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Abstract

Strong Nash equilibria and Pareto-optimal Nash equilibriaare natural and important strengthenings of the
Nash equilibrium concept. We study these stronger notions of equilibrium in congestion games, focusing
on the relationships between the price of anarchy for these equilibria and that for standard Nash equilibria
(which is well understood). Forsymmetriccongestion games with polynomial or exponential latency func-
tions, we show that the price of anarchy for strong and Pareto-optimal equilibria is much smaller than the
standard price of anarchy. On the other hand, for asymmetriccongestion games with polynomial latencies
the strong and Pareto prices of anarchy are essentially as large as the standard price of anarchy; while for
asymmetric games with exponential latencies the Pareto andstandard prices of anarchy are the same but the
strong price of anarchy is substantially smaller. Finally,in the special case of linear latencies, we show that
the strong and Pareto prices of anarchy coincide exactly with the known value52 for standard Nash, but are
strictly smaller for symmetric games.
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1 Introduction

1.1 Background

In algorithmic game theory, theprice of anarchy[14] is defined as the ratio of the social cost of a worst
Nash equilibrium to that of a social optimum (i.e., an assignment of strategies to players achieving optimal
social cost). This highly successful and influential concept is frequently thought of as the standard measure
of the potential efficiency loss due to individual selfishness, when players are concerned only with their own
utility and not with the overall social welfare. However, because a Nash equilibrium guarantees only that
no single player (as opposed to no coalition) can improve hisutility by moving to a new strategy, the price
of anarchy arguably conflates the effects of selfishness and lack of coordination. Indeed, for several natural
classes of games, the worst-case price of anarchy is achieved at a Nash equilibrium in which agroup of
selfish players can all improve their individual utilities by moving simultaneously to new strategies; in some
cases, the worst Nash equilibrium may not even bePareto-optimal—i.e., it may be possible that a group of
players can move to new strategies so thateveryplayer is better off (or no worse off) than before.

In this context, two stronger equilibrium concepts perhapsbetter isolate the efficiency loss due only to
selfishness. Astrong Nash equilibrium[5] is defined as a state in which no subset of the players may simul-
taneously change their strategies so as to improve all of their costs. Thestrong price of anarchy(e.g., [3]) is
the ratio between the cost of the worst strong equilibrium and the optimum cost. A weaker concept that is
very widely studied in the economics literature (see, e.g.,[15]) is that of aPareto-optimal Nash equilibrium,
which is defined as a Nash equilibrium for which there is no other state in which every player is better off.
(Equivalently, one may think of a Pareto-optimal equilibrium as being stable under moves by single players
or the coalition of all players, but not necessarily arbitrary coalitions.) One can argue that Pareto-optimality
should be a minimum requirement for any equilibrium conceptintended to capture the notion of selfishness,
in that it should not be in every player’s self-interest to move to another state. ThePareto price of anarchy
is then defined in the obvious way.†

A natural question to ask is whether the strong and/or Paretoprices of anarchy are significantly less than
the standard price of anarchy. In other words, does the requirement that the equilibrium be stable against
coalitions lead to greater efficiency? We note that this question has been addressed recently for several
specific families of games in the case of the strong (though not Pareto) price of anarchy [2, 3, 10]; see the
related work section below. In this paper, we investigate the question for the large and well-studied class of
congestion gameswith linear, polynomial or exponential latency functions.

A congestion gameis ann-player game in which each player’s strategy consists of a set of resources,
and the cost of the strategy depends only on the number of players using each resource, i.e., the cost takes the
form

∑

r `r(f(r)), wheref(r) is the number of players using resourcer, and`r is a non-negative increasing
function. A standard example is anetwork congestion gameon a directed graph, in which each player
must select a path from some source to some destination, and each edge has an associated cost function,
or “latency”, `r that increases with the number of players using it. (Throughout, we shall use the term
“latency” even though we will always be discussing general (non-network) congestion games.) Frequently
the latencies are assumed to have a simple form, such as linear (`r(t) = αr+βrt for αr, βr ≥ 0), polynomial
(`r(t) is a degree-k polynomial with non-negative coefficients), or exponential (`r(t) = αt

r for αr > 1).
Congestion games have featured prominently in algorithmicgame theory, partly because they capture a

large class of routing and resource allocation scenarios, and partly because they are known to possesspure
Nash equilibria [19]. The price of anarchy for congestion games is by now quite well understood, starting
with Koutsoupias and Papadimitriou [14] who considered a (weighted) congestion game on a set of parallel
edges. The celebrated work of Roughgarden and Tardos [21] established the value43 as the price of anarchy
of network congestion games with linear latencies in thenonatomiccase (where there are infinitely many

†Note that throughout we are assuming that cost (or utility) is non-transferable, i.e., players in a coalition cannot share their
costs with each other. If costs can be shared, the situation is very different; see, e.g., [12] for a discussion of this alternative scenario.
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players, each of whom controls an infinitesimal amount of traffic); this was extended to polynomial latencies
in [22]. The more delicaten-player case was solved independently by Awerbuch, Azar andEpstein [6] and
by Christodoulou and Koutsoupias [8], who obtained the tight value 5

2 for the price of anarchy in the linear
case, and a valuekk(1−o(1)) for the case of polynomial latencies. Subsequently Aland etal. [1] gave an exact
value for the polynomial case. These works also handle the generalization to the case of weighted players.

Much less is known about strong or Pareto-optimal Nash equilibria in congestion games. Note that
such equilibria need not exist. Holzman and Law-Yone [13] give a sufficient condition for the existence
of a strong equilibrium based on the absence of a certain structural feature in the game, and also discuss
the uniqueness and Pareto-optimality of Nash equilibria under the same condition. For the strong or Pareto
price of anarchy, however, there appear to be no results for general congestion games.

1.2 Results

We investigate the strong and Pareto price of anarchy for congestion games with linear, polynomial and
exponential latencies. Roughly speaking, we find that in symmetric‡ games the resulting price of anarchy
can be much less than the standard (Nash) price of anarchy, while in asymmetric games the behavior is more
complicated: for linear and polynomial latencies, all three prices of anarchy are essentially the same, but for
exponential latencies the standard and Pareto prices of anarchy are equal, while the strong price of anarchy
is substantially smaller. (We note that this gap between symmetric and asymmetric games does not appear
for standard Nash equilibria. Understanding the reason forthis difference may be worthy of further study.)

More specifically, we show that the strong and Pareto prices of anarchy for symmetric congestion games
with polynomial latencies of degreek are at most2k+1 (and that this is tight up to a constant factor); this
is in sharp contrast to the Nash price of anarchy ofkk(1−o(1)) obtained in [1, 6, 8]. In the special case of
linear latency, we show that the strong and Pareto price of anarchy are strictly less than the exact value5

2
for standard Nash obtained in [6, 8]. For symmetric games with exponential latencyαk, we show that the
strong and Pareto price of anarchy are at mostn, while the standard Nash price of anarchy is at leastβn,
whereβ > 1 is a constant that depends onα.

On the other hand, for asymmetric games with polynomial latency of degreek, we show that the strong
(and therefore also the Pareto) price of anarchy iskk(1−o(1)), matching the asymptotic value of the standard
Nash price of anarchy in [6, 8]. Moreover, in the linear case all three prices of anarchy coincide exactly. For
exponential latencies, we show that the Pareto price of anarchy is the same as for standard Nash (which we
show to be exponentially large), and also that the strong price of anarchy is significantly smaller; thus we
exhibit a separation between strong and Pareto prices of anarchy for a natural class of games.

Since strong and Pareto-optimal equilibria do not always exist, we should clarify the meaning of the
above statements. An upper bound on the strong (respectively, Pareto) price of anarchy for a certain class of
games bounds the price of anarchywhenever a strong (respectively, Pareto-optimal) equilibrium exists. A
lower bound means that there is a specific game in the class that has a strong (respectively, Pareto-optimal)
equilibrium achieving the stated price of anarchy.

