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1 Introduction

1.1 Anonymity Systems

Anonymous communications allow conversing parties on a network to exchange
messages without revealing their network identifiers to each other or to third
party observers. This security property is of special importance to ensure pri-
vacy, support important protocols such as on-line polls, or enable high-security
government or military communications to use commodity network infrastruc-
tures.

The most practical proposal for engineering anonymous communications is
the mix, proposed by David Chaum [9] in 1981 (although early ideas were al-
ready in his Masters thesis in 1979). A mix is a network router offering a special
security property: it hides the correspondences between its input and output
messages, thus providing some degree of anonymity. A large body of research,
surveyed in [14], is concerned with extending and refining mix based protocols.

The first engineering challenge to build a mix is to ensure that messages en-
tering and leaving the network are cryptographically unlinkable, though a public-
key operation inside the mix – most often decryption. Many such cryptographic
schemes, also called cryptographic packet formats, have been proposed in the
literature [17, 41, 6, 18, 55]. Modern proposals allow the chaining of multiple
mixes, without leaking any information about the number of mixes on a path, or
the position of each mix. They also allow users to build anonymous addresses
that can be used to route mail back to them anonymously by anyone in the
network. The cryptographic aspects of mix networks are well understood, and
aside from specific efficiency tweaks, mix designers do not have to be concerned
by them. This work in its entirety assumes that the cryptographic functions of
mixes are secure and do not leak any information.

The difficult design choices mix engineers face relate to achieving traffic
analysis resistance for mix networks. This means that timing and volume of
messages should not betray any information that would allow an adversary to
link incoming and outgoing messages of the anonymity infrastructure. Typical
mix architectures achieve this by allowing senders to relay their messages over
a sequence of mixes, called a path. Security has to be achieved under severe
constraints: messages have to be routed in a timely fashion [36], the number of
connections maintained by each mix is restricted [12], the adversary might be
able in inject messages in the network [53], all clients might not know all mix
routers [22], rogue mixes might be dropping messages [5], or the architecture
may have to be fully peer-to-peer [51, 43]. Complexity of protocols increases to
fulfil all these goals, and information may leak as a result about who is talking to
whom, through the careful study of traffic patterns and compromised or rogue
nodes.

This work is concerned with making use of the traffic patterns of messages as
they transit through a mix-based anonymity to infer who is talking with whom.
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1.2 Traffic analysis

Traffic analysis is a family of techniques used to infer information merely from
the meta-data of communications. It can be applied to unprotected or even
encrypted [48] communications, like email or web-traffic, to infer users’ social
networks and interests. In the context of anonymous communications it refers to
tracing who is sending messages to whom, therefore compromising their security.

The most naive “brute force” approach to the traffic analysis of mix systems
is succinctly presented by J.F. Raymond [49], alongside many basic attacks that
later became the focus of intense research:

1) The attacker first follows a message from a sender to a first mix
node.
2) The attacker then follows every (t) message that the first node
releases. The adversary needs to follow messages going to anywhere
between t and 1 different nodes. If all messages are sent to either
the same mix node or recipients, the attacker only needs to monitor
one node. On the other and, if all h messages are sent to different
nodes, the attacker needs to observe t different mix odes.
3) The process continues like this until messages reach the dth level
nodes. The attacker then need only “follow” messages leaving the
mix network (i.e. going to recipients).

In fact the adversary is trying all possible paths a message could have taken
starting at a particular sender – a process that grows exponentially in the
branching factor t and the depth of the search d. This simple minded attack
ignores some important information, that could lead to better and more efficient
tracing of messages.

First, paths are chosen by users or the system using some constraints besides
length. It is therefore possible to prune paths that are simply not possible.
Other path properties have been looked at like the positions of the nodes on
the path [3], partial knowledge of the clients [23] (fingerprinting & bridging),
special selection of initial nodes [47] (guards), and social relationships between
senders and receivers [27]. Some constraint are soft, making paths less likely
than others rather than impossible. So far traffic analysis attacks have ignored
subtle differences in the likelihood of paths and most research has focused on
a binary security question: “Is there a possible unique path or not?” The
techniques we present allow all these restrictions to be integrated in the same
framework, and used together, and we are able to take into account probabilistic
differences and soft constraints.

Second, the brute force approach proposed concentrates on the path of one
user, without taking into consideration what others do. This is a mistake:
another user may for some reason be attributed some paths, reducing the search
complexity to perform the brute force attack. It might also be the case that
there is no other user in the system that is able to be ascribed a particular path,
making it imperative that it belongs to a target users. Such epistemic reasoning
has been explored in specific attacks in the past [23], but our work integrates it
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throughout.
Beyond tracing single messages techniques have been developed to uncover

persistent and repeated patterns of communication. Such attacks were first
named “intersection attacks” [49] since they were based on the idea that a tar-
get user systematically communicates with a single friend. By intersecting the
anonymity sets of the send messages the friend would be uncovered. Kesdo-
gan et al. [34, 2, 37] introduced a family of disclosure and hitting set attacks
that generalises this idea to users with multiple friends. Their result, in the
long run, is the set of friends being uncovered and many communications being
traced. Statistical variants of these attacks were also developed, known as sta-
tistical disclosure attacks, and applied to pool mixes [20] and traffic containing
replies [15]. The state of the art in statistical disclosure is the Perfect Matching
attack introduced by Troncoso et al. [61], that introduces models that are the
starting point for our Bayesian disclosure attack.

1.3 Measuring anonymity

The anonymity provided by a system is related to the uncertainty an adversary
has about who is actually communicating with whom. The two established
information theoretic metrics [52, 26] measure this uncertainty directly using the
concept of entropy. The probability distribution over all possible receivers of a
message is calculated, and the entropy of this distribution (normalised for [26])
is the measure of anonymity for that particular message and that particular
adversary. These metrics are widely accepted but seldom used for theoretical
as well as practical reasons.

The theoretical difficulties associated with the information theoretic metrics
is that they describe the anonymity of single messages, but not systems as a
whole. This has sparked a debate on whether the minimum, average, maxi-
mum, or typical anonymity of messages should be used to describe a system as
a whole. The metrics are also tied in with the specific knowledge of the adver-
sary. It is very difficult for a system designer to calculate them correctly since
they only have the most generic threat model, and cannot know exactly what
information the adversary has. These theoretical discussion have sparked a lot
of research [58, 45, 59, 56, 29, 8, 7] into alternative ways of measuring anonymity,
without any specific proposal establishing itself as a preferable alternative yet.

The most serious impediment to applying information theoretic metrics for
anonymity, is the difficulty of calculating the probability distributions upon
which they rely. Both metrics assume that a probabilistic mapping between a
sent message and all potential receivers is at hand – in fact this can only the
result of a difficult traffic analysis step. Given these difficulties some authors
use heuristics instead of probabilities to extract a mapping – this invariably
leads to results that are difficult to interpret [27]. Other works give up on the
information theoretic metrics and use the rank (or guessing probability) of the
actual sender [16], or the probability of full compromise [22], as measures of
anonymity.

The current work directly addresses the hard problem of calculating the

4



probability distributions over receivers of messages (or senders of messages).
We show that a combination of probabilistic modeling, Bayesian inference, and
sampling techniques can be used to extract those distributions from observa-
tions of rather complex systems. These in turn can be used to compute the
information theoretic anonymity of a system.

1.4 Bayesian Inference and Monte Carlo Methods

Bayesian inference is a branch of statistics with applications to machine learn-
ing and estimation [39]. Its key methodology consists of constructing a full
probabilistic model of all variables in a system under study. Given observa-
tions of some of the variables, the model can be used to extract the probability
distributions over the remaining, hidden, variables.

To be more formal lets assume that an abstract system consists of a set of
hidden state variables HS and observations O. We assign to each possible set
of these variables a joint probability Pr[HS,O|C] given a particular model C.
By applying Bayes rule we can find the distribution of the hidden state given
the observations as:

Pr[HS,O|C] = Pr[HS|O, C] · Pr[O|C]⇒ Pr[HS|O, C] =
Pr[HS,O|C]

Pr[O|C]
⇒

Pr[HS|O, C] =
Pr[HS,O|C]∑

∀HS Pr[HS,O|C] ≡ Z
=

Pr[O|HS, C] · Pr[HS|C]
Z

The joint probability Pr[HS,O|C] is decomposed into the equivalent Pr[O|HS, C]·
Pr[HS|C], describing the model and the a-prior distribution over the hidden
state. The quantity Z is simply a normalising factor.

There are key advantages in using a Bayesian approach to inference that
make it very suitable for traffic analysis applications:

• The problem of traffic analysis is reduced to building a generative model of
the system under analysis. Knowing how the system functions is sufficient
to encode and perform the attacks, and the inference steps are, in theory,
easily derived from this forward model. In practice computational limita-
tions require careful crafting of the models and the inference techniques
to be able to handle large systems.

• The Bayesian approach allows to infer as many characteristics of the sys-
tem as needed by introducing them in the probabilistic model. This per-
mits to infer several hidden variables jointly as we show for users’ sending
profiles and their recipient choices for each message.

• A Bayesian treatment results in probability distributions over all possible
hidden states, not only the most probable one as many current traffic
analysis methods do. The marginal distributions over different aspects of
the hidden state can be used to measure the certainly of the attacker, and
provide good estimates of her probability of error.

