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ABSTRACT
The ranking models of existing image search engines are
generally based on associated text while the image visual
content is actually neglected. Imperfect search results fre-
quently appear due to the mismatch between the textual
features and the actual image content. Visual reranking,
in which visual information is applied to refine text based
search results, has been proven to be effective. However, the
improvement brought by visual reranking is limited, and the
main reason is that the errors in the text-based results will
propagate to the refinement stage. In this paper, we pro-
pose a Content-Aware Ranking model based on “learning
to rank” framework, in which textual and visual informa-
tion are simultaneously leveraged in the ranking learning
process. We formulate the Content-Aware Ranking learn-
ing based on large margin structured output learning, by
modeling the visual information into a regularization term.
The direct optimization of the learning problem is nearly
infeasible since the number of constraints is huge. The effi-
cient cutting plane algorithm is adopted to learn the model
by iteratively adding the most violated constraints. Exten-
sive experimental results on a large-scale dataset collected
from a commercial Web image search engine demonstrate
that the proposed ranking model significantly outperforms
the state-of-the-art ranking and reranking methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Theory, Experimentation, Performance.

Keywords
Learning to Rank, Image Search Reranking, Content-Aware
Ranking Model

1. INTRODUCTION
As the rapid evolution of imaging technologies and the

emergence of image sharing websites such as Flickr [1], im-
ages are substantially easy to be generated and spread all
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Utensils
(T-Shirt) $15.00 
Wine Red
(Video) $1.99
Wallet
(Accessories) $18.00 
...Is Good For You
(Tote Bag) $15.00 
Crawling Towards The Sun
(Video) $1.99
Honey 
(Video) $1.99

Rose & Freesia Hand-tied with
Red Wine
£ 44.45
Delicate Freesia, nine large-headed
Roses and choice foliage are tied
together to create this beautifully
scented luxury bouquet. Each stem is
expertly positioned by hand, then
enveloped in wrap and tied with
ribbon before being delivered with a
bottle of red wine.

This gift set includes a 
Bottle of Red Wine

Owned by the Arnaud family for the
better part of 200 years until the end
of the World War II, Pétrus was then
sold to Mme Loubat, who had
progressively acquired the property
since 1925. On her death in 1961,
the estate was passed to her family,
who eventually sold a half share in
1964 to Jean-Pierre Moueix. Moueix
himself had set up a negociant
business Établissements Jean-Pierre
Moueix, based in Libourne and
gradually began acquiring right bank
châteaux.

Query: Red Wine

(a) (b) (c)

Figure 1: Example images with surronding text features

for the query ”Red Wine”

around the Web, as well as consequently accumulated at
a prodigious speed. The demand of searching desired im-
ages from vast amounts of candidates on the Web drives
the academic as well as the industry continuous interests on
developing effective image search techniques.

The frequently-used existing commercial image search en-
gines, such as Google [2], Yahoo [4] and Live [3], are all based
on indexing textual metadata. That is, only the textual in-
formation associated with the images in the Web page, e.g.,
title, anchor text, surrounding text, and etc., are utilized to
identify the images. And then the well known methods in
information retrieval, such as tf-idf [5] and okapi BM25 [26],
are typically employed to rank the images, based on these
textual metadata.

Alternatively, a more effective ranking approach that can
be adopted is learning to rank, which is now intensively stud-
ied in both information retrieval and machine learning com-
munities. In this approach, the query dependent features
for each image, i.e., the features to describe the correlation
between a query and an image, are extracted from various
textual sources, e.g., the term frequency of query keywords
in the anchor text, title, surrounding text, and etc. Then a
ranking function which elaborately combines all the differ-
ent features is learned from the human labeled training set
[8, 9, 10, 13, 20, 32, 34].

However, there are essential difficulties for image search
based on only textual information, because the associated



text often mismatches the actual image content. For exam-
ple, Fig. 1 (a) shows a “Red Wine” related images while the
query term“Red Wine” is missing in the textual description.
In Fig. 1 (b), the image is easy to be predicted as relevant
to “Red Wine”by using only the surrounding text, as it con-
tains the query term, though with a different meaning. Fig.1
(c) illustrates another typical mismatching case between the
image and the associated text, where ”Red Wine” is men-
tioned but has nothing to do with the corresponding image.
It can be seen that purely using textual description to learn
ranking function often makes mistakes.

We argue that an effective approach to address the above
difficulty is to incorporate visual information of the images
into the ranking learning scheme. The straightforward method
is to extract the query dependent features to describe the
correlation between the query words and images’ visual con-
tent and then concatenate them to the textual features.
Concept detection results are such features that can be easily
employed in existing ranking models [22] [23][27]. However,
current concept detectors are still far from satisfactory in
practice, in terms of both accuracy and scalability. It is
infeasible to train an acceptable concept detector for each
query term due to the complexity of both the semantic con-
cepts and the visual content. Moreover, the number of con-
cept detectors is not scalable due to the high labeling and
training cost [17].

