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Abstract

Most systems based on separation logic consider only restricted
forms of implication or non-separating conjunction, as full sup-
port for these connectives requires a non-trivial notion of variable
context, inherited from the logic of bunched implications (BI). We
show that in an expressive type theory such as Coq, one can avoid
the intricacies of BI, and support full separation logic very effi-
ciently, using the native structuring primitives of the type theory.

Our proposal uses reflection to enable equational reasoning
about heaps, and Hoare triples with binary postconditions to fur-
ther facilitate it. We apply these ideas to Hoare Type Theory, to
obtain a new proof technique for verification of higher-order im-
perative programs that is general, extendable, and supports very
short proofs, even without significant use of automation by tactics.
We demonstrate the usability of the technique by verifying the fast
congruence closure algorithm of Nieuwenhuis and Oliveras, em-
ployed in the state-of-the-art Barcelogic SAT solver.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Type Theory, Hoare Logic, Separation Logic, Monads

1. Introduction

While separation logic [23, 24] has proved to be extremely effective
in reasoning about heap-manipulating programs in the presence of
aliasing, most practical systems such as Smallfoot [5], HIP [20],
SLAyer [4], Space Invader [8] or Xisa [10] address only a restricted
fragment of assertions, roughly described by the grammar:

P:=atomic|emp | T |z—y|PixPa|Jz. P. (¥

Here emp is an assertion which holds of the empty heap, the
“points-to” predicate x — y holds of the singleton heap with
location x whose contents is y, and P; * P> holds of a heap if it can
be split into disjoint subheaps satisfying P; and P», respectively.
One important omission in (*) is the customary connectives
such as implication, conjunction and universal quantification. To
see why these are omitted, consider the entailments (1) I' —
P+« Py, —» Qand 2) ' = P; A P, — @, in the sequent calculus
for BI [22]. Separation assertion logic is a theory of BI, obtained by

specializing the model of heaps and adding the — predicate; thus,
all the above tools perform proof search by using some form of a
sequent calculus for BI. Proving either of the sequents has to break
up the implication at some point, and move P; and P, into the
context I'. But then, one needs two different context constructors in
order to record that P; and P» are conjoined by * in the first case,
and by A in the second. This is semantically important, because in
the first case, Pi and P> hold of separate heaps, while in the second
case, they hold of the same heap. Thus, contexts in the presence of
both *x and A cannot be implemented in the usual manner as lists of
hypotheses, but must be more involved and subject to much more
complicated rules for context manipulation.

There have been a few systems that consider proofs and proof
search in BI [3, 12], but to the best of our knowledge, none has
been extended to support general-purpose reasoning about heaps.
Instead, separation logic systems simply restrict conjunction P A
Q@ and implication P — (@ to assertions P that are pure; that
is, independent of the underlying heap. If P is pure, then list-
like contexts suffice. Of course, this comes at the expense of the
generality of the implemented logic.

An alternative is to explicitly introduce an abstract type of
heaps into the formal logic, and represent separation assertions as
predicates over this type. Then heap variables can explicitly name
the various heaps during proving. For example, the entailments (1)
and (2) can be transformed to I (h1 ® h2), Pr h1, P2 ho b Q (hy
h2) and T h, Py h, P, h + Q h, respectively. Here, the variable
contexts are list-like, h, h1, ho are fresh heap variables, and hq o ho
is a disjoint union of hy and ho.

To someone working in separation logic, adding the type of
heaps as above may look like a significant loss of abstraction,
and explicit reasoning about disjointness and heap union may be
difficult to automate. Even in interactive provers like Coq, where
automation is not always a priority, this may lead to large and
tedious proof obligations. Thus, all Coq embeddings of separation
logic that we know of [16, 17, 1, 11] develop methods for dealing
only with the (*) fragment, extended with pure predicates.

Our first contribution in this paper is to show that by choos-
ing somewhat less straightforward definitions of heaps and of heap
union in Coq, we can obtain effective reasoning in the presence
of abstract heap variables, and hence support full separation asser-
tion logic while using only native hypothesis contexts, and without
excessive proof obligations. The definition uses dependently-typed
programming, and the idea of reflection, whereby decidable opera-
tions on a type are implemented as functions with codomain bool.
Its important aspect is to make heaps satisfy the algebraic proper-
ties of partial commutative monoids [9].

To test our new definition in practice, we apply it to the imple-
mentation of Hoare Type Theory (HTT) [18, 19, 11], which extends
the type theory of Coq to integrate separation logic into it. In such a
setting, one can develop higher-order stateful programs, carry out
proofs of their full functional correctness, and check the proofs me-
chanically. Programs and proofs can be organized into verified li-



braries, with interfaces at an arbitrary level of abstraction, thus en-
abling code and proof reuse. The existing implementations of HTT,
however, either allowed general separation logic [19], but lead to
a prohibitive overhead in the size and number of proof obligations
about heap disjointness [14], or provided aggressive proof automa-
tion by tactics (and hence very short proof scripts), but sacrificed
expressiveness by focusing on the (*) fragment and omitting most
structural rules of separation logic [11].

As our second contribution, we reformulate HTT to support
both properties. We rely on the new definition of heaps to avoid
generating excessive obligations, and keep the proofs short. We
rely on Hoare triples with postconditions that are binary, rather
than unary relations on heaps, to obtain generality. We show that
this setting allows the user to extend the system with his or her
own structural rules, thus implementing new proving strategies.
We develop one such strategy, and confirm that it behaves well
in practice. For example, for the linked data structures such as
stacks, queues and hash tables, we derive explicit full correctness
proofs that are of comparable size to the proof scripts or proof
hints for similar examples in related systems for full verification
like Ynot [11] and Jahob [25]. This despite the fact that the related
systems allow large parts of the proofs to be omitted by the user, as
these will be recovered by the proving automation.

As our third contribution, we demonstrate that the technique
can be effectively applied to more realistic and complex exam-
ples. We verify the fast congruence closure algorithm of Nieuwen-
huis and Oliveras [21], deployed in the state-of-the-art Barce-
logic SAT solver. Our developments are carried out in Ssre-
flect [13], which is a recent extension of Coq that simplifies
dealing with reflection. All our files are available on the web at
http://research.microsoft.com/"aleksn/htt.tgz.

2. Reflecting heap disjointness

The most natural — and we argue, naive — semantic definition
represents heaps as functions from locations to some kind of values.
For example, in [19], heaps are defined as loc—option dynamic,
where the type of locations loc is isomorphic to natural numbers
and dynamic is the record type {tp:Type,val:tp}, packaging a
value val with its type tp. The main problem with this definition
shows up when one considers heap union.

hox  if h1 x = None
hi e ho = fun z.{ Somew if h; x = Some v and hs x = None
None if h1 £ = Somewv and ho x = Somew

We could make a different choice and instead of returning None
when h1 and h2 overlap, give preference to the value stored in one
of them [16, 11]. In either case, we are immediately faced with
proving some basic algebraic properties.

commute : hy e ho = ha e hy
assoc : disjoint hy ho V disjoint hg hg V disjoint hs h1 —
hi e (ho e hg) = (h1 e h2) e hs

where disjoint h1 ha = Vx v.h1 x = Some v — he x = None.
An inadequacy of this definition lies in the disjointness conditions
that prefix the associativity law. Associativity is used so frequently
in practice that discharging its preconditions quickly becomes a
serious burden. If we choose the alternative definition of e which
gives preference to one heap over the other when they overlap, then
commutativity becomes conditional, which is even worse.

Most of this inadequacy can be hidden if one avoids explicit
heap variables and e and uses only separating conjunction * in-
stead. Assertions conjoined by * are explicitly made to operate on
disjoint heaps, so * is commutative and associative, uncondition-
ally. However, it is unclear how to avoid explicit heaps and e in

the presence of non-separating connectives, so it is worth finding
definitions that support unconditional algebraic laws for e.

The main problem is that e is a partial operation which is not
really supposed to be applied to overlapping heaps. The common
way of dealing with partial operations, of course, is to complete
them. We will thus adjoin a new element to the type of heaps — call
this element Undef — which will be used as a default result of e in
case we try to union non-disjoint heaps.