We now briefly highlight a few of our proof techniques. To obtain upper bounds on the Pareto (and
hence also strong) price of anarchy in symmetric games, we show that this price of anarchy can always be
bounded above by the maximum ratio of the costs of individualplayers at equilibrium and the same ratio at
the social optimum. This allows us to study the equilibrium and the optimum separately, greatly simplifying
the analysis. We note that this fact holds for arbitrary symmetric games, not only congestion games, and
thus may be of wider interest. Our upper bound on the Pareto price of anarchy for linear latencies requires a
much more intricate analysis, and makes use of a matrixM = (mij), wheremij is the relative cost increase
to playeri’s cost at optimum when a new player moves to playerj’s strategy. This turns out to be a stochastic
matrix with several useful properties. Finally, our lower bound arguments make use of constructions used

‡A game issymmetricif all players have the same sets of allowable strategies.
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in [1, 6, 8], suitably modified so as to handle the stronger requirements of strong and Pareto equilibria.
(These constructions typically have the property that the social optimum is a strong Nash equilibrium, so
they are not applicable in our setting.)

1.3 Related work

Congestion games were introduced in Economics by Rosenthal[19], and further studied in an influential
paper by Monderer and Shapley [16]. The concept of “price of anarchy”§ was introduced by Koutsoupias
and Papadimitriou [14], who analyzed a very simple weightednetwork congestion game on parallel links
(with a different definition of social cost based on themaximum, rather than total or average, player cost).
Roughgarden and Tardos [21, 22] gave tight bounds for the price of anarchy in congestion games with linear
and polynomial latencies in the nonatomic or Wardrop model [7], in which there are infinitely many players
each of whom controls a negligible amount of traffic. The papers [9, 20] consider the same scenario under
maximum social cost.

Awerbuch et al. [6] and Christodoulou and Koutsoupias [8] consider the price of anarchy for congestion
games with linear and polynomial latencies, obtaining the tight value5

2 for linear latencies and the approx-
imate valuekk(1−o(1)) for polynomial latencies of degreek. Aland et al. [1] give an exact value for the
polynomial case. Both [6] and [1] extend their results to congestion games with weighted players, while [8]
also considers maximum social cost and mixed equilibria.

The strong equilibrium concept dates back to Aumann [5]. Holzman and Law-Yone [13] explore the
question of the existence of strong equilibria in congestion games, and give a structural characterization of
this property for the symmetric case. Rozenfeld and Tennenholtz [18] consider the analogous question in
the case where the “latencies” are monotonically decreasing.

Several authors have considered the strong price of anarchyand the existence of strong Nash equilibria
in various specific classes of games, often deriving significant gaps between the strong and standard price
of anarchy. For example, Andelman et al. [3] study job scheduling and network creation games, Epstein et
al. [10] cost-sharing connection games, and Albers [2] network design games.

Other measures stronger than the standard Nash price of anarchy have been studied recently by various
authors. Anshelevich et al. [4] consider theprice of stability, which is the ratio of the cost of abestNash
equilibrium to the social optimum, for network design games. And Hayrepeyan et al. [12] define and study
the “price of collusion” in analogous fashion to the strong price of anarchy, with the crucial difference that
coalitions aim to minimize not the cost of each of their members (as with the strong price of anarchy) but
the combined cost of all members.

2 Preliminaries

2.1 Equilibrium concepts and congestion games

A gameconsists of a finite set of playersP = {1, . . . , n}, each of which is assigned a finite set ofstrategies
Si and a cost functionci : S1×· · ·×Sn → N that he wishes to minimize. A game is calledsymmetricif all of
theSi are identical. Astates = (s1, . . . , sn) ∈ S1×· · ·×Sn is any combination of strategies for the players.
A states is apure Nash equilibriumif for all playersi, ci(s1, . . . , si, . . . , sn) ≤ ci(s1, . . . , s

′
i, . . . , sn) for all

s′i ∈ Si; thus at a Nash equilibrium, no player can improve his cost byunilaterally changing his strategy. It is
well known that, while every (finite) game has amixedNash equilibrium¶, not every game has a pure Nash
equilibrium. A states = (s1, . . . , sn) is aPareto-optimal Nash equilibriumif it is a pure Nash equilibrium

§The term was in fact coined later by Papadimitriou [17]
¶In a mixed Nash equilbrium, a player’s strategy can be any probability distribution over available strategies, and no individual

player can improve his expected cost by choosing another probability distribution.
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and there is no other state in which every player has lower cost than ats.‖ Thuss is a Pareto-optimal Nash
equilibrium if and only if, for alls′ = (s′1, . . . , s

′
n) ∈ S1×· · ·×Sn, there exists some playerj ∈ P such that

cj(s
′) ≥ cj(s). A states = (s1, . . . , sn) is astrong Nash equilibriumif there does not exist anycoalition

of playersC = {i1, ..., ik} ⊆ P that can move in such a way that every member of the coalition pays lower
cost than at equilibrium. More formally, lets′i1, . . . , s

′
ik

∈ Si1 × · · · × Sik be any combination of strategies
for the players inC, and lets′ be the state reached froms when the players inC move to their corresponding
strategiess′i` . Thens is a strong Nash equilibrium if, for all coalitionsC and all correspondings′, there
exists somej ∈ C such thatcj(s

′) ≥ cj(s).
Finally, for any given states, we will define thesocial costc(s) to be the sum of the players’ costs ins,

i.e.,c(s) =
∑

i∈P ci(s). A state that minimizes the social cost in a game is called asocial optimum.
We will focus on the class of games known ascongestion games. These games are known to always pos-

sess a pure Nash equilibrium [19], though not necessarily a strong or Pareto-optimal equilibrium. In a con-
gestion game, players’ costs are based on the shared usage ofa common set ofresourcesR = {r1, . . . , rm}.
A player’s strategy setSi ⊆ 2R is an arbitrary collection of subsets ofR; his strategysi ∈ Si will there-
fore be a subset ofR. Each resourcer ∈ R has an associated non-decreasing cost or “latency” function
`r : {1, . . . , n} → N; if t players are using resourcer, they each incur a cost of̀r(t). Thus in a state
s = (s1, . . . , sn), the cost of playerpi is ci(s) =

∑

r∈si
`r(fs(r)), wherefs(r) is the number of players

using resourcer unders (i.e.,fs(r) = |{j : r ∈ sj}|).
Of particular interest are congestion games where the latency functions are linear (`r(t) = αrt + βr),

polynomial (̀ r(t) is a degree-k polynomial int with non-negative coefficients), or exponential (`r(t) = αt
r

for 1 ≤ αr ≤ α.) For simplicity of notation, we shall assume that`r(t) = t for all r in the linear case,
`r(t) = tk for all r in the polynomial case, and̀r(t) = αt for all r in the exponential case. This will not
affect our lower bounds, which are based on explicit constructions of this restricted form, and it is not hard
to check that the upper bounds go through as well; for example, it is straightforward to incorporate general
non-negative coefficients by replicating resources. We omit the details, which are technical but standard.

2.2 Efficiency of equilibria

As is standard, we measure the relative efficiency loss for a specific type of equilibrium for a given family
of gamesG as the maximum possible ratio, over all games in the family, of the social cost of an equilibrium
statee in that game to the cost of a social optimumo of the same game, or

sup
G,e

c(e)

c(o)
.

This measure is known as theprice of anarchy(or coordination ratio) in the case of Nash equilibria, and the
strong price of anarchywhen discussing strong Nash equilibria. In addition to these, we will also consider
the case of Pareto-optimal Nash equilibria, in which case wecall the above ratio thePareto price of anarchy.
Clearly the strong price of anarchy is no larger than the Pareto price of anarchy, which in turn is no larger
than the standard (Nash) price of anarchy.

We note that, for the classes of congestion games we consider, strong and Pareto-optimal equilibria
may not exist, and games may also have Pareto-optimal Nash equilibria but no strong Nash equilibria (see
Section A.1 of the appendix for an example of the latter). Thus when we state an upper bound on the
strong (respectively, Pareto) price of anarchy for a certain class of games, it should be understood that this
bound holds for any game in which a strong (respectively, Pareto-optimal) equilibrium exists. When we
state a lower bound, we mean that there exists a specific game in the class that has a strong (respectively,
Pareto-optimal) equilibrium achieving the stated price ofanarchy.

‖Some definitions of Pareto-optimality require there to be noother state in which no player has higher cost than ats and at least
one player has lower cost. It is easy to check that our resultscarry over to this alternative definition with minor modifications to the
proofs.
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3 Symmetric games

In this section we prove upper bounds on the strong and Paretoprice of anarchy for symmetric congestion
games with polynomial and exponential latency functions. We shall see that these are much smaller than
the known values for the standard Nash price of anarchy. Thusin the case of symmetric games, increased
stability leads to greater efficiency.

3.1 The basic framework

The main vehicle for these proofs is a very simple framework that allows us to bound the price of anarchy
in terms of the maximum ratio of the player costs at equilibrium and the maximum ratio of the player costs
at a social optimum. This is the content of the following theorem, which we note applies toall symmetric
games, not only congestion games.