Another way to incorporate visual information is visual
reranking [15] [16][17][29][33], in which visual features are
applied to refine text based search results in a separated
second step. A basic assumption in visual reranking is that
visually similar images can boost each other in the reranked
list, which has been proven to be effective to improve the
search relevance. However, visual reranking only uses the
visual information to refine the text based results, instead
of to assist the learning process of the text-based ranking
model. If the learned text-based model is biased or over-
fitted, reranking step will suffer from the error propagated
from the initial ranks, thus the performance improvement is
limited. In this paper, we propose a novel ranking model
which incorporates the low-level visual features directly into
the ranking learning objective. We call it Content-Aware
Ranking learning, as it takes visual content related features
into account to enhance the ranking model during the rank-
ing learning process.

The proposed Content-Aware Ranking model can address
the drawbacks of visual reranking, i.e., the error propaga-
tion and the inability to help text-based ranking learning
as aforementioned, as it is a unified model which simulta-
neously leverages the textual relevance feature and visual
features in the ranking learning process. That is, combining
visual features into ranking learning will result in a more
robust and accurate ranking model as noises in textual fea-
tures can be suppressed by visual content information. Fur-
thermore, Content-Aware Ranking is easy to scale up as it
utilizes the low-level visual features directly, without requir-
ing a large amount of trained concept detectors.

Learning Content-Aware Ranking model is a challenging
problem. First, the to-be-learned ranking list is structured,
i.e., the ranking of the images are interdependent of each
other and cannot be determined independently. The con-
ventional learning methods, such as Support Vector Ma-
chine [35], cannot deal with the structured output. Sec-
ond, since the visual features are query independent, unlike

the textual relevance features, the conventional learning to
rank methods cannot be adopted directly as well. There-
fore, we propose a learning method within the large margin
structured output learning framework [12], which incorpo-
rates the visual information using a regularization frame-
work. The structure within the ranking list is modeled in
the loss function. The learning problem can be solved by
quadratic programming, but as the solution space of the op-
timization problem is very large, the cutting plane method
is adopted to reduce the number of constraints by iteratively
adding the most violated constraints until a desired accuracy
is achieved.

The rest of the paper is organized as follows: Section 2 re-
views the related work, including learning to rank, concept
detection for image search, and image search reranking. The
formulation of the proposed Content-Aware Ranking learn-
ing is introduced and analyzed in Section 3. In Section 4,
we detail the optimization techniques to solve the learning
problem. The learning complexity analyses are presented in
Section 5, followed by experimental results in Section 6 and
conclusions in Section 7.

2. RELATED WORK
Our work is motivated by learning to rank, which is re-

cently intensively studied to solve the document ranking
problem. A large amount of algorithms have been proposed.
Some of them transform the ranking problem into pairwise
classification, which takes a pair of documents as a sam-
ple, with the label taken as the preference between them,
and then binary classification methods can be adapted, e.g.,
RankSVM [20], RankBoost [13], RankNet [9] and etc. The
others take the structure of ranking list into consideration
and directly optimize the evaluation measures such as Mean
Average Precision (MAP) and Normalized Discounted Cu-
mulative Gain (NDCG). The methods include ListNet [10],
SVMMap [34], PermuRank [32], LambdaRank [8] and etc.
In this paper, the proposed method is different from the con-
ventional learning to rank methods in that it takes not only
the textual relevance features but also query independent
low-level visual features into the ranking model.

There are various works on incorporating the visual con-
tent into image search, which can be divided into concept
detection based ranking and visual reranking. For concept
detection based ranking methods, firstly the concept models
are learned for a selected concept ontology, built from the
commonly used query keywords [12][22][23][27]. Then when
users submit a query it will be mapped to the related con-
cepts and the corresponding concept detection results will
be combined with the textual features to rank the images
[24][31]. However, the developments of both image low-level
features and machine learning techniques are yet incapable
of building robust concept detectors to predict high-level
concepts accurately. Secondly, the concept detector based
methods cannot scale up, as the number of concepts is huge.
Furthermore, the concept ontology itself is hard to build for
effective use in search. Finally, query mapping is generally
unsatisfactory.

The image search reranking methods can be categorized
into three classes: (1) classification-based methods, where
the pseudo-positive and pseudo-negative samples are selected
from the initial text search results and then a binary classi-
fier is trained based on the pseudo-labeled samples to predict
the reranking list [33]; (2) clustering-based methods, where



each sample is labeled with a soft pseudo label based on
the initial text search ranking list, then optimal clustering
is selected by maximizing the mutual information between
the clusters and labels, and the final reranked list is obtained
based on the cluster information [15]; (3) graph-based meth-
ods, where a graph is constructed with the images as nodes
and their visual similarity as edges, and the reranking is per-
formed by propagating the ranking scores among each other
[16][19][29]. Recent studies show that the graph-based al-
gorithms with pair-wise ranking distance is superior to the
others [29].