For the latter to work smoothly in Coq, it has to be possible
to decide if two heaps are disjoint. We need a terminating proce-
dure disj:heap—heap—bool, which reflects disjointness; that is,
disj h1 ho evaluates to true if and only if disjoint h; ho holds.
The difference between the two expressions is that disjh; ha is
a boolean, while disjoint k1 h2 is a proposition. The first can be
branched on in conditionals, while the second cannot. We will use
this property of disj to give a new definition of  below. We also
need heaps to be canonical, in the sense that two heaps are equal
iff they store equal values into equal locations. These two require-
ments can be satisfied in many ways, but here we choose to model
heaps as lists of location-value pairs, sorted in some strictly increas-
ing order with respect to locations. In this case, disj is conceptually
easy to define; it merely traverses the lists of location-value pairs,
returning false if it finds an overlap in the location components,
and true when it reaches the end. The definition of heaps and heap
operations then takes roughly the following form.

heap = Undef | Def of {I : list (locxdynamic),
_:sorted [}

empty = Def (nil, sorted_nil)

[ —v] = if z==null then Undef

else Def ((z,v)::nil, sorted_cons x v)
hi e hy = if (hl, hz) is (Def (l17 ,), Def (lz, ,)) then
if disj I 2 then
Def (sort (I1 ++12), sorted_cat Iy I2)
else Undef
else Undef
def h = if his Undef then false else true

Since the definition packages each list [ with a proof of sorted [, the
operations require dependently-typed programming in order to pro-
duce various sortedness proofs on-the-fly. For example, the defini-
tion of e applies the lemma sorted _cat:Vl; l>. sorted(sort(l1 ++12))
to I1 and Il to convince the typechecker that sort(li ++12) is
indeed sorted. Similarly, the definitions of empty heap and sin-
gleton heap [z — wv], require lemmas sorted_nil:sorted nil and
sorted_cons : Vz v. sorted((x, v)::nil).

Of course, we will hide the intricacies of this definition, and
keep heaps as an abstract type, only exposing several algebraic
properties. Chief among them are the following unconditional
equations which, together with the def predicate, show that heaps
with e form a partial commutative monoid. We will use the equa-
tions as rewrite rules for reordering heap unions during proofs,
without the steep price of proving disjointness at every step.

unC : h10h2:h20h1

unCA: h1 . (hg . h3) = hQ . (h1 . h3)
unAC : (hi e ha) e hg = (hy » h3) e ho
unA : (hl o hz) . h,3 = hl L4 (hg . h,3)
unOh : empty e h = h

unhO : heempty =h

Even more important is the def predicate, which we use to state
disjointness of heaps. For example, we can define P, * P, =
fun h.3h1 ha.h = hieha ANdef h A Py hi A P> hs. The real
significance of def, however, is that it can operate on arbitrary heap
expressions, and can thus state simultaneous disjointness of a series
of heaps in a union. This will allow us to freely move between



assertions in separation logic, to assertions with explicit heaps,
without incurring a significant blowup in size. Indeed, consider the
separation logic assertion Py x Pox (P3 AVz. Py ) — Ps, which is
outside the (*) fragment. If we want to destruct this implication and
move P, ..., Py into the Coq hypothesis context, we can make the
heap variables explicit and write

P hi APy hao A P3s hs A (V$P43,’h3) —
def (h1 ® ho ¢ hg) — Ps (h1 e ha o h3)

This is more verbose than the original, but only slightly, as we have
to keep track of only one def predicate per sequence of iterated
*’s. With the naive definition, exposing the heap variables is a non-
starter, as we would have to separately assert that each pair of
heaps in the series hi, h2, hs is disjoint, and possibly later prove
disjointness for any partitioning of the series (e.g., h1 is disjoint
from hs e hg, etc.). This leads to an exponential blowup, whereas
with the new definition, propositions and proofs are proportional to
their separation logic originals. Of course, we will have to devise
methods to make inferences from and about def predicates.

Example 1. A frequently used law related to non-separating con-
junction is the following.

(z = v)*PLA(z = v2)*x Py = v1 = va A(x — v1)*(PLAPa)

The law can be proved in our setting as well, but we have found
that a somewhat different formulation, which essentially states the
cancellation property for e, is used more often.

cancel : def([z = v1] » h1) = ([z = v1] @ b1 = [z = v2] @ )
— v1 = vy Adef hy A h1 = ho.

The conclusion of cancel produces new facts def h1 and h1 = ho
which can be passed to cancel again. This way, we can iterate
and chain several cancellations in one line of proof, obtaining
definedness of sub-unions, out of definedness of larger heap unions.

Example 2. Consider the predicate Iseq p I h, which states that the
heap h contains a singly-linked list headed at pointer p, and stores
elements from the purely-functional list [.
Fixpoint Iseq (p : loc) (I : list T') : heap — Prop =

if is x::xt then

funh.3gh’ . h=[p—x]e[ptl—q]eh’ Alseqqaxth’ Adefh

else fun h.p = null A h = empty

Imagine we want to prove that Iseq is functional in the [ argument;
that is Iseq_func : Vi; ls p h.lseqpl1 h — Iseqplas h — 11 = 2.
We will use the following easy helper lemmas.

Iseq-nil  : VI h.lseqnulll h — I = nil A h = empty
Iseq_cons:Viph.p# null > lseqpl h —

Frgh. l=z:tail INh=[p—z]e[ptl—gq]eh A

Iseq ¢ (tail 1) k' A def h
def_null :Vpz h.def ([p—2x] e h) — p # null

The proof is by induction on ;. If [y = nil, then Iseq p {1 h implies
p = null, and the result follows by applying the lemma Iseq_nil to
Iseq null l2 h. Otherwise, let [y = x1::xt, let IH be the induction
hypothesis Vil p h.lseq p xt h — Iseq p lo h — xt = [2, and let
g1, h1 be such that Iseq ¢1 zt h1 and def ([p—x1] o [p+1->¢q1] »
hi). Call the last two facts H and D, respectively. It suffices to
show Iseq p l2 ([p— z1]e[p+1— qi]eh1) — z1:at = l2. Now,
p # null by def_null and D, so Iseq_cons and Iseq p I ([p— 1] o
[p+1— q1] » h1) obtain x2, g2 and ho, and reduce the goal to

[p—zi] e [p+l1—qi] e hi = [p—ao] o [p+1—-go] ¢ ho
— Iseq g2 (tail l2) he — x1:at = x2 = tail l2

By applying cancel to D and the antecedent of this implication,
and then doing so again on the obtained def predicate and heap
equation, we get x1 = x2,q1 = g2, h1 = ho, further reducing the

goal to Iseq g1 (tail l2) h1 — z1::@wt = x1::tail lo. Now, by IH and
H, we get xt = tail l2, which concludes the proof.

Notice that the proof did not require any overwhelming reason-
ing about heap disjointness, despite the explicit heap variables. In
fact, the whole argument can be captured by the following quite
concise formal proof in Ssreflect.

elim = [ |z1 zt IH] I3 p h; first by case=——; case/Iseq_nil.
move = [q1][h1][—] H D.

case/(Iseq_cons (def_null D)) = 3 [g2][h2][—]-

do 2![case/(cancel D) =< {D} D] =+ .

by case/(IH . . _H) =+ .

In Section 4, we will show how similar chaining of def predi-
cates can be done when reasoning about Hoare triples as well.

3. Hoare type theory for separation logic

The most common approach to formalizing Hoare logic in proof as-
sistants like Coq is by “deep embedding” where one reasons about
the abstract syntax of the programming language in question [16,
17]. One burden with deep embedding is that it requires explicit
manipulation of de Bruijn representation of variables. In contrast,
HTT formalizes separation logic via types; a triple {p}e{q} in
HTT becomes a type ascription e : STsep A (p,q), where A is
the type of the return value of the effectful “command” e. The lan-
guage from which commands are drawn is now Coq itself, which
removes a level of indirection, streamlines the reasoning, and en-
ables HTT to inherit the powerful features of Coq such as induc-
tive types, higher-order functions, type abstraction and first-class
modules. Encoding via types, however, is not straightforward, and
requires a reformulation of the inference rules of separation logic.
These inference rules come in two flavors. The first set includes
rules that infer properties based on the command’s top command.

{emp} move z v {z = v Aemp} {x+— —}storezv{z— v}
{z—v}loadyz{z—vAy =0}

{emp} allocy v {y — v} {z — —}deallocz {emp}

{rtei{at {a}e2{r}
{p}er;ex{r}

The second set includes the structural rules. This set varies across
systems, but here we take it to include the rules of frame, conse-
quence, conjunction and disjunction in both binary and quantified
(i.e., universal and existential) variants.

{p}e{q} p—p {plef{d} d =q

{pxrie{gxr} {p}e{q}
{rte{n} {p}e{e} {r}e{q} =z &FV(e,p)
{pre{a A g2} {r}e{Vz.q}
{pite{q} {p2}e{q} {pa}e{qt =& FV(e,q)
{p1 Vp2}elq} {3z.p}e{q}

Separation logic also includes the rule of substitution, which allows
inferring {o p} o e {o ¢} out of {p} e {¢}, for any variable substi-
tution . We will not need such a rule in this paper, as we will
inherit it from the underlying substitution principles of Coq. Ignor-
ing the rule of frame for a second, the role of the other structural
rules is, informally, to present the view of commands as relations
between the input and output heaps. Intuitively, if {p} e {¢}, then e
implements the relation {(h1, h2) | p h1 — ¢ h2}, and e does not
crash. The structural rules then simply expose how logical connec-
tives interact with the implication in this relation (e.g., implication
distributes over conjunction in the consequent, etc.).

