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Abstract
We present a discriminative substring de-
coder for transliteration. This decoder
extends recent approaches for discrimi-
native character transduction by allow-
ing for a list of known target-language
words, an important resource for translit-
eration. Our approach improves upon
Sherif and Kondrak’s (2007b) state-of-the-
art decoder, creating a 28.5% relative im-
provement in transliteration accuracy on
a Japanese katakana-to-English task. We
also conduct a controlled comparison of
two feature paradigms for discriminative
training: indicators and hybrid generative
features. Surprisingly, the generative hy-
brid outperforms its purely discriminative
counterpart, despite losing access to rich
source-context features. Finally, we show
that machine transliterations have a posi-
tive impact on machine translation quality,
improving human judgments by 0.5 on a
4-point scale.

1 Introduction

Transliteration occurs when a word is borrowed
into a language with a different character set.
The word is transcribed into the new character
set in such a way as to maintain rough phonetic
correspondence; for example, the English word
hip-hop becomes 2#7;#7 [hippuhoppu],
when transliterated into Japanese. A task fre-
quently of interest to the NLP community is back-
transliteration, where one seeks the original word,
given the borrowed form.

We investigate machine transliteration as a
method to handle out-of-vocabulary items in a
Japanese-to-English translation system. More
often than not, this will correspond to back-
transliteration. Our goal is to prevent the copy-
ing or deletion of Japanese words when they are

missing from our statistical machine translation
(SMT) system’s translation tables. This can have
a substantial impact on the quality of SMT output,
transforming translations of questionable useful-
ness, such as:

Avoid using a5J�A�K account.1

into the far more informative:

Avoid using a Freemail account.

Though the techniques we present here are
language-independent, we focus this study on
the task of Japanese katakana-to-English back-
transliteration. Katakana is one of the four char-
acter types used in the Japanese writing system
(along with hiragana, kanji and Roman alpha-
bet), consisting of about 50 syllabic characters.
It is used primarily to spell foreign loanwords
(e.g., !G�L�( [chokoreeto] — chocolate),
and names (e.g., �JS(S [kurinton] — Clin-
ton). Therefore, katakana is a strong indicator
that a Japanese word can be back-transliterated.
However, katakana can also be used to spell sci-
entific names of animals and plants (e.g., �B
[kamo] — duck), onomatopoeic expressions (e.g.,
0�C0�C [bashabasha] — splash) and for-
eign origin words that are not transliterations (e.g.,
;!� [hochikisu] — stapler). These un-
transliterable cases constitute about 10% of the
katakana words in our data.

We employ a discriminative substring decoder
for machine transliteration. Following Sherif and
Kondrak (2007b), the decoder operates on short
source substrings, with each operation producing
one or more target characters, as shown in Fig-
ure 1. However, where previous approaches em-
ploy generative modeling, we use structured per-
ceptron training to discriminatively tune parame-
ters according to 0-1 transliteration accuracy. This

15J�A�K is romanized as [furiimeeru]



ト ム ソン

tho m son

Figure 1: Example substring derivation

allows us to test novel methods for the use of tar-
get lexicons in discriminative character transduc-
tion, allowing our decoder to benefit from a list of
known target words. Perhaps more significantly,
our framework allows us to test two competing
styles of features:

• sparse indicators, designed to capture the
same channel and language modeling data
collected by previous generative models, and

• components of existing generative models,
used as real-valued features in a discrimina-
tively weighted, generative hybrid.

Note that generative hybrids are the norm in
SMT, where translation scores are provided by
a discriminative combination of generative mod-
els (Och, 2003). Substring-based transliteration
with a generative hybrid model is very similar to
existing solutions for phrasal SMT (Koehn et al.,
2003), operating on characters rather than words.
Unlike out-of-the-box phrasal SMT solutions, our
generative hybrid benefits from a target a lexicon.
As we will show, this is the difference between a
weak baseline and a strong competitor.