3. CONTENT-AWARE RANKING MODEL
Before introducing the proposed Content-Aware Ranking,

we firstly give the denotations here. Suppose we are given
the query set Q for the ranking model learning, where for
each query qi = {xi,vi,yi} ∈ Q, xi = [xi

1, . . . ,x
i
Ni ]

T ∈ X
are the query dependent textual features of the correspond-
ing query image pairs, vi = [vi

1, . . . ,v
i
Ni ]

T ∈ V denote the

image visual features, yi = [yi
1, . . . , y

i
Ni ]

T ∈ Y represent the
ranking of the images corresponding to the query labeled by
human oracle, and N i stands for the number of involved im-
ages. Denote the target ranking function as f : X ×V → Y,
which maps the joint textual and visual feature spaces X×V
to the ranking space Y. Thus, the goal of ranking learning is
to find the optimal ranking functionf , so that the expected
ranking loss in the training set Q,

R∆
Q(f) =

1

|Q|
|Q|∑
i=1

∆(yi, f(xi,vi))

is minimized, where the function ∆(yi, ŷ) measures the loss
of the ranking output ŷ = f(xi,vi) with the ground-truth
yi.

3.1 Ranking as Structured Output
As discussed before, ranking list is structured since the

ranks of images are interdependent. Hence, the large margin
structured output learning framework is used here to model
the ranking learning problem. In this subsection we will fo-
cus mainly on the ranking using textual features, while the
visual information will be incorporated in the next subsec-
tion. Given the query with textual feature xi, the ranking
function can be defined as:

ŷ = f(xi) = argmaxy∈YF (xi,y;w) (1)

where w is the parameter. F (xi,y;w) can be defined as a
linear function of w in the following,

F (xi,y;w) = wT Ψ(xi,y), (2)

where Ψ(xi,y) is a joint feature map by mapping the tex-
tual feature xi and the ranking prediction y into real val-
ues. In this paper, we design a feature mapping function

as Ψ(xi,y) =
∑Ni

j=1 xi
jyj , and then the Problem 2 is trans-

formed into:

ŷ = argmaxy∈Y(zi)T y (3)

where zi = [wT xi
1, . . . ,w

T xi
Ni ]

T can be regarded as the

score list of the images for the query qi. The problem (3)

can be interpreted from the geometrical viewpoint. Actually
(3) maximizes the cosine of the angle between the score list
zi and y, which tends to make the direction of y comply

with that of zi

‖zi‖ . It’s straightforward that for a fixed w, the

solution to (3) leads ŷ to be the ranking list sorted according
to the derived relevance scores, i.e., zi = wT xi.

3.2 Content-Aware Ranking Model
Since the textual features are normally noisy, the text only

ranking model is insufficient for image search, as discussed
before. We propose to jointly utilize the textual and visual
content features to boost the ranking model learning. It is
assumed that the relevant images for a query should have the
visual consistency property, i.e., similar images share simi-
lar ranking output. Based on the assumption, we propose
to learn a ranking list that not only employs the textual
relevance features, but also possesses a high visual consis-
tency. Inspired by Laplacian Eigenmaps [6], the proposed
Content-Aware Ranking model takes the following form:

ŷ = argmaxy∈YF (w,xi,vi,y) (4)

= argmaxy∈YwT Ψ(xi,y)− γ

Ni∑
m,n=1

Gi
mn(ym − yn)2

where γ > 0 is a trade-off parameter to balance the tex-
tual relevance wT Ψ(xi,y) and the visual consistency term∑Ni

m,n=1 Gi
mn(ym − yn)2. Gi denotes the adjacency graph

which measures the similarities between each pair of images,
with the elements defined as:

Gi
mn =

{
Sim(vi

m,vi
n), if vi

n is in the KNN of vi
m

0, otherwise.

Here, Sim(vi
m,vi

n) is the similarity between vi
m and vi

n,
and Gi

mn is a sparse graph by employing KNN (k-nearest-
neighbor) strategy. The minimization of the visual consis-

tency term
∑Ni

m,n=1 Gi
mn(ym − yn)2 can be taken as a graph

based manifold regularization [7], which drives that visually
similar images are assigned with similar rank predictions.
Based on the regularization theory, the solution of an ill-
posed problem can be approximated from variational prin-
ciple, which contains both the data and the prior smoothness
information [14]. The visual similarity information can be
taken as the auxiliary prior knowledge, which is able to re-
duce the over-fitting problem and boost the generalization
ability of the ranking model. However, unlike conventional
regularization frameworks, our model is regularized in a dif-
ferent feature space.

