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Abstract 

We present a novel approach to parse web 
search queries for the purpose of automatic 
tagging of the queries. We will define a set 
of probabilistic context-free rules, which 
generates bags (i.e. multi-sets) of words. Us-
ing this new type of rule in combination 
with the traditional probabilistic phrase 
structure rules, we define a hybrid grammar, 
which treats each search query as a bag of 
chunks (i.e. phrases). A hybrid probabilistic 
parser is used to parse the queries. In order 
to take contextual information into account, 
a discriminative model is used on top of the 
parser to re-rank the n-best parse trees gen-
erated by the parser. Experiments show that 
our approach outperforms a basic model, 
which is based on Conditional Random 
Fields. 

1 Introduction 

    Understanding users’ intent from web search 
queries is an important step in designing an intel-
ligent search engine.  While it remains a chal-
lenge to have a scientific definition of ''intent'', 
many efforts have been devoted to automatically 
mapping queries into different domains i.e. topi-
cal classes such as product, job and travel 
(Broder et al. 2007; Li et al. 2008). This work 
goes beyond query-level classification. We as-
sume that the queries are already classified into 
the correct domain and investigate the problem of 
semantic tagging at the word level, which is to 
assign a label from a set of pre-defined semantic 
labels (specific to the domain) to every word in 
the query. For example, a search query in the 
product domain can be tagged as:  

cheap       garmin   streetpilot   c340       gps 
    |               |              |             |           | 
SortOrder  Brand      Model      Model    Type 

 
Many specialized search engines build their in-
dexes directly from relational databases, which 
contain highly structured information. Given a 
query tagged with the semantic labels, a search 
engine is able to compare the values of semantic 
labels in the query (e.g., Brand = “garmin”) with 
its counterpart values in documents, thereby pro-
viding users with more relevant search results. 
    Despite this importance, there has been rela-
tively little published work on semantic tagging 
of web search queries. Allan and Raghavan 
(2002) and Barr et al. (2008) study the linguistic 
structure of queries by performing part-of-speech 
tagging.  Pasca et al. (2007) use queries as a 
source of knowledge for extracting prominent 
attributes for semantic concepts.  

On the other hand, there has been much work 
on extracting structured information from larger 
text segments, such as addresses (Kushmerick 
2001), bibliographic citations (McCallum et al. 
1999), and classified advertisements (Grenager  
et al. 2005),  among many others. The most 
widely used approaches to these problems have 
been sequential models including hidden Markov 
models (HMMs), maximum entropy Markov mod-
els (MEMMs) (Mccallum 2000), and conditional 
random fields (CRFs) (Lafferty et al. 2001) 

These sequential models, however, are not op-
timal for processing web search queries for the 
following reasons.. The first problem is that the 
global constraints and long distance dependencies 
on state variables are difficult to capture using 
sequential models. Because of this limitation, 
Viola and Narasimhand (2007) use a discrimina-
tive context-free (phrase structure) grammar for 
extracting information from semi-structured data 
and report higher performances over CRFs.  
    Secondly, sequential models treat the input text 
as an ordered sequence of words. A web search 
query, however, is often formulated by a user as a 
bag of keywords. For example, if a user is look-



ing for cheap garmin gps, it is possible that the 
query comes in any ordering of these three 
words. We are looking for a model that, once it 
observes this query, assumes that the other per-
mutations of the words in this query are also 
likely. This model should also be able to handle 
cases where some local orderings have to be 
fixed as in the query buses from New York City to 
Boston, where the words in the phrases from New 
York city and to Boston have to come in the exact 
order.  

The third limitation is that the sequential mod-
els treat queries as unstructured (linear) se-
quences of words. The study by Barr et al. (2008) 
on Yahoo! query logs suggests that web search 
queries, to some degree, carry an underlying lin-
guistic structure. As an example, consider a query 
about finding a local business near some location 
such as:  

seattle wa drugstore 24/7 98109  
This query has two constituents: the Business that 
the user is looking for (24/7 drugstore) and the 
Neighborhood (seattle wa 98109). The model 
should not only be able to recognize the two con-
stituents but it also needs to understand the struc-
ture of each constituent. Note that the arbitrary 
ordering of the words in the query is a big chal-
lenge to understanding the structure of the query. 
The problem is not only that the two constituents 
can come in either order, but also that a sub-
constituent such as 98109 can also be far from 
the other words belonging to the same constitu-
ent. We are looking for a model that is able to 
generate a hierarchical structure for this query as 
shown in figure (1).  