5



The last point is the most important one: the probability distribution over
hidden states given an observation, Pr[HS|O, C], contains a lot of information
about all possible states. When traffic analysis is used operationally the prob-
ability of error of particular aspects of the hidden state can be calculated to
inform decision making. It is very different to assert that, in both cases, the
most likely correspondent of Alice is Bob, with certainty 99% versus with cer-
tainty 5%. Extracting probability distributions over the hidden state allows us
to compute such error estimates directly, without the need for an ad-hoc anal-
ysis of false positives and false negatives. Furthermore, the analyst can use the
inferred probability distribution to calculate directly anonymity metrics [26, 52].

Despite their power Bayesian techniques come at a considerable computa-
tional cost. It is often not possible to compute or characterise directly the
distribution Pr[HS|O, C] due to its complexities. In those cases sampling based
methods are available to extract some of its characteristics. The key idea is that
a set of samples HS0, . . . ,HSι ∼ Pr[HS|O, C] are drawn from the a-posterior
distribution, and used to estimate particular marginal probability distributions
of interest. For this purpose, Markov Chain Monte Carlo methods have been
proposed. These are stochastic techniques that perform a long random walk
on a state space representing the hidden information, using specially crafted
transition probabilities that make the walk converge to the target stationary
distribution, namely Pr[HS|O, C]. Once the Markov Chain has been built, sam-
ples of the hidden states of the system can be obtained by taking the current
state of the simulation after a certain number of iterations.

1.4.1 Metropolis-Hastings Sampler

The Metropolis-Hastings (MH) algorithm is a Markov Chain Monte Carlo method
that can be used to sample from arbitrary distributions. It operates by perform-
ing a long random walk on a state space representing the hidden information,
using specially crafted transition probabilities that make the walk converge to
the target stationary distribution, namely Pr[HS|O, C]. Its operation is often
referred to as simulation, but we must stress that it is unrelated to simulating
the operation of the system under attack. In fact the MH algorithm is closer
conceptually to optimization and search algorithms, but outputs samples from
a particular distribution instead of a maximal element or a key element for the
other two schemes respectively.

The MH algorithm’s key state is a single instance of the hidden state,
called the current state and denoted HSj . Given the current state a an-
other candidate state HS ′ is selected according to a probability distribution
HS ′ ∼ Q(HS ′|HSj). A value α is defined as:

α =
Pr[HS ′|O, C] ·Q(HSj |HS ′)
Pr[HSj |O, C] ·Q(HS ′|HSj)

If α ≥ 1 then the candidates state is accepted as the current state, otherwise
it is only accepted with probability α. This process is repeated multiple times,
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and after a certain number of iterations the current state is output as a sample.
More samples can be extracted by repeating this process.

This process is very generic, and can be used to sample from any distribu-
tion on any state space, using custom transition probabilities Q. It is partic-
ularly interesting that the distribution Q used to propose new candidates can
be arbitrary without affecting the correctness of the process, as long as both
Q(HS ′|HSj) > 0 and Q(HSj |HS ′) > 0, and the Markov Chain it forms, fully
connects all hidden states and it is ergodic. Despite the apparent freedom in
choosing the distribution Q in practice it has to be very easy to compute and
sample, as well as being fast mixing, to reduce the number of iterations needed
to produce independent samples.

Note that the probabilities Pr[HS ′|O, C] and Pr[HSj |O, C] need only be
known up to a multiplicative constant, that is simplified when calculating α.
This is very important as the normalising factor Z is in practice very difficult
to calculate. As all probabilities become very small it is often easier to calculate
logα and test whether logα ≥ 0.

The other parameters of the MH algorithm, namely the number of iterations
necessary per sample, as well as the number of samples are also of some impor-
tance. The number of iterations has to be high enough to ensure the output
samples are statistically independent. Calculating it exactly is difficult so we
use conservative estimates to ensure we get good samples. The number of MH
samples on the other hand depends on the marginal distributions that need to
be estimated, and can be increased by running the sampler longer.

An important feature of the MH method is that it can be run in parallel on
multiple processor cores or a distributed cluster: all processes output samples
that can be aggregated and analysed centrally. Our experiments made use of
this property, and we were often running four independent processes on a shared
8 core processor.

1.4.2 Gibbs Sampler

The Gibbs sampler [32] is a Markov Chain Monte Carlo method to sample from
joint distributions that have easy to sample marginal distributions. These joint
distributions are often the a-posterior distribution resulting from the applica-
tion of Bayes theorem, and thus Gibbs sampling has been extensively used to
solve Bayesian inference problems. The operation of the Gibbs sampler is of-
ten referred to as simulation, but we must stress again that it is unrelated to
simulating the operation of the system under attack.

For illustration purposes we assume an a-posterior distribution Pr[HS|O, C]
can be written as a joint probability distribution Pr[X,Y |O, C] that is difficult
to sample directly. If, on the other hand, there is an efficient way of sampling
from the marginal distributions Pr[X|Y,O, C] and Pr[Y |X,O, C], then Gibbs
sampling is an iterative technique to draw samples from the joint distribution
Pr[X,Y |O, C]. The algorithm starts at an arbitrary state (x0, y0). Then it iter-
atively updates each of the components through sampling from their respective
distributions, i.e. xi ∼ Pr[X|Y = yi−1,O, C], and yi ∼ Pr[Y |X = xi,O, C].
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After a sufficient number of iterations, the sample (xi, yi) is distributed accord-
ing to the target distribution, and the procedure can be repeated to draw more
samples. We note that in this process the computation of the normalising factor
Z is not needed.

The other parameters of the Gibbs algorithm, namely the number of itera-
tions necessary per sample, as well as the number of samples are also of some
importance. The number of iterations has to be high enough to ensure the out-
put samples are statistically independent. Calculating it exactly is difficult so
we use conservative estimates to ensure we get good samples. As for the MH
algorithm, the number of samples to be extracted, depends on the necessary
accuracy when estimating the marginal distributions, which can be increased
by running the sampler longer.

1.4.3 Bayesian Confidence Intervals & Probability Estimation

In this work we use Bayesian methods to perform traffic analysis, i.e. to extract
samples of the hidden state according to an a-posterior distribution. Further-
more, we use Bayesian confidence intervals to estimate the errors of our estimates
for probabilities and other quantities of interest, often extracted from samples
HS0, . . . ,HSl ∼ Pr[HS|O, C] produced by a Metropolis-Hasting or Gibbs algo-
rithm.

Many quantities we estimate represent probabilities. A typical example is
the probability a particular sender Alice has sent a message to a particular user
Bob, denoted Pr[A → B] = pA→B . We denote this event as “A → B” and
define two indicator variables IA→B(·) and IA6→B(·) taking value one when a
sample state contains or not that event respectively. Otherwise they take the
value zero.

The task of estimating pA→B from the samples HS0, . . . ,HSl is equivalent
to estimating the bias of a weighted coin given a sequence of independent tosses.
The forward probability Pr[IA→B(HS0), . . . , IA→B(HSl)|pA→B ] is a Bernoulli
distribution. The inverse probability Pr[pA→B |IA→B(HS0), . . . , IA→B(HSl)],
given a prior distribution Beta with parameters Beta(1, 1) is:

pA→B ∼ Beta(
∑
∀HSj

IA→B(HSj) + 1,
∑
∀HSj

IA 6→B(HSj) + 1)

Instead of using a point estimate for the mean of this distribution we often
use a confidence interval within the range [0, 1], encompassing 95% or 99%
of the probability mass of the a-posterior distribution. When conditioning on
infrequent events, we observe that the number of samples used may be quite
small, and the confidence intervals are large, warning the user not to put too
much faith in the results. Most often we can increase the number of sampled
states to achieve a very high confidence in the results of the analysis.

This binomial model, and the corresponding inference on its probability
parameter, is used through our work, both to estimate probabilities of interest
to the traffic analyst as well as for evaluating the correctness of our sampler.
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2 Probabilistic Models of Anonymity Systems

The first step to perform Bayesian inference is to define a probabilistic model
that describes all observations and hidden states of a system. In this section,
we present such a model for a set of users sending messages over a mix network
to a set of receivers. The model includes traditional aspects of mix networks,
e.g. path length constraints, and further incorporates incomplete observations,
erratic clients, bridging attacks, and social network information.

2.1 Simple Mix Network Model

We consider an anonymity system formed by Nmix threshold mixes [9]. This
type of mix achieves unlinkability by collecting t (the threshold) input messages
and then outputting them in a random order after a cryptographic transfor-
mation. These two actions prevent timing attacks and bitwise linkability re-
spectively (in this work, we assume the cryptography is perfect and leaks no
information.) A population of Nuser users send messages through these mixes.
When sending a message, a user selects a receiver amongst his set of contacts
and a path in the network to route the message. The path is determined by the
preferences of the user and a set of constraints C imposed by the system (e.g.,
maximum path length, restrictions on the choice of mixes,etc. ) We denote the
sender of an incoming message to the system ix as Senx and the receiver of an
outgoing message from the system oy as Recy.

In order to carry out our analysis we observe the system over a period of
time between T0 and Tmax (assuming that all mixes are empty at T0.) During
this period, Nmsg messages travelling through the system are monitored by a
passive adversary, generating an Observation (O.) This Observation is formed
by records of communications between the entities (users and mixes) observed
by the adversary.

Our goal is to determine the probability of a message entering the network
corresponding to each of the messages leaving it given an observation O. To
achieve this it is sufficient to guess the correspondence between inputs and out-
puts in each of the mixes. We call the collection of the input-output relationships
of all mixes the Hidden State of the system, and denote it as HS.