For a given w, the optimization problem (4) can also be
employed for reranking from the Bayesian reranking per-
spective. The first term can be regarded as the ranking
distance while the second term is the visual consistency.
Moreover, Content-Aware Ranking is superior to rerank-
ing. Generally reranking can be thought of as a two-stage
method. That is, a textual ranking model is learned and
then based on it reranking is performed. Reranking only
takes the visual information into consideration during the
ranking prediction, while cannot help learn a better textual
ranking model. In Content-Aware Ranking, since the visual
content is unified into the ranking model as well as textual



Algorithm 1 Cutting plane algorithm for content-aware
ranking learning

Input: Q, C, γ
Wi ← ∅ for all i = 1, · · · , |Q|
repeat

for i = 1, · · · , |Q| do
H(y;w) ≡ ∆(yi,y) + F (w,xi,vi,y)
Compute ŷ = argmaxy∈YH(y;w)

Compute ξi = max{0, maxy∈Wi H(y;w)}
if H(ŷ;w) > ξi + ε then
Wi ←Wi ∪ {ŷ}
w ← optimize learning problem over W =

⋃
iWi

end if
end for

until no Wi has changed during iteration.

features, the visual information will help learn a better rank-
ing model, in addition to boosting the ranking prediction.

3.3 The Learning Problem
To estimate the model parameters w in (4), we adopt

the large margin structured output learning [30] framework,
which can deal with the learning of complex and structured
outputs like trees, sequences and sets, and ranking lists.
Given the labeled training set Q, we want to learn a weight
vector w so that the ranking model can perfectly predict the
ranks of the images for the queries in Q, i.e.,

min
w

1

2
‖w‖2

s.t.∀qi ∈ Q, ∀y 6= yi,

F (w,xi,vi,yi)− F (w,xi,vi,y) ≥ 1

(5)

In order to accommodate the noises in the training data,
the slack variables are introduced to make the above hard
constraints soft. Thus, the proposed learning problem is
defined as follows:

min
w,ξ

1

2
‖w‖2 + C

∑
ξi

s.t.∀qi ∈ Q, ξi ≥ 0, ∀y 6= yi,

F (w,xi,vi,yi)− F (w,xi,vi,y) ≥ ∆(yi,y)− ξi

(6)

where C > 0 is the trade-off parameter to balance the model
complexity ‖w‖2 and the upper bound of the prediction loss∑

ξi; ∆(yi,y) is the ranking loss function to measure the
loss between the prediction y and the ground truth yi, as we
discussed before. During the learning phase, if the prediction
is incorrect, i.e. F (w,xi,vi,y) > F (w,xi,vi,yi), then to
satisfy the constraints, the corresponding slack variable ξi

must be at least ∆(yi,y). For noisy samples we will favor
the prediction ranking, though not, but similar in loss to,
the ground-truth one. This is reasonable since even though
the prediction is wrong we still desire the one which is as
similar to the ground-truth as possible.

4. OPTIMIZATION
The direct optimization of (6) is nontrivial, because the

number of the constraints is exponential. As in [30], the
cutting plane method is adopted to solve it, by iteratively

finding a small set of constraints and solving the small-scale
problem until the stop condition is satisfied. The algorithm
starts with an empty constraint set, and iteratively finds the
most violated prediction ŷ for each query qi. If the corre-
sponding constraint is violated by more than a predefined
threshold ε for ŷ, it will be added into the working set Wi

for query qi, and then the problem is solved with the added
constraints for all the queries, i.e. W ← ∪iWi. The de-
tailed procedure of the algorithm is shown in Algorithm 1.
Theorem 1 shows that the algorithm is guaranteed to con-
verge within a polynomial number of steps for a pre-given
tolerance ε.

Theorem 1. Denote R̄ = maxi,y ‖Ψ(xi, yi) − Ψ(xi, y)‖,
∆̄ = maxi,y ∆(yi, y)+γ

∑Ni

m,n=1 Gi
mn

(
(yi

m − yi
n)2 − (ym − yn)2

)
,

and for any ε > 0, Algorithm 1 terminates after incremen-
tally adding at most

max

(
2n∆̄

ε
,
8C∆̄R̄2

ε2

)

constraints to the working set W for solving (6).

To implement Algorithm 1, we need to solve two sub-
problems, i.e., finding the most violated prediction ŷ, and
estimating the optimized model weight vector w under the
current working set W. The following two subsections will
be devoted to solve these problems respectively.