The last problem that we discuss here is that 
the two powerful sequential models i.e. MEMM 
and CRF are discriminative models; hence they 
are highly dependent on the training data. Prepar-
ing labeled data, however, is very expensive. 
Therefore in cases where there is no or a small 
amount of labeled data available, these models do 
a poor job.   

In this paper, we define a hybrid, generative 
grammar model (section 3) that generates bags of 
phrases (also called chunks in this paper). The 
chunks are generated by a set of phrase structure 
(PS) rules. At a higher level, a bag of chunks is 
generated from individual chunks by a second 
type of rule, which we call context-free multiset 
generating rules. We define a probabilistic ver-
sion of this grammar in which every rule has a 
probability associated with it. Our grammar 
model eliminates the local dependency assump-
tion made by sequential models and the ordering 

constraints imposed by phrase structure gram-
mars (PSG). This model better reflects the under-
lying linguistic structure of web search queries. 
The model’s power, however, comes at the cost 
of increased time complexity, which is exponen-
tial in the length of the query. This, is less of an 
issue for parsing web search queries, as they are 
usually very short (2.8 words/query in average 
(Xue et al., 2004)).   

Yet another drawback of our approach is due 
to the context-free nature of the proposed gram-
mar model. Contextual information often plays a 
big role in resolving tagging ambiguities and is 
one of the key benefits of discriminative models 
such as CRFs. But such information is not 
straightforward to incorporate in our grammar 
model. To overcome this limitation, we further 
present a discriminative re-ranking module on top 
of the parser to re-rank the n-best parse trees gen-
erated by the parser using contextual features. As 
seen later, in the case where there is not a large 
amount of labeled data available, the parser part 
is the dominant part of the module and performs 
reasonably well. In cases where there is a large 
amount of labeled data available, the discrimina-
tive re-ranking incorporates into the system and 
enhances the performance. We evaluate this 
model on the task of tagging search queries in the 
product domain. As seen later, preliminary ex-
periments show that this hybrid genera-
tive/discriminative model performs significantly 
better than a CRF-based module in both absence 
and presence of the labeled data. 

The structure of the paper is as follows. Sec-
tion 2 introduces a linguistic grammar formalism 
that motivates our grammar model. In section 3, 
we define our grammar model. In section 4 we 
address the design and implementation of a 
parser for this kind of grammar. Section 5 gives 
an example of such a grammar designed for the 
purpose of automatic tagging of queries. Section 
6 discusses motivations for and benefits of run-
ning a discriminative re-ranker on top of the 
parser. In section 7, we explain the evaluations 

 
Figure 1. A simple grammar for product domain 

 



and discuss the results. Section 8 summarizes this 
work and discusses future work. 

2 ID/LP Grammar 

Context-free phrase structure grammars are 
widely used for parsing natural language. The 
adequate power of this type of grammar plus the 
efficient parsing algorithms available  for it has 
made it very popular.  PSGs treat a sentence as an 
ordered sequence of words. There are however 
natural languages that are free word order. For 
example, a three-word sentence consisting of a 
subject, an object and a verb in Russian, can 
occur in all six possible orderings. PSGs  are not 
a well-suited model for this type of language, 
since six different PS-rules must be defined in 
order to cover such a simple structure. To address 
this issue, Gazdar (1985) introduced the concept 
of ID/LP rules within the framework of 
Generalized Phrase Structure Grammar (GPSG). 
In this framework, Immediate Dominance or ID 
rules are of the form: 
(1) A→ B, C 

This rule specifies that a non-terminal A can be 
rewritten as B and C, but it does not specify the 
order. Therefore A can be rewritten as both BC 
and CB. In other words the rule in (1) is 
equivalent to two PS-rules: 
(2) A → BC 

A → CB 
Similarly one ID rule will suffice to cover the 
simple subject-object-verb structure in Russian: 
(3) S  Sub, Obj, Vrb 

However even in free-word-order languages, 
there are some ordering restrictions on some of 
the constituents. For example in Russian an 
adjective always comes before the noun that it 
modifies. To cover these ordering restrictions, 
Gazdar defined Linear Precedence (LP) rules. (4) 
gives an example of a linear precedence rule: 
(4) ADJ < N 