We demonstrate that despite recent successes in
discriminative character transduction using indi-
cator features (Jiampojamarn et al., 2008; Dreyer
et al., 2008), our generative hybrid performs sur-
prisingly well, producing our highest translitera-
tion accuracies. Researchers frequently compare
against a phrasal SMT baseline when evaluating a
new transduction technique (Freitag and Khadivi,
2007; Dreyer et al., 2008); however, we are careful
to vary only the features in our comparison. Con-
founding variables, such as alignment, decoder
and training method, are held constant.

We also include a human evaluation of
transliteration-augmented SMT output. Though
human evaluations are too expensive to allow a
comparison between transliteration systems, we
are able to show that adding our transliterations
to a production-level SMT engine results in a sub-
stantial improvement in translation quality.

2 Background

This work draws inspiration from previous work
in transliteration, which we divide into similarity
and transduction-based approaches. We also dis-
cuss recent successes in discriminative character
transduction that have influenced this work.

2.1 Similarity-based transliteration

In similarity-based transliteration, a character-
based, cross-lingual similarity metric is calculated
(or bootstrapped) from known transliteration pairs.
Given a source word s, its transliteration is the tar-
get word t most similar to s, where t is drawn from
some pool of candidates. This approach may also
be referred to as transliteration discovery.

Brill et al. (2001) describe a katakana-to-
English approach with an EM-learned edit dis-
tance, which bootstraps from a small number of
examples to learn transliteration pairs from query
logs. Bilac and Tanaka (2005) harvest translitera-
tion candidates from comparable bilingual corpora
(conference abstracts in English and Japanese),
and use distributional as well as phonetic simi-
larity to choose among them. Sherif and Kon-
drak (2007a) also bootstrap a learned edit dis-
tance for Arabic named entities, with candidate
pairs drawn from sentence or document-aligned
parallel text. Klementiev and Roth (2006) boot-
strap an SVM classifier trained to detect true
transliteration-pairs. They draw candidates from
comparable news text, using date information to
provide further clues as to aligned named entities.
Bergsma and Kondrak (2007) extend the classifi-
cation approach with features derived from a char-
acter alignment. They train from bilingual dic-
tionaries and word-aligned parallel text, selecting
negative examples to target false-friends.

The work of Hermjakob et al. (2008) is par-
ticularly relevant to this paper, as they incorpo-
rate a similarity-based transliteration system into
an Arabic-to-English SMT engine. They employ
a hand-crafted cross-lingual similarity metric, and
use capitalized n-grams from the Google n-gram
corpus as candidates. With such a huge candidate
list, a cross-lingual indexing scheme is designed
for fast candidate look-up. Their work also ad-
dresses the question of when to transliterate (as
opposed to translate), a realistic concern when de-
ploying a transliteration component in SMT. This,
however, is not of so much concern for katakana,
as it is used primarily for loanwords.



2.2 Transduction-based transliteration

The approach presented in this paper is an instance
of transduction-based transliteration, where the
source word is transformed into a target word us-
ing a sequence of character-level operations. The
parameters of the transduction process are learned
from a collection of transliteration pairs. These
systems do not require a list of candidates, but
many incorporate a target lexicon, favoring target
words that occur in the lexicon. This approach is
also known as transliteration generation.

The majority of transliteration generation ap-
proaches are based on the noisy channel model,
where a target t is generated according to
P (t|s) ∝ P (s|t)P (t). This approach is typi-
fied by finite-state transliteration, where the var-
ious stages of the channel model are represented
by finite state transducers and automata. Early
systems employed a complex channel, passing
through multiple phonetic representations (Knight
and Graehl, 1998; Bilac and Tanaka, 2004), but
later versions replaced characters directly (Al-
Onaizan and Knight, 2002). Sherif and Kondrak
(2007b) extend this approach with substring oper-
ations in the style of phrasal SMT, and show that
doing so improves both accuracy as well as space
and time efficiency. Note that it is possible to in-
corporate a target lexicon by making P (t) a word
unigram model with a character-based back-off.