The difficulty with structural rules is that they cannot easily
be encoded as typing rules. One problem is that the universal and
existential rules require a side-condition that x is not a free variable



of e, and this property of e cannot be expressed from within the
system. Another problem is that the structural rules use the same
e both in premisses and conclusions, thus making it impossible
to define the typing judgment by induction on the structure of
expressions, which is one of the main design principles of Coq.

Our proposal for solving these problems is to switch to binary
postconditions. If Hoare triples have binary postconditions, this
quite directly exposes the relational nature of commands, which
is what the role of structural rules was to start with: intuitively, if
a command e has a binary postcondition ¢, then it must implement
a relation on heaps which is a subset of ¢q. Then reasoning about
e can be reduced to reasoning about ¢ and can be carried out in
the logic of assertions, rather than in the logic of Hoare triples.
Of course, this only works smoothly if the assertion logic can
express properties of relations, and quantify over them. This is not
a problem for us, as Coq already includes higher-order logic.

To present the semantics of STsep, we briefly sketch a deno-
tational model based on predicate transformers. The related proofs
are carried out in Coq, and can be found on our web site. Given
the type A, precondition p:heap—Prop, and binary postcondi-
tion g: A—heap—heap—Prop, our predicate transformers are ele-
ments of the type

model p A = ideal p — A — heap — Prop.

The transformers should only “transform” predicates that are
“stronger” than p, so we define ideal p as:

ideal p = {f : heap — Prop | f C p}

where 71 C 7o iff Vh:heap.r1 h — r2 h. We further only need
transformers that are monotone and bounded by g:

ST A(p, q) = {F:model p A | monotone F' A bounded F' ¢}

where monotone F' = Vr; rotideal p.r1 C re = V. Fry x C
F 7y x, and bounded F ¢ = Vrz.F r x C fun h.(Ji.7 i A
g x i h). Out of this type, we now select transformers that satisfy
the frame rule, similar to [7, 19]. Given a pre/postcondition pair s,
we define spacial extension s®, and a new STsep type, as follows.

S.

STsepAs =

(Spre s *‘T, fun z. pre s —o post s x)
TAs

where p — ¢ = {(i,m) | Vi1 h.i = i1 ¢« h — defi —
pi1 — Imi.m =mq ¢ h Adef m A g i1 mq}, and pre and post
are the projections out of the pair. Spacial extension allows that
heaps on which a transformer is applied be extended with portions
that the transformer keeps invariant. For example, transformers in
STsep A (p, q) take a predicate describing a heap ¢ which contains
a subheap 7 satisfying p, and transform it into a predicate stating
that the rest of i (here called h) remains unchanged.

We can now transcribe the inference rules of separation logic
as typing rules about elements of STsep. We only list the relevant
types, and defer to the Coq scripts for the definitions and proofs.
In all the types, ¢ and m stand for the initial and ending heap of
a computation, and y is the name for the return value. We further
adopt names that are traditional in functional programming, and
use return for move, “:=" for store and “!” for load.

return :ITv:A.STsep A (emp,funyim.y =v Aempm)
= : Iz:loc v: A.
STsep unit (z — —,funyim.(z —v)mAy=())
! : z:loc. STsep A (x — —, funyim.Vo. (z — v) 1 —
(x—>v)mAy =)
alloc  : TIv:A.STsep loc (emp, funy i m. (y — v) m)
dealloc : ITz:loc. STsep unit (z — —, funyim.empm Ay = ())

We also have a command for allocation of a block of n consecutive
locations, initialized with the value v:

allocb : ITw: A. IIn:nat. STsep loc (emp, funy i m. m = iterny v)

where iter (n:nat) (y:loc) (v:A):heap = if nisn’+1then [y — v] o
iter n’ (y + 1) v else empty. And, we require a fixed-point com-
binator with the type below. In our ST model, this combinator
computes the least fixed point of the monotone completion of the
argument function.

fix: (Iz:A.STsep (B z) (s z)) — Ilz:A.STsep (B z) (s x))
— Ilz:A.STsep (B z) (s x)

Transcribing the rule for sequential composition is somewhat more
involved. The command e; now returns a value of type A1, and
thus e2 must be a function which takes that value as an argument.
We will have a typing rule as follows

bind : ITe1:STsep A1 s1. Hea:(Ilx: A1. STsep Az (s2 x)).
STsep Az (bind_s s1 s2)

where s1 and sz x are pairs of pre/postconditions for e; and ez z,
respectively, and bind_s s1 sz is the pre/postcondition pair below.

(fun i. pre s} i AVx h.post s} x i h — pre (s2 z)* h,
fun y i m. 3z h. post s} x i h A post (s2 )° y h m).

The precondition in this pair states that in order to execute the se-
quential composition, we must ensure that the precondition pre s?
holds, so that e; can run in a subheap of the initial heap . After e;
is done, we will have an intermediate value x and heap h satisfying
post s} i h, so we need to show pre (s2 x)° h in order to execute
e2. The postcondition states that there exists an intermediate value
x and heap h, obtained after running e; but before running e2. In
the model of ST, bind is implemented as the functional composi-
tion of the transformers for e; and es.

We now turn to the structural rules. For acommand e:STsep A s,
we consider what can be inferred about e just by looking at the type
A and specification s. Quite directly, it must be that pre s ¢ and
post s y ¢ m hold of the initial heap ¢, final heap m and return
value y. Thus, given a property q: A—heap—Prop, we can show
that ¢ y m holds after running e if we can prove verify i s g, where

verifyi sq = presi AVym.postsym — qym.

This definition assumes that s describes how e acts on the full heap
. But sometimes s will be a tighter specification, describing the
action of e only on a subheap of ¢, assuming the invariance of the
rest. In those situations, we can show that ¢ y m holds after running
e, if we can prove verify i s® q.

The verify predicate can now be used to represent Hoare triples
as assertions. For example, given e:STsep s, the separation logic
triple {p} e {q} can be written as Vi.p ¢ — verify ¢ s* ¢. This
property will let us encode the standard structural rules, as well as
many other useful rules, simply as derived lemmas about the verify
predicate. Hence, our system will be inherently extendable, as the
user is free to derive custom reasoning principles and strategies.
Moreover, the definition of verify does not involve the command
e, but only the specification s, making any lemma about verify
independent of our particular model of ST. We will be able in the
future to develop different models for HTT, while preserving the
lemmas and the verification technique we describe here.

As a first illustration of working with verify, we show the fol-
lowing variants of the binary and quantified conjunction rules.

conj : verify i s 1 — verify i s g2 —
verifyi s (funy h.qn y h A g2y h)

all : (Vz:B. verify i s (¢qz)) = B —
verify i s (fun y m.Vz:B. g x y m)



Several interesting twists appear here. First, the rules use impli-
cation and quantification, and cannot be stated in the (*) fragment
alone. Thus, here we are making an essential use of our formulation
of heaps from Section 2. Second, the rules omit the precondition
p ¢ as it is invariant across implications. They also omit the side-
condition z ¢ FV s, because s is declared outside of the scope of .
Finally, the all rule requires that B is a non-empty type. Otherwise
Vz:B. q x y is trivially true, but this does not suffice to establish the
verify predicate, as the latter additionally requires the precondition
to hold of the initial state, no matter what the postcondition is. This
makes the semantics of HTT fault-avoiding [9]; that is, it ensures
that well-typed commands are safe to execute.

On the other hand, the binary and quantified disjunction rules
do not require any special treatment. For example, we can prove

disj : (p1 1 — verify i s q) — (p2 ¢ — verify i s ¢) —
P11V p2i— verifyisgq

but this is just an instance of the usual elimination rule for disjunc-
tion, and therefore does not require a separate lemma.

The frame rule can be formulated in several different ways, but
we choose the following:

frame : verify i s* (funy m. def (m e h) — qy (m o h)) —
def (i o h) — verify (i o h) s° q.

In bottom-up proving, this formulation makes the lemma apply to
goals where the verify predicate has an arbitrary postcondition g,
whereas the usual formulation from the beginning of Section 3
requires first rewriting g into a form ¢’ * r, which may be tedious in
the presence of higher-order operations and binary postconditions.

Finally, we need to connect STsep types with the verify pred-
icate. The structural rules all show how to change a specification
of a command under certain conditions. We match that ability at
the level of typing rules, by introducing a construct for changing an
STsep type of a command, which essentially implements the rule
of consequence.

do:STsep A 51 —
(V1. pre s2 © — verify i s} (fun y m. post s2 yim)) —
STsep A s

In our model of ST, do is an identity predicate transformer. With
this connective, we have embedded all the rules of separation logic
from the beginning of this section.