Theorem 3.1 Given a particular symmetric game withn players, let the statee be a Pareto-optimal Nash
equilibrium ands be any other state. Letρe be defined asmaxi,j ci(e)/cj(e) over all playersi, j, andρs be
similarly defined asmaxi,j ci(s)/cj(s). Then

c(e)

c(s)
≤ max {ρe, ρs} .

Proof: By symmetry, we can assume without loss of generality that the players are ordered by cost in
both e and s: that is, c1(e) ≤ · · · ≤ cn(e) and c1(s) ≤ · · · ≤ cn(s). Thus cn(e)/c1(e) = ρe, and
cn(s)/c1(s) = ρs. We now start frome, and consider the hypothetical move in which every playeri moves
from ei to his corresponding strategysi in s. Sincee is Pareto-optimal, there must exist some playerj for
whomcj(s) ≥ cj(e).

We now upper bound the social cost of equilibrium,c(e) =
∑

i ci(e), and lower bound the social cost
c(s) =

∑

i ci(s) of states. Consider first theci(e) values. We havec1(e) ≤ · · · ≤ cj(e) ≤ · · · ≤
cn(e) = ρec1(e). The sum

∑

i ci(e) is therefore maximized whenc1(e) = c2(e) = · · · = cj(e) and
cj+1(e) = · · · = ρec1(e), giving an upper bound ofjcj(e) + (n − j)ρecj(e). Similarly, for theci(s)
values, we havec1(s) ≤ · · · ≤ cj(s) ≤ · · · ≤ ρscn(s). The sum

∑

i ci(s) is minimized whenc1(s) =

· · · = cj−1(s) = cj(s)/ρs andcj(s) = · · · = cn(s), and is therefore at least(j−1)cj(s)
ρs

+ (n − j + 1)cj(s).
Recalling thatcj(s) ≥ cj(e) and combining the two bounds, we obtain

∑

i ci(e)
∑

i ci(s)
≤

jcj(s) + (n − j)ρecj(s)
(j−1)cj(s)

ρs
+ (n − j + 1)cj(s)

≤
j + (n − j)ρe

(j−1)
ρs

+ (n − j + 1)
. (1)

Differentiating with respect toj, we find that this expression is maximized atj = 1 or j = n. In the former
case the quotient is at most1+(n−1)ρe

n ≤ ρe, while in the latter case it is at most n
(n−1)/ρs+1 ≤ ρs.

By restrictings to be a social optimum in the above theorem, we obtain a natural approach to bounding
the Pareto price of anarchy (and therefore also the strong price of anarchy) in a family of symmetric games. If
we can find valuesρe andρo such that for any Pareto-optimal Nash equilibriume we haveci(e)/cj(e) ≤ ρe,
and for any social optimumo we haveci(o)/cj(o) ≤ ρo, then the Pareto price of anarchy for the family of
games will be at mostmax{ρe, ρo}. We now proceed to do this for the families of symmetric congestion
games with polynomial and exponential latencies.

3.2 Polynomial latencies

For the case of polynomial latencies, where each resourcer has latency functioǹr(t) = tk, we show the
following:
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Theorem 3.2 For symmetric congestion games with polynomial latencies of degreek, the Pareto price of
anarchy (and hence also the strong price of anarchy) is at most 2k+1.

Remarks: (i) Note that the Pareto price of anarchy is much smaller than theknown value ofkk(1−o(1)) for
the standard Nash price of anarchy [6, 8, 1].(ii) It is not hard to verify that the upper bound in Theorem 3.2
is tight up to a constant factor. To see this, consider a 2-player symmetric game withm = 2k resources
{r1, . . . , rm}, and the following four strategies:{r1, r2}, {r1, r3, r5}, {r2, r4, r6}, and{r3, r4, . . . , rm}.
The social optimum occurs when the two players choose{r1, r3, r5} and{r2, r4, r6}, for a total cost of 6. On
the other hand, the state in which the players choose{r1, r2} and{r3, r4, . . . , rm} is a strong equilibrium,
and its cost ism. The price of anarchy is thusm6 = 2k

6 .

Proof of Theorem 3.2: Following the framework of Theorem 3.1, it suffices to deriveupper bounds on the
ratios of player costs both at equilibrium and at a social optimum. This we do in the following two claims.

Claim 3.3 In the situation of Theorem 3.2, we havemaxi,j∈P
ci(e)
cj(e)

≤ 2k.

Proof: Consider any two playersi andj at an equilibriume, and the hypothetical move in which playeri
switches from his current strategyei to j’s strategyej , resulting in the new statee′.

We now boundci(e
′) in terms ofcj(e). Note that

ci(e
′) =

∑

r∈ej

fe′(r)
k =

∑

r∈ej\ei

(fe(r) + 1)k +
∑

r∈ej∩ei

fe(r)
k ≤

∑

r∈ej

(fe(r) + 1)k.

(This captures the intuition that in switching toej, playeri pays at most what playerj would pay if there
were one more player using each resource.) From this, it follows that

ci(e
′)

cj(e)
≤

∑

r∈ej
(fe(r) + 1)k

∑

r∈ej
fe(r)k

≤ max
r∈ej

(fe(r) + 1)k

fe(r)k
≤ 2k.

Sincee is a Nash equilibrium, we must haveci(e) ≤ ci(e
′), and thusci(e) ≤ 2kcj(e).

Claim 3.4 In the situation of Theorem 3.2, we havemaxi,j∈P
ci(o)
cj(o)

≤ 2k+1.

Proof: As in the proof of Claim 3.3, consider any two playersi andj at a social optimumo. Assume that
ci(o) ≥ cj(o) as the claim is immediately true otherwise. Again, considerthe move in whichi moves from
his current strategyoi to j’s strategyoj, resulting in the new stateo′.

Sinceo is a social optimum, the social cost ofo′ must be at least that ofo; i.e.,
∑

l cl(o
′)−

∑

l cl(o) ≥ 0.
Using the fact that

∑

l cl(s) =
∑

r fs(r)
k+1 for any states, we have

0 ≤
∑

r

fo′(r)
k+1 −

∑

r

fo(r)
k+1

=
∑

r∈oi⊕oj

fo′(r)
k+1 −

∑

r∈oi⊕oj

fo(r)
k+1

=
∑

r∈oj\oi

(

(fo(r) + 1)k+1 − fo(r)
k+1
)

−
∑

r∈oi\oj

(

fo(r)
k+1 − (fo(r) − 1)k+1

)

,

where the second line follows sincefo′(r) = fo(r) for r 6∈ oi ⊕ oj.
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We combine this with the observation thatci(o) =
∑

r∈oi
fo(r)

k =
∑

r∈oi\oj
fo(r)

k+
∑

r∈oi∩oj
fo(r)

k,
which we add to both sides of the above:

ci(o) ≤
∑

r∈oj\oi

(

(fo(r) + 1)k+1 − fo(r)
k+1
)

−
∑

r∈oi\oj

(

fo(r)
k+1 − (fo(r) − 1)k+1 − fo(r)

k
)

+
∑

r∈oi∩oj

fo(r)
k

≤
∑

r∈oj\oi

(

(fo(r) + 1)k+1 − fo(r)
k+1
)

+
∑

r∈oi∩oj

fo(r)
k,

as it can be verified that the second term in the first line is always at most zero.
Sincecj(o) =

∑

r∈oj\oi
fo(r)

k +
∑

r∈oi∩oj
fo(r)

k, we have

ci(o)

cj(o)
≤

∑

r∈oj\oi
((fo(r) + 1)k+1 − fo(r)

k+1) +
∑

r∈oi∩oj
fo(r)

k

∑

r∈oj\oi
fo(r)k +

∑

r∈oi∩oj
fo(r)k

≤

∑

r∈oj\oi
((fo(r) + 1)k+1 − fo(r)

k+1)
∑

r∈oj\oi
fo(r)k

≤ max
r∈oj\oi

(fo(r) + 1)k+1 − fo(r)
k+1

fo(r)k
,

where the second line follows because the ratio of the first sums in the numerator and denominator is greater
than 1. This last quantity can be seen to be at most2k+1, proving the claim.

Finally, combining Claims 3.3 and 3.4 with Theorem 3.1 completes the proof of Theorem 3.2.