Li et al. (2004) present an alternative to the
noisy channel with their joint n-gram model,
which calculates P (s, t). This formulation allows
operations to be conditioned on both source and
target context. However, the inclusion of a candi-
date list is more difficult in this setting, as P (t) is
not given its own model.

Zelenko and Aone (2006) investigate a purely
discriminative, alignment-free approach to
transliteration generation. The target word is
constructed one character at a time, with each
new character triggering a suite of features,
including indicators for near-by source and target
characters, as well a generative target language
model. Freitag and Khadivi (2007) propose a dis-
criminative, latent edit distance for transliteration.
In this case, training data need not be aligned in
advance, but a latent alignment is produced during
decoding. Again, the target word is constructed
one character at a time, using edit operations
that are scored according to source and target
context features. Both approaches train using a

structured perceptron, as we do here. However,
these models represent a dramatic departure from
the existing literature, while ours has clear analogs
to the well-known noisy-channel paradigm, which
allows for useful comparisons and insights into
the advantages of discriminative training.

2.3 Discriminative character transduction
While our chosen application is transliteration,
our decoder is influenced by recent successes in
general-purpose discriminative transduction. Ji-
ampojamarn et al. (2008) describe a discrimina-
tive letter-to-phoneme substring transducer, while
Dreyer et al. (2008) describe a discriminative char-
acter transducer with a latent derivation structure
for morphological transformations. Both models
are extremely effective, but both rely exclusively
on indicator features; they do not explore the use
of knowledge-rich generative models. Our indica-
tor system uses an extended version of the Jiampo-
jamarn et al. (2008) feature set.

3 Methods

We adopt a discriminative substring decoder for
our transliteration task. A structured percep-
tron (Collins, 2002) learns weights for our translit-
eration features, which are drawn from two broad
classes: indicator and hybrid generative features.

3.1 Structured perceptron
The decoder’s discriminative parameters are
learned with structured perceptron training. Let
a derivation d describe a substring operation se-
quence that transliterates a source word into a tar-
get word. Given an input training corpus of such
derivations D = d1 . . . dn, a vector feature func-
tion on derivations ~F (d), and an initial weight vec-
tor ~w, the perceptron performs two steps for each
training example di ∈ D:

• Decode: d̄ = argmaxd∈D(src(di))

(
~w · ~F (d)

)

• Update: ~w = ~w + ~F (di)− ~F (d̄)

where D(src(d)) enumerates all possible deriva-
tions with the same source side as d. To improve
generalization, the final feature vector is the aver-
age of all vectors found during learning (Collins,
2002). Accuracy on the development set is used
to select the number of times we pass through all
di ∈ D.

Given the above framework, we require training
derivations D, feature vectors ~F , and a decoder to



carry out the argmax over all d reachable from a
particular source word. We describe each of these
components in turn below.

3.2 Training derivations

Note that the above framework describes a max-
derivation decoder trained on a corpus of gold-
standard derivations, as opposed to a max-
transliteration decoder trained directly on source-
target pairs. By building the entire system on the
derivation level, we side-step issues that can oc-
cur when perceptron training with hidden deriva-
tions (Liang et al., 2006), but we also introduce the
need to transform our training source-target pairs
into training derivations.

Training derivations can be learned unsu-
pervised from source-target pairs using char-
acter alignment techniques. Previously, this
has been done using an EM-learned edit dis-
tance (Ristad and Yianilos, 1998), or generaliza-
tions thereof (Brill and Moore, 2000; Jiampoja-
marn et al., 2007). We opt for an alternative align-
ment technique, similar to the word-aligner de-
scribed by Zhang et al. (2008). This approach
employs variational EM with sparse priors, along
with hard length limits, to reduce the length of
substrings operated upon. By doing so, we hope to
learn only non-compositional transliteration units.

Our aligner produces only monotonic align-
ments, and does not allow either the source or tar-
get side of an operation to be empty. The same
restrictions are imposed during decoding. In this
way, each alignment found by variational EM is
also an unambiguous derivation. We align our
training corpus with a maximum substring length
of three characters. The same derivations are used
to train all of the transliteration systems tested in
this paper.