Figure 1 depicts an instance of a system where 3 users send 3 messages
through a network formed by 3 threshold mixes with threshold t = 2. In this
setting a passive observer can monitor the following events (α � β denotes
entity α sending a message to entity β) and construct an observation O with
them:

O = { Sen0 → mix1 , mix1 → mix3 , mix2 → Rec2 ,
Sen1 → mix1 , mix3 → mix2 , mix3 → Rec0 ,
Sen2 → mix2 , mix3 → mix2 , mix3 → Rec1 }

These events are represented with solid lines in Fig. 1. A possible HS (corre-
spondences between incoming and outgoing messages at mixes) for this instance
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Figure 1: Observation of the network and Hidden State

is represented with dashed lines.
Given an observation and a hidden state we define a path Px for each of the

messages ix entering the network, which represents its trajectory through the
system. A path consists of a series of observed events that are linked by the
relations stated in the Hidden State. In the example, message i1 follows the
path P1 = {Sen1 � mix1,mix1 � mix3,mix3 � Rec1}. We note that a set of
paths P = {Px, x = 1, . . . , Nmsg} defines uniquely an observation and a hidden
state. Hence, given a set of constraints C, their probability should be strictly
equal, i.e. Pr[P|C] = Pr[O,HS|C]. By applying Bayes theorem we can relate
the probability of a hidden state (that we are trying to infer) to the observations
and the paths that it forms:

Pr[HS|O, C] =
Pr[P|C]
Z

, (1)

where Z is a normalising constant.
Proof: Given that the probability of a path is restricted by the constraints C
and that Pr[O, C] is a constant we obtain the following equation:

Pr[P|C] = Pr[O,HS|C] = Pr[HS|O, C] · Pr[O, C]

⇒ Pr[HS|O, C] =
Pr[O,HS|C]

Pr[O, C]
=

Pr[O,HS|C]∑
HS Pr[HS,O|C] ≡ Z

=
Pr[P|C]
Z

One can sample the distribution of hidden states Pr[HS|O, C] by sampling
the distribution of paths Pr[P|C] using Bayesian inference techniques. In this
particular case we use the Metropolis-Hastings method explained in Sect. 1.4.1.
In the next sections we present a probability model that can characterise the
distribution of paths under different system-based and user-based constraints.

2.2 Basic Constraints

First, we first present our model for basic constraints concerning the user’s
choice of mixes to relay messages and the length of the path.

We assume that the system allows the user to choose paths of length Lx, Lx =
Lmin, . . . , Lmax. We consider that the user selects this length uniformly at ran-
dom amongst the possible values. There is nothing special about the uniform
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Figure 2: Example where some mixes do not flush

distribution of path lengths, and any arbitrary distribution can be used instead.
The probability of path Px being of length l is:

Pr[Lx = l|C] =
1

Lmax − Lmin + 1
.

Once the length is determined, the user has to choose the mixes on the path.
We consider any sequence of mixes of the chosen length as equally likely, with
the only condition that mixes have to be distinct. The possible ways in which
the l mixes forming a path can be chosen is given by the permutations of length
l out of the Nmix mixes forming the system. Thus, the probability of choosing
a valid sequence of mixes of length Lx is:

Pr[Mx|Lx = l, C] =
(Nmix − l)!
Nmix!

.

Assuming that the choice of the length of a path and the choice of mixes
belonging to it are independent, the probability of selecting a path Px is:

Pr[Px|C] = Pr[Lx = l|C] · Pr[Mx|Lx = l, C] · Iset(Px) , (2)

where the last element represents an indicator of the choice of mixes being a
set or a multiset. This indicator takes value 1 when all mixes in the path are
different, 0 otherwise.

Since the observation is limited in time, it may be the case that some mes-
sages enter the network but never leave it. This happens when messages enter
mixes that do not receive enough inputs during the time of observation in order
to flush, and thus stay in those mixes at the end. For these messages, it is not
possible to derive the choices of the user in terms of path length and mixes, as we
can only observe part of the path. Such an example is the observation shown in
Fig. 2, representing an instance of a network formed by threshold mixes (t = 2)
in which users can choose paths of length Lx ∈ [2, 3]. The message sent by
Sen2 arrives at mix4, but is never forwarded to any other mix or to its recipient
since no more messages are received by this mix. At this point, an adversary
cannot assume Sen2 chose L2 = 2, and must consider also the possibility that
the choice was L2 = 3.
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Figure 3: Black box abstraction of the system

The probability of a path Px ending in an unflushed mix is:

Pr[Px,unf|C] =
Lmax∑
l=Lunf

Pr[Lx = l|C] · Pr[Mx|Lx = l, C] ,

where Lunf = min(Lmin, Lobs), and Lobs is the observed length of the path from
the sender until the mix that has not flushed.

As we have shown, the probability of a hidden state is proportional to the
joint probability of the paths chosen by the users. Assuming users decide inde-
pendently about the routing of their messages:

Pr[HS|O, C] ∝ Pr[P|C] =
Nmsg∏
x=1

Pr[Px|C] . (3)

2.2.1 Including Social Information

So far we only considered the routing decisions made by the users, but we must
not forget that assignments of senders to recipients affect also the probability of
hidden states. One can abstract the system as a black box to which users send
(and from which users receive) such that there exist a one-to-one relationship
amongst incoming and outgoing messages (Fig. 3 depicts an example of this
abstraction for the network in Fig 1.) In other words the messages at the exit
of the black box must be a permutation of the messages at the entrance.

The number of permutations π of Nmsg messages is Nmsg!. Without any a-
priori information, the probability of the real permutation πi being any of them
is: Pr[πi] = 1/Nmsg!. This information can be integrated in the computation of
the probability of a set of paths:

Pr[P|C] =
Nmsg∏
x=1

Pr[Px|C] ·
1

Nmsg!
. (4)

2.3 Advanced Constraints

In this section we present our modeling of advanced constraints which account
for additional knowledge of the adversary about the users’ behaviour. The
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constraints described here can be selectively combined to refine the probabilistic
model of the system, resulting in more accurate attacks.

2.3.1 Bridging

Bridging attacks were proposed by Danezis and Syverson in [23]. These attacks
exploit the fact that users of a large anonymity network might not know all the
mixes present in the system. In this case it is possible to “bridge” honest mixes
considering the knowledge (or ignorance) about subsequent mixes in a path
that the originator of the communication has. For example, given a message
sent through a honest mix the path followed by this message can be “bridged”
either if (i) there is only one outgoing mix known by its sender, or (ii) if there
is only one outgoing mix that is not known by all the senders of the other
messages present in the round. Bridging attacks can be incorporated in our
model through the definition of a new indicator variable Ibridge(Px) associated
with each path. This variable takes the value one if all mixes in a given path
Px are known to the initiator of the path, and is set to zero otherwise. We can
easily integrate bridging in Eq. 2:

Pr[Px|C] = Pr[Lx = l|C] · Pr[Mx|Lx = l, C] · Iset(Px) · Ibridge(Px) .

This probability can in turn be used in Eq. 4 to obtain the probability of a set
of paths P.

A probabilistic version of bridging can also be incorporated into the model,
moving beyond the possibilistic bridging attacks described in [23]. Detailed
knowledge of the attacker as to which client knows which server, as well as their
probability of choosing it, can be used to build probability distributions over the
paths Pr[Px|Sender(Px), C]. Such distributions can represent the knowledge of
each sender about the mix network infrastructure, but also any preferences they
might have about the choice of mixes. The use of guard nodes [62] in Tor [28]
can be modelled in this manner.

2.3.2 Non-compliant Clients

Our model so far assumes that all clients make routing decisions according to
the standard parameters of the system. This is overwhelmingly the case, since
most users will be downloading client software that builds paths for them in a
particular, and known fashion. We call those clients and the paths they create
compliant. For example, the Tor [28] standard client will choose paths of length
three as well as distinct onion routers. Furthermore the first router will be a
“guard” [62] node. However, some users may modify the configuration of their
client to chose paths in a different fashion.

Paths built by these non-compliant clients have different probabilities from
what our model has assumed so far. We are very liberal with those paths,
and make as few assumptions as possible about them. Non-compliant clients
may select shorter or longer path lengths than usual in the system, i.e., Lcp ∈
[Lmincp

, Lmaxcp
] with Lmincp

6= Lmin and Lmaxcp
6= Lmax. Furthermore, they
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may use a multiset of mixes to route their messages. The probability of their
path is:

Pr[Px|C] =
1

Lmaxcp
− Lmincp

+ 1
· 1
N l

mix

For this probability, we have arbitrarily chosen a uniform distribution for the
length of the paths, but the model allows to consider any other distribution
instead. We indicate with C that the path has been constructed by a non-
compliant user. Finally, note that the indicator variable Iset(Px) enforcing the
need for selecting distinct nodes on the path has disappeared from the equation
with respect to Eq. 2.

If bridging information is available to the adversary, the indicator Ibridge(Px)
can still be used in the formula to account for user’s partial knowledge of the
network and increase the accuracy of the attack. This attack is still applicable
to non-compliant users, as the fact that they choose routing paths based on
their own criterion does not affect the mixes they know.