Example 3. 1t is possible to use Coq’s purely-functional pattern-
matching to build pattern-matching constructs with side-effectful
branches. For example, in the case of booleans, we have:

If : TIb:bool.STsep A s1 — STsep A s2 —
STsep A (if b then s1 else s2)
= fun b ey es.if bthen (do e1) else (do e2)

The do’s in the branches serve to weaken the types of e; into the
common type of the conditional. Each do requires a proof that if b
equals true (resp. false), then s1 (resp. s2) can be weakened into
if b then s1 else so. We omit the proofs here, as Coq can discharge
them by itself. To reduce clutter, in the rest of the paper we blur the
distinction between matches with pure and side-effectful bodies.

Example 4. The following functions insert and remove an element
from the head of a singly-linked list pointed to by p.

insert (p : loc) (z: T) :
STsep loc (funi.3l.lseqpl ¢,
funyim.Vi.lseqpli—lseqy (z :: 1) m) =
do (y « allocb p 2;
Y=
return y)

remove (p : loc) : STsep loc (funi.3l.Iseq p 1 3,
funyim.Vi.lseqpli—
Iseq y (tail 1) m) =
do (if p==null then return p
elsey «+ I(p+1);
dealloc p; dealloc (p + 1);
return y)

Here, we have used the standard abbreviation x < ej;e2 for
bind e1 (fun z. e2), and e1; e2 when = ¢ FV(ez). For both func-
tions, the STsep type gives the specification that we want to prove
about the functions. The preconditions show that the functions can
execute safely, as long as the initial heap contains a valid linked
list, no matter what values [ are stored in it. The postconditions
show that the new list now contains « :: [ and tail [, respectively,
and that the returned value y is a pointer to the new head.

The specification pattern seen in these examples, where the
predicate from the precondition is, somewhat redundantly, repeated
in the postcondition, is characteristic to the setting with binary
postconditions, though it is by no means always used. Fortunately,
this redundancy will not cause an explosion in proof obligations,
and in Section 4, we show how to quickly remove it.

The typing rules are designed so that they can now generate the
proof obligation required to verify the commands. For insert, we
get

Vpxi. (Jl.lseqpli) —
verify 7 (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _. return_s y))*®
(funy m.Vi.Iseq pli — lseqy (z::1) m)

and for remove

Vpi. (. lseqpli) —
verify i (if p == null then return_s p
else bind_s (reads (p + 1)
(fun z. bind_s (dealloc_s p)
(fun _. bind_s (dealloc_s (p + 1))
fun _.returns x))))*
(fungm.Vi.lseqpli — lseq g (tail I) m)

The proof obligations essentially copy the original command, ex-
cept that the various primitive commands are replaced by their pre/-
postcondition pairs from the beginning of this section. For example,
return_s p is the pair (emp, funy ¢ m.y = pAempm), read_s x is
(x— —,funyim.Yv.(x —v)i— (z — v)mAy =v),etc. In
the case of a call to an already verified non-primitive side-effectful
command (not used in insert and remove, but used in commands
in Section 5), the command is not copied, but the pre/postcondition
pair from the type of the called command is simply spliced in. Calls
to fix are similar, except that a separate obligation is generated to
prove that the body of fix satisfies the provided type. Thus, the type
of the fixed point serves as the loop invariant.

4. Structural rules and verification

As structural rules are now simply lemmas over the verify predi-
cate, one is free to prove and use additional ones, that may be use-
ful for the proof at hand. For example, the following is a variant
of the rule for universal quantifiers, which pulls a quantifier and an
implication out of a postcondition, both at the same time.

allLimp : (3z:B.pz) —
(Vx:B.px — verifyi s (funym. gz ym)) —
verify i s (funy m.Vo:B.px — gz ym)
This rule can be used to simplify the proof obligation from Exam-

ple 4, by removing the occurrence of Iseq from the postcondition.
If p uniquely determines x in the current context of hypotheses,



we may use the following rule to instantiate the quantifier with the
unique value for x.

allsimp, :V&:B. (Vz:B.px — t = x) — verifyis (¢t) —
verify i s (funy m.Vo:B.px — gz ym)

Sometimes, p may not uniquely determine z, but determines “‘just
enough” of x to establish g. For example, p may force x to be in an
equivalence relation to a predetermined ¢. Then we are justified in
instantiating  with ¢, as long as ¢ only makes statements about the
common equivalence class of = and t.

allLimp, : V&:B. (Vz:Bym.px — qtym — qx ym) —
verify i s (g t) —
verify i s (funy m.Vo:B.px — qx ym)

We also have additional rules to help us discharge the proof
obligations generated by typechecking. As Example 4 shows,
these should be lemmas about how verify interacts with pre/-
postcondition pairs such as bind_s, read_s, etc. The main lemma
of the system serves to simplify proof obligations that are ob-
tained when verifying commands of the form bind e; e> where
e1, ez are abritrary commands, with types e; : STsep A1 s1 and
es : [lz:A1.STsep Az (s2 ), respectively.

bnd_do : pre s1 i1 —
(Vx 4. post s1 x i1 1] —
def (3] o i2) — verify (i} ® i2) (s2 2)* ) —
def (’il . iz) — verify (i1 . iz) (bind,s S1 82). T

Applying this lemma to a goal of the form def (i1 o i) —
verify (i1 ¢ i2) (bind_s s1 s2)° r essentially corresponds to “sym-
bolically executing” e; in the subheap ¢;. The lemma first issues a
proof obligation that the precondition pre s; of e; is satisfied in 71,
then replaces i1 with a fresh heap variable i}, inserts the knowledge
that i} satisfies the postcondition of e, and reduces to verifying the
continuation ez in the changed heap.

We can further instantiate this lemma to exploit additional
knowledge that we may have about e;. For example, if e; starts
with one of the primitive commands, we have the following in-
stances, where we omit the def predicate if the command does not
change the heap.

bnd_ret : verify i (s2 v)® r — verify i (bind_s (return_s v) s2)® r

bnd_read : verify ([z =] ¢ 4) (s2v)® r —
def ([x —v] o 7) —

verify ([x — v] @ i) (bind_s (read_s A x) s2)® r

bnd_write : (def ([z —v] i) — verify ([z —v] @ 4) (s2 ())®r) —
def ([x = w] e 1) —
verify ([x — w] o ¢) (bind_s (write.s z v) $2)® 7
bnd_alloc : (Va:loc.def ([x —v] o i) —

verify ([x —v] 1) (s2 x)® r) —
def i — verify i (bind_s (alloc_sv) s2)® r
bnd_allocb : (Vz:loc. def (iternz v  3) —
verify (iternz v o 3) (s2 )® r) —
def i — verify i (bind_s (allocb_s v n) s2)® r

bnd_dealloc : (defi — verify i (s2 ())® r) —
def ([z > v] o 4) —
verify ([x — v] o i) (bind_s (dealloc_s z) s2)® r
bnd_bnd : verify i (bind_s t1 (fun z.bind_s (t2 =) 52))® 7 —
verify ¢ (bind_s (bind_s 1 t2) s2)® r

The above lemmas apply only when verifying compound com-
mands (i.e., command starting with a bind). We need another set

of lemmas for atomic commands. For example:
val_ret : 7 vi— defi — verify i (returnsv)® r,

and similarly for the other commands.

Verification of any given command in HTT then works basically
by applying one of the lemmas above, or one of the structural rules,
as may be required, updating the heap accordingly, and stripping
off the commands from the goal one at a time. This process inter-
acts very well with the partiality of heap union from Section 2, as
we have instrumented the lemmas to chain the def predicates from
one application to the next, changing the predicates to reflect the
changes to the heaps. During verification, it may be necessary to
reorder the involved heap unions and bring the subheap required
by the current command to the top of the expression, or else the
corresponding lemma will not apply. The reordering, however, is
quite inexpensive, using the unconditional rewrite rules from Sec-
tion 2. Once the commands are exhausted, we have to show that
the heap obtained at the end satisfies the desired postcondition. At
this point, we usually require some mathematical knowledge that is
specific to the problem at hand, and has to be developed separately.

Example 5. We now proceed to discharge the proof obligation for
insert. We first break up the obligation into p:loc, x:T', I:list T',
hypothesis H:lseq p [ i, and the goal

verify ¢ (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _.return_s y))*
(funy m.Vi.Iseq pli — lseqy (z::1) m).

We apply the lemma all_imp; to remove the quantifier over / and
the antecedent Iseq p [ ¢ from the postcondition, to obtain

verify ¢ (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _.returns y))*
(funy m.lseqy (z::1) m).