3.3 Exponential latencies

For the case of exponential latencies, where each resource has latency functioǹr(t) = αt, we show the
following upper bound on the Pareto and strong prices of anarchy. The proof of this follows the same
structure as that of Theorem 3.2 and is left to the appendix.

Theorem 3.5 For symmetric congestion games withn players and exponential latencies, the Pareto price
of anarchy (and hence also the strong price of anarchy) is at mostmax{α, n}.

For comparison purposes with the above upper bound, we now show that the price of anarchy for stan-
dard Nash equilibria in exponential congestion games is much larger—indeed, exponential inn.

Proposition 3.6 For symmetric congestion games with exponential latenciesαt, the (standard Nash) price

of anarchy is at least(α
2 )α(α/2−1

α−1
)n, wheren is the number of players.

Proof: Our construction is based on that of Christodoulou and Koutsoupias [8] for the case of linear laten-
cies. Our game containsm groups of resources, andn = mt players. The players are divided evenly intom
equivalence classes, labeled{1, . . . ,m}, with t players per class. Each of them groups of resources consists
of
(

m
k

)

resources, each labeled with a differentk-tuple of equivalence classes. The available strategies for
all players are to take either (1) all resources in a single group of resources, or (2) for anyi in {1, . . . ,m},
all resources that are labeled withi.

Given the value ofα, we choosem andk such thatm ≤ 1 + (m
k − 1)α; for example, we can choose

k = α
2 andm = α − 1 for integerα ≥ 4. It can be verified that, with these settings, the state in which each

player takes all resources labeled with his equivalence class number is a Nash equilibrium, while the state
in which each player takes the group of resources corresponding to his equivalence class (i.e., a player in
classi takes all resources in groupi) is a social optimum. A straightforward calculation then shows that the

ratio of a player’s Nash cost to his cost at social optimum iskαt(k−1), which is(α
2 )α(α/2−1

α−1
)n for the above

values ofk andm.
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For completeness, we show that this same price of anarchy forstandard Nash is upper bounded byαn:

Proposition 3.7 For asymmetric (and hence also symmetric) congestion gameswith exponential latencies,
the (standard Nash) price of anarchy is at mostαn.

Proof (sketch): As in the proofs of related results in [6, 8, 1], in a game with latency functions̀ (t), we
can prove an upper bound on the price of anarchy by findingc1, c2 ≥ 0 such that the inequalityy`(x+ 1) ≤
c1x`(x) + c2y`(y) holds for all0 ≤ x ≤ n, 1 ≤ y ≤ n; this implies a price of anarchy of at mostc21−c1

.
When`(t) = αt, this clearly holds withc1 = 0 andc2 = αx ≤ αn.

Remark: With some extra work, the bound in Proposition 3.7 can be improved toO(α(1− 1

α
)n).

4 Asymmetric games

In this section we extend the investigation of the previous section to asymmetric games, and find that the
situation is quite different. First we will see that, for asymmetric congestion games with polynomial laten-
cies, the strong (and therefore also the Pareto) price of anarchy is essentially the same as the standard Nash
price of anarchy. We will then go on to consider exponential latencies, where we find that the Pareto price
of anarchy is the same as standard Nash, but the strong price of anarchy is significantly smaller.

We begin by considering polynomial latencies.

Theorem 4.1 For asymmetric congestion games with polynomial latenciestk, the strong price of anarchy
is at leastbΦkc

k, whereΦk is the positive solution of(x + 1)k = xk+1.

Remark: Φk is a generalization of the golden ratio (which is justΦ1); its value is k
log k (1 + o(1)). Hence

the lower bound of Theorem 4.1 is of the formkk(1−o(1)), which is asymptotically the same value for the
Nash price of anarchy obtained in [6, 8], and very close to theexact value obtained by Aland et al. [1].

Proof: Our lower bound construction is based on that of Aland et al.,extended so as to handle the stricter
requirement of a strong equilibrium. Consider an (asymmetric) game withn players (n assumed sufficiently
large). Each playeri has exactly two possible strategies,ei andoi. There aren + m resources labeled
{r1, . . . , rn+m}, wherem is a constant to be chosen later. For each playeri, strategyoi consists of the
single resourceri. (We shall modify this slightly for some of the players shortly.) Strategyei consists of the
resources{ri+1, . . . , ri+m}. (Thus for most playersei consists of exactlym resources.)

We claim that the statee = (e1, . . . , en) is a strong Nash equilibrium. To see this, note that undere the
cost for playeri is ci(e) =

∑i+m
j=i+1 min{j − 1,m}k. If now playeri moves to his alternative strategyoi, re-

sulting in a new statee(i), his cost becomesci(e
(i)) = min{i,m+1}k. To show thate is a Nash equilibrium,

we need to show thatci(e
(i)) ≥ ci(e) for all i.

Now note that, for all playersi ≥ m + 1, we haveci(e
(i)) − ci(e) = (m + 1)k − mk+1. Thus if we

choosem = bΦkc to be the smallest integer such that(m + 1)k ≥ mk+1, we ensure thatci(e
(i)) ≥ ci(e)

for all i ≥ m + 1. To obtain the same condition for players1 ≤ i ≤ m, we append to the strategyoi the
minimum numberai of additional resources (unique toi) so thatci(e

(i)) = ik + ai ≥ ci(e). (Note that all
theai are less thanmk+1.) This ensures thate is a Nash equilibrium.

To see that it is a strong equilibrium, consider a move by an arbitrary coalition of players to their alterna-
tive strategiesoi. We claim that the lowest numbered player in the coalition does not see an improvement in
cost. This follows because the resourceri, which i occupies underoi, is still occupied by the same players
as undere, so by the Nash propertyi’s cost does not decrease.

Thus the strong price of anarchy is bounded below byc(e)
c(o) . But c(e) ≥ (n − m)mk, and c(o) ≤

mmk+1 + (n − m). Thus
c(e)

c(o)
≥

(n − m)mk

mk+2 + n − m
→ bΦkc

k asn → ∞.

This completes the proof.
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We now turn to exponential latencies. Our next result shows that the Pareto price of anarchy is equal to
the standard Nash price of anarchy (which we showed to be exponential inn in Proposition 3.6).

Theorem 4.2 For asymmetric congestion games with exponential latencies αt, the Pareto price of anarchy
is bounded below by, and hence is equal to, the standard Nash price of anarchy.

Proof: Consider anyn-player congestion game with exponential latenciesαt. Let statee be a Nash equi-
librium for this game. We create a modified game in which the Pareto price of anarchy is only a(1−O( 1

n ))-
factor smaller than the Nash price of anarchy of the originalgame.

To do this, we first replace each resource in the original gamewith a set ofn resources in the modified
game; strategies in the modified game correspond to those in the original game, except that the former
include alln copies of the resources of the latter. This has the effect of multiplying player costs by a factor
of n, but does not change the set of Nash and Pareto-optimal Nash equilibria.

We then add one more player,n + 1, to the modified game; this player has a single strategysn+1

consisting of new resources{r̂i : i = 1, . . . , n}. Also, for players1, . . . , n, we append resourcêri to
every strategy of playeri except for the equilibrium strategyei. Note that this makes the modified game
asymmetric even if the original one is not. There is an obvious bijection between states of the original game
and those of the modified game, and we shall abuse notation by identifying them. Also, we shall writec(s)
andc′(s) for the social costs of states in the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibriume (together with strategysn+1 for playern+1) is
a Pareto-optimal equilibrium for the modified game: plainlyit remains a Nash equilibrium, and any coalition
move results in a cost increase for playern + 1. Moreover, we havec′(e) = nc(e)+ n > nc(e), and for any
states, c′(s) ≤ nc(s) + 2nα2, since the occupancy of each new resource is at most two. Thus the Pareto

price of anarchy for the modified game is at leastmaxs
c′(e)
c′(s) ≥ c(e)

c(o)+2α2 , whereo is a social optimum of

the original game. But clearlyc(o) ≥ nα, so the Pareto price of anarchy is at leastc(e)
c(o)(1+ 2α

n
)

= 1
1+ 2α

n

c(e)
c(o) .

Thus the Pareto price of anarchy grows arbitrarily close to the Nash price of anarchy asn increases. This
completes the proof.

Finally, we exhibit a separation between the Pareto and strong price of anarchy by showing that the latter
(while still exponential) is significantly smaller than thevalue we obtained for the standard Nash price of an-
archy in Proposition 3.6. We make the reasonable assumptionthat the number of resources is polynomially
bounded in the number of players, as is the case in our lower bound construction in Proposition 3.6.