4.1 Finding the Most Violated Prediction
In Algorithm 1, we need to find the most violated pre-

diction and add it into the working constraint set, i.e., ŷ
satisfying the following formula:

argmaxy∈Y∆(yi,y)− γ

Ni∑
m,n=1

Gi
mn(ym − yn)2 + wT Ψ(xi,y)

(7)

In this paper, the loss is defined as the cosine similarity
between the ground truth ranking yi and the prediction one
y ∈ Y, i.e.,

∆(yi,y) = 1− (yi)T y

‖yi‖‖y‖ (8)

However, (7) is hard to solve because the variables are dis-
crete ranking values, and the incorporation of the graph
regularization term makes the problem even more difficult.
Consequently, we relax the ranking list to be a real-value
score list, so that the problem (7) is easier to be solved. How-
ever, there will be a trivial solution when all the elements
of y are equal to positive infinity. Thereafter, we constrain
the score list to be normalized, i.e., ‖y‖ = ‖yi‖ = 1. By
adding the constraint and substituting the loss function (8)
into (7), the following optimization problem is derived to
find the most violated prediction,



ŷ = argmaxy∈Y − (yi)T y− γ

Ni∑
m,n=1

Gi
mn(ym − yn)2 + (zi)T y

= argmaxy∈YcT y− γ(2

Ni∑
m=1

Di
mmy2

m − 2

Ni∑
m,n=1

Gi
mnymyn)

= argminy∈Y2γyT Liy− cT y s.t.‖y‖ = 1 (9)

where c = zi − yi, Li = Di −Gi is the Laplacian matrix
of the graph, which is a symmetric positive semi-definite
matrix, and Di = Diag(di) denotes the degree matrix as

di = [di
1, . . . ,d

i
Ni

] and di
m =

∑Ni

n=1 Gi
mn.

To solve the optimization problem (9), we introduce the
Lagrange multiplier λ to eliminate the constraint, and be-
cause ‖y‖2 = ‖y‖ = 1, the problem can be transformed
to,

max
λ∈R

min
y∈Y

2γyT (Li + λI)y− cT y− λ (10)

where I is a N i ×N i identity matrix.
In order to achieve a feasible solution to problem (10), we

only need to consider the case that the matrix Li + λI is
positive semi-definite. Or it is easily derived that the opti-
mal value of the inner minimization problem will be negative
infinite. Suppose the eigen-decomposition of Li is:

Li = UΣUT (11)

where Σ is a diagonal matrix with diag(Σ) = {λ1, . . . , λNi

|λ1 ≥ . . . ≥ λNi} are the eigenvalues and U are the eigen-
vectors of Li. Because Li is a graph Laplacian matrix, it
has the smallest eigenvalue λNi = 0 [6]. Thus, to make sure
Li + λI = U(Σ + λI)UT positive semidefinite, we need to
add the constraint λ ≥ 0.

When λ > 0, Li +λI will be invertible. Taking the deriva-
tives of the objective function in (10) w.r.t. y, and set it to
zero, we can get the solution of y as:

ŷ =
1

2
(Li + λI)−1c (12)

Substituting (12) back into (10), we can derive the dual
form:

max
λ∈R+

−1

4
cT (Li + λI)−1c− λ (13)

By utilizing the eigen decomposition of Li, (13) can be trans-
formed to:

max
λ∈R+

−1

4
cT U(Σ + λI)−1UTc− λ (14)

Then the following problem is derived,

min
λ∈R+

Ni∑
j=1

η2
j (

1

λ + λj
) + 4λ (15)

where η = UTc. We denote g(λ) =
∑Ni

j=1 η2
j ( 1

λ+λj
) + 4λ

for abbreviation. There is no analytical solution for problem

Algorithm 2 Finding the most violated prediction

Input: Gi,w,xi,yi, Θ̃h = g(1)
4

, ε > 0

Compute Li, η, and Σ according to (9)(11)(15)
λ ← BinarySearch(η,Σ, 0, Θl, Θh)
ŷ = 1

2
(Li + λI)−1c

Method λ ← BinarySearch(η,Σ, Θl, Θh)
λ ← (Θl + Θh)/2
if |Θh −Θl| < ε then

Return λ
end if
τ ← (Θh −Θl)/6
δh ← g(λ + τ)
δl ← g(λ− τ)
if δh < δl then

Return BinarySearch(η,Σ, λ− τ, Θh)
else

Return BinarySearch(η,Σ, Θl, λ + τ)
end if

end Method

(15). Due that the second derivative ∂2g(λ)

∂λ2 = 2
∑Ni

j=1 η2
j (λ+

λj)
−3 ≥ 0, we can conclude that g(λ) is convex w.r.t. λ for

λ > 0. In other words, the local minimum and global mini-
mum of the problem (15) are the same for the given interval
λ ∈ (0, +∞). Thus, we resort to the binary search technique
[21] to find the optimal λ. The details of the algorithm are
shown in Algorithm 2. Specifically, we recursively search
for the optimal λ by bounding its feasible region, until the
bounding of current feasible region is no more than ε. We

can prove that the initial search upper bound Θ̃h = g(1)
4

, is
sufficient to find the global optimal solution.

Proposition 1. Setting the initial Θ̃h = g(1)
4

is sufficient
for the Algorithm 2 to find the global minimum.

Proof. For any λ′ > Θ̃h = g(1)
4

,

g(λ′) =

Ni∑
i=0

η2
j (

1

λ′ + λj
) + 4λ′ > 4λ′ > g(1) ≥ min

λ∈R+
g(λ)

Consequently, Θ̃h is the sufficient upper bound for search-
ing the global minimum of g(λ) in Algorithm 2.