The hypothesis of all_imp, is easily satisfied, using H and the
lemma Iseq_func proved in Example 2. Next, by hypothesis H and
helper lemma Iseq_def:lseq p I i — def i, we obtain def i. Using
this and bnd_allocb, we reduce the goal to

def (([y—p] » [y+1—p] » empty) o i) —

verify (([y—p] » [y+1-p] » empty) = 1
(bind_s (writes y x) (fun _.return_s y))*®
(fun y m.lseqy (z::l) m)

where y is a fresh variable. We next want to bring the singleton heap
[y — p] to the top of the union, so we remove empty, and apply the
associativity law. After that, we can apply bnd_write to obtain

verify ([y — ] o [y+1—p] « 7)
(returns y)®
(fun y m.lseq y (z::1) m)

under hypothesis D : def ([y — ] o [y+1—p] » i). By val_ret, it
suffices to show Iseq y (z::1) ([y — z] o [y+1— p] i), which by
definition of Iseq equals

dgh fy—ale[y+loplei=[y—a]ely+l—gleh’
Nlseq gl W' Adef ([y—x] o [y+1—p] ¢ ).

One can now instantiate g and b’ with p and 1, respectively, or alter-
natively, introduce unification variables, and let the system instan-
tiate g and A from the heap equation in the goal. The argument can
be summarized by the following Ssreflect proof.

apply: (all_imp, 1) = [?|]; first by apply: Iseq_func.

apply: bnd_allocb (Iseq_def H) = y; rewrite unh0 unA.

apply: bnd_write = D; apply: val_ret = /.

by do leconstructor.

5. Fast congruence closure

To put our proof technique to the test, we implemented and verified
in HTT one of the fastest practical algorithms for computing the



congruence closure of a set of equations, designed by Nieuwen-
huis and Oliveras [21], and used in the Barcelogic SAT Solver
whose efficiency has been confirmed in various SAT-solving com-
petitions [2]. The algorithm simultaneously uses several stateful
data structures such as arrays, hash tables and linked lists, which
all interact in very subtle ways, governed by highly non-trivial in-
variants.

The algorithm starts with a set of equations between expres-
sions, all of which contain symbols drawn from a finite set symb.
Each expression is either a constant symbol, or an application, i.e.
our type of expressions is

exp = const of symb | app of exp X exp.

Of course, we will use the customary shorthand and, for example,
abbreviate const ¢ = app (const ¢1) (const ¢2) as ¢ = ¢1 ca.

Definition 6. A binary relation R on expressions is monotone iff
Vf1 f2 e1 e2.(f1,f2) € R — (e1,e2) € R — (f1 e1,f2e2) € R.
R is a congruence iff it is monotone and an equivalence. The
congruence closure of R is the smallest congruence containing R,
and is defined as closure R = ({C|C is congruence and R C C'}.

The algorithm internally maintains a data structure that repre-
sents the congruence closure of a set of equations. Its interface
consists of two methods: (1) merge (t1 = t2), extends the cur-
rently represented congruence with a new equation ¢1 = 2, that is,
it combines the congruence classes of ¢1 and ¢2, and (2) check ¢, t2
determines whether the pair (¢1, t2) belongs to the represented con-
gruence. Additionally, the algorithm assumes that the equations
passed to merge are in flattened form in the sense that they are
either simple equations of the form ¢; = co or compound equa-
tions of the form ¢ = ¢1 c2, where c, c1, co are symbols, rather
than general expressions. We will need a data type of equations to
capture this distinction, which we define as

Eq = simp of symb X symb | comp of symb X symb x symb.

Any system of equations can be brought into a flattened form. For
example, the non-flat equation ¢ = c; c2 c3 can be flattened by in-
troducing a fresh symbol c4, and then decomposing into two equa-
tions: ¢ = c4 c3 and ¢4 = c1 c2. It turns out that in the setting of
SAT solvers, it suffices to flatten the expressions from the original
SAT formula once and for all, as the intervening computations of
congruence closure will not require additional flattening and gen-
eration of new symbols [21].

Knowing the number of symbols ahead of time makes it pos-
sible to improve the efficiency by storing some of the data into
arrays rather than linked structures. For example, the algorithm
stores: (1) The array r of representatives. For each symbol ¢, r[c] is
the selected representative of the congruence class of c. To reduce
clutter, we will abbreviate r[c] simply as ¢’. (2) The array clist of
class lists: for each representative symbol c, clist[c] is (a pointer
to) the (singly-linked) list of symbols in the congruence class of c.
(3) The array ulist of use lists: for each representative symbol c,
ulist[c] is (a pointer to) the (singly-linked) list of compound equa-
tions ¢c; = c2 c3, where ¢ = ¢; or ¢ = ¢4 or both. If during
the execution c stops being a representative because its congruence
class is merged into another, the use list of ¢ gives an upper bound
on the set of expressions and equations affected by this change. To
restore the internal soundness of the data structures, it will suffice
to reprocess only the equations in ulist[c]. (4) The pointer p to the
list of pending simple equations. If the equation ¢; = ¢ is in the
pending list, it indicates that the congruence classes of ¢; and c2
need to be merged in order to restore the internal soundness. When
the pending list is empty, the data structures are in a consistent state.
(5) The lookup table htab, is a hash table storing for each pair of
representatives (71, 72) some compound equation ¢ = ¢1 ¢z such
that 1 = ¢} and 72 = c5. If no such equation exists, the lookup

Module Array
array : finType — Type — Type
shape:array IT — (I — T) — Prop
read :Ila:array I T.11k:1.
STsep T (funi.3f.shapea f 1,
funyim.Vf.shapea fi —

y=fkANi=m)
write :Ila:array I T.I1k:1.I1z:T.
STsep unit (fun . 3f.shapea f i,
funyim.Vf.shapea fi —
shape a f[k — z] m)
Module Hashtab
kvmap : eqType — Type — Type
shape :kvmap KV — (K — option V') — Prop
lookup : ITt:kvmap K V.11k:K.
STsep (option V') (fun ¢. 3f.shapet f i,
funyim.Vf.shape fi —
shapet fmAy=fk)
insert : Ilt:kvmap K V.11k: K. Tlz:V.
STsep unit (fun . 3f.shapet f i,
funyim.Vf.shapet fi—
shape t f[k — Some x] m)

Figure 1. Relevant parts of array and hash table signatures.

table contains no entries for (71, 72). This table is the main data
structure from which one can read off the represented congruence.
For example, to check if the pair (¢, ¢1 ¢2) is in the congruence, it
suffices to search the lookup table for the key (c}, c5). If the lookup
returns some equation d = d; d, then d’ is the representative sym-
bol for ¢1 ¢z, and (c, c1 ¢2) is in the congruence iff d’ = ¢'.

Since we require arrays and hash tables, we implemented li-
braries for both, but here only summarize in Figure 1 the signatures
of the type constructors, predicates and methods that we use in this
section. The actual libraries are much more general, and are avail-
able on our web site. Each module exports a type representing the
data structure. Both type array I T and kvmap K V are imple-
mented as loc, but the signature hides that fact. Arrays expect the
index type I to be finite, and hash tables expect the type of keys
K to be eqType, that is, it supports a decidable equality function
==: K — K — bool. The later is also a property required of
finType’s. Both modules export an abstract predicate shape, which
relates the layout of each data structure with a mathematical entity
that the structure represents. In the case of arrays, this entity is a
function of type I — T, and in the case of hash tables, it is a func-
tion of type K — option V, reflecting the fact that the hash table
need not contain a value for every key. In our libraries, we also cap-
ture the fact that the hash table can contain values for only finitely
many keys, but for this discussion, the above weaker abstraction
suffices. For both arrays and hash tables, we write f[k — z] to
describe a function obtained from f by changing the value at k into
x. Now the stateful data structures described above can be declared
as the following five variables which are global to the methods of
the algorithm: r : array symb symb, clist, ulist : array symb loc,
htab : kvmap (symb x symb) (symb x symb x symb), and p : loc.

Since we are interested in the functional verification of the
algorithm, we need to capture the contents of these arrays, hash
tables and linked lists as appropriate mathematical values. We do
this with the following record type.

data = {rep : symb — symb; class : symb — list symb;
use : symb — list (symb X symb x symb);
lookup : symbxsymb — option (symbxsymbxsymb);
pending : list (symb x symb))}

The intention is that, given D:data, the function rep D represents
the contents of the array 7, and similarly class D, use D, lookup D
and pending D capture the contents of clist, ulist, htab and p. The



formal correspondence is established by the following predicate.

shape’ (D : data) (h : heap) : Prop :=
et ut:symb — loc. 3g:loc.
Array.shape r (rep D) *
Array.shape clist ct x ®c€symb Iseq (ct ¢) (class D c)
Array.shape ulist ut * &) .cqymp Iseq (ut c) (use D c) *
Hashtab.shape htab (lookup D) x*
p — q * Iseq ¢ (pending D)) h
Here we freely use the separation logic * (as defined in Section 2)
and its iterated version @ In the proofs, we will unfold their
definitions in terms of explicit heaps, when needed. The shape’
predicate captures the layout of the structures in the heap, but we
also need to capture the relationships between these structures.
shape (R : exp X exp — Prop) (h : heap) : Prop =
dD:data. shape' D h A rep_idemp D A class_inv D A
use_inv D A lkp_inv D A use_lkp_inv D A
lkp_use_inv D A pending D = nil A CRel D =, R

In shape, we list that the array r must be idempotent:
rep_.idemp D = Vc.rep D (rep D ¢) =rep D c.
The class lists invert the representative array:
class.inv D =Vzc. (rep Dx==c) = (z € class D c).
Use lists store only equations with appropriate representatives:

use_inv D =Vaccyca. a € reps D —
(e,c1,c2) €useDa —repDeci =aVrepDes =a,

where reps D is the list of symbols that are representatives, that is,
they appear in the range of the function rep D. Next, the hash table
stores equations with appropriate representatives:

lkp_inv D =Vabccica. a €Ereps D — b € reps D —

lookup D (a,b) = Some (¢, c1,c2) = repDci =aArepDca =h.