Theorem 4.3 For asymmetric congestion games withn players and exponential latenciesαt, in which every
strategy contains at mostp(n) resources for some fixed polynomialp, the strong price of anarchy is at most

α( 1

3
+o(1))n.

Proof: Let e be a strong equilibrium state ando be a social optimum state. As before, we will consider
moves in which subsets of players move from their equilibrium strategiesei to their strategies at optimumoi.
Let c∗(o) denote the maximum cost of any player in stateo.

We will make use of the following technical lemma:

Lemma 4.4 LetS be a subset of players each of whose strategies ate contains at least one resource that is
shared by at leastue players ate (i.e., for all i ∈ S, ∃r ∈ ei such thatfe(r) ≥ ue). Then at least one of the
following must be true: (1)αue ≤ c∗(o); or (2) there exist at leastu′

e = ue− logα p(n)− logα c∗(o) players
outside ofS, each of whose strategies ate contains a resource that is shared by at leastu′

e players not inS.

Proof: Consider the move frome in which the playersi ∈ S each adopt their strategiesoi in o, resulting in
a new states in which their new costs areci(s). For all i ∈ S, we will denote bŷci(s) the cost to playeri at

states due only to the players inS; formally, ĉi(s) =
∑

r∈oi
αf̂s(r), wheref̂s(r) = |{j ∈ S : r ∈ sj}|.
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Sincee is a strong equilibrium, there must be some playeri ∈ S for whom ci(s) ≥ ci(e). This might
happen ifĉi(s) ≥ ci(e), in which case sinceci(o) ≥ ĉi(s) andci(e) ≥ αue , condition (1) of the lemma
holds. Otherwise, we must havêci(s) < ci(e) ≤ ci(s). Sinceci(e) ≥ αue , there must be some resource
r ∈ oi for which αfs(r) ≥ ci(e)

p(n) , or equivalently, for whichfs(r) ≥ logα ci(e) − logα p(n). However,

note that becausêci(s) ≤ ci(o) ≤ c∗(o), we havef̂s(r) ≤ logα c∗(o). Hence in states there must be
fs(r) − f̂(r) ≥ logα ci(e) − logα p(n) − logα c∗(o) players not inS that also use resourcer. Since
ci(e) ≥ αue , condition (2) of the lemma holds.

Suppose now that there exists a strong equilibriume in a game fitting the description of the theorem
such that ce

c∗(o) ≥ αδn for a social optimumo. Then there must exist a playerj for whomcj(e) ≥
αδn

n c∗(o).

Thusej must contain a resourcer for whichfr(e) ≥ logα

(

αδn

np(n)c∗(o)
)

= δn + logα c∗(o)− logα(np(n)).

Let S1 denote the players holding this resource. Consider the movein which we try to move all players
in S1 to their strategies ato. Applying Lemma 4.4 to these players, we find that either (1)αδn ≤ np(n), in
which case the theorem is proven; or (2) there existδn − logα(np2(n)) additional players, each of whose
equilibrium strategies contains a resource shared by at least that many players not inS1. Let these additional
players form the setS2. Since the game hasn players, this implies that

n ≥ |S1 ∪ S2| ≥ 2δn + logα c∗(o) − logα(n2p(n)3). (2)

We can then apply Lemma 4.4 again toS1 ∪ S2, which again yields two possible outcomes. In case (1),
we have thatαδn ≤ c∗(o)np(n)2, or δn ≤ logα c∗(o) + logα(np(n)2). Combining this with inequality (2)
gives3δn ≤ n+logα(n3p(n)5), or δ ≤ 1

3 +o(1), as claimed. In case (2), we are guaranteed the existence of
δn − logα c∗(o)− logα(np(n)3) players not inS1 ∪ S2. Combining this with the lower bound on|S1 ∪ S2|
from (2), we must have at least3δn − logα(n3p(n)6) players. Since this cannot exceedn, we find that
δ ≤ 1

3 + o(1), again as claimed.

5 Linear latencies

This section presents more detailed results for the specialcase of linear latencies.

Exact price of anarchy for asymmetric games.We first show that the strong (and thus also the Pareto)
price of anarchy for asymmetric congestion games with linear latencies coincides exactly with the standard
Nash price of anarchy, which is known to be5

2 [6, 8]. To do this, it is sufficient to exhibit a lower bound of5
2

on the strong price of anarchy. This is the content of the following theorem.

Theorem 5.1 For asymmetric linear congestion games, the strong price ofanarchy is at least52 .

The proof of this refines the construction in the proof of Theorem 4.1, and is left to the appendix.

Upper bound for symmetric games.We now show that, forsymmetriclinear congestion games, the Pareto
(and hence also strong) price of anarchy is less than the known value5

2 for standard Nash equilibria in both
symmetric and asymmetric games. For linear latencies, the framework of Theorem 3.1 only gives an upper
bound of3, so we must resort to a more involved analysis. We prove the following, stressing that our goal
is not to find the best possible upper bound, but to show that the upper bound is strictly less than52 .

Theorem 5.2 For symmetric congestion games with linear latencies, the Pareto price of anarchy (and hence
also the strong price of anarchy) is strictly less than5

2 .

The proof of this theorem is quite involved and is left to the appendix; we briefly outline the ideas here.
We begin as in the proof of Theorem 3.1 by sorting the strategies at equilibriume and optimumo by cost.
A key ingredient in the earlier proof is the hypothetical move frome in which every player moves from his
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current strategyei to his strategyoi ato, and the realization that at least one player must pay highercost ato
than ate. Here we extend that idea to a more complicated sequence of player moves, and again use the fact
that at least one player must pay higher cost at the end of thissequence than he did at equilibrium.

One of the key concepts in this proof is the matrixM = (mij), wheremij is the relative cost increase
to playeri at optimum when a new player moves to playerj’s strategyoj. Using properties ofM , we are
able to identify three disjoint subsets of playersL, H ′, andR satisfyingi < j < k for all i ∈ L, j ∈ H ′ and

k ∈ R in such a way that, for all players ini ∈ H ′, the ratioqi
def
= ci(e)

ci(o)
≥ 5

2 , while for playersi ∈ L ∪ R,
qi ≤ 2. Thus to bound the Pareto price of anarchy, we must upper bound the number of high-ratio players
|H ′| relative to the number of low-ratio players|L| + |R|.

The moves frome we consider consist of two steps: first, each playeri goes from his original strategy
ei to his strategy at social optimumoi; then, we will try to take each of the players inR (which necessarily
includes all players for whomci(o) ≥ ci(e)—these players are “unhappy” after the first step) and reassign
them one-to-one to the strategies of players inH ′, giving a new stateo′. It is possible to prove that, under
this scheme, all players inR andH ′ are better off ato′ than ato. Therefore, sincee is Pareto-optimal, either
this cannot be done (because|R| > |H ′|), or some player inL ends up with higher cost than before.

We then split the proof into two cases. In the first case, players in H ′ can have ratiosqi > τ for some
thresholdτ . Here we can use the properties of the matrixM to show that every player inL will have lower
cost ato′ than ate, and thus it must be that|R| > |H ′|, which gives us an overall price of anarchy below5

2 .
In the second case, all players inH ′ have ratios of at mostτ . Here, in the most involved part of the analysis,
we use the probabilistic method to lower bound|R| in terms of|L|, |H ′| andτ , which we again show gives
us a price of anarchy below52 .

6 Open problems

We have left open a number of questions, including the following:

1. What is the exact strong (and Pareto) price of anarchy for symmetric congestion games with linear
latencies? From Theorem 5.2 we know that this is less than thevalue 5

2 of the standard Nash price of
anarchy for these games. It is not too hard to obtain a lower bound of 3

2 on this quantity, but we do
not see how to obtain its exact value using the machinery of Section 5.

2. What is the computational complexity of deciding whethera congestion game possesses a strong
or Pareto-optimal equilibrium, and if so of finding one? For standard Nash equilibria, the decision
problem is trivial but finding an equilibrium is known to be inP for symmetric network congestion
games and PLS-complete for general symmetric congestion games [11].
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Appendix

A.1 Example from Section 2.2

As advertised in Section 2.2, we give an example of asymmetric congestion games with linear, polynomial,
and exponential latencies with integer base (i.e.,`r(t) = αt for some positive integerα) that have Pareto-
optimal Nash equilibria but no strong Nash equilibria.