This specifies that ADJ always comes before N 
when both occur on the right-hand side of a 
single rule.  
   Although very intuitive, ID/LP rules are not 
widely used in the area of natural language 
processing. The main reason is the time-
complexity issue of ID/LP grammar. It has been 
shown that parsing ID/LP rules is an NP-
complete problem (Barton 1985). Since the 
length of a natural language sentence can easily 
reach 30-40 (and sometimes even up to 100) 
words, ID/LP grammar is not a practical model 
for natural language syntax. In our case, however, 

the time-complexity is not a bottleneck as web 
search queries are usually very short (2.8 words 
per query in average). Moreover, the nature of ID 
rules can be deceptive as it might appear that ID 
rules allow any reordering of the words in a valid 
sentence to occur as another vaild sentence of the 
language. But in general this is not the case. For 
example consider a grammar with only two ID 
rules given in (5) and consider S as the start 
symbol: 
(5) S →  B, c 

B →  d, e 
It can be easily verified that dec is a sentence of 
the language but dce is not. In fact, although the 
permutation of subconstituents of a constituent is 
allowed, a subconstituent can not be pulled out 
from its mother consitutent and freely move 
within the other constituents. This kind of 
movement however is a common behaviour in 
web search queries as shown in figure (1). It 
means that even ID rules are not powerful enough 
to model the free-word-order nature of web 
search queries.  This leads us to define to a new 
type of grammar model. 

3 Our Grammar Model 

3.1  The basic model 
We propose a set of rules in the form: 
(6) S →  {B, c} 

B →  {D, E} 
D →  {d} 
E →  {e} 

which can be used to generate multisets of words. 
For the notation convenience and consistancy, 
throughout this paper, we show terminals and 
non-terminals by lowercase and uppercase letters, 
respectively and sets and multisets by bold font 
uppercase letters. Using the rules in (6) a 
sentence of the language (which is a multiset in 
this model) can be derived as follows: 
(7) S ⇒ {B, c} ⇒ {D, E, c} ⇒ {D, e, c}⇒ {d, e, c} 

Once the set is generated, it can be realized as 
any of the six permutation of d, e, and c. 
Therefore a single sequence of derivations can 
lead to six different strings of words. As another 
example consider the grammar in (8). 

(8) Query →  {Business, Location} 
Business →  {Attribute, Business} 
Location → {City, State} 
Business →  {drugstore} | {Resturant} 
Attribute→ {Chinese} | {24/7} 
City→ {Seattle} | {Portland} 
State→ {WA} | {OR} 



where Query is the start symbol and by A → B|C 
we mean two differnet rules A → B and A → C. 
Figures (2) and (3) show the tree structures for 
the queries Restaurant Rochester Chinese MN, 
and Rochester MN Chinese Restaurant, 
respectively. As seen in these figures, no matter 
what the order of the words in the query is, the 
grammar always groups the words Resturant and 
Chinese together as the Business and the words 
Rochester and MN together as the Location. It is 
important to notice that the above grammars are 
context-free as every non-terminal A, which 
occurs on the left-hand side of a rule r, can be 
replaced with the set of terminals and non-
terminals on the right-hand side of r, no matter 
what the context in which A occurs is.  

More formally we define a Context-Free 
multiSet generating Grammar (CFSG) as a 4-
tuple G=(N, T, S, R) where 

• N is a set of non-terminals;  
• T is a set of terminals; 
• S ∈ N is a special non-terminal called 

start symbol,  
• R is a set of rules {Ai→ Xj} where Ai is a 

non-terminal and Xj is a set of terminals 
and non-terminals. 