3.3 Features

We employ two main types of features: indicators
and hybrid generative models. Indicators detect
binary events in a derivation, such as the presence
of a particular operation. Hybrid generative fea-
tures assign a real-valued probability to a deriva-
tion, based on statistics collected from training
derivations. There are few generative features and
each carries a substantial amount of information,
while indicators are sparse and knowledge-poor.

We treat these two classes of features as distinct.
We do so because researchers often use either one

approach or the other.2 Furthermore, it is not
clear how to optimally employ training derivations
when combining generative models and sparse in-
dicators: generative models need large amounts of
data to collect statistics and relatively little for per-
ceptron training,3 while sparse indicators require
only a large perceptron training set.

We can further divide feature space according
to the information required to calculate each fea-
ture. Both feature sets can be partitioned into the
following subtypes:

• Emission: How accurate are the operations
used by this derivation?

• Transition: Does the target string produced
by this derivation look like a well-formed tar-
get character sequence?

• Lexicon: Does the target string contain
known words from a target lexicon?

Indicator Features
Previous approaches to discriminative character
transduction tend to employ only sparse indica-
tors (Jiampojamarn et al., 2008; Dreyer et al.,
2008). This is because sparsity is not a major con-
cern in character-based domains, and sparse indi-
cators are extremely flexible.

Our emission and transition indicator features
follow Jiampojamarn et al. (2008). Emission indi-
cators are centered around an operation, such as
[( → tho]. Minimally, an indicator exists for
each operation. Many more source context fea-
tures can be generated by conjoining an operation
with source n-grams found within a fixed win-
dow of C characters to either side of the operation.
These source context features have minimal com-
putational cost, and they allow each operator to ac-
count for large, overlapping portions of the source,
even when the substrings being operated upon are
small. Meanwhile, transition indicators stand in
for a character-based target language model. Indi-
cators are built for each possible target n-gram, for
n = 1 . . . K, allowing the perceptron to construct
a discriminative back-off model. Development ex-
periments lead us to select C = 3 and K = 5.

2Generative hybrids are often accompanied by a small
number of unsparse indicators, such as operation count.

3Perceptron training on the same data used for model
construction can lead to overconfidence in model quality.
One can address this problem by using a large number of
modeling-training folds (Collins et al., 2005), but we do not
do so here.



Indicator lexicon features are novel to this work.
Given access to a target lexicon with type fre-
quencies, we opt to create features that indicate
the frequencies of generated target words accord-
ing to coarse bins. Experiments on our develop-
ment set lead to the selection of 5 frequency bins:
[< 2,000], [< 200], [< 20], [< 2], [< 1]. To keep
the model linear, these features are cumulative;
thus, generating a word with frequency 126 will
result in both the [< 2, 000] and [< 200] features
firing. Note that a single transliteration can po-
tentially generate multiple target words, and doing
so can have a major impact on how often the lex-
icon features fire. Thus, we employ another fea-
ture that indicates the introduction of a new word.
We expect these frequency indicators to be supe-
rior to a word-level unigram model, as they allow
the designer to select notable frequencies. In par-
ticular, the bins we have selected do not give any
advantage to extremely common words, as these
are generally less likely to be transliterated.

Hybrid Generative Features
We begin with the three components of the gener-
ative noisy channel employed by Sherif and Kon-
drak (2007b). Their transliteration probability is:

P (t|s) ∝ PE(s|t) ·max [PT (t), PL(t)] (1)

Inspired by the linear models used in SMT (Och,
2003), we can discriminatively weight the compo-
nents of this generative model, producing:

wE log PE(s|t) + wT log PT (t) + wL log PL(t)

with weights w learned by perceptron training.
These three models conveniently align with our

three feature subtypes. Emission information is
provided by PE(s|t), which is estimated by maxi-
mum likelihood on the operations observed in our
training derivations. Including source context is
difficult in such a model. To compensate for this,
all systems using PE(s|t) also use composed op-
erations, which are constructed from operation se-
quences observed in the training set. This removes
the length limit on substring operations.4 PT (t)
provides transition information through a charac-
ter language model, estimated on the target side