Consider ann-player congestion game with latency functions`(·) which has a Nash equilibriume but
no strong Nash equilibrium; it is easy to construct a Prisoner’s Dilemma-style game with this property. We
use a similar construction to that in the proof of Theorem 4.2to obtain a modified game that has a Pareto-
optimal Nash equilibrium but still no strong Nash equilibrium, with the only difference being that here we
replicate each resourcem times (instead ofn), for a constantm > `(2); thusm is larger than2, 2k and
α2 for linear, polynomial, and exponential latencies respectively. We then add the extra playern + 1 and
modify all strategies exactly as before.

Again, there is a natural bijection between states of the original game and those of the modified game,
and we again abuse notation by identifying them. We writeci(s) andc′i(s) for the cost to playeri of states
in the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibriume (together with strategysn+1 for playern+1) is
a Pareto-optimal equilibrium for the modified game: plainlyit remains a Nash equilibrium, and any coalition
move results in a cost increase for playern + 1.

It remains to show that the modified game does not have any strong Nash equilibria. We do this by
showing that if a states is a strong Nash equilibrium in the modified game, it must correspond to a strong
Nash equilibrium in the original game. Consider an arbitrary coalition of players in states in the original
game, and an arbitrary group move to some other strategies, resulting in a new states′; we aim to show
that one of the coalition members has cost ins′ that is at least his cost ins. We do this by examining the
corresponding move in the modified game. Sinces is a strong Nash equilibrium there, we must have at least
one player, say playeri, for whomc′i(s

′) ≥ c′i(s). Sincec′i(s
′) ≤ mci(s

′) + `(2), andc′i(s) ≥ mci(s), we

obtainmci(s
′) + `(2) ≥ mci(s), implying thatci(s

′) + `(2)
m ≥ ci(s).

Since all player costs must be integral with the latency functions we consider, and`(2)m < 1, it must be
thatci(s

′) ≥ ci(s), which is what we needed.

A.2 Proof of Theorem 3.5

To prove Theorem 3.5, we again rely on the framework of Theorem 3.1 and establish the following two
claims, which bound the ratios of player costs at equilibrium and at social optimum.

Claim A.2.1 In the situation of Theorem 3.5, we havemaxi,j∈P
ci(e)
cj(e)

≤ α.

Proof: Consider an equilibrium statee and a move by playeri from his current strategyei to playerj’s
strategyej , resulting in the new statee′. Clearly for each resourcer ∈ ej , playeri pays at most a factor of
α more thanj pays ate. Henceci(e

′) ≤ αcj(e). Sincee is a Nash equilibrium, we must haveci(e) ≤ ci(e
′)

and the claim follows.

Claim A.2.2 In the situation of Theorem 3.5, we havemaxi,j∈P
ci(o)
cj(o)

≤ α(n + 1).

Proof: This proof follows along the same lines as that of Claim 3.4. Consider a social optimumo, and the
move in which playeri moves fromoi to playerj’s strategyoj . Sinceo is a social optimum, this cannot
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decrease the overall social cost. Hence

0 ≤
∑

r

fo′(r)α
fo′(r) −

∑

r

fo(r)α
fo(r)

=
∑

r∈oi⊕oj

fo′(r)α
fo′ (r) −

∑

r∈oi⊕oj

fo(r)α
fo(r)

=
∑

r∈oj\oi

(

(fo(r) + 1)αfo(r)+1 − fo(r)α
fo(r)

)

−
∑

r∈oi\oj

(

fo(r)α
fo(r) − (fo(r) − 1)αfo(r)−1

)

.

Writing ci(o) =
∑

r∈oi\oj
αfo(r) +

∑

r∈oi∩oj
αfo(r) and adding this to both sides, we obtain

ci(o) ≤
∑

r∈oj\oi

(

(fo(r) + 1)αfo(r)+1 − fo(r)α
fo(r)

)

−
∑

r∈oi\oj

(fo(r) − 1)(αfo(r) − αfo(r)−1) +
∑

r∈oi∩oj

αfo(r)

≤
∑

r∈oj\oi

(

(fo(r) + 1)αfo(r)+1 − fo(r)α
fo(r)

)

+
∑

r∈oi∩oj

αfo(r).

Combining this with the fact thatcj(o) =
∑

oj\oi
αfo(r) +

∑

oi∩oj
αfo(r), we get

ci(o)

cj(o)
≤

∑

r∈oj\oi
((fo(r) + 1)αfo(r)+1 − fo(r)α

fo(r)) +
∑

r∈oi∩oj
αfo(r)

∑

oj\oi
αfo(r) +

∑

oi∩oj
αfo(r)

≤

∑

r∈oj\oi
((fo(r) + 1)αfo(r)+1 − fo(r)α

fo(r))
∑

oj\oi
αfo(r)

≤ (fo(r) + 1)α.

Sincefo(r) ≤ n, this completes the proof of the claim.

A direct application of Theorem 3.1 to the results of these claims gives an overall bound ofα(n + 1),
which we now improve tomax{α, n}. We first follow the proof of Theorem 3.1 through inequality (1),
where one can see that the ratio on the right-hand side is maximized when the playerj whose cost increases
is either player1 or playern. In the former case, the resulting ratio is at mostρe, which isα for exponential
latencies. In the latter case, the resulting ratio becomesnρo

n−1+ρo
, or αn(n+1)

n−1+α(n+1) for exponential latencies.
This is clearly at mostn.

A.3 Proof of Theorem 5.1

We construct a family ofn-player games with latencies̀r(t) = t for all r whose strong price of anarchy
approaches52 asn → ∞. Our construction will be a refined version of that in the proof of Theorem 4.1. For
simplicity, assumen is even. There will ben + 3 resources{r1, . . . , rn+3}. Each playeri has two possible
strategies,ei andoi. Strategyoi consists of the single resourceri, except that we add resourcesrn+2 and
rn+3 to player 1’s strategyo1. The strategiesei are defined as follows:

ei =

{

{ri+1, ri+2} if i is odd;

{ri+1} if i is even.

We claim that the statee = (ei) forms a strong Nash equilibrium. To see it is a Nash equilibrium, suppose
player i switches fromei to oi. If i > 1 is odd then his strategy switches from{ri+1, ri+2}, at a cost of

14



1 + 2 = 3, to {ri} at a cost of 3. (This calculation follows from the fact that the players occupyingri, ri+1

andri+2 undere are respectively{i−2, i−1}, {i} and{i+1, i+2}.) Hence there is no cost improvement.
Similarly, if i is even then his strategy switches from{ri+1}, at a cost of 2, to{ri}, at a cost of 2, again
giving no improvement. Finally, ifi = 1 then his strategy switches from{ri+1, ri+2}, at a cost of1+2 = 3,
to {ri, rn+2, rn+3}, at a cost of1+1+1 = 3, again giving no improvement. Hencee is a Nash equilibrium.

To see that it is a strong equilibrium, suppose that an arbitrary subset of the players switch from their
strategiesei to oi. Then the lowest-numbered playeri in the subset experiences no cost improvement. This
follows as in the proof of Theorem 4.1 because the resources which i occupies underoi are still occupied by
the same players as undere, so by the Nash propertyi’s cost does not decrease.

The price of anarchy of this game is therefore at leastc(e)
c(o) . But in o each player occupies one resource

alone (except for player 1, who occupies three resources), so c(o) = n + 2. And in e each odd-numbered
player occupies one resource alone and one resource shared with another player, while each even-numbered
player occupies one resource shared with another player. Thus ci(e) = 3 if i is odd, andci(e) = 2 if i is
even, soc(e) = 5n

2 . Hence the price of anarchy is at least5n/2
n+2 → 5

2 asn → ∞.

A.4 Proof of Theorem 5.2

Setting. From this point on, as in the proof of Theorem 3.1, we will consider an equilibrium statee and a
social optimum stateo, both of which have the players sorted in increasing order ofcost; that is,c1(e) ≤
· · · ≤ cn(e) andc1(o) ≤ · · · ≤ cn(o).

A key consideration in the earlier proof is the hypotheticalmove frome in which every player moves
from his current stateei to his corresponding strategyoi ato, and the realization that at least one player must
pay higher cost ato. Here we extend that idea to a more complicated set of moves tobe described later, and
again use the fact that at least one player must still pay higher cost at the end of this sequence than he did at
equilibrium.

We now describe a number of preliminary concepts and claims that will set up the proof of Theorem 5.2.

First, for the stateo, we will define an associated matrixM = (mij), wheremij =

∑

e∈oi∩oj
((fo(r)+1)−fo(r))

∑

r∈oi
fo(r) .