In order to account for this type of clients, we assume that individual users
are non-compliant with probability pcp. If non-compliant clients are present
in the network, we calculate the joint probability of all paths assuming that
each user is compliant or not independently, and then assigning a probability
to their path accordingly. We denote Pcp and Pcp the set of paths originated
by compliant and non-compliant users respectively. We extend the probability
model from Sect. 2.2 and derive:

Pr[P|C] = Pr[πi] ·

 ∏
Pi∈Pcp

pcp Pr(Pi|C)

 ·
 ∏
Pj∈Pcp

(1− pcp) Pr(Pj |C)

 ,
2.3.3 Integrating Social Network Information

A number of attacks, starting with Kesdogan et al in [35, 1], and further studied
in [13, 21, 38, 40, 16, 60], show that adversaries can sometimes extract general
profiles of the “friends” of users. These social profiles can then be integrated
in the traffic analysis process to narrow down who the receiver of each sent
message is. We are initially concerned with incorporating this information into
our basic model, and defer until Sect. 4 the discussion of how to extract those
profiles.

Let us assume that each sender Senx can be associated with a sending profile,
i.e., a probability distribution where each element Pr[Senx � Recy] expresses
the probability of sender Senx choosing Recy as the recipient of a message. We
propose two conceptual approaches to use this information, and we note that
they are mathematically equivalent.

The first option is to incorporate the profile information when computing
Pr[πi]. In 2.2.1 we considered that, without any further information, all possible
permutations are equally likely. Users profiles, however, increase and decrease
the likelihood of some permutations. If we express the black-box model (see
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Fig. 3) as a bipartite graph [30, 60], in which an edge going from Senx to Recy
(Senx � Recy) has a weight Pr[Senx � Recy], a permutation of the input mes-
sages into output messages is equivalent to a perfect matching in the underlying
graph. Assuming that users make independent decisions on their receivers, the
joint probability of the permutation is the product of the individual edge prob-
abilities in this matching [60]:

Pr[πi] =
∏

(Senx�Recy)∈πi

Pr[Senx � Recy] .

This probability can be in turn used in Eq. 4 to obtain the probability of a
hidden state.

A second approach includes the information derived from the profiles on the
path probability calculation. In this case, Eq. 2 becomes:

Pr[Px|C] = Pr[Lx = l|C] · Pr[Mx|Lx = l, C] · Iset(Px) · Pr[Senx � Recy] ,

Senx being the originator of the path Px and Recy the recipient of her message.
This probability is in turn used in Eq. 3 to calculate the probability of a hidden
state. Note that Eq. 4 does not apply anymore as the permutation information
is now included in the computation of the probability of a path. Of course,
further restrictions as bridging information or considering some senders as non-
compliant can be integrated in this probability computation.

2.3.4 Other Constraints

The model proposed in this section is very rich and encompasses aspects of
mix based communications never before unified under a common framework.
Its clear structure can further be used to incorporate aspects of anonymous
communications that have not been taken into account:

• Guard nodes [47], as used by the Tor [28] path selection algorithm are
a small set of nodes per user that are used to build the first hop of a
tunnel. Since they are part of the path selection algorithm they can be
incorporated into the model as a special case of bridging.

• Other mixing strategies can be incorporated into the model besides the
traditional threshold mix considered so far. The technique of Serjantov
and Newman [54] can readily be adapted to model pool mixes in the
current model: each round of the pool mix is represented as a separate
threshold mix, where some of the messages (the pool) simply transit from
one round to the next. The only modification to the current model is for
this transition, from one round to another round of the same mix, not to
increase the length of the path.

More complex mix strategies require more state to be held per mix, and
some of them require inference of this hidden state. In some sense this
would set in the Bayesian framework inference attacks already described
in [46].

15



• Dummy messages generated by mixes to foil traffic analysis can be incorpo-
rated in the model, by simply guessing which messages are dummies, and
describing the probability of their paths. This can be useful for foiling the
protection afforded by rgb-mixes [19] and active mixing strategies [25, 46].

• The adversary may control some mixes, or inject messages through known
paths. Such attacks can be easily modelled by simply moving all the known
information from the hidden state to the observations. In such cases it
is not necessary to take into account what happened in the likelihood
estimation, unless its probabilities change based on the hidden state.

• Finally we have assumed that the start of all paths is known, even though
the observation may be truncated before the end of the path is observed.
Other models of partial network observation can also be envisaged: the
adversary might just be able to observe a window of time, or only some
links in the network. Models that extend the concepts of “unknown”
sources or sinks of traffic can be build for these circumstances.

3 Bayesian Inference & Traffic Analysis

Given an observation O of some messages’ flow in an anonymity network and
some knowledge about its functioning and its users’ behaviour C, the traffic anal-
ysis problem consists in uncovering the relation between senders and receivers, or
equivalently in finding the links between incoming and outgoing messages in the
system. This can be seen as obtaining the a-posteriori distribution Pr[HS|O, C]
of hidden states HS given an observation O and a set of constraints C. How-
ever, enumerating Pr[HS|O, C] for all HS is computationally unfeasible, due
to the very large number of possible hidden states. Instead we have shown in
Sect. 2.1 that we can sample states HS ∼ Pr[P|C] (see Eq. 1.) These samples
can in turn be used to infer the probability distributions that describe events
of interest in the system. For instance, given the samples it is easy to estimate
the marginal probability distributions Pr[ix � oy|O, C] of an incoming message
ix corresponding to any of the outgoing messages oy as:

Pr[ix � oy|O, C] ≈
∑
j∈NMH

Iix�ox
(HSj)

NMH
,

where Iix→ox(HSj) is an indicator variable expressing if messages ix and oy are
linked in hidden state HSj , and NMH is the number of samples HS ∼ Pr[P|C]
available to the adversary. Furthermore, we can estimate the sampling error
and provide a confidence interval on the probability obtained.

The same process can be used to estimate the sending profile Pr[Senx �
Recx|O, C] of a given user by substituting the indicator variable in the previous
equation by ISenx�Recx(HSj).

We use the Metropolis-Hastings (MH) algorithm, as presented in Sect. 1.4.1,
to extract samples from Pr[P|C] following the probability model described in
Sect. 2.1.
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Figure 4: Constraint programming model for a mix network with basic con-
straint.

Finally, we explain how our results can be combined with the approach pre-
sented in [26, 52] to measure the anonymity provided by an anonymity system.
The authors suggest to use the Shannon’s entropy of these probability distribu-
tions, Pr[ix → oy|O, C] and Pr[Senx → Recy|O, C], to evaluate the anonymity
provided by a system. However, contrary to the assumption made in [26, 52]
where an adversary has full knowledge about the probability distributions of
events in the system, the Metropolis-Hastings simulation only provides an es-
timation of this distributions because the least likely events are most probably
not sampled. Thus, we can only provide bounds on the anonymity that can be
expected when using the system. We explain how to compute these bounds in
Sect 3.3.

For the sake of simplicity in the remainder of the section we omit the condi-
tioning to the observation O and the constraints C in all probabilities (e.g., we
write Pr[ix � oy] when we refer to Pr[ix � oy|O, C]) unless stated differently.
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3.1 Constraint satisfaction problems

A key problem when using a Metropolis-Hasting Sampler is that we need to
start the sampler at an arbitrary valid state. Finding such a state given a trace
of a heavily constrained mix network is not a trivial task. For example if all
path lengths are fixed to be of length three, it might not be trivial to find a
hidden state that assigns paths of exactly that length.

One approach to find such a valid initial state is to use a constraint solver. A
thorough review of the constraint satisfaction literature is provided in [4]. Con-
straint solvers take a set of constraints on variables and produce an assignment
of values that satisfies those constraint.

Figure 4 illustrates the structure of the constraints on variables for creating
valid paths of certain lengths. Each of the variables is a link we observed. Paths
are formed by assigning links in a specific structure that guarantees a certain
maximum and minimum length, as well as continuity. The constraint for each
path is the first link to start at a sender and the last links to end at a receiver
depending on the length sought. Further, the intermediate links must share a
mix node (to be a continuous path), and we can constrain them to only start
and end at a mix – to avoid shorter paths. Finally, the global constraint that
all assignments of links to variables is necessary to ensure that all links are
only used once. Such all-different constraints can be implemented using Regin’s
algorithm [50].

While the model is correct, and our toy CSP solver did find assignments
for small traces, we found this approach unnecessary for the full model of the
mix network. Inconsistent paths in the full model, ensure that even very short
or very long paths have some support, and every invalid path, can be made
valid by being tagged as inconsistent. The fact that all our constraints are ‘soft’
makes the use of a constraint solver unnecessary. When constraints are hard,
the proposed model in Figure 4 could be vital.

3.2 Metropolis-Hastings Sampler

Let us consider an anonymity network where users behave as described in
Sect. 2.1. An instance of such a network where 10 messages are sent through
3 mixes of threshold t = 4 can be seen in Fig. 5. In this figure, senders are
represented as triangles and labeled “SX”, X being their identity. Likewise for
receivers, represented as triangles labelled “RX”. The triangle labelled as “U”
represents Unknown, a fake receiver necessary to model the messages that stay
in mixes that have not flushed at the end of the observation period. Finally,
mixes are represented as ovals, and labelled as “MXRY”, where X expresses the
identity of the mix and Y the round of flushing. (A non-toy example of a trace
can also be seen in Figure 14 in the appendix.)