Given two multisets Y and Z over the set N ∪  T, 
we say Y dervies Z (shown as Y ⇒ Z) iff there 
exists A, W, and X such that: 

Y = W + {A}1 
Z = W + X 
A→ X ∈ R 

Here ⇒* is defined as the reflexive transitive 
closure of ⇒. Finally we define the language of 
multisets generated by the grammar G (shown as 
L(G)) as 
L = { X | X is a multiset over N∪T and S ⇒*X} 
The sequence of ⇒ used to derive X from S is 
called a derivation of X. Given the above 
                                                
1 If X and Y are two multisets, X+Y simply means append-
ing X to Y. For example {a, b, a} + {b, c, d} = {a, b, a, b, c, 
d}. 

definitions, parsing a multiset X means to find all 
(if any) the derivations of  X from S. 2 

3.2 Probabilisic CFSG 
Very often a sentence in the language has more 
than one derivation, that is the sentence is 
syntactically ambiguous. One natural way of 
resolving the ambiguity is using a probabilistic 
grammar. Analogous to PCFG (Manning and 
Schütze 1999), we define the probabilistic 
version of a CFSG, in which every rule Ai→Xj has 
a probability P(Ai→Xj) and for every non-
terminal Ai, we have: 

(9) Σj P(Ai→ Xj) = 1 
Consider a sentence w1w2…wn, a parse tree T of 
this sentence, and an interior node v in T labeled 
with Av and assume that v1, v2, …vk are the 
children of the node v in T. We define: 

(10) α(v) = P(Av→ {Av1… Avk})α(v1) … α(vk) 
with the initial conditions α(wi)=1. If u is the root 
of the tree T we have: 

(11) P(w1w2…wn , T) = α(u) 
The parse tree that the probabilistic model 
assigns to the sentence is defined as: 

(12) Tmax = argmaxT (P(w1w2…wn , T))  
where T ranges over all possible parse trees of the 
sentence. 

4 Parsing Algorithm 

4.1 Deterministic parser 
The parsing algorithm for the CFSG is straight-
forward. We used a modified version of the Bot-
tom-Up Chart Parser for the phrase structure 
grammars (Allen 1995, see 3.4). Given the 
grammar G=(N,T,S,R) and the query 
q=w1w2…wn, the algorithm in figure (4) is used to 
parse q. The algorithm is based on the concept of 
an active arc. An active arc is defined as a 3–

                                                
2 Every sentence of a language corresponds to a vector of |T| 
integers where the kth element represents how many times 
the kth terminal occurs in the multi-set. In fact, the languages 
defined by grammars are not interesting but the derivations 
are.   

 
Figure 2. A CFSG parse tree 

 

 
Figure 3. A CFSG parse tree 

 



tuple (r, U, I) where r is a rule A → X in R, U is a 
subset of X, and I is a subset of {1, 2 …n} (where 
n is the number of words in the query). This ac-
tive arc tries to find a match to the right-hand side 
of r (i.e. X) and suggests to replace it with the 
non-terminal A. U contains the part of the right-
hand side that has not been matched yet. There-
fore when an arc is newly created U=X. Equiva-
lently, X\U3 is the part of the right hand side that 
has so far been matched with a subset of words in 
the query, where I stores the positions of these 
words in q.  

An active arc is completed when U=Ø. Every 
completed active arc can be reduced to a tuple (A, 
I), which we call a constituent. A constituent (A, 
I) shows that the non-terminal A matches the 
words in the query that are positioned at the 
numbers in I. Every constituent that is built by 
the parser is stored in a data structure called chart 
and remains there throughout the whole process. 
Agenda is another data structure that temporarily 
stores the constituents. At initialization step, the 
constituents (w1, {1}), … (wn, {n}) are added to 
both chart and agenda. At each iteration, we pull 
out a constituent from the agenda and try to find a 
match to this constituent from the remaining list 
of terminals and non-terminals on the right-hand 
side of an active arc. More precisely, given a 
constituent c=(A, I) and an active arc γ = 
(r:BX, U, J), we check if A ∈ U and I ∩ J = 
Ø; if so, γ is extendable by c, therefore we extend 
γ by removing A from U and appending I to J. 
Note that the extension process keeps a copy of 
every active arc before it extends it. In practice 
every active arc and every constituent keep a set 
of pointers to its children constituents (stored in 
chart). This information is necessary for the ter-
mination step in order to print the parse trees. The 
algorithm succeeds if there is a constituent in the 
chart that corresponds to the start symbol and 
covers all the words in the query, i.e. there is a 
constituent of the form (S, {1,2,….n}) in the 
chart. 