4.2 Learning the Model Weight Vector
After selecting the most violated constraints as working

set Wi we need to solve the optimization problem (6) in
Algorithm 1 in each iteration. The optimization problem
with the selected working set as follows,

min
w,ξ

1

2
‖w‖2 + C

∑
ξi

s.t.∀qi ∈ Q, ∀ŷi
j ∈ Wi, ξi ≥ 0,wT ui

j ≥ bi
j − ξi

(16)

where for ŷi
j ∈ Wi, ui

j = Ψ(xi,yi) − Ψ(xi, ŷ), and bi
j =

∆(yi, ŷi
j)+γ

∑N
m,n=1 Gi

mn((yi
m − yi

n)2 − (ŷi
jm − ŷi

jn)2). We

denote U = {ui
j |qi ∈ Q, ŷi

j ∈ Wi}, and define the kernel ma-
trix K as Kij = 〈ui,uj〉 for ∀ui∀uj ∈ U . By introducing
the Lagrange multiplier αi

j for each constraint, we can ob-
tain the dual problem of (16) as follows,



TitanicDivingU2I love youKingHusky Dog
Figure 2: Example queries and associated images with different relevance degreees in the experiment dataset.

max
α

bT α− 1

2
αTKα

s.t. α ≥ 0 and

|Wi|∑
j=1

αi
j ≤ C, for ∀qi ∈ Q

(17)

This is a standard quadratic programming problem, which
can be solved by using efficient algorithms such as Interior
Point method. Based on the derivation the optimal solution
w of the primal problem (6) is

w̃ =

|Q|∑
i=1

|Wi|∑
j=1

αi
jz

i
j (18)

4.3 Ranking Prediction
Given a new testing query qt with textual and visual fea-

tures {xt,vt}, the corresponding ranking can be predicted
based on the learned model with parameter w̃. The predic-
tion is performed by solving the problem (3) by replacing w
with w̃, that is:

ỹ = argmaxy∈Yw̃T Ψ(xt,y)−γ

Nt∑
m,n=1

Gt
mn(ym − yn)2 (19)

We can adopt Algorithm 2 to solve it, but with a different
definition of c. Here c = zt = [w̃T xt

1, . . . , w̃
T xt

Nt ]
T since no

ranking loss is required. Finally, the ranking list is given by
sorting images according to the predicted score list ỹ in the
descending order.

Notice that since the predictive ranking of a new query
involves all the images in the database, which may contains
a huge amount of data resulting into a large graph structure
Gt

mn, therefore the optimization of (19) may be inefficient.
In practical applications, we can firstly utilize the textual
based features to rank the images in the database, and then
apply (19) to the top ranked images (typically no more than
1000). Experimentally, such a strategy is proven to be both
effective and efficient.

5. COMPLEXITY ANALYSIS
We present the learning complexity analysis in this sec-

tion. To simplify the discussion, here we suppose that all

the queries possess the equivalent number of images to be
ranked, i.e., for ∀qi ∈ Q, N i = N .

Firstly let’s analyze the computational cost for Algorithm

2. The time cost of binary search is O(N log Θ̃h
ε

) where log Θ̃h
ε

is the number of recursive depth for finding the solution. The
algorithm of finding the most violated prediction y needs
matrix multiplications, the computational cost of which is
O(N3), or even O(N2.8) using the Strassen Algorithm [28].
Thus, the total time cost of Algorithm 2 for all the queries
in Q is about O(|Q|N2.8).

For a given constraint set W, learning the model weight
vector w is a standard QP problem as described in Section
4.2. Thereafter, the computational cost will be O(|W|3)
using standard QP solver, or approximately O(|W|2.3) using
SMO [25].

Algorithm 1 is guaranteed to terminate in a polynomial
number of iterations [30]. In each iteration Algorithm 2 and
QP Solver will be executed sequentially. Suppose the num-
ber of iterations in Algorithm 1 is T , its computational cost
will be O(T (|Q|N2.8 + |W|2.3)), which is the total training
time. Once the model is learned, making prediction is at the
same cost as Algorithm 2, i.e., O(N2.8) for each query.

6. EXPERIMENTS
In order to demonstrate the effectiveness of the proposed

Content-Aware Ranking (CAR) model, we perform several
experiments over a large-scale image search dataset crawled
from the Web, and report the results together with some
analysis and conclusions.

6.1 Dataset Description
We collect a large-scale image search dataset1 from a com-

mercial Web image search engine, which comprises 594 queries
sampled from the query log. For each query at least 100
images are collected by sampling from the images whose as-
sociated text contains the query words. In total, there are
137348 query-image pairs, on average 250 images per query.
Each image is labeled with three relevance degrees by the
human oracle, according to its relevance to the correspond-
ing query, namely ”Not Relevant”, ”Relevant”, and ”Highly
Relevant”. The examples of queries and images are shown
in Fig. 2.