Note that, although we consider that the network consists of three mixes
(M0, M1 and M2), messages seem to be sent to 4 different mixes (M0R0, M1R0,
M2R0 and M2R1.) This reflects the fact that messages sent to the same mix
in separate rounds do not mix with each other. Let us call the latter series of
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Figure 5: Observation of a network where 10 messages are sent to a network
composed by 3 mixes of threshold t = 4

mixes “virtual mixes” and denote the set they form as vmixes (in the example
vmixes = {M0R0,M1R0,M2R0,M2R1})

We define a hidden state as a set of internal connections between inputs
and outputs in the virtual mixes, such that an input corresponds to one, and
only one, output. The aim of the sampler is to provide hidden state samples,
according to the actual probability distribution over all possible hidden states.
We compute the probability of a hidden state Pr[HS|O, C] ∝ Pr[P|C] following
the model presented in Sect. 2.1 with both basic and advanced constraints. For
simplicity, we denote this probability as Pr[HS] in the remainder of the section.

We now explain how to ensure that the random walk performed by the
Metropolis-Hastings algorithm actually provides samples from the target distri-
bution Pr[HS]. Let us start by considering only basic constraints (see Sect. 2.2)
on the system. We select an arbitrary initial state and use different transi-
tions Q to propose new candidate states for the random walk. When only basic
constraints are considered we define two transitions:

• Qnone: this transition does not change the current state (i.e., the current
state is the candidate for next state in the walk),

• Qswap: this transition swaps two internal connections in a virtual mix
(See Fig. 6.)

Given a state HSj and a transition Q that leads to the candidate state HS ′,
we decide whether HS ′ is a suitable next state for the walk by computing α:

α =
Pr[HS ′] ·Q(HSj |HS ′)
Pr[HSj ] ·Q(HS ′|HSj)

.

The new state HS ′ is accepted with probability 1 if α ≥ 1 or with probability
α otherwise, as the Metropolis-Hastings algorithm dictates (Sect. 1.4.1.)
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Figure 6: Qswap transition operation on the second and third links of a mix

Q(HS ′|HSj) (and conversely Q(HSj |HS ′)) is the probability of selecting
state HS ′ given that the previous state was HSj . It depends on the transition
Q selected and the probability of selecting this transformation (Pr[Qx], x =
none, swap):

Q(HS ′|HSj) =
{

Pr[Qnone] if Qnone

Pr[Qswap] · 1
|vmixes| ·

1
t

1
t−1 if Qswap

If we move beyond the basic model to take into account non-compliant
clients, the hidden states are not anymore uniquely defined by the set of in-
ternal connections in the virtual mixes “present” in the observation O. In this
case a client Senx can be labeled as compliant or non-compliant (Senx,cp or
(Senx,cp, respectively) resulting in different probability for the path Px it starts,
and hence leading to different hidden state probabilities Pr[HS]. We augment
the hidden state to be the internal connections in the virtual mixes, together
with the set of path labels indicating whether the users initiating the path are
compliant with the system or not. In the augmented model the random walk
must not only consider swaps of connections, but also changes in the path’s
initiator labels as compliant or not. Thus, each time a path is altered by a swap
operation from the current state HSj to create a candidate state HS ′, we must
consider changing its sender’s label. At iteration j+ 1, we change sender Senx’s
label depending on the label it had in the previous iteration j (i.e., in hidden
state HSj) and on whether the new path in the candidate state HS ′ complies
with the system standard parameters or not. We define the probability of a
label being changed as:

pflip(a, b) = Pr[Senx,b in HS ′|Senx,a in HSj ] , a, b = {cp, cp} .

Q(HS ′|HSj) =
{

Pr[Qnone] if Qnone

Pr[Qswap] · 1
vmixmax

· 1
t

1
t−1 ·Qflip if Qswap

where Qflip is computed on the paths participating in the swap as:

Qflip =
∏

Labx in HS′

6=Labx in HSj

pflip ·
∏

Labx in HS′

=Labx in HSj

(1− pflip) .

When the adversary constructs an observation of a network, there may be
input messages for which there is certainty about which is the output message
they correspond to. These are messages belonging to a one-hop path resulting
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from a sender being the only one in choosing a mix as first hop in her path that
never flushes in the observation period. We call these “deterministic paths”,
as the attacker can, without performing any analysis, assign input to output
message with probability Pr[ix � oy] = 1 (oy is the only message in the mix
where ix has arrived.) These paths will never participate in a swap operation
as there is only one message in the mix thus its assignment cannot be swapped.
As a result, the label of the path would be never changed and some possible
hidden states would never be visited by the random walk. To avoid these cases
and ensure that the sampler explores the full state space we define a third type
of transition:

• Qdet: this transition modifies the compliant status of the sender of one
of the Ndet deterministic paths present in the network. If no clients are
deemed to be non-compliant or no deterministic paths exist, this transition
is never applied (Pr[Qdet] = 0.)

Finally, with these transitions, we compute Q(HS ′|HSj) as:

Q(HS ′|HSj) =


Pr[Qnone] if Qnone

Pr[Qswap] · 1
vmixmax

· 1
t

1
t−1 ·Qflip if Qswap

Pr[Qdet] · 1
Ndet

if Qdet

3.2.1 Evaluation

The aim of our evaluation is to ensure that the inferences drawn from the
metropolis-hasting samples are “correct”. The key to correctness is that the
a-posterior distributions returned represent indeed the probabilities of paths,
and correspondences between senders and receivers, in the system. In order to
evaluate the Metropolis-Hastings sampler described in the previous section, we
implement it in the Python language. We consider small (3 mixes) and large (5
to 10 mixes) networks for the evaluation. For these networks, we create different
observations inserting Nmsg messages (Nmsg ∈ {10, 50, 100, 1000}) from users
that choose paths of length between Lmin = 1 and Lmax = 3 and select the mixes
belonging to these paths uniformly at random. In some of the experiments, we
consider the users to be non-compliant with probability pcp = 0.1.

Basic experiment. For a given observation, we collect NMH samples of the
distribution Pr[HS] using the Metropolis-Hasting algorithm with the transi-
tions Q described in the previous section. Using these samples we estimate
the marginal probability distributions Pr[ix � oy] and Pr[Senx � Recy], link-
ing input messages to output messages and senders to receivers respectively (as
demonstrated in [33] there can be a substantial difference between them.)

Let us call each of the samples obtained in the MH simulation HSj , j ∈
{1, . . . , NMH}. The result of our basic experiment is a point estimate of Pr[ix �
oy] (respectively, Pr[Senx � Recy]) for each of the messages ix entering the
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network:

Pr[ix � oy] =

∑
j∈NMH

Iix�oy (HSj)
NMH

, (5)

Pr[Senx � Recy] =

∑
j∈NMH

ISenx�Recy
(HSj)

NMH
.

Metropolis Hastings parameters choice. The sampler parameters are key
for the correctness of the samples, i.e., to ensure that the HS returned by the
sampler come from the desired distribution Pr[HS].

The number of iterations ι must guarantee the independence of the samples.
There is not any straightforward procedure to obtain the optimal value for
the parameter ι. We consider ι to be appropriate when it is large enough for
the second order statistics of the marginal probability distributions Pr[ix �
oy] (respectively Pr[Senx � Recy]) to be the same as the first order statistics.
Informally we want to ensure that the probability that an input ix corresponds
to an output oy at sample j is independent of which was the corresponding
output of ix at sample j − 1. Formally, the property we are looking for is:

Pr[ix � oy in HSj |ix � oh in HSj−1] = Pr[ix � oy in HSj ] , (6)

for some h.
There is no analytic procedure to obtain the optimal value for the parameter

ι, so we experimentally test subsequent samples for independence to select the
value for ι. We conducted the following independence test on networks with
Nmsg = 10, Nmix = 3 and t = 2. We collect NMH = 2500 Metropolis-Hastings
samples separated by a small number of iterations (ι = 509). In each of the
networks we pick at random an input message ix, and obtain its second statistic
vector: V = {(oh, oy). ∀l ≥ 1 ∧ Iix�oh

(HSl−1) ∧ Iix�oy (HSl)}. Then, we
choose a receiver oy and compute the first and second order probability that ix
corresponds to oy:

p1 = Pr[ix � oy] =

∑
j∈NMH

Iix�oy (HSj)
NMH

.

p2 = Pr[ix � oy in HSj |ix � oh in HSj−1] =

∑
l=1,...,(NMH−1) I(∗,oy)(Vl)

NMH − 1
.

In order to determine if these probabilities are equal, we must account for
the sampling error. Direct comparison is not an option since they will always
differ in some larger or smaller amount. Instead, we consider the posterior
distribution of p1 and p2 given the data obtained in the experiment and a
uniform prior distribution Beta(1, 1). Respectively, these distributions are:

Beta1(
∑

j∈NMH

Iix�oy
(HSj) + 1, NMH −

∑
j∈NMH

Iix�oy
(HSj) + 1) ,
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and

Beta2(
∑

l∈(NMH−1)

I(∗,oy)(Vl) + 1, NMH − 1−
∑

l∈(NMH−1)

I(∗,oy)(Vl) + 1) ,

(see [31] for further details.) We then test if Beta1 and Beta2 are the same
distribution (or sufficiently near) by checking that the difference between pairs
of samples from these distributions is zero in average. For this purpose we collect
10 000 samples of the difference between them (dm = rm−qm , rm ∈ Beta1 , qm ∈
Beta2 ,m = 1, . . . , 10 000), obtain the 50% Bayesian confidence intervals (i.e.,
the 50% Highest Density Region) and check if zero is within this interval. The
test is positive if this is the case and negative otherwise (see Fig. 7.)

We run this test for 100 different networks and test values for ι = 509 and
its multiples. We consider we got the optimal ι when 50 of the 100 tested sender
distributions result in a positive test. In our case this value was ι = 509 ∗ 12 =
6108, we chose a close-by prime number for the rest of the experiments ι = 6011.