4.2 Probabilistic Parser 
The algorithm given in figure (4) works for a de-
terministic grammar. As mentioned before, we 
use a probabilistic version of the grammar. 
Therefore the algorithm is modified for the prob-
abilistic case. The probabilistic parser keeps a 
probability p for every active arc and every con-
stituent: 

γ = (r, U, J, pγ ) 
                                                
3 A\B is defined as {x | x ∈ A & x ∉ B} 

c =(A, I, pc ) 
When extending γ using c, we have: 

(13) pγ ← pγ pc 
When creating c from the completed active arc γ : 

(14) pc ← pγ p(r) 
Although search queries are usually short, the 
running time is still an issue when the length of 
the query exceeds 7 or 8. Therefore a couple of 
techniques have been used to make the naïve al-
gorithm more efficient. For example we have 
used pruning techniques to filter out structures 
with very low probability. Also, a dynamic pro-
gramming version of the algorithm has been 
used, where for every subset I of the word posi-
tions and every non-terminal A only the highest-
ranking constituent c=(A, I, p) is kept and the rest 
are ignored. Note that although more efficient, 
the dynamic programming version is still expo-
nential in the length of the query. 

5 A grammar for semantic tagging  

As mentioned before, in our system queries are 
already classified into different domains like 
movies, books, products, etc. using an automatic 
query classifier. For every domain we have a 
schema, which is a set of pre-defined tags. For 
example figure (5) shows an example of a 
schema for the product domain. The task defined 
for this system is to automatically tag the words 
in the query with the tags defined in the schema: 

cheap       garmin   streetpilot   c340       gps 
|                |               |               |            | 

SortOrder  Brand      Model      Model    Type 

 

Initialization: 
For each word wi in q add (wi, {i}) to Chart and 

to Agenda  
For all r: A→X in R, create an active arc (r, X, 

{}) and add it to the list of active arcs. 
 
Iteration 

Repeat 
Pull a constituent c = (A, I) from Agenda 
For every active arc γ =(r:BX, U, I) 
  Extend γ using c if extendable 
  If U=Ø add (B, I) to Chart and to Agenda 
Until Agenda is empty  

 
Termination 
For every item c=(S, {1..n}) in Chart, return the 

tree rooted at c. 

Figure 4. An algorithm for parsing deterministic 
CFSG 



We mentioned that one of the motivations of 
parsing search queries is to have a deeper under-
standing of the structure of the query. The 
evaluation of such a deep model, however, is not 
an easy task. There is no Treebank available for 
web search queries. Furthermore, the definition 
of the tree structure for a query is quite arbitrary. 
Therefore even when human resources are avail-
able, building such a Treebank is not a trivial 
task. For these reasons, we evaluate our grammar 
model on the task of automatic tagging of queries 
for which we have labeled data available. The 
other advantage of this evaluation is that there 
exists a CRF-based module in our system used 
for the task of automatic tagging. The perform-
ance of this module can be considered as the 
baseline for our evaluation.  

We have manually designed a grammar for 
the purpose of automatic tagging. The resources 
available for training and testing were a set of 
search queries from the product domain. There-
fore a set of CFSG rules were written for the 
product domain. We defined very simple and 
intuitive rules (shown in figure 6) that could eas-
ily be generalized to the other domains  

Note that Type, Brand, Model, … could be 
either pre-terminals generating word tokens, or 
non-terminals forming the left-hand side of the 
phrase structure rules. For the product domain, 
Type and Attribute are generated by a phrase 
structure grammar. Model and Attribute may also 
be generated by a set of manually designed regu-

