24 My i )Cimax (0). Thus
Cmax(® < 3, asmy; < 1for all i by (b).
(e) Note thaj < i, by part (a). Hence; , (0) > ;.. (e) > cj(e) > (5 —¢&)cj(0) >
L(3—e)er(e) = L(5—e)eie) = (3 —e)%ci(0). By (d), we have that;,,,, (0) < 3
qr > (3 — )2 > 2 for sufficiently smalle > 0.

(%

Jer(0) =

— &
¢;(0) and thus

O

These results allow us to define the séts= {i < imax : ¢ < 2}, R = {i > imax : ¢ < 2},
H={i:q>2},andH' = {i € H: L <i < R}, thusH' is the subset o satisfyingL. < H' < R.
Note that the only players not ih U H' U R are players ind \ H'; further, by part (e) above, all of these
playersi must satisfyy; < 5 — e.

The idea behind the above definitions is the following: Wd stirt by considering moves fromin
which all playersi move frome; to their corresponding strategies at social optimymAt least one player
(necessarily inR) will pay a higher cost ab than ate. We try to rectify this by reassigning the playersfin
to new strategies, namely some of thefor playersh € H'. As we will see now, this results in a statein
which all players in and all players who have been reassigned are better off than a

Lemma A.4.2 Consider the two-step sequence of moves in which (1) eaglerptaoves frone; to o;,
and (2) a subset of playe® C R = {iy,...,i,} are reassigned to strategies held by (distinct) players
{h1,...,h¢} C H’'; call the resulting state’. Then for all players in R’ U H, ¢;(0") < ¢;(e).

Proof: By the definition of the matrix\/ and Lemma A.4.1 (b), we have that, for any player;(0’) <
1+ Zhj min;)ci(0) < 2¢;(0). Butif i € H thenc;(e) > 2¢;(0) > ¢;(0'), as needed.

For the case of € R/, we need only observe thatat player: is playing the same strategy as a player
in H', and thai;(e) > ¢y (e) for all h € H’', and apply the above reasoning. ©

Generally, we will be considering moves in which we try tossign all of the players i® (i.e.,R' = R
in the above Lemma). If we are successful in doing so, theresiis Pareto-optimal, there must be a player
1 € L who was not reassigned who must now be paying at least as mathsate. This happens if the
strategies inf’ occupied by the reassigned players have combinggdvalues of at leasg; — 1. Thus, for
any playeri, we define itscapacity~; to be#}‘fmih. Fori ¢ H, this is at Ieast{’_i;mlii. The following
claim will prove useful later.

Claim A.4.3 Foranyi € Landh € H',v; > £

2(]}1
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Proof. As just stateds;; > % We first lower bound the numerator by observing that 4. For the

denominator, note that,, > h. Thus(2 + my)ci(0) > ¢ (0) > ¢ (e) > enle) = qnen(o), and so

2+mn2%”0()0)2%and1—mn§3—%-

q
Combining these bounds yields > 21

+—,asneeded. O
qh
At this point it is convenient to split the proof of Theoren2 $nto two cases: one for whep, ., > %

and the other for whegi,., < % We handle the former case first.

Proof of Theorem 5.2 wheng,., > %: First, we claim that for alf € L, ~; > 1 by applying Claim A.4.3
With g5, = gmax- Buty; > 1 immediately implies that; (0’) < c.(0).

Now, starting frome, suppose that we first move all players from their equililoristrategies to their
social optimum strategies, and then try to reassign allgskayn R to the strategies of distinct players in
the setH’. If we can do this, then by Lemma A.4.2 and the above factdhat) < c.(o) for all players
1 € L we will have achieved a situation in which all players arddyedff than ine, thus contradicting the
Pareto-optimality ok. But the only way this reassignment can fail i§ff’| < |R|, so that there are not
enough slots to which to assign playersinThus we may assumél’| < |R|.

We now compute the price of anarchy for just the playersin H', or % Noting that
i€RUH' Cil0

. . By 3 1 Cq Hl max+ R dmax 2 H H
forall i € R, ci(0) > ®=¢; .. (o), it can be verified tha%igji 28 <! \X‘g%#ﬁ X2 i
maximized whenH’| = |R| andgmax = 3, giving us a ratio of%. (We have used the fact that,., < 3

from Lemma A.4.1 (d).)
We complete the proof by observing that all of the playerst in H' U R haveg; strictly less tharg —¢,
and hence including them cannot increase the Pareto premeanthy tog. O

We now continue with the proof for the case whgn < % For this we require a technical lemma.

Lemma A.4.4 Let: be a specific player il.. Suppose we “mark” each player ifl’ independently with
probability p. LetX be the minimum number of players we must unmark so that tloé ehaining marked
playersH" satisfies) ", . ;» min < ¢; — 1. ThenE[X] < % —|—p1€i6/_ , where3; = exp(—8v;(y; —p))- In
particular, if p < Z thenE[X] < %.

Mih
Zh mjihj
largest value ofn;;, among allh € H'. Thus thed; are sorted in decreasing order. For egclet X, be
a random variable that i§; with probability p, and0 otherwise; thu€i[}_; X;] = p. Our goal is then to
bound the expected minimum numberf which we have to discard (i.e., change the valué)teo that
Zj X; < ;. Note that we may assume < 1 since otherwise triviallyX = 0.