This can be seen to be|oi∩oj |
ci(o)

, where|oi ∩ oj| is the number of resources used in bothoi andoj. Intuitively,
mij is the relative cost increase to playeri’s costci(o) when a new player moves to strategyoj . Further,

we will denote byqi the ratioci(e)
ci(o)

, and letqmax andqmin be the maximum and minimum such values ofqi.

Note thatqmin ≤ 1 sincee is Pareto-optimal, and we can assume thatqmax ≥ 5
2 − ε for some smallε > 0

or else the theorem is trivially true; letimax andimin refer to a player that has ratioqmax and a player that
has ratioqmin, respectively. As a matter of notation, for an integeri and a set of integersS, we will say that
i < S (or i > S) if i is smaller (or larger) than every element ofS. Similarly we will write S1 < S2 if every
element ofS1 is less than every element ofS2.

We begin with the following lemma, which spells out some key properties of this setup.

Lemma A.4.1 Consider an equilibrium statee and a social optimum stateo in the setting described above.
Then the following properties hold.

(a) For all i, j, 2ci(e) ≥ cj(e).

(b) For all i,
∑

j mij = 1, and for all i, j, mii ≥ mij.

(c) For all i, j, (2 + mii)ci(o) ≥ cj(o).

(d) imax < imin, and henceqmax ≤ 3.

(e) There existsε > 0 such that, if playersi, j with i < j have ratiosqi, qj ≥ 5
2 − ε, then for all players

k with i < k < j, qk > 2.
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Proof:

(a) At the equilibrium statee, consider the move in which playerj moves to playeri’s strategy. The new
cost for playerj will be at most

∑

r∈ei
(fe(r) + 1) ≤ 2

∑

r∈ei
fe(r) ≤ 2ci(e). Sincee is a Nash

equilibrium, this must be at leastcj(e).

(b) Since
∑

j |oi ∩ oj | =
∑

r∈oi
fo(r) = ci(o), we have

∑

j mij = 1. It is also evident that|oi ∩ oj| is
maximized whenj = i, and hencemii ≥ mij for all j.

(c) Starting from the social optimum stateo, consider the move in which playerj moves fromoj to oi;
the total social cost cannot decrease as a result. We think ofthis move as occurring in two phases:
when playerj moves away from strategyoj , the total social cost decreases by at leastcj(o), when he
moves to strategyoi, the social cost increases by

∑

r∈oi
((fo(r) + 1)2 − fo(r)

2) =
∑

r∈oi
(2fo(r) +

1) = 2ci(o) + |oi|, where|oi| is the number of resources inoi. Using the fact from (b) above that
|oi| = miici(o), we put this together to find thatcj(o) ≤ (2 + mii)ci(o).

(d) Note that for any playerj with j ≤ imax, we have that2cj(e) = 2qjcj(o) ≥ qmaxcimax
(o) by (a)

above. Thusqj ≥
qmax

2
cimax

(o)
cj(o)

≥ qmax

2 > 1. Sinceqmin ≤ 1, imin must be larger thanimax.

To see thatqmax ≤ 3, observe thatcimax
(e) ≤ cimin

(e) ≤ cimin
(o) ≤ (2 + mimaximax

)cimax
(o). Thus

cimax
(e)

cimax
(o) ≤ 3, asmii ≤ 1 for all i by (b).

(e) Note thatj < imin, by part (a). Hencecimin
(o) ≥ cimin

(e) ≥ cj(e) ≥ (5
2 − ε)cj(o) ≥ (5

2 − ε)ck(o) =
1
qk

(5
2 − ε)ck(e) ≥ 1

qk
(5
2 − ε)ci(e) ≥

1
qk

(5
2 − ε)2ci(o). By (d), we have thatcimin

(o) ≤ 3ci(o) and thus

qk ≥ 1
3(5

2 − ε)2 > 2 for sufficiently smallε > 0.

These results allow us to define the setsL = {i < imax : qi ≤ 2}, R = {i > imax : qi ≤ 2},
H = {i : qi > 2}, andH ′ = {i ∈ H : L < i < R}; thusH ′ is the subset ofH satisfyingL < H ′ < R.
Note that the only players not inL ∪ H ′ ∪ R are players inH \ H ′; further, by part (e) above, all of these
playersi must satisfyqi < 5

2 − ε.
The idea behind the above definitions is the following: We will start by considering moves frome in

which all playersi move fromei to their corresponding strategies at social optimumoi. At least one player
(necessarily inR) will pay a higher cost ato than ate. We try to rectify this by reassigning the players inR
to new strategies, namely some of theoh for playersh ∈ H ′. As we will see now, this results in a stateo′ in
which all players inH and all players who have been reassigned are better off than at e.

Lemma A.4.2 Consider the two-step sequence of moves in which (1) each player moves fromei to oi,
and (2) a subset of playersR′ ⊆ R = {i1, . . . , i`} are reassigned to strategies held by (distinct) players
{h1, . . . , h`} ⊆ H ′; call the resulting stateo′. Then for all playersi in R′ ∪ H, ci(o

′) < ci(e).

Proof: By the definition of the matrixM and Lemma A.4.1 (b), we have that, for any playeri, ci(o
′) ≤

(1 +
∑

hj
mihj

)ci(o) ≤ 2ci(o). But if i ∈ H thenci(e) > 2ci(o) ≥ ci(o
′), as needed.

For the case ofi ∈ R′, we need only observe that ato′, playeri is playing the same strategy as a player
in H ′, and thatci(e) ≥ ch(e) for all h ∈ H ′, and apply the above reasoning.

Generally, we will be considering moves in which we try to reassign all of the players inR (i.e.,R′ = R
in the above Lemma). If we are successful in doing so, then sincee is Pareto-optimal, there must be a player
i ∈ L who was not reassigned who must now be paying at least as much at o′ as ate. This happens if the
strategies inH ′ occupied by the reassigned players have combinedmih values of at leastqi − 1. Thus, for
any playeri, we define itscapacityγi to be qi−1

∑

h∈H mih
. For i 6∈ H, this is at least qi−1

1−mii
. The following

claim will prove useful later.

Claim A.4.3 For anyi ∈ L andh ∈ H ′, γi ≥
qh−2
6−2qh

.
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Proof: As just stated,γi ≥
qi−1

1−mii
. We first lower bound the numerator by observing thatqi ≥

qh
2 . For the

denominator, note thatimin > h. Thus(2 + mii)ci(o) ≥ cimin
(o) ≥ cimin

(e) ≥ ch(e) = qhch(o), and so

2 + mii ≥
qhch(o)
ci(o)

≥ qh and1 − mii ≤ 3 − qh.

Combining these bounds yieldsγi ≥
qh
2
−1

3−qh
, as needed.

At this point it is convenient to split the proof of Theorem 5.2 into two cases: one for whenqmax > 8
3 ,

and the other for whenqmax ≤ 8
3 . We handle the former case first.

Proof of Theorem 5.2 whenqmax > 8
3 : First, we claim that for alli ∈ L, γi > 1 by applying Claim A.4.3

with qh = qmax. But γi > 1 immediately implies thatci(o
′) < ce(o).

Now, starting frome, suppose that we first move all players from their equilibrium strategies to their
social optimum strategies, and then try to reassign all players inR to the strategies of distinct players in
the setH ′. If we can do this, then by Lemma A.4.2 and the above fact thatci(o

′) < ce(o) for all players
i ∈ L we will have achieved a situation in which all players are better off than ine, thus contradicting the
Pareto-optimality ofe. But the only way this reassignment can fail is if|H ′| < |R|, so that there are not
enough slots to which to assign players inR. Thus we may assume|H ′| < |R|.

We now compute the price of anarchy for just the players inR ∪ H ′, or
∑

i∈R∪H′ ci(e)
∑

i∈R∪H′ ci(o)
. Noting that

for all i ∈ R, ci(o) ≥ qmax

2 cimax
(o), it can be verified that

∑

i∈R∪H′ ci(e)
∑

i∈R∪H′ ci(o)
≤

|H′|×qmax+|R| qmax

2
×2

|H′|+ qmax

2
|R|

. This is

maximized when|H ′| = |R| andqmax = 3, giving us a ratio of125 . (We have used the fact thatqmax ≤ 3
from Lemma A.4.1 (d).)

We complete the proof by observing that all of the playersi not inH ′∪R haveqi strictly less than52 −ε,
and hence including them cannot increase the Pareto price ofanarchy to5

2 .