The burn-in period is the number of iterations needed until the Metropolis-
Hastings walk mixes to reach the stationary distribution of the underlying
Markov Chain. In our experiments, as the constraint problem explained in
Sect 3.1 research was performed in parallel, we took as initial state the actual
trace used for generating the network. Thus, in principle we could assume that
from the beginning of the random walk the sampler is visiting states from the
stationary distribution, and take the first HS visited as a valid sample. How-
ever, to avoid any influence of this a priori knowledge in our results, we chose
a burn-in period of 8011 (bigger than ι) that guarantees the first sample to be
independent from the initial state.

The number of samples NMH extracted from the sampler, can be arbitrary
large to estimate the a-posterior distributions with a higher accuracy at the cost
of more computation. We chose the number of samples for our problems based
on the order of magnitude of the a-posterior probabilities we expect to infer.

When adapting our experiments to consider non-compliant clients, we had to
set a value for the parameters pcp and pflip(a, b). The former defines the average
percentage of non-compliant clients in the network and its choice is arbitrary.
We decided to assign pcp = 0.1 such that the percentage of non-compliant clients
using the network is small (as expected in a real network) but their presence in
the network is non-negligible and we could study their effect on the analysis.

The probability pflip(a, b) is also not crucial for the correctness of the sampler,
but has an important role in the speed of mixing. The values we used in our
experiments were chosen empirically to ensure fast mixing (i.e., that the sampler
explores rapidly the full space and does not spend long times walking around
small regions.) A study of the optimal values for pflip(a, b) given pcp is left as
subject of future research.

The values for the parameters used in our experiments are summarised in
Table 1. The network parameters were chosen to produce observations that
can be analyzed. If we consider always a realistic mix network with at least
Nmix = 10 with threshold t = 10, when few messages (10 or 50) are sent most

23



di

0.0 0.2 0.4 0.6 0.8 1.0

●

ri

ββ1

●

qi

ββ2

di == ri −− qi

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

di

P
r((d

i))

Positive test

50%

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

1.
2

di

P
r((d

i))
Negative test

50%

Figure 7: Construction of di and result of the test

mixes would not flush and therefore there would be no flow of messages to
analyze.

Final test. Once the parameters are set, we need to corroborate the correct
functioning of our implementation, i.e., that the samples HSj it returns actually
follow the targeted probability distribution Pr[HS].

Our test consists in running our basic experiment over 2 000 observations.
In each of them we select a random input message (ix) and a random output
message (oy) as targets and we store the tuple:

(Pr[ix � oy], Iix�oy (trace)) .

The first element of the tuple is the inferred probability that ix corresponds
to oy computed as in Eq. 5 from the result of the MH simulation. The second
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Parameter Value
Nmsg 10 50 100 1000

Network Nmix 3 3 10 10
parameters t 3 3 20 20

[Lmin, Lmax] [1,3]
pcp 0.1

Advanced
pflip(cp, cp) 0.9

constraints
pflip(cp, cp) 0.01
pflip(cp, cp) 0.02
pflip(cp, cp) 0.3

[Lmincp
, Lmaxcp

] [1,32]

Sampler ι 6011 6011 7011 7011

parameters burn-in 8011
NMH 500 500 500 500

Table 1: Parameters of the Metropolis-Hastings sampler implementation

element, Iix�oy
(trace), is an indicator variable that takes the value 1 if oy actu-

ally corresponded to ix when the network was generated, and 0 otherwise. We
note that the test could be also carried on using senders and receivers as targets
with the sole difference that the tuples stored would be:

(Pr[Senx � Recy], ISenx�Recy (trace)) .

Once these tuples are collected, we make a histogram with 30 “bins” of equal
size using the first element of the tuple as distinguisher for the classification. We
denote as bin(a, b) the “bin” containing Pr[ix � oy] : a ≤ Pr[ix � oy] < b, and
Len(a, b) the number elements in that bin. For each of the bins we compute:

• The value psampled(a, b), which corresponds to the mean of the Pr[ix � oy]
belonging to the tuples contained in the bin:

psampled(a, b) =

∑
Pr[ix�oy ]∈bin(a,b) Pr[ix � oy]

Len(bin(a, b))
.

• pempirical(a, b), the 95% Bayesian confidence intervals given how many tu-
ples there are on a bin and the amount of this tuples whose second element
is Iix�oy (trace) = 1 using the Beta function:

α =
∑

Iix�oy

∈bin(a,b)

Iix�oy
(trace) + 1 ,

β = Len(bin(a, b))−
∑

Iix�oy

∈bin(a,b)

Iix�oy
(trace) + 1 ,

pempirical(a, b) ∼ Beta(α, β) .
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The value psampled(a, b) represents the expected probability for an event
given the MH simulation output (Eq. 5.) The Bayesian confidence interval
pempirical(a, b) represents the “actual” probability with which the targeted events
happened in the observations.

We expect the mean psampled(a, b) to fall within the interval pempirical(a, b),
i.e. the estimated probability being close to the probability with which events
happen in the simulation. If this is the case we conclude that the implementation
of the Metropolis-Hastings sampler is correct. The size of the confidence inter-
val is also meaningful. Small intervals indicate that many samples have been
used to describe the Beta function, thus, it accurately represents pempirical(a, b),
and this result is very trustworthy. On the other hand, if few samples are used
to compute the interval (if a bin contains few events), we obtain a poor esti-
mation of pempirical(a, b) and the results based on it are rather meaningless. We
conduct several experiments considering both the basic constraints and the full
model (including non-compliant clients) in small and large networks, with the
parameters described in Table 1.

Figure 8 shows the result of our evaluation when only basic constraints are
considered both in the generation of the trace and in the analysis. The figure
contains two graphs. The lower graph is just a histogram of the number of
experiments per bin, Len(bin(a, b)). The upper graph represents with crosses
psampled(a, b), the mean of the bins, and the corresponding Bayesian confidence
intervals pempirical(a, b) with vertical lines. We can see how most the crosses fall
in the intervals, meaning that the sampler is providingHSj according to the cor-
rect distribution. As expected, not all of the sampled probabilities psampled(a, b)
are within the intervals because we use a 95% confidence interval, thus approx-
imately a 5% of them fall outside. The majority of messages entering in the
network fall in bins with psampled ∈ [0.07, 0.4]. As we gather many samples of
events with these probabilities the Bayesian confidence intervals are very small,
indicating that the estimate we obtain is highly trustworthy.

It is noticeable that a fair amount of samples fall in the psampled = 1 bin.
This denotes total certainty about the correspondence between an input and
an output, which intuitively should not happen given the properties of mixes.
These samples reflect two situations. On the one hand, they are generated when
we select as target a message ix that starts in a path for which there exist no
transition Q leading to a new path in a suitable candidate HS′ and therefore
stay invariable during the simulation. On the other hand, they are deterministic
paths (explained in Sect. 3.2,) where the attacker is completely sure that the
message ix corresponds to the potential output message ox because it is the only
message inside a mix.

The following experiments were performed in scenarios where some of the
clients behave in a non-compliant fashion. The result for Nmsg = 10 messages is
shown in Fig. 9(a). In this case, we observe many more events with psampled = 1.
Again, we have some deterministic paths, but the increase is mainly due to the
larger number of paths Px for which their links cannot be swapped resulting in
suitable paths. Mainly, these are very long paths (Lx,cp >> Lmax) chosen by
non-compliant clients.
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Figure 8: Results for the evaluation of an observation generated by 50 messages
in a network with Nmix = 3 and t = 3, when all clients behave in a compliant
way

The second difference, with respect to the compliant case, is the appearance
of a significant number of events with probability psampled ∈ [0.7, 1]. These sam-
ples represent the cases where paths would not have an alternative in the compli-
ant case, but now can be caused with small probability by a non-compliant user.
The probability of these paths is diminished more (generating events with proba-
bility psampled ≈ 0.7) or less (generating events with probability psampled ≈ 0.95)
depending on how likely the non-compliant path is. Note that these events hap-
pen rarely and thus the number of samples falling in these bins is small resulting
in large confidence intervals.

Figure 9(b) shows our results when considering 50 messages. As one would
expect, we can see in the histogram at the bottom that when more messages
travel through the network, there are more messages where the attacker is less
certain about the destination than when only few messages have entered in the
network. Further, there are less samples in the psampled = 1 bin, which reflects
the increase in the anonymity that the presence of more traffic in the network
provides to its users.

Finally, we tested the effectiveness of our sampler for longer observations (100
and 1000 messages in the network.) The results of the experiments are shown
in Fig. 10. In these cases, our analysis finds that the mix network provides good
anonymity for all messages. An attacker cannot link incoming and outgoing
messages with a probability higher than psampled = 0.4 when 100 messages have
been observed, and psampled = 0.1 if more messages are seen.

In all examples, we obtain the expected result: approximately 95% of the
samples fall into the confidence intervals. We conclude that our implementation
is producing the samples from the correct a-posterior probability distribution.
Thus the samplers are “correct” and implement the optimal Bayesian inference
an adversary can perform.
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(a) Nmsg = 10 messages
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(b) Nmsg = 50 messages

Figure 9: Results for the evaluation of an observation of a network withNmix = 3
and t = 3, when non-compliant clients are present
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(a) Nmsg = 100, Nmix = 10, t = 20
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Figure 10: Results for the evaluation of big networks

Performance evaluation. We now present an evaluation of the performance
of our sampler in terms of LOC, RAM usage, and running times. We note that
our implementation is not optimised for any of these metrics. We chose Python
as developing language due to its ease for programming a prototype regardless
of the existence of more suitable languages for fast implementations as would
be C or C++. Our Metropolis-Hastings sampler is composed by 1443 LOC of
Python, including the code associated to the evaluation.