The number of suckX; is determined by the following greedy procedure. OnceXheare fixed, we
go through those that were selected (i.e., for which= §;) in increasing order of; (descending values
of j), keeping a running sum. Once this sum overflowsve must discard the current select&d and all
remaining selected ;. Therefore,

Proof: We recast the setting as follows: Fpre {1,...,|H’|} defined; = , Whereh; is the jth

E[X] = ) Pr[X; causes overflojl + p(j — 1))
=1
= Prloverflow occurs at &lH- p Z Pr[X; causes overfloj;j — 1)
=2

= Prloverflow occurs at g+ p Z Pr[overflow occurs for som¢ > j]

i>2
= Prloverflow occurs atglk-p Y~ Pr[> " X > 7]
%2 k>j
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where in the third line we have used the fact that for posititeger-valued random variables E[Z] =
>, Pr[Z > i]. Continuing,

Pr{y Xy 2y] = Prly Xi—pT; > v — pTj], whereT; = 37, 6y
k>j k>j

2(v; — pTj)?
< expl (v pég) ’
Zkzj k

using a Chernoff-Hoeffding bound. Sinée decreases witlj, we have thad_, . ; 62 < T;6;, and that

§; < 1].__7;1'. Thus we gePr[>", . ; Xj. > 7] < exp (—miﬁf—ﬁj@)_l» This yields

_T2(i
E[X] < Prloverflow occurs at gk p » _ exp (—2(% L))" 1)> .
= T;(1-1Tj)

The first term is bounded bft using Markov’s inequality. The second term can be boundddllasvs:

Zexp < ?1T_) T(‘])_ 1)> < pY_lexp(=8%(y —p))

j>1

<
N 1 - ﬁz
where in the first line we used the fact that the quotlféhf— is maximized at =
the general case of the lemma.
To see the special casejif< % then; < exp(—477), andlf—iﬁi < Vi for ; € [1/4,1]. But we
know that~; lies in this range, since; < 1 by our observation at the beginning of the proof, and % by
Claim A.4.3 withgy, = qmax > % — . O

, wheres; = exp(—8y;(vi — p)),

8
We are now ready to prove Theorem 5.2 for the casg.@f < 3.

Proof of Theorem 5.2 wheng.x < %: As in the proof for the previous case, it suffices to bound the
Pareto price of anarchy for the playersiiny R U H' since the remaining players cannnot cause the value
to reachb /2. Accordingly, we begin with the following:

Claim A.4.5 The Pareto price of anarchy over only the playerdin R U H' satisfies

291
Licrurun’ ¢i(€) |L|=3" + [H'|gn + | Rlqn
< max
> ierurun ¢i(0) T IL|% + |H'|+|RIZ "7’

where the maximum is also taken over all players H'.

There-

/ > ieLurun’ cie) Yierur Ci(e)+H |cp(e)
Proof: Note that there must exist somhe= H' for which SR < S O en (@)
fore, we have

>icLurun Ci(€) - >icrur Ci(€) + [H'|gnen (o) < >icrur 2¢i(0) + [H'|gnen (o)
>icrorum €i(0) T Dicpur@i(o) +[H'len(o) = Dicpurci(o) + |[H'[en(o) ’
using the fact thag; < 2 fori € LU R. If the left-hand side is at least 2, then we can maximizedbistient
by keepingc; (o) as small as possible fore L U R. Fori € R, we must have;(e) = g;ci(0) > cx(e) =
qnen (o), and thus; (o) > %’L(O) Fori € L, we must havec;(0) > ¢;_,. > qncn(0), Soci(o) > %’L(O)
Substituting these lower bounds (o) into the quotient, and dividing through lay (o), we get the bound
in the claim. O
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We will consider moves that begin with each player movingrfias equilibrium strategy; to his social
optimum strategy;, followed by an attempt to reassign the player®ito the strategies of distinct players
in the setl’ to reach a new stai€. Because of the Pareto-optimality fit is impossible to do this in such
away thate; (o) < ¢;(e) for all players in the game.

The specific moves we consider will take advantage of LemmadASuppose we mark each player in
H' independently with probability. We will choosep = oy wherey = gf;qzh , which from Claim A.4.3 is
alower bound on the capacity of any playef L, and; < « < £. The expected number of players marked
is thenp|H'|, and by Lemma A.4.4, for eache L, the expected number of marked players that need to be
unmarked sotha} ", . m;, <¢; —1,isat most%” = 2a. Thus, the expected number of marked players
that need to be unmarked so that this is true for all playerd. is at mos«|L|. The probabilistic method
then implies there exists some set of playerddihof cardinality p| H'| — 2a|L| satisfying this property.
From this we can conclude thg®| > p|H'| — 2a|L|, or elsee is not Pareto-optimal.

We now have two final cases, according to the sigp|&f'| — 2«|L|.

If p|H'| — 2|L| > 0, we can bound the Pareto price of anarchy frbm R U H' by

L1222 + |H' g, + (p|H'| — 20| L)y,
|L| % + |H'| + (p|H'| — 20| L]) %

ZieLURUH’ ci(e)
EieLURUH’ ci(0)

<

Setting this to be less thagwis equivalent to

o< 2qn|L| + 3pgn|H'| — 12q,|H'| + 30[H'| _ 1 n |H'| pqp, — 4qp, + 10
6qn|L| 3 |L] 2qp, '

(3)

The last quotient in inequality (3) can be seen to be nonthegso long asy > % andgy, < gmax < § SO
the inequality is certainly satisfied férg a < % Thus fora in this range we get a Pareto price of anarchy
less tharg.

2qp ’
; : / : &5+ H lan o
Finally, if p|H’| — 2a|L| < 0, then we can bound the price of anarchy%. This is less

than3 when% > 6 — 13, Using the fact thaf = v = 6qﬁ2_q2h, we can verify that this is indeed the case

dn
whenevep|H'| — 2a|L| < 0. m
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