For each query-image pair, various query dependent fea-

1We plan to release the dataset for academic use soon.
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Figure 3: Performance comparisions of different algorithms: RankSVM, ListNet, RankSVM-VR, ListNet-
VR, RankSVM-BR, ListNet-BR, and CAR, on 50 queries and 100 queries dataset respectively. (a) NDCG
for 50 queries; (b) NDCG for 100 queries
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Figure 4: The number of best performed queries among different algorithms, on NDCG@{1, 5, 10, 15, 20}.

tures are extracted from different textual sources, e.g., the
term frequency of query keywords in image anchor text, title,
surrounding text, etc. Totally, there are 1011-dimensional
textual features. Furthermore, we adopt RankBoost algo-
rithm [13] to perform feature selection so that 164-dimensional
features are finally selected to be used in the experiments.

To model the visual consistency, we extract several visual
features that are widely used in computer vision, i.e., At-
tention Guided Color Signature, Color Spatialet, Wavelet,
SIFT, Multi-Layer Rotation Invariant EOH (MRI-EOH),
Histogram of Gradient (HoG), and Facial Feature. The dis-
tances computed on each feature are linearly combined as
the ultimate distance between the images [11].

6.2 Experiment Settings and Evaluations
We compare the performance of CAR with textual rank-

ing methods using the well-known learning to rank algo-
rithms, i.e., RankSVM [20] and ListNet [10]. In addition, we
also compare CAR with reranking methods including Visual
Rank (VR) [19] and Bayesian Reranking (BR) [29]. For each
reranking methods two kinds of text baselines are used, i.e.,
RankSVM and ListNet. Finally there are four combinations
of reranking methods, denoted by RankSVM-VR, ListNet-
VR, RankSVM-BR, and ListNet-BR respectively. Since it
is difficult to label the training set for learning the concepts
from the 594 queries and there are no appropriate concept
ontology for Web image search, the learning to rank with

concept detection method is not compared in this paper.
The data are split into four parts, training, validation A,

validation B, and test. The validation A is used to validate
the ranking learning, i.e., CAR, RankSVM, and ListNet;
while Validation B is used to validate the model parameters
in reranking, including VR and BR. Since the computational
cost of RankSVM is very high, we only select 50 queries for
the training. Then 50 queries are randomly selected from
the data for Validation A and Validation B respectively. The
remaining is used for test. In addition, we design another
dataset which contains 100 training queries to compare the
methods except RankSVM in a large training set.

The performance is evaluated based on Normalized Dis-
counted Cumulative Gain (NDCG@k) [18]. For a given
query qi, NDCG is defined as:

NDCG@k =
1

Zi

k∑
j=1

2r(j) − 1

log(1 + j)
(20)

where r(j) is the relevance level of the jth document, which
is 0 for ”Not Relevant”, 2 for ”Relevant”, and 3 for ”Highly
Relevant” in our experiments. Zi is the normalization coef-
ficient to make the NDCG of a prefect ranking equals to 1,
and k is the truncation level.

6.3 Experimental Results
The performances of different algorithms are shown in Fig.



Figure 5: Ranking and reranking results for several example queries. Baseline: ListNet. Rerank: ListNet-BR.
The queries and image results are excerpted from the test data.

Table 1: The quantitive performance comparisions of different algorithms, NDCG@1, 5, 10, 20.

50 queries 100 queries

Baseline
Reranking CAR

Baseline
Reranking CAR

Perf Gain Perf Gain Perf Gain Perf Gain

NDCG@1 0.4202 0.4775 13.64% 0.4913 16.92% 0.4703 0.4949 5.23% 0.5308 12.86%

NDCG@5 0.4710 0.4976 5.65% 0.5119 8.68% 0.4927 0.5091 3.33% 0.5415 9.90%

NDCG@10 0.4941 0.4996 1.11% 0.5191 5.06% 0.5102 0.5241 2.72% 0.5357 5.00%

NDCG@20 0.5045 0.5036 -0.18% 0.5210 3.27% 0.5208 0.5214 0.12% 0.5320 2.15%

3. For 50 queries training set, the results of RankSVM and
ListNet are quite comparable, since both of them rely on
only the textual features for learning the ranking model.
Similarly, RankSVM-BR and ListNet-BR are also compara-
ble, and both achieve a performance improvement over the
corresponding text baseline at the truncation level less than
15. This attributes to the contribution of visual consistency
to refine the text-based search results. However, RankSVM-
VR and ListNet-VR don’t show its superiorities in our ex-
periments. It is because that the ranking distance used in
VR which just cares for the scores cannot capture the im-
portant information in the text baseline [11]. CAR, which
jointly leverages both the textual and visual information,
performs consistently and significantly better than all the
other methods. We can conclude that the visual consistency
really contributes positively to the learned ranking model by
dealing with the noisy samples in the textual domain.