The most remarkable measure we have taken in order to improve the per-
formance of the sampler is the use of a “two-states” strategy for the proposal
and acceptance/rejection of candidates HS ′. This strategy considers two states
HS0 and HS1 that are initialised to the same value (the initial state.) In or-
der to propose a candidate we apply a transition Q on HS1, and compute α
(considering HSj = HS0 and HS ′ = HS1.) If the state is to be accepted,
we apply the same transformation to HS0 (HS0 = HS1.) If on the contrary
there is a rejection, we undo the modification on HS1 (HS1 = HS0.) Then we
restart the process with a new transition Q. This strategy apparently doubles
the memory requirements, but actually reduces the amount of extra information
needed to walk forward and backwards between states, resulting in a smaller
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Table 2: Metropolis-Hastings RAM requirements
Nmix t Nmsg Samples RAM (Mb)

3 3 10 500 16
3 3 50 500 18
10 20 100 500 19
10 20 1 000 500 24
10 20 10 000 500 125

Table 3: Metropolis-Hastings timings
Nmix t Nmsg ι Full analysis One sample

(min) (ms)
3 3 10 6011 4.24 509.12
3 3 50 6011 4.80 576.42
10 20 100 7011 5.34 641.28
10 20 1 000 7011 5.97 716.72

total overhead, and significant ease of implementation.
As mentioned before, when implementing the sampler we did not optimise

its RAM usage. Still, the memory requirements in order to run the sampler
are well within the range of any commodity computer. Table 2 presents the
RAM requirements for different sizes of the observation given by the parameters
Nmix, t, and Nmsg. The increasing need of RAM when the size of the network
augments stems from the fact that the size of the observation O, the HS and
the population increases. Further, for each network analyzed, the samples HSi
are kept in RAM until the analysis finishes, multiplying the overhead for the
number of samples collected (double in the case of having 1 000 or more messages
with respect to the case when only 50 or 10 messages are considered.)

Finally, we measured the time it takes to analyse observations of distinct
size. For each of the sizes we collected 100 measurements of the analysis time
and averaged over them. These timings are shown in Table 3.

The increased running time when increasing the size of the network has two
origins. On the one hand, the difference between the number of iterations ι
considered. The larger the number of iterations, the more time the simulation
needs to produce one sample. The second reason is that the timings include
the collection of results for all the messages present in the system. The larger
the number of messages, the longer it takes to store the results for all of them.
If, as usual, the attacker considers only one target in the network, the time
would be constant for any size of network. Although the time necessary to
perform the analysis is already very convenient, it could be reduced considerably
by performing several MH simulations in parallel for the same observation to
accelerate the creation of samples HSj .
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3.3 Measuring anonymity

A lot of research has been done regarding the evaluation of anonymity system.
Several tools have been proposed to measure the anonymity provided by this
systems [11, 24, 58, 30], amongst which the most popular are the metrics based
on Shannon entropy [26, 52]. These metrics are computed over the probability
distributions associated with random variables representing user’s sending pro-
files, network level profiles (incoming to outgoing messages correspondences),
etc. They give a measure of the uncertainty of the attacker about the possible
outcome of the random variable under study.

It is important to realise that the methodology presented in this work does
not output a probability distribution, but samples that allow us to approximate
probabilities of certain events: Pr[ix � oy], being ix an incoming cell and oy an
outgoing cell. However, only events that have been sampled can be estimated,
and we cannot assume that not-sampled events have a null probability. After a
finite MH simulation there may be events with very small probability which the
random walk has not yet visited (or that have been visited but not sampled)
but this does not mean that they are impossible to reach. The estimation of
probabilities using MH samples introduces an inherent error coming from the
normalisation over the sampled events, and not all possible ones. Hence, it
cannot be considered a proper probability distribution and it is not possible
to measure anonymity by directly applying previously proposed metrics. In
this section we explain how to use the MH samples to obtain bounds on the
anonymity provided by the system.

Let us consider we want to measure the anonymity provided by the system
to a given message ix. We denote the probability distribution of this message
corresponding to any of the possible N outgoing message as Ψx = {Pr[ix �
oy], y = 1, . . . , N}. Following the approach of Serjantov and Danezis [52] we
would measure the anonymity for ix as the Shannon entropy of this probability
distribution:

H(Ψx) = −
∑
y

Pr[ix � oy] · log Pr[ix � oy] ,

but as we said we do not have the full probability distribution, and only samples
coming from it.

Our approach to the estimation of H(Ψx) is to model Ψx as a multinomial
distribution that determines the probability of outputs oy corresponding to an
input ix, and resort again to Bayesian Inference to estimate it from the samples.
For this purpose we also define an auxiliary function that counts the number
of times a message ix is assigned to a message oy in the set of samples, and
denote it as Ct(ix � oy). We note that the Dirichlet distribution is a conjugate
prior for the multinomial distribution. A sample from this distribution expresses
the belief that the probability of the events ix � oy is Pr[ix � oy] given that
we have observed Ct(ix � oy) occurrences of each of them. Hence we can
use the Dirichlet distribution assuming poor prior knowledge over the actual
correspondence (Dirichlet(1,. . . ,1)) to obtain samples from Ψx [39]. We compute
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the entropy H(Ψx) of n samples Ψx from the posterior distribution:

H(Ψx) where Ψx ∼ Dirichlet(Ct(ix � o0) + 1, . . . ,Ct(ix � oN ) + 1) .

We note that, for the receivers oy that do not appear in the samples, Ct(ix �
oy) = 0.

We order the samples H(Ψx) in decreasing order and take as bounds for the
anonymity offered by the system the γ% confidence interval for this distribution,
i.e., an interval within the range [0, 1], encompassing γ% of the probability mass
of the a-posterior distribution.

4 Bayesian Inference & Disclosure Attacks

Disclosure attacks were first proposed by Kesdogan et al. [35, 1] and later ex-
tended in the setting of the statistical disclosure attack [13, 21, 38, 40, 16, 60].
This line of work has been concerned with long term information leakage out of
abstracted anonymity systems. It has been shown that unless all users benefit
from near perfect anonymity for all messages they send, an adversary can build
profiles of their correspondents over time, and use those to assist traffic analysis.

Sect. 2.3.3 is concerned with how to integrate such profiles into our model
of a mix network. This section is concerned with both how to extract profiles
and, in parallel, uncover who is talking with whom. We offer a generalisation
of the Disclosure attack model of an anonymity system, as well as a Bayesian
treatment of the inference problem associated with this attack.

4.1 The general Black-box model for anonymity systems

Long term attacks traditionally abstract the internal functioning of any anonymity
system and represent it as an opaque router, effectively operating as a very large
threshold mix. This model has its limitations, and some studies have attempted
to extend it. In this section we first propose the Black-box model, the most flex-
ible abstraction of an anonymity system so far, and base our Bayesian analysis
on this model.

We start by proposing a ‘forward’ generative model describing how messages
are generated and sent through the anonymity system. We then use Bayes rule
to ‘invert’ the problem and perform inference on the unknown quantities. The
broad outline of the generative model is depicted in Figure 11.

An anonymity system is abstracted as containing Nuser users that send
Nmsg messages to each other. Each user is associated with a sending pro-
file Ψx describing how they select their correspondents when sending a mes-
sage. We assume, in this work, that those profiles are simple multinomial
distributions, that are sampled independently when a message is to be send
to determine the receiver. We denote the collection of all sending profiles by
Ψ = {Ψx|x = 1 . . . Nuser}.

A given sequence of users denoted by Sen1, . . . ,SenNmsg send a message while
we observe the system. Using their sending profiles a corresponding sequence of
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Figure 11: The generative model used for Bayesian inference in anonymous
communications.

receivers Rec1, . . . ,RecNmsg is selected to receive their messages. The probability
of any receiver sequence is easy to compute. We denote this matching between
senders and receivers as M:

Pr[M|Ψ] =
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx].

In parallel with the matching process where users choose their communi-
cation partners, an anonymity system A is used. This anonymity system is
abstracted as a bipartite graph linking input messages ix with potential output
messages oy, regardless of the identity of their senders and receivers. We note
that completeness of the bipartite graph is not required by the model. The edges
of the bipartite graph are weighted with wxy that is simply the probability of
the input message ix being output as oy: wxy = Pr[ix → oy|A].

This anonymity system A is used to determine a particular assignment of
messages according to the weights wxy. A single perfect matching on the bipar-
tite graph described by A is selected to be the correspondence between inputs
and outputs of the anonymity system for a particular run of the anonymity
protocol. We call it the assignment of inputs to outputs and denote it by Φ.
The probability of the assignment Φ is easy to calculate, given the set of all
individual assignments (ix → ox):

Pr[Φ|A] =
∏
x

Pr[ix → ox|A]∑
free iy

Pr[iy → ox|A]
.

This is simply the probability of the matching given the anonymity system
weights. By free iy we denote the set of sent messages i that has not yet been
assigned an output message o as part of the match.
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The assignment Φ of the anonymity system and the matchingM of senders
and receivers are composed to make up the observation of the adversary, that
we denote as O. An adversary observes messages from particular senders Senx
entering the anonymity as messages ix, and on the other side messages oy exiting
the network on their way to receivers Recy. No stochastic process takes place
in this deterministic composition and therefore Pr[O|M,Φ,Ψ,A] = 1.