We now continue with the proof for the case whenqmax ≤ 8
3 . For this we require a technical lemma.

Lemma A.4.4 Let i be a specific player inL. Suppose we “mark” each player inH ′ independently with
probabilityp. LetX be the minimum number of players we must unmark so that the setof remaining marked
playersH ′′ satisfies

∑

h∈H′′ mih ≤ qi − 1. ThenE[X] < p
γi

+ p βi
1−βi

, whereβi = exp(−8γi(γi − p)). In

particular, if p ≤ γi

2 thenE[X] ≤ 2p
γi

.

Proof: We recast the setting as follows: Forj ∈ {1, . . . , |H ′|} defineδj =
mihj

∑

h mihj
, wherehj is thejth

largest value ofmih among allh ∈ H ′. Thus theδj are sorted in decreasing order. For eachj, let Xj be
a random variable that isδj with probability p, and0 otherwise; thusE[

∑

j Xj ] = p. Our goal is then to
bound the expected minimum number ofXj which we have to discard (i.e., change the value to0) so that
∑

j Xj ≤ γi. Note that we may assumeγi ≤ 1 since otherwise triviallyX = 0.
The number of suchXj is determined by the following greedy procedure. Once theXj are fixed, we

go through those that were selected (i.e., for whichXj = δj) in increasing order ofδj (descending values
of j), keeping a running sum. Once this sum overflowsγi, we must discard the current selectedXj and all
remaining selectedXj . Therefore,

E[X] =
∑

j≥1

Pr[Xj causes overflow](1 + p(j − 1))

= Pr[overflow occurs at all] + p
∑

j≥2

Pr[Xj causes overflow](j − 1)

= Pr[overflow occurs at all] + p
∑

j≥2

Pr[overflow occurs for somej′ ≥ j]

= Pr[overflow occurs at all] + p
∑

j≥2

Pr[
∑

k≥j

Xk ≥ γi]
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where in the third line we have used the fact that for positiveinteger-valued random variablesZ, E[Z] =
∑

i Pr[Z ≥ i]. Continuing,

Pr[
∑

k≥j

Xk ≥ γi] = Pr[
∑

k≥j

Xk − pTj ≥ γi − pTj], whereTj =
∑

k≥j δk

≤ exp

(

−
2(γi − pTj)

2

∑

k≥j δ2
k

)

,

using a Chernoff-Hoeffding bound. Sinceδj decreases withj, we have that
∑

k≥j δ2
k ≤ Tjδj , and that

δj ≤
1−Tj

j−1 . Thus we getPr[
∑

k≥j Xk ≥ γi] ≤ exp
(

−
2(γi−pTj)2(j−1)

Tj(1−Tj )

)

. This yields

E[X] ≤ Pr[overflow occurs at all] + p
∑

j≥2

exp

(

−
2(γi − pTj)

2(j − 1)

Tj(1 − Tj)

)

.

The first term is bounded bypγi
using Markov’s inequality. The second term can be bounded asfollows:

p
∑

j≥2

exp

(

−
2(γi − pTj)

2(j − 1)

Tj(1 − Tj)

)

≤ p
∑

j≥1

[exp(−8γi(γi − p))]j

≤ p
βi

1 − βi
, whereβi = exp(−8γi(γi − p)),

where in the first line we used the fact that the quotient(γi−pz)2

z(1−z) is maximized atz = γi
2γi−p . This finishes

the general case of the lemma.
To see the special case, ifp ≤ γi

2 thenβi ≤ exp(−4γ2
i ), and βi

1−βi
≤ 1

γi
for γi ∈ [1/4, 1]. But we

know thatγi lies in this range, sinceγi ≤ 1 by our observation at the beginning of the proof, andγi ≥
1
4 by

Claim A.4.3 withqh = qmax ≥ 5
2 − ε.

We are now ready to prove Theorem 5.2 for the case ofqmax ≤ 8
3 .

Proof of Theorem 5.2 whenqmax ≤ 8
3 : As in the proof for the previous case, it suffices to bound the

Pareto price of anarchy for the players inL ∪ R ∪ H ′ since the remaining players cannnot cause the value
to reach5/2. Accordingly, we begin with the following:

Claim A.4.5 The Pareto price of anarchy over only the players inL ∪ R ∪ H ′ satisfies
∑

i∈L∪R∪H′ ci(e)
∑

i∈L∪R∪H′ ci(o)
≤ max

{

|L|2qh
3 + |H ′|qh + |R|qh

|L| qh
3 + |H ′| + |R| qh

2

, 2

}

,

where the maximum is also taken over all playersh ∈ H ′.

Proof: Note that there must exist someh ∈ H ′ for which
∑

i∈L∪R∪H′ ci(e)
∑

i∈L∪R∪H′ ci(o)
≤

∑

i∈L∪R ci(e)+|H′|ch(e)
∑

i∈L∪R ci(o)+|H′|ch(o) . There-

fore, we have
∑

i∈L∪R∪H′ ci(e)
∑

i∈L∪R∪H′ ci(o)
≤

∑

i∈L∪R ci(e) + |H ′|qhch(o)
∑

i∈L∪R ci(o) + |H ′|ch(o)
≤

∑

i∈L∪R 2ci(o) + |H ′|qhch(o)
∑

i∈L∪R ci(o) + |H ′|ch(o)
,

using the fact thatqi ≤ 2 for i ∈ L∪R. If the left-hand side is at least 2, then we can maximize thisquotient
by keepingci(o) as small as possible fori ∈ L ∪ R. For i ∈ R, we must haveci(e) = qici(o) ≥ ch(e) =

qhch(o), and thusci(o) ≥ qhch(o)
2 . For i ∈ L, we must have3ci(o) ≥ cimin

≥ qhch(o), soci(o) ≥ qhch(o)
3 .

Substituting these lower bounds forci(o) into the quotient, and dividing through bych(o), we get the bound
in the claim.
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We will consider moves that begin with each player moving from his equilibrium strategyei to his social
optimum strategyoi, followed by an attempt to reassign the players inR to the strategies of distinct players
in the setH ′ to reach a new stateo′. Because of the Pareto-optimality ofe, it is impossible to do this in such
a way thatci(o

′) < ci(e) for all players in the game.
The specific moves we consider will take advantage of Lemma A.4.4. Suppose we mark each player in

H ′ independently with probabilityp. We will choosep = αγ whereγ = qh−2
6−2qh

, which from Claim A.4.3 is

a lower bound on the capacity of any playeri ∈ L, and1
4 ≤ α < 1

3 . The expected number of players marked
is thenp|H ′|, and by Lemma A.4.4, for eachi ∈ L, the expected number of marked players that need to be
unmarked so that

∑

h markedmih ≤ qi − 1, is at most2p
γ = 2α. Thus, the expected number of marked players

that need to be unmarked so that this is true for all playersi ∈ L is at most2α|L|. The probabilistic method
then implies there exists some set of players inH ′ of cardinalityp|H ′| − 2α|L| satisfying this property.
From this we can conclude that|R| > p|H ′| − 2α|L|, or elsee is not Pareto-optimal.

We now have two final cases, according to the sign ofp|H ′| − 2α|L|.
If p|H ′| − 2α|L| ≥ 0, we can bound the Pareto price of anarchy fromL ∪ R ∪ H ′ by

∑

i∈L∪R∪H′ ci(e)
∑

i∈L∪R∪H′ ci(o)
≤

|L|2qh
3 + |H ′|qh + (p|H ′| − 2α|L|)qh

|L| qh
3 + |H ′| + (p|H ′| − 2α|L|) qh

2

.

Setting this to be less than52 is equivalent to

α <
2qh|L| + 3pqh|H

′| − 12qh|H
′| + 30|H ′|

6qh|L|
=

1

3
+

|H ′|

|L|

pqh − 4qh + 10

2qh
. (3)

The last quotient in inequality (3) can be seen to be non-negative so long asα ≥ 1
4 andqh ≤ qmax ≤ 8

3 , so
the inequality is certainly satisfied for14 ≤ α < 1

3 . Thus forα in this range we get a Pareto price of anarchy
less than5

2 .

Finally, if p|H ′| − 2α|L| < 0, then we can bound the price of anarchy by
|L|

2qh
3

+|H′|qh

|L|
qh
3

+|H′|
. This is less

than 5
2 when |L|

|H′| > 6 − 15
qh

. Using the fact thatpα = γ = qh−2
6−2qh

, we can verify that this is indeed the case

wheneverp|H ′| − 2α|L| < 0.
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