For 100 queries training set, there will be 1,110,351 pair-
wise samples for RankSVM training so that the compu-
tational cost is too high to be afforded. Hence only the
results for ListNet, ListNet-VR and ListNet-BR are com-
pared with CAR, as shown in Fig. 3. CAR still performs
significantly better than the other methods including tex-
tual ranking and visual reranking. We conclude that the
proposed CAR model and the corresponding training and

prediction algorithms are really powerful to rank the images
by incorporating the visual content into the ranking model.

Table 1 presents the quantitative details about the per-
formance of CAR as well as the other methods. Here, we
use ListNet to represent the textual ranking and ListNet-
BR as visual reranking, to compare with CAR. The results
of the other textual ranking and visual reranking methods
are similar. We can see that CAR performs consistently
better than both ListNet and ListNet-BR. For NDCG@1,
NDCG@5 the improvements are more than 8%, even up
to 17% for NDCG@1, which is significant and promising.
Moreover, in terms of NDCG@20, visual reranking improves
little (0.12%) in 100 queries training set or even degrades (-
0.18%) in 50 queries training set, compared with the text
baseline. However, CAR, which learns a unified model to
leverage textual and visual information, still benefits from
the utilization of visual information, and outperforms visual
reranking as well as the text baseline.

In order to see how many queries can benefit from the
proposed CAR, we do the following statistics. For each al-
gorithm, we count the number of queries for which the al-
gorithm outperforms all the other methods. It is based on
the experimental results on the 50 queries dataset. The sta-
tistical results are shown in Fig. 4. It can be observed that
CAR outperforms all the other methods significantly. It is



concluded that CAR not only achieves the best overall per-
formance but also performs the best for most of the queries,
which shows that CAR is not only accurate but also robust
compared with the state-of-the-art methods.

Some example queries and the corresponding ranking re-
sults are shown in Fig. 6. From the example images, it
is obvious that CAR outputs better ranking list than the
other two. Furthermore, we can see that an imperfect text
baseline limits the performance improvement in reranking.
For example, the queries “Red Wine”and“www google com”
cannot achieve a noticable performance boosting by rerank-
ing since there are a lot of irrelevant images on the top of
the text-based results. For the query“Tweety Bird”, rerank-
ing even degrades the text baseline. It is because that the
top 1 image in the text baseline is irrelevant while the other
irrelevant images which are similar to this one are promoted
after reranking, such as the second image in the reranking
result. However, in CAR, the visual content has been incor-
porated during the ranking model learning, it can deal with
the noisy images by visual information and lead to a better
ranking model be learned. As illustrated in Fig. 3, 4, and 6,
it performs much better than not only textual ranking but
also visual reranking methods.

6.4 Parameter Analysis
The most critical parameter in CAR is γ, which balances

the contributions from textual features and visual content.
A larger γ tends to prefer the ranking prediction with higher
visual consistency, which means that the visual information
will take more effects during the learning of CAR model,
and vice versa. We perform CAR under the 50 training
queries setting, with different γ fixed, and validate all the
other parameters over the validation set. The other param-
eters are validated as in Section 6.2. The results over the
test set are shown in Figure 6. It can be observed that, for
NDCG, γ = 1 and γ = 0.5 achieve the best results among
all the variations, while γ = 5 and γ = 0 lead to the worst
performances. This states that a larger γ (5) which relies
heavily on the visual consistency and γ = 0 which uses only
the textual information cannot achieve a good performance.
The performance improvements of γ = 0.5 to γ = 5 and
γ = 0 are on average 7% for NDCG at different truncation
levels. The results demonstrate our conjecture that the joint
utilization of both the textual and visual features will lead
that a better ranking model can be learned. Furthermore,
the balance between the two kinds of information is impor-
tant for a good ranking performance.

7. CONCLUSIONS
Existing image search engines, which are mostly based on

textual ranking model with the surrounding text, title, etc.,
often suffer from imperfect results incurred by the noisy tex-
tual description in image search. Though various methods
are developed to handle this problem, such as visual rerank-
ing, the performance improvements are limited. In this pa-
per, we propose a Content-Aware Ranking model based on
“learning to rank” framework, in which textual and visual in-
formation are simultaneously leveraged in the ranking learn-
ing process. This unified framework will result in a more
robust and accurate ranking model to be learned as noises
in textual features can be suppressed by visual content in-
formation. The learning algorithms are developed based on
large margin structured output learning, by modeling the
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Figure 6: The performances of CAR under different
values for parameter γ.

visual information with a regularization term. Extensive ex-
periments conducted on a large-scale dataset collected from
a commercial Web image search engine show that the pro-
posed Content-Aware Ranking outperforms the state-of-the-
art methods and so is a promising approach to improve the
image search relevance.
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