For each equation in a use list, there is an appropriate equation in
the hash table, and vice versa:

use_lkp_inv D =Vaccyca. a € reps D — (c,c1,c2) Euse D a —
3d dy da.lookup D (rep D c1,rep D ¢2) = Some (d,d1,d2) A
repDci =repDdi ANrepDcyg=repDdaArepDc=repDd

lkp_use_inv D =Vabddi d2. a € reps D — b € reps D —
lookup D (a,b) = Some (d, d1,d2) —
(Fcer . (¢,c1,c2) Euse Da A
repDci =aArepDca=bArepDc=repDd)A
(Jecer ca. (c,c1,c2) Euse Db A
repDci =aArepDca=bArepDc=repDd).

The shape predicate will be used for the specification of
the main methods of the algorithm. Hence it also requires that
pending D = nil, i.e., the structures are in a consistent state, and
CRel D =, R, i.e., the relation R is the congruence represented
by the structures. Here, CRel D is defined as the congruence clo-
sure of all the equations in lookup D, pending D as well as the
equations ¢ = rep D c, for all c. The operator =, is the equality
on relations: R1=,Rs = Vt. R1 t < R t. On the other hand,
shape’ will be used to specify the helper functions, where some of
the above properties may be temporarily invalidated.

The main functions of the algorithm are now implemented as
HTT code in Figure 2. The type of merge quite directly states that
merge starts with the internal state representing some congruence
relation R, and changes the internal state to represent the congru-
ence closure of the extension of R with the argument equation eq.
We emphasize that the code does not contain any other kind of an-
notations, such as for example framing conditions, and in general
looks very close to what one would write in an ordinary imperative
language. If merge is passed a simple equation a = b, it places the
pair (a, b) onto the head of the pending list, and invokes the helper
function hpropagate, defined in Figure 4, to merge the congruence

1. merge (eq: Eq) :

2 STsep unit (fun i. 3R.shapep R i,
3 funyim.VR.shapep Ri —
4 shape p (closure (R U rel_of eq)) m) =
5 match eq with

6 simpa b=

7 do (g < !p;

8 x < insert ¢ (a, b);

9 pi=u;

10 hpropagate)

11 | compcer e =

12. do (¢} <« Array.read 7 c1;

13. ¢}, < Array.read r ca;

14 v < Hashtab.lookup htab (¢}, cb);

15 match v with

16 None =

17 Hashtab.insert htab (¢, ch) (¢, c1,c2);
18 u1 + Array.read ulist c|;

19 x + insert uy (c,c1,c2);

20 Array.write ulist ¢} x;

21. ug < Array.read ulist ch;

22. x + insert uz (¢, c1,c2);

23. Array.write ulist ¢}, x

24. | Some (b,by,b2) =

25. q <+ p;

26. x < insert g (¢, b);

27. pi=x;

28. hpropagate

29. end)

30. end

31. check (t1 t2 : exp) :

32. STsep bool (fun i. 3R. shapep R 4,

33. fun y i m.VR.shapep Ri — shapep Rm A
34. y = true <> R (t1,t2)) =
35. do (u1 < hnorm t1;

36. ug < hnorm ta;

37. return (u1 ==wu2))

where

rel_of (eq : Eq) : exp X exp — Prop :=
match eq with
simpab = funt. t.1 = const a A t.2 = const c2
| compccy co = funt. t.1 = constc A
t.2 = app (const ¢1) (const c2)
end

Figure 2. The main functions of the fast congruence closure algo-
rithm, and their specifications.

classes of a and b (lines 7-10). If merge is passed a compound
equation ¢ = c; ¢z, then the lookup table is queried for an equation
v of the form b = by bz, where b; and ¢; have the same representa-
tives (lines 12—14). If such an equation exists, then to extend R with
eq, it suffices simply to join the congruence classes of b and c. This
is accomplished by putting the pair (b, ¢) on the top of the pending
list, and again invoking hpropagate (lines 25-28). If an equation
v does not exist, then it suffices to insert the equation ¢ = c¢1 c2
directly into the lookup table for future queries (line 21), and add
the equation to the use lists of ¢ and c5 (lines 18-23).

The type of check declares that the return boolean value y shows
whether the pair (¢1, t2) is in the congruence relation R represented
by the internal state. check first “normalizes” ¢; and t2; that is, it
expresses t1 and t2 in terms of representatives, using the helper
function hnorm defined in Figure 3. Then the obtained normal
forms are compared for syntactic equality (lines 35-37).

Next we have to implement and verify the helper functions.
There will be four of them: hpropagate and hnorm are directly
used by the main functions, and hjoin_class (Figure 5) and hjoin_use
(Figure 6), are called from within hpropagate. In the verification



38. hnorm (¢t : exp) =
39. fix (fun hnorm (t:exp).

40. do (match t with

41. const a =

42. a’ < Array.read r a;

43. return (const a’)

44. | appti t2 =

45. uy1 < hnormty;

46. ug < hnorm ta;

47. match w1, uz with

48. const w1, const wy =

49. v — Hashtab.lookup htab (w1, w2);
50. match v with

51. None =- return (app u1 u2)
52. | Some (b,,) =

53. b’ < Array.read r b;

54. return (const b’)

55. end

56. | -,- = return (app u1 u2)

57. end

58. end)) ¢

Figure 3. Helper function for normalizing expressions.

of the helper functions we adopt the following strategy. We first im-
plement the purely-functional variants propagate, norm, join_class
and join_use, which is possible since the logic of Coq already in-
cludes pure lambda calculus with terminating recursion, and all of
the helper functions are terminating loops. The pure variants will
operate on the values of the data record, rather than on the pointers
themselves. Of course, the pure variants do not exhibit the desired
run-time complexity and efficiency, so we only use them for speci-
fication and reasoning. In particular, as a first phase of verification,
we prove that each helper method exhibits the same behavior on the
underlying stateful structures as that described by its pure variant.
The first phase takes care of all the reasoning about pointers, alias-
ing and heap disjointness. Then in the second phase, we show that
the pure variants combine to correctly compute congruence clo-
sure, but our task will be simplified by not having to worry about
pointers anymore.

In Figures 3-6, we present the helper functions, but omit the
definitions of the pure variants, as these — we hope — can easily be
reconstructed from our discussion of the code. To reduce clutter, we
also omit the types and the various loop invariants, since at this first
phase these are not particularly involved: they all basically state that
the helper function and its pure variant correspond to each other.
For example, the types of hnorm and hpropagate are

normT = Ilt:exp. STsep exp (fun . 3D.shape’ p D i,
funyim.VD.shape'p Di —
shape'p D m Ay = norm D t)

propagateT = STsep unit (fun . 3D.shape'p D1,
funyim.VD.shape' p Di —
shape’ p (propagate D) m)
which show that the result of hnorm is specified by norm, and the
behavior of hpropagate is specified by propagate.

We start our description with the function hnorm for computing
normal forms of expressions, given in Figure 3. If the expression
t is a constant symbol a, then the normal form of ¢ is the repre-
sentative a’, as read from the array of representatives (lines 42-43).
Otherwise, t is an expression of the form ¢; ¢2. To compute its nor-
mal form, we recursively compute the normal forms w1 and u2 of t1
and 2, respectively (lines 45-46). In case u; and u» are themselves
constant symbols w; and w2, then the lookup table may contain
an equation of the form b = w; ws which would imply that the
normal form should be b’ (lines 53-54). Otherwise, we return the
application u1 us2 as the result (lines 51 and 56).

59. hpropagate =

60. fix (fun loop (z:unit).

61. do (g « !p;

62. if g==null then return ()
63. else

64. eq < q;

65. next < (g + 1);

66. p = next;

67. dealloc g;

68. dealloc (¢ + 1);

69. a’ < Array.read r (eq.1);
70. b’ «+ Array.read r (eq.2);
71 if a’ ==b’ then loop ()
72. else

73. hjoin_class a’ v';

74. hjoin_use a’ V';

7. loop (1)) ()

Figure 4. Helper function for propagating the pending equations.

76. hjoin_class (a’ b’ : symb) =

77. fix (fun loop (x : unit).