4Derivations built by our character aligner use opera-
tions on substrings of maximum length 3. To enable per-
ceptron training with composed operations, once PE(s|t)
has been estimated by counting composed operations in the
initial alignments, we re-align our training examples with
those composed operations to maximize PE(s|t), creating
new training derivations.

of the training derivations. In our implementation,
we employ a KN-smoothed 7-gram model (Kneser
and Ney, 1995). Finally, PL(t) is a unigram tar-
get word model, estimated from the same type fre-
quencies used to build our lexicon indicators.

Since we have adopted a linear model, we are
no longer constrained by the original generative
story. Therefore, we are free to incorporate other
SMT-inspired features: PE′(t|s), target character
count, and operation count.5

Feature summary
The indicator and hybrid-generative feature sets
each provide a discriminative version of the noisy
channel model. In the case of transition and lexi-
con features, both systems have access to the ex-
act same information, but encode that information
differently. The lexicon encoding is the most dra-
matic difference, with the indicators using a small
number of frequency bins, and the generative uni-
gram model providing a single, real-valued feature
that is proportional to frequency.

In the case of their emission features, the
two systems actually encode different information.
Both have access to the same training derivations,
but the indicator system provides source context
through n-gram indicators, while the generative
system does so using composed operations.

3.4 Decoder

Our decoder builds upon machine translation’s
monotone phrasal decoding (Zens and Ney, 2004),
or equivalently, the sequence tagging algorithm
used in semi-Markov CRFs (Sarawagi and Co-
hen, 2004). This dynamic programming (DP) de-
coder extends the Viterbi algorithm for HMMs
by operating on one or more source characters (a
substring) at each step. A DP block stores the
best scoring solution for a particular prefix. Each
block is subdivided into cells, which maintain the
context necessary to calculate target-side features.
We employ a beam, keeping only the 40 highest-
scoring cells for each block, which speeds up in-
ference at the expense of optimality. We found
that the beam had no major effect on perceptron
training, nor on the system’s final accuracy.

Previously, target lexicons have been used
primarily in finite-state transliteration, as they
are easily encoded as finite-state-acceptors (Al-
Onaizan and Knight, 2002; Sherif and Kondrak,

5Character and operation counts also fit in the indicator
system, but did not improve performance in development.



2007b). It is possible to extend the DP decoder to
also use a target lexicon. By encoding the lexicon
as a trie, and adding the trie index to the context
tracked by the DP cells, we can provide access to
frequency estimates for words and word prefixes.
This has the side-effect of creating a new cell for
each target prefix; however, in the character do-
main, this remains computationally tractable.

4 Data

4.1 Wikipedia training and test data

Our katakana-to-English training data is de-
rived from bilingually-linked Wikipedia titles.
Any Japanese Wikipedia article with an entirely
katakana title and a linked English article results
in training pair. This results in 60K transliteration
pairs; we removed 2K pairs for development, and
2K for held-out testing.

The remaining 56K training pairs are quite
noisy. As mentioned earlier, roughly 10% of our
examples are simply not transliterable, but ap-
proximate Wikipedia title translations are an even
more substantial source of noise. For example,
�S4E����@ [konpyuutageemu] — com-
puter game is aligned with the English article
Computer and video games. We found it ben-
eficial, in terms of both speed and accuracy, to
do some coarse alignment-based pruning. After
alignment, the operations used by all derivations
are counted. Any operation that is used fewer than
three times is eliminated, along with any deriva-
tion using that operation. The goal is to eliminate
loose transliteration pairs from our data, where a
word or initial is included in one language but
not the other. This results in 40K training pairs.
Despite the noise in the Wikipedia data, there are
clear advantages in using it for training transliter-
ation models: it is available for any language pair,
it reflects recent trends and events, and the amount
of data increases daily. As we will see below, the
model trained on this data performs well on a test
set from a very different domain.