lar expressions. The rest of the tags are simply 
pre-terminals generating word tokens. Note that 
we have a lexicon, e.g.., a Brand lexicon, for all 
the tags except Type and Attribute. The model, 
however, extends the lexicon by including words 
discovered from labeled data (if available). The 
gray color for a non-terminal on the right-hand 
side (RHS) of some rule means that the non-
terminal is optional (see Query rule in figure (6)). 
We used the optional non-terminals to make the 
task of defining the grammar easier. For example 
if we consider a rule with n optional non-
terminals on its RHS, without optional non-
terminals we have to define 2n different rules to 
have an equivalent grammar. The parser can treat 
the optional non-terminals in different ways such 
as pre-compiling the rules to the equivalent set of 
rules with no optional non-terminal, or directly 
handling optional non-terminals during the pars-
ing. The first approach results in exponentially 
many rules in the system, which causes sparsity 
issues when learning the probability of the rules. 
Therefore in our system the parser handles op-
tional non-terminals directly. In fact, every non-
terminal has its own probability for not occurring 
on the RHS of a rule, therefore the model learns 
n+1 probabilities for a rule with n optional non-
terminals on its RHS: one for the rule itself and 
one for every non-terminal on its RHS. It means 
that instead of learning 2n probabilities for 2n dif-
ferent rules, the model only learns n+1 probabili-
ties. That solves the sparsity problem, but causes 
another issue which we call short length prefer-
ence. This occurs because we have assumed that 
the probability of a non-terminal being optional is 
independent of other optional non-terminals. 
Since for almost all non-terminals on the RHS of 
the query rule, the probability that the non-
terminal does not exist in an instance of a query 
is higher than 0.5, a null query is the most likely 
query that the model generates! We solve this 
problem by conditioning the probabilities on the 
length of queries. This brings a trade-off between 
the two other alternatives: ignoring sparsity prob-
lem to prevent making many independence as-
sumptions and making a lot of independence 
assumptions to address the sparsity issue. 

 Unlike sequential models, the grammar 
model is able to capture critical global con-
straints. For example, it is very unlikely for a 
query to have more than one Type, Brand, etc. 
This is an important property of the product que-
ries that can help to resolve the ambiguity in 
many cases. In practice, the probability that the 
model learns for a rule like:  

Query → {Brand*, Product*, Model*, …} 
Brand* → {Brand} 
Brand* → {Brand*, Brand} 
Type* → {Type} 
Type* → {Type*, Type} 
Model* → {Model} 
Model* → {Model*, Model} 
… 
Figure 6. A simple grammar for product domain 
 

Type: Camera, Shoe, Cell phone, …  
Brand: Canon, Nike, At&t, … 
Model: dc1700, powershot, ipod nano 
Attribute: 1GB, 7mpixel, 3X, … 
BuyingIntenet: Sale, deal, … 
ResearchIntent:  Review, compare, … 
SortOrder: Best, Cheap, … 
Merchant:  Walmart, Target, … 
 
Figure 5. Example of schema for product domain 
 



Type*  {Type*, Type} 
compared to the rule: 

Type*  Type 
is very small; the model penalizes the occurrence 
of more than one Type in a query. Figure (7a) 
shows an example of a parse tree generated for 
the query “Canon vs Sony Camera” in which B, 
Q, and T are abbreviations for Brand, Query, and 
Type, and U is a special tag for the words that 
does not fall into any other tag categories and 
have been left unlabeled in our corpus such as a, 
the, for, etc. Therefore the parser assigns the tag 
sequence B U B T to this query. It is true that the 
word “vs” plays a critical role in this query, rep-
resenting that the user’s intention is to compare 
the two brands; but as mentioned above in our 
labeled data such words has left unlabeled. The 
general model, however, is able to easily capture 
these sorts of phenomena. 

A more careful look at the grammar shows 
that there is another parse tree for this query as 
shown in figure (7b). These two trees basically 
represent the same structure and generate the 
same sequence of tags. The number of trees gen-
erated for the same structure increases exponen-
tially with the number of equal tags in the tree. 
To prevent this over-generation we used rules 
analogous to GPSG’s LP rules such as: 

B* < B 
which allows only a unique way of generating a 
bag of the Brand tags.  Using this LP rule, the 
only valid tree for the above query is the one in 
figure (7a). 

6 Discriminative re-ranking 

By using a context-free grammar, we are missing 
a great source of clues that can help to resolve 
ambiguity. Discriminative models, on the other 
hand, allow us to define numerous features, 
which can cooperate to resolve the ambiguities. 
Similar studies in parsing natural language sen-

tences (Collins and Koo 2005) have shown that 
if, instead of taking the most likely tree structure 
generated by a parser, the n-best parse trees are 
passed through a discriminative re-ranking mod-
ule, the accuracy of the model will increase sig-
nificantly. We use the same idea to improve the 
performance of our model. We run a Support 
Vector Machine (SVM) based re-ranking module 
on top of the parser. Several contextual features 
(such as bigrams) are defined to help in disam-
biguation. This combination provides a frame-
work that benefits from the advantages of both 
generative and discriminative models. In particu-
lar, when there is no or a very small amount of 
labeled data, a parser could still work by using 
unsupervised learning approaches to learn the 
rules, or by simply using a set of hand-built rules 
(as we did above for the task of semantic tag-
ging). When there is enough labeled data, then a 
discriminative model can be trained on the la-
beled data to learn contextual information and to 
further enhance the tagging performance.  