78. do (ua < Array.read clist a’;
79. ub < Array.read clist b’;
80. if ua ==null then return()
81. else

82. s + lua;

83. next + (ua + 1);

84. ua + 1 := ub;

85. Array.write clist b ua;
86. Array.write clist a’ next;
87. Array.write r s b’;

8. loop () ()

Figure 5. Helper function for merging the class lists of a’ and ',

The function hpropagate from Figure 4 is the main loop of
merge. Its role is to “empty” the list of pending simple equations,
by merging these equation into the other structures. Each pend-
ing equation is represented as a pair of symbols eq = (a,b), de-
noting that the congruence classes of a and b should be merged.
hpropagate reads off the equations from the pending list one-
by-one (lines 61-68), computes the representatives a’ and b" of
the first and second elements of eq, respectively (lines 69-70). If
a’ and b' are equal, then the equation is redundant. Otherwise,
hpropagate calls helper functions hjoin_class and hjoin_use to
merge the classes of a’ and b and adjust the various pointers and
array fields accordingly (lines 71-75).

The function hjoin_class takes two distinct symbols a’ and b’
and modifies the state of the algorithm so that the congruence class
of a’ is appended onto the congruence class of 4. This involves
obtaining the pointers to the class list of a’ and b" (lines 78-79),
then iterating to remove the head symbols s from the class list for
a’, push s onto the class list of b’ (lines 82-86), and then change
the representative of s to b (line 87). A call to hjoin_class joins
the immediate data representing the congruence classes of a’ and
b’, but a bit more work has to be done. For example, if the lookup
table stores equations of the form a’ b = c and ' b = d, then
merging a’ and b’ must be followed by a merge of c and d, in order
to restore internal consistency. This is the job of hjoin_use.

A naive implementation of hjoin_use may be simply to tra-
verse the lookup table, merging outstanding classes as they are
discovered. A more efficient implementation, shown in Figure 6,
exploits the property that it suffices to revisit only the equations
stored in the use list of a’. If the use list of a’ contains the equation
c1 = c¢2 c3, represented as a triple eqc = (c1, 2, ¢3), we query the
lookup table for the key (ch,c3) (lines 97-99). If some equation
eqd = (d1,ds2,ds) is discovered, then ¢j = db, c5 = dj, by the
invariants of the algorithm, but there is no guarantee that c¢; and



89. hjoin_use (a’ b’ : symb) =
90. fix (fun loop (z:unit).

91. do (ua « Array.read ulist a’;
92. if ua ==null then return ()
93. else
94. eqc <« lua;
95. next < !(ua + 1);
96. Array.write ulist o’ next;
97. ¢, < Array.read 1 eqgc.2
98. ¢} < Array.read r egc.3
99. v <— Hashtab.lookup htab (c}, c);
100. match v with
101. None =
102. Hashtab.insert htab (c}, c5) eqc;
103. ub < Array.read ulist b’;
104. ua + 1 := ub;
105. Array.write ulist b’ ua;
106. loop ()
107. | Some eqd =
108. dealloc ua;
109. dealloc (ua + 1);
110. p' <+ Ip;
111. q < insert p’ (eqc.1,eqd.1);
112. pi=gq;
113. loop ()
114. end)) ())

Figure 6. Helper function for adjusting the use lists and the lookup
table, after the class lists of of a’ and b’ have been merged.

d are congruent. Thus, we schedule the pair (c1, d1) for merging,
by placing it onto the pending list (lines 110-112). If the query re-
turns no equations, then we simply insert the equation eqc into the
lookup table (line 102). We also move eqc onto the use list of b’, to
be considered in the future, when and if b’ is equated to some other
symbol (lines 103—-105). Either way, eqc has to be removed from
the use list of a’ (lines 96 and 108—109).

The first phase of verification now closely follows the approach
outlined in Section 4, of applying the various structural lemmas and
reordering heap unions so as to indicate the subheap that the current
command modifies. For all the six methods in this section, it took
276 lines of proof to complete. One minor hurdle was defining the
iterated operator @& from the shape’ predicate. It is best to iterate
@ over finite sets, rather than lists, which was our first attempt. If
s is a set of symbols, one can show

z€s—>PPi=Paxx

i€s

®
ies\{z}
We used this lemma to expose the heaps storing the class and use
lists of concrete symbols. If s were a list, the corresponding lemma
requires a spurious condition that s contains x only once. In our
development, we were able to reuse Ssreflect’s extensive library of
finite sets over types with decidable equality.

The second verification phase mainly involves showing that
the various properties listed in the shape predicate hold after the
execution of the pure variants of the helper functions. For example,
one of the easier properties was that the predicate class_inv is
preserved between the calls to the helper functions in hpropagate
(lines 73-74), and after the call to hpropagate in merge (lines 10
and 28). It is established by the following lemmas.

Pa.

1.a’ # b — class_inv D — class_inv (join_class D a’ t’)
2.a' #b — class_inv D — class_inv (join_use D a’ V')
3. class_inv D — class_inv (propagate D)

Most of the other predicates from the definition of shape were
much more difficult to establish, primarily because they are actu-
ally invalidated at various point of the execution, but are then re-
established at the end. Thus, we needed to generalize these predi-

cates to properly capture how the code works at all stages, and then
show that at the end of merge, the more general versions imply the
original definitions.

This was, of course, the most difficult part of the whole develop-
ment, as the dependencies between the congruence data structures
are extremely subtle. The generalizations ended up being very in-
volved, and took about 120 lines of Coq definitions, just to state.
For example, it turns out that in cases when the pending list is not
empty, the appropriate generalization of the use_lkp_inv property
which relates the use lists with the lookup table is:

use_lkp_inv0 D =Vacecy ca. a € reps D — (¢,c1,c2) €Euse D a —
3d dy d2.lookup D (rep D c1,rep D c2) = Some (d, d1,d2) A
repDc1 =repDdi Arep D co =rep D da Asimilar D cd

Here, similar D c d holds if the symbols c and d are in the congru-
ence relation generated by the equations equations * = rep D x
for all x, as well as the equations in the pending list. The prop-
erty of similarity justifies the algorithm to save time when process-
ing the use lists, and sometimes omit equations as redundant, on
the grounds that their involved symbols will eventually be equated
once the pending list is emptied.
After an equation ' = b’ is removed from the pending list
in hpropagate, and before a call to hjoin_class a’ b’ (line 73),
another property use_lkp_invl D is required. This one replaces
similar D c d in the definition of use_lkp_inv0 with similarl D ¢ d
which makes it possible that ¢ and d are related via an equation
a’ = b’ as well. Yet another property use_lkp_inv2 is required to
describe the relation between the use lists and the lookup table after
a call to hjoin_class, and during the call to hjoin_use, etc. Similar
generalizations have to be made to lkp_use_inv as well, and then
one has to prove that these properties indeed hold in the various
stages of the program. In these proofs, we may need to rely on
some of the other invariants. For example, we have a lemma
join_classP (D : data) (a’b’ : symb) :

a' €repsD — b €reps D — a’ #b —

rep-idemp D — use_inv D — lkp_inv D —

use_lkp_invl D a’ b’ — lkp_use_invl D a' b’ —

use_lkp_inv2 (join_class D a’ b’) a’ b’ A

Ikp_use_inv2 (join_class D a’ b’) a’ ¥’

which states that the above properties hold after a call to hjoin_class,
assuming that appropriate properties held before the call. Then
similar lemmas have to be proved for join_use and propagate in all
combinations with the properties from the definition of shape.

Altogether, these proofs took 645 lines of proof, reflecting the
subtlety of the invariants of the fast congruence closure algorithm,
which is required for its practical efficiency. Of course, before
we were able to carry out these proofs, we first had to develop a
number of facts about congruences and closures, define the data
types, define the pure variants of the helper function and prove them
terminating, and define the generalized invariants themselves. This
background development took another 632 lines.

6. Related work

HTT and Ynot Just like the current paper, the original implemen-
tations of HTT and Ynot [18, 19] used Hoare triples with binary
postconditions. However, those papers did not recognize the con-
nection between binary postconditions and structural rules — which
we proposed here — and ended up developing lemmas that did not
lead to particularly streamlined proofs. In addition, that work relied
on a naive definition of heaps from Section 2, which further caused
an explosion in proof obligations about disjointness. This motivated
Chlipala et al. [11] to revert to the (*) fragment, unary postcondi-
tions and no explicit heap variables, as well as to develop a number
of tactics for automating the reasoning in separation logic. This
is an appealing idea, as binary postconditions come with a redun-



dancy exhibited in our Example 4, where the type of remove had
to repeat the precondition as an antecedent of an implication in the
postcondition. With unary postconditions, one could write this type
simply as remove p : STsep loc (Iseq p, fun q. Iseq g (tail 1)). The
latter, however, opens the question of where and how the variable [
should be bound. One cannot use the ordinary dependent function
type and write I1l:list 7. STsep loc (Iseq p [, fun q. Iseq ¢ (tail 1)),
because this allows [ to be used in commands of the above type,
and [ is supposed to only be a logical variable; that is, it can appear
in specifications, but not in the commands. Chlipala et al. propose
that logical variables be coerced into proofs, and write roughly

TTi:inhabited(list T').
STsep loc (let pack ! = z inlseq p (,
fun q. let pack | = z in Iseq ¢ (tail [))

where inhabited A is the proposition 3x:A. T, and pack : A —
inhabited A is the single constructor of proofs of this proposition.
Coq’s type theory makes it impossible to “unpack” ! within an
executable program, and Coq’s extraction mechanism for remove
would, appropriately, not produce a closure which abstracts over .