All systems use development set accuracy to
select their meta-parameters, such as the number
of perceptron iterations, the size of the source-
context window, and the n-gram length used in
character language modeling. The hybrid gener-
ative system further splits the training set, using
38K derivations for the calculation of its emission
and transition models, and 2K derivations for per-
ceptron training its model weights.

4.2 Machine translation test data
In order to see how effective our transliterator
is on out-of-domain test data, we also created
test data from a log of translation requests to
a web-based, Japanese-to-English translation ser-
vice.6 Out of 5,000 randomly selected transla-
tion requests, there are 312 cases where katakana
source words are out-of-vocabulary for the MT
system, and therefore remain untranslated. We
created a reference translation (not necessarily a
transliteration) for these katakana words by man-
ually selecting the corresponding English word(s)
in the sentence-level reference translation, which
was produced independently from this experiment.
This test set is quite divergent from the Wikipedia
titles: only 17 (5.5%) of its katakana words are
found in the Wikipedia training data, and six of
these did not agree on the English translation.

4.3 English lexicon
Our English lexicon is derived from two over-
lapping data sources: the English gigaword cor-
pus (LDC2003T05; GW) and the language model
training data for our SMT system, which contains
selections from Europarl, gigaword, and web-
harvested text. Both are lowercased. We com-
bine the unigram frequency counts from the two
sources by taking the max when they overlap. The
resulting lexicon has 5M types, 2.5M of which
have frequency 1.

5 Experiments

In this section, we summarize development exper-
iments, and then conduct a comparison on our two
transliteration test sets. We report 0-1 accuracy: a
transliteration is only correct if it exactly matches
the reference. For the comparison experiments,
we also report 10-best accuracy, where a system
is correct if it includes the correct transliteration
somewhere in its 10-best list.

5.1 Baselines
We compare our systems against a re-
implementation of Sherif and Kondrak’s (2007b)
noisy-channel substring decoder. This uses the
same PE , PT and PL models as our hybrid gen-
erative system, but employs a two-pass decoding
scheme to find the max transliteration according
to Equation 1. It represents a purely generative
solution using otherwise identical architecture.

6http://www.microsofttranslator.com



Since our hybrid generative system implements
a model that is very similar to those used in phrasal
SMT, we also compare against a state-of-the-art
phrasal SMT system (Moore and Quirk, 2007).
This system is trained by applying the standard
SMT pipeline to our Wikipedia title pairs, treat-
ing characters as words, using a 7-gram character-
level language model, and disabling re-ordering.
Unfortunately, the decoder’s architecture does not
allow the use of a word-level unigram model, re-
ducing the usefulness of this baseline. Instead, we
include the target lexicon as a second character-
level language model. This baseline indicates the
level of performance one can expect by applying
phrasal SMT straight out of the box.

Comparing the two baselines qualitatively, both
use a combination of generative models inspired
by the noisy channel. Sherif and Kondrak em-
ploy a word-level unigram model without discrim-
inatively weighting the models, while the Phrasal
SMT approach uses weights derived from max-
BLEU training without word-level unigrams. The
obvious question of what happens when one does
both will be answered by our hybrid generative
system.

5.2 Development experiments

Table 1 shows development set accuracy for a
number of systems and feature types, along with
the model size of the corresponding systems,
where size is measured in terms of the number of
non-zero discriminatively-trained parameters. The
accuracy of the Sherif and Kondrak baseline is
shown as SK07. Despite its lack of discrimina-
tive training, word-level unigrams allow the SK07
baseline to outperform Phrasal SMT . In future ex-
periments, we compare only against SK07.

The indicator system was tested using only op-
eration indicators, with source context, transition
and lexicon indicators added incrementally. All
feature types have a substantial impact, with the
lexicon providing the boost needed to surpass the
baseline. Note that the inclusion of the five fre-
quency bins is sufficient to decrease the overall
feature count of the system by 600K, as much
fewer mistakes are made during training.