7 Evaluation 

Our resources are a set of 21000 manually la-
beled queries, a manually designed grammar, a 
lexicon for every tag (except Type and Attribute), 
and a set of regular expressions defined for Mod-
els and Attributes. Note that with a grammar 
similar to the one in figure (6), generating a parse 
tree from a labeled query is straightforward. Then 
the parser is trained on the trees to learn the pa-
rameters of the model (probabilities in this case). 
We randomly extracted 3000, out of 21000, 
queries as the test set and used the remaining 
18000 for training. We created training sets with 
different sizes to evaluate the impact of training 
data size on tagging performance.  

Three modules were used in the evaluation: 
the CRF-based model4, the parser, and the parser 
plus the SVM-based re-ranking. Figure (8) shows 
the learning curve of the word-level F-score for 
all the three modules. As seen in this plot, when 
there is a small amount of training data, the 
parser performs better than the CRF module and 
parser+SVM module performs better than the 
other two. With a large amount of training data, 
the CRF and parser almost have the same per-
formance. Once again the parser+SVM module 

                                                
4 The CRF module also uses the lexical resources and regu-
lar expressions. In fact, it applies a deterministic context free 
grammar to the query to find all the possible groupings of 
words into chunks and uses this information as a set of fea-
tures in the system. 

 
Figure 7. Two equivalent CFSG parse trees  

 



outperforms the other two. These results show 
that, as expected, the CRF-based model is more 
dependent on the training data than the parser. 
Parser+SVM always performs at least as well as 
the parser-only module even with a very small 
set of training data. This is because the rank 
given to every parse tree by the parser is used as 
a feature in the SVM module. When there is a 
very small amount of training data, this feature is 
dominant and the output of the re-reranking 
module is basically the same as the parser’s 
highest-rank output. Table (1) shows the per-
formance of all three modules when the whole 
training set was used to train the system. The first 
three columns in the table show the word-level 
precision, recall, and F-score; and the last column 
represents the query level accuracy (a query is 
considered correct if all the words in the query 
have been labeled correctly). There are two rows 
for the parser+SVM in the table: one for n=2 (i.e. 
re-ranking the 2-Best trees) and one for n=10. It 
is interesting to see that even with the re-ranking 
of only the first two trees generated by the 
parser, the difference between the accuracy of 
the parser+SVM module and the parser-only 
module is quite significant. Re-ranking with a 
larger number of trees (n>10) did not increase 
performance significantly. 

8 Summary 

We introduced a novel approach for deep parsing 
of web search queries. Our approach uses a 
grammar for generating multisets called a con-
text-free multiset generating grammar (CFSG). 
We used a probabilistic version of this grammar. 
A parser was designed for parsing this type of 
grammar. Also a discriminative re-ranking mod-
ule based on a support vector machine was used 

to take contextual information into account. We 
have used this system for automatic tagging of 
web search queries and have compared it with a 
CRF-based model designed for the same task.  

The parser performs much better when there is 
a small amount of training data, but an adequate 
lexicon for every tag. This is a big advantage of 
the parser model, because in practice providing 
labeled data is very expensive but very often the 
lexicons can be easily extracted from the struc-
tured data on the web (for example extracting 
movie titles from imdb or book titles from Ama-
zon).  

Our hybrid model (parser plus discriminative 
re-ranking), on the other hand, outperforms the 
other two modules regardless of the size of the 
training data.  

The main drawback with our approach is to 
completely ignore the ordering. Note that al-
though strict ordering constraints such as those 
imposed by PSG is not appropriate for modeling 
query structure, it might be helpful to take order-
ing information into account when resolving am-
biguity. We leave this for future work. Another 
interesting and practically useful problem that we 
have left for future work is to design an unsuper-
vised learning algorithm for CFSG similar to its 
phrase structure counterpart: inside-outside algo-
rithm (Baker 1979). Having such a capability, we 
are able to automatically learn the underlying 
structure of queries by processing the huge 
amount of available unlabeled queries. 
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