This coercion, however, comes with significant logical com-
plexity. Even if [ cannot be unpacked in a command e, it does not
prevent [ from being used in e, albeit packed. Thus, it is not clear
that the technique can support structural rules where one needs to
test if [ ¢ FV(e), such as the rule for existentials. Indeed, the sys-
tem in [11] does not support this rule (nor any other structural rule
beyond frame and consequence), which is a restriction that leads to
loss of abstraction. The existential rule is frequently used to push
a logical variable into the pre/post-conditions, so that it can be re-
moved later by applying the rule of consequence. Without the ex-
istential rule, it seems that logical variables must remain bound in
the type, even if they are not needed anymore.

Working with the coercions further requires adding an axiom
pack_injective:VT":Set. Vx y:T. pack x = pack y — = = y, which
compares proofs for equality, and is thus unsound in the presence
of important features such as proof irrelevance or classical logic.

It may be possible that the recent extension of the calculus of
constructions with a variant of intersection types [6], may offer
a way out of these problems, and allow structural rules to be
encoded as typing rules. But even then, the question remains which
rules should be included. Our formulation of HTT with binary
postconditions completely avoids all of the above problems. It is
also very extendable, as it allows the user to derive his or her
own structural rules, to implement custom verification strategies.
Moreover, binary postconditions do not lead to proof explosion, as
the redundancy that they exhibit can be removed in proofs merely
by one application of all_imp, or one of the related lemmas. And
indeed, on the examples that we have implemented in common with
[11], our developments are of comparable size, even if we do not
use significant automation by tactics. For example, in the release
current at the time of our writing, the verifications of stacks, queues
and hash tables in the system of [11] take respectively 86, 199
and 397 lines of code, specifications, lemmas, tactics and proofs,
whereas in our system, these numbers are 66, 116 and 160.

Separation logic in type theory Appel [1] defines heaps as finite
lists of location-value pairs, just like we do, but does not reflect the
disjointness predicate. As a consequence, he observes that “... the
nonlinear conjunction of separation logic is not well suited to the
assumptions of tactical provers...”, and restricts to the (*) fragment.
Marty et al. [16] define heaps in a similar way too, but they use
a union operator which is not commutative, and thus also treat
only the (*) fragment. McCreight [17] defines heaps following the
memory model of Leroy et al. [15], which allows him to define a
union operator that is commutative and associative, but his operator
does not propagate the disjointness information, and hence there is

no equivalent of our def predicate, which is crucial for efficient
work. Thus, McCreight too admits only the (*) fragment. All of
these systems target deeply embedded programs and languages,
unlike HTT which uses shallow embedding.

Verification of linked data structures Jahob [25] is another
higher-order system in which verification of interesting pointer-
based data structures has been performed. Jahob computes the veri-
fication conditions for Java programs, and then feeds the conditions
to automatic provers for discharging. The programmer has the op-
tion of including proof hints with the code, which can be used to
guide the automation. In this respect, the proof hints in Jahob are
similar to our explicit proofs. In the case of hash tables, Jahob takes
343 lines of proof hints and invariants, which is comparable in size
to our proofs. One important difference between HTT and Jahob is
that Java, unlike Coq, has not been designed with proofs in mind,
and thus lacks the ability to package together programs, properties
and proofs, and parametrize libraries with respect to such packages.
We have used this in Section 5 to parametrize the implementation
of congruence closure with respect to the signatures for arrays and
hash tables. This makes it possible for us to freely plug in any
verified implementation of these signatures, without changing the
code or the proofs of congruence closure. We have not found a dis-
cussion or a theorem in [25] of whether similar substitutability is
possible in Jahob as well.

Higher-order separation logic Krishnaswami et al. [14] has re-
cently developed a higher-order separation logic for programs writ-
ten in the core fragment of an ML-like language, and applied it
to a verification of several object-oriented patterns. One difference
from HTT is that the language in [14] is simply typed, and thus
does not support first-class structures and functors that come for
free with the dependent types of Coq, and are important for pro-
gramming and proving in-the-large. Birkedal et al. [7] consider a
higher-order separation logic and its interaction with higher-order
frame rules and parametricity. In the current paper, we have not
considered these issues, but believe that it is an important future
work to build models for HTT that reconcile these features with
dependent types.

7. Conclusions

The most common approach to program verification in separation
or other logics is to investigate how to automate the discharging
of the proof obligations in order to reduce the burden on the human
verifier. Automation works very well when the properties of interest
are relatively simple, but in the case of full functional verification, it
is frequently insufficient. In this paper, we instead investigate how
to exploit the structuring primitives of type theory, to prevent the
proof obligations from being generated in the first place.

Our first example was a new definition of heaps, which let
us work efficiently with ordinary logical connectives, without in-
ducing a blowup in the proof obligations about heap disjointness.
The definition involved advanced type theoretic features, such as
dependently-typed programming and reflection, but its main point
was to ensure that heaps satisfy the algebraic properties of a par-
tial commutative monoid (PCM). PCMs have been considered be-
fore in the semantics of separation logic [9], but here we show that
if heaps are PCMs, then it becomes quite practical to unfold the
definitions of separating connectives such as *, and work directly
with heap variables and disjoint unions. The latter was necessary
for supporting full separation logic.

Our second example was embedding a separation logic for par-
tial correctness into type theory with the use of binary postcondi-
tions, which made it possible to derive custom structural rules that
helped in proofs. Moreover, stating the rules in this way essentially



depends on our definition of heaps, because it requires a logic that
efficiently supports implication and universal quantification.

In our developments, we have kept our proofs fully explicit,
always naming hypotheses as they are introduced, destructed, or
modified. We have found this explicitness to be quite helpful when
refactoring larger developments, such as our verification of fast
congruence closure. When proofs are explicit, making changes
to the definitions and lemmas usually causes the proofs to break
exactly at the point where the error introduced by the changes
actually is, rather than somewhere at random later in the proof.

Furthermore, we have used only a few simple custom-made
tactics that we describe below, and have otherwise relied on only
the standard primitives of Coq and Ssreflect for introduction and
destruction of hypotheses, lemma application and rewriting. All of
these have direct analogues in the natural deduction rules for Coq.
Despite the full explicitness and general absence of automation, our
proofs are — perhaps somewhat surprisingly — still quite short and
comparable in size with other approaches, such as Ynot and Jahob,
which use very aggressive automation. This was the case even in
our proof of congruence closure, which was large, but the phase
of the proof related to pointers and aliasing was proportional to
the verified program. We attribute this property to the very prudent
design of the Ssreflect language and libraries. The tactics that we
have used are the following.

1. heap_cancel takes a hypothesis in the form of an equation be-
tween heaps, such as for example [z - vi] ® b1 = [z > v2] o
h2, and derives consequences from it, like v1 = v2 and h; =
h2, which it prepends onto the goal of the sequent. In exam-
ple 2, we have used a simple iteration of the cancellation lemma
for this purpose, but heap_cancel is more general, as it does not
rely on the order of heaps in the union.

2. heap_congr is dual to heap_cancel. It takes a goal in the form
of a heap equation, and produces subgoals needed to discharge
it. In the above example, it would produce exactly the subgoals
V1 = V2 and hl = hg.

3. defcheck takes an implication of the form def h; — def ha,
where h; and ho are unions of heaps, and tries to discharge it
by matching all the locations in the heaps in hs to locations in
the heaps in h1, irrespectively of the order in which they appear.
Thus, it effectively checks if the domain of the union hs is a
subdomain of hi.

4. hauto combines the generation of unification variables (the

econstructor primitive of Coq), with heap_cancel and defcheck.

5. heval pattern-matches against the goal in the form of a verify
predicate, to determine the first command appearing in it,
so that it can choose which bnd_command or val_command
lemma from Section 4 to apply.

All of these tactics are conceptually simple, and only modify goals
of sequents, but not the hypotheses; thus they do not break the ex-
plicit nature of our proofs. However, because Coq’s tactic language
is interpreted and untyped, we have still found them to be some-
what slow in practice, and quite difficult to debug and maintain. In
future work, we plan to remove even these tactics, and replace them
with equivalent lemmas and rewrite rules, which could possibly be
built using again ideas based on reflection.
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