Development of the hybrid generative system
used the SK07 baseline as a starting point. The re-
sult of combining its three components into a flat
linear model, with all weights set to 1, is shown
in Table 1 as Linear SK07. This violation of

Table 1: Development accuracy and model size

System Acc. Size
Baseline Phrasal SMT 30.7 8

SK07 33.5 –
Indicator Operations only 3.6 6.8K

+ source context 23.9 2.8M
+ transition 28.6 3.1M
+ lexicon 44.2 2.5M
+ gen. lexicon 44.1 3.0M

Generative Linear SK07 31.7 –
+ perceptron 42.4 3
+ SMT features 44.1 6
+ ind. lexicon 44.3 12

conditional independence assumptions results in a
drop in accuracy. However, the + perceptron line
shows that setting the three weights with percep-
tron training results in a huge boost in accuracy,
nearly matching our indicator system. Adding fea-
tures inspired by SMT, such as PE′(t|s), elimi-
nates the gap between the two.

5.3 Development discussion
Considering their differences, the two systems’
proximity in score is quite surprising. Given the
character domain’s lack of sparsity, and the large
amount of available training data, we had expected
the hybrid generative system to behave only as
a strong baseline; instead, it matched the perfor-
mance of the indicator system. However, this
is not unprecedented: discriminatively weighted
generative models have been shown to outperform
purely discriminative competitors in various NLP
classification tasks (Raina et al., 2004; Toutanova,
2006), and remain the standard approach in statis-
tical translation modeling (Och, 2003).

Examining the development results on an
example-by-example basis, we see that the two
systems make mostly the same mistakes: for 87%
of examples, either both systems are right, or both
are wrong. The remainder represents a (relatively
small) opportunity to improve through system or
feature combination: an oracle that perfectly se-
lects between the two scores 50.6.

One opportunity for straight-forward combina-
tion is the target lexicon. Because lexicon frequen-
cies are drawn from an independent word list, and
not the transliteration training derivations, there is
no reason why both systems cannot use both lex-
icon representations. Unfortunately, doing so has



Table 2: Test set comparisons

Wikipedia MT
System Acc. Top 10 Acc. Top 10
SK07 33.5 57.9 38.8 57.0
Generative 43.0 65.6 42.9 58.3
Indicator 42.5 63.5 43.6 57.7

little impact, as is shown in each system’s final row
in Table 1. Adding the word unigram model to
the indicator system results in slightly lower per-
formance, and a much larger model. Adding the
frequency bins to the generative system does im-
prove performance slightly, but attempts to com-
pletely replace the generative system’s word uni-
gram model with frequency bins resulted in a sub-
stantial drop in accuracy.7

5.4 Test set comparisons

Table 2 shows the accuracies of the systems se-
lected during development on our testing data. On
the held-out Wikipedia examples, the trends ob-
served during development remain the same, with
the generative system expanding its lead. Mov-
ing to 10-best accuracies changes little, except for
slightly narrowing the gap between SK07 and the
discriminative systems.

The second column of Table 2 compares the
systems on our MT test set. As discussed ear-
lier, this data is quite different from the Wikipedia
training set, and as a result, the systems’ differ-
ences are less pronounced. 1-best accuracy still
shows the discriminative systems having a definite
advantage, but at the 10-best level, those distinc-
tions are muted.

Compared with the previous work on katakana-
to-English transliteration, these accuracies do not
look particularly high: both Knight and Graehl
(1998) and Bilac and Tanaka (2004) report accu-
racies above 60% for 1-best transliteration. We
should emphasize that this is due to the difficulty
of our test data, and that we have tested against a
baseline that has been shown to outperform Knight
and Graehl (1998). The test data was not filtered
for noise, leaving untransliterable cases and loose
translations intact. The accuracies reported above
are under-estimates of real performance: many
transliterations not matching the reference may
still be useful to a human reader, such as differ-

7Lexicon replacement experiment is not shown in Table 1.

ences in inflection (e.g.,L!.�) [rechinoido]
— retinoids, transliterated as retinoid), and spac-
ing (e.g. ��IL
- [shierareone]— Sierra
Leone, transliterated as sierraleone).

6 Integration with machine translation

We used the transliterations from our indicator
system to augment a Japanese-to-English MT sys-
tem.8 This treelet-based SMT system (Quirk et
al., 2005) is trained on about 4.6M parallel sen-
tence pairs from diverse sources including bilin-
gual books, dictionaries and web publications.
Our goal is to measure the impact of machine
transliterations on end-to-end translation quality.

6.1 Evaluation method

We use the MT-log translation pairs described
in Section 4.2 as a sentence-level translation test
set. For each katakana word left untranslated by
the baseline SMT engine, we generated 10-best
transliteration candidates and added the katakana-
English pairs to the SMT system’s translation ta-
ble. Perceptron scores were exponentiated, then
normalized, to create probabilities, which were
given to the SMT system as P (source|target);9
all other translation features were set to log 1.

We translated the test set with and without the
augmented translation table. 120 sentences were
randomly selected from the cases where the trans-
lations output by the two SMT systems differed,
and were submitted for two types of human evalu-
ation. In the absolute evaluation, each SMT out-
put was assigned a score between 1 and 4 (1 =
completely useless; 4 = perfect translation); in the
relative evaluation, the evaluators were presented
with a pair of SMT outputs, with and without the
transliteration table, and were asked to judge if
they preferred one translation over the other. In
both evaluation settings, the machine-translated
sentences were evaluated by two native speakers
of English who have no knowledge of Japanese,
with access to a reference translation.

6.2 Results

The evaluation results show that our translitera-
tor does improve the quality of SMT. The BLEU

8The human evaluation was carried out before we discov-
ered the effectiveness of the hybrid generative system, but
recall that the performance of the two is similar.

9The perceptron scores are more naturally interpreted as
P (target |source), but the opposite direction is generally the
highest-weighted feature in the SMT system’s linear model.



Table 3: Relative translation evaluation
evaluator 1 preference

eval2pref +translit equal baseline sum
+translit 95 0 2 97
equal 19 1 2 22
baseline 1 0 0 1
sum 115 1 4 120

score on the entire test set improved only slightly,
from 21.8 to 22.0. However, in the absolute hu-
man evaluation, the transliteration table increased
the average human judgement from 1.5 to 2 out of
a maximum score of 4. Table 3 shows the results
of the relative evaluation along with the judges’
sentence-level agreement. In 95 out of 120 cases,
both annotators agreed that the augmented table
produced a better translation than the baseline.

One might expect that any replacement of
katakana would improve the perception of MT
quality. This is not necessarily the case: it
can be more confusing to have a drastically
incorrect transliteration, such as transliterating
�#7M� [appurooda] — uploader incor-
rectly as applaud. Fortunately, Table 3 shows that
we make very few of these sorts of mistakes: the
baseline is preferred only rarely. Also note that,
according the MT 10-best accuracies in Table 2,
we would have expected to improve at most 60%
of cases, however, the human judgements indicate
that our actual rate of improvement is closer to
80%, which demonstrates that even an imperfect
transliteration is often useful.

7 Conclusion

We have presented a discriminative substring de-
coder for transliteration. Our decoder is based
on recent approaches for discriminative charac-
ter transduction, extended to provide access to a
target lexicon. We have presented a comparison
of indicator and hybrid generative features in a
controlled setting, demonstrating that generative
models perform surprisingly well when discrim-
inatively weighted. We have also shown our dis-
criminative models to be superior to a state-of-the-
art generative system. Finally, we have demon-
strated that machine transliteration is immediately
useful to end-to-end SMT.

As mentioned earlier, by focusing on katakana,
we bypass the problem of deciding when to
transliterate rather than translate; next, we plan to

combine our models with a classifier that makes
such a decision, allowing us to integrate transliter-
ation into SMT for other language pairs.
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