Now that we have defined a full generative model for all the quantities of
interest in the system, we turn our attention to the inference problem: the
adversary observes O and knows about the anonymity system A, but is ignorant
about the profiles Ψ, the matching M and the assignment Φ. We use Bayes
theorem to calculate the probability Pr[M,Φ,Ψ|O,A]. We start with the joint
distribution and solve for it:

Pr[O,M,Φ,Ψ|A] = Pr[M,Φ,Ψ|O,A] · Pr[O|A]
Pr[O,M,Φ,Ψ|A] = Pr[O|M,Φ,Ψ,A] (≡ 1)

· Pr[M|Φ,Ψ,A] (≡ Pr[M|Ψ])
· Pr[Φ|Ψ,A] (≡ Pr[Φ|A])
· Pr[Ψ|A]

⇒ Pr[M,Φ,Ψ|O,A] =
Pr[M|Ψ] Pr[Φ|A]

Pr[O|A] ≡ Z
Pr[Ψ|A]

We have discussed how to calculate the probabilities Pr[M|Ψ] and Pr[Φ|A].
The quantity Pr[Ψ|A] ≡ Pr[Ψ] is the a-prior belief the attacker has about user
profiles and it is independent from the chosen anonymity system A. We consider
throughout our analysis that all profiles are a-priori equally probable and reduce
it to a constant Pr[Ψ] = c. Taking into account those observations we conclude
that the posterior probability sought is,

Pr[M,Φ,Ψ|O,A] ∼
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx] ·
∏
x

Pr[ix → ox|A]∑
free iy

Pr[iy → ox|A]

where we omit the constant normalising factor Pr[O|A] as it is very hard to
calculate, which restricts the methods we can use to manipulate the a-posterior
distribution.

It is computationally unfeasible to exhaustively enumerating the states of
this distribution. Hence to calculate the marginals of interest such as profiles
of users, or likely recipients of specific messages, we have to resort to sampling
states from that distribution. Sampling directly is very hard (due to the inter-
relation between the profiles, the matches and the assignments) hence Markov
Chain Monte Carlo methods are used.

4.1.1 A Gibbs sampler for the Black-box model

Sampling states (Mj ,Φj ,Ψj) ∼ Pr[M,Φ,Ψ|O,A] directly is hard, due to the
complex interactions between the random variables. A Gibbs sampler signifi-
cantly simplifies this process by only requiring us to sample from the marginal
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distributions of the random variables sought. Given an arbitrary initial state
(Φ0,Ψ0) we can perform ι iterations of the Gibbs algorithm as follows:

for j := 1 . . . ι :
Φj ,Mj ∼Pr[Φ,M|Ψj−1,O,A]

Ψj ∼Pr[Ψ|Φj ,Mj ,O,A] .

Each of these marginal probabilities distributions is easy to sample:

• The distribution of assignments Pr[Φ,M|Ψj−1,O,A] is subtle to sample
directly. Each message assignment ix → ox has to be sampled, taking into
account that some message assignments are already taken by the time
input message ix is considered. For each input message ix we sample an
assignment oy according to the distribution:

ix → oy ∼Pr[ix → oy|free oy,∀assigned ov iv → ov,A,Ψ]

=
Pr[ix → oy|A] · Pr[Senx → Recy|Ψx]∑

free oy
Pr[ix → oy|A] · Pr[Senx → Recy|Ψx]

.

For complex anonymity systems A, this algorithm might return only par-
tial matches, when at some point an input message ix has no unassigned
candidate output message oy left. Since we are only interested in perfect
matchings, where all input messages are matched with different output
messages, we reject such partial states and re-start the sampling of the
assignment until a valid perfect matching is returned. This is effectively
a variant of rejection sampling, to sample valid assignments.

The matchings between senders and receivers are uniquely determined by
the assignments and the observations, so we can update them directly
without any need for sampling, and regardless of the profiles (i.e. Mj =
f(Ψj ,O)).

• The distribution of profiles Pr[Ψ|Φj ,Mj ,O,A] is straightforward to sam-
ple given the matching Mj and assuming that individual profiles Ψx are
multinomial distributions.

We note that the Dirichlet distribution is a conjugate prior of the multi-
nomial distribution, and we use it to sample profiles for each user. We
denote as Ψx = (Pr[Senx → Rec1], . . . ,Pr[Senx → RecNuser ]) the multi-
nomial profile of user Senx. We also define a function that counts the
number of times a user Senx is observed sending a message to user Recy
in the match M, and denote it as CtM(Senx → Recy). Sampling pro-
files (Ψ1, . . . ,ΨNuser) ∼ Pr[Ψ|M] involves sampling independently each
sender’s profile Ψx separately from a Dirichlet distribution with the fol-
lowing parameters:

Ψx ∼ Dirichlet(CtM(Senx → Rec1)+1, . . . ,CtM(Senx → RecNuser)+1) .
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If the anonymity system A describes a simple bipartite graph, the rejection
sampling algorithm described can be applied to sample assignments ix → ox for
all messages. When this variant of rejection sampling becomes expensive, due
to a large number of rejections, a Metropolis-Hastings [10] based algorithm can
be used to sample perfect matchings on the bipartite graph according to the
distribution Pr[Φ,M|Ψj−1,O,A].

The Gibbs sampler can be run multiple times to extract multiple samples
from the a-posterior distribution Pr[M,Φ,Ψ|O,A]. Instead of restarting the
algorithm at an arbitrary state (M0,Φ0,Ψ0), it is best to set the starting state
to the last extracted sample, that is likely to be within the typical set of the
distribution. This speeds up convergence to the target distribution.

4.2 A computationally simple Red-Blue model

After the PMDA [60] it has become dogma that sender profiles have to be
co-estimated simultaneously with the assignments, and our Bayesian analysis
so far reflects this approach. Senders are associated with mutinomial profiles
with which they choose specific correspondents. We sample these profiles using
the Dirichlet distribution, and use them to directly sample weighted perfect
assignments in the anonymity system. The output of the algorithm is a set of
samples of the hidden state, that allows the adversary to estimate the marginal
distributions of specific senders sending to specific receivers.

We note that this approach is very generic, and might go beyond the day to
day needs of a real-world adversary. An adversary is likely to be interested in
particular target senders or receivers, and might want to answer the question:
“who has sent this message to Bob?” or “who is friends with receiver Bob?”. We
present the Red-Blue model to answer such questions, which is much simpler,
both mathematically and computationally, than the generic model presented so
far.

Consider that the adversary chooses a target receiver Bob (that we call
“Red”), while ignoring the exact identity of all other receivers and simply tag-
ging them as “Blue”. The profiles Ψx of each sender can be collapsed into a
simple binomial distribution describing the probability sender x sends to Red
or to Blue. It holds that:

Pr[Senx → Red|Ψx] + Pr[Senx → Blue|Ψx] = 1. (7)

Matchings M map each observed sender of a message to a receiver class,
either Red or Blue. Given the profiles Ψ the probability of a particular match
M is:

Pr[M|Ψ] =
∏

Pr[Senx → Red / Blue|Ψx]

The real advantage of the Red-Blue model is that different assignments Φ
now belong to equivalence classes, since all Red or Blue receivers are considered
indistinguishable from each other. In this model the assignment bipartite graph
can be divided into two sub-graphs: the sub-graph ΦR contains all edges ending
on the Red receiver (as she can receive more than one message in a mixing
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round), while the sub-graph ΦB contains all edges ending on a Blue receiver.
We note that these sub-graphs are complementary and any of them uniquely
defines the other. The probability of each Φ can then be calculated as:

Pr[Φ|A] =
∑
∀ΦB

Pr[ΦB ,ΦR|A] =

=
∑
∀ΦB

Pr[ΦB |ΦR,A] · Pr[ΦR|A] =

= Pr[ΦR|A] ·
∑
∀ΦB

Pr[ΦB |ΦR,A] =

= Pr[ΦR|A]

The probability of an assignment in an equivalence class defined by the assign-
ment to Red receivers, only depends on ΦR describing this assignment. The
probability of assignment ΦR can be calculated analytically as:

Pr[ΦR|A] =
∏
x∈ΦR

Pr[ix → ox]∑
free ij

Pr[ij → ox]
.

The assignment ΦR must be a sub-graph of at least one perfect matching on
the anonymity system A, otherwise the probability becomes Pr[Φ|A] = 0. As for
the full model the probability of all the hidden quantities given the observation
is:

Pr[M,Φ,Ψ|O,A] =
Pr[M|Ψ] Pr[ΦR|A]

Pr[O|A] ≡ Z
Pr[Ψ|A] (8)

The a-prior probability over profiles Pr[Ψ|A] is simply a prior probability over
parameters of a binomial distribution. Each profile can be distributed as Pr[Ψx|A] =
Beta(1, 1) if nothing is to be assumed about the sender’s x relationship with the
Red receiver.

In practice a prior distribution Pr[Ψx|A] = Beta(1, 1) is too general, and
best results are achieved by using a more skewed distribution as for example
Beta(1/100, 1/100). This reflects the fact that social ties are a-prior either
strong or non existent. Given enough evidence the impact of this choice of prior
fades quickly away.

4.2.1 A Gibbs sampler for the Red-Blue model

Implementing a Gibbs sampler for the Red-Blue model is very simple. The
objective of the algorithms is, as for the general model, to produce samples of
profiles (Ψj), assignments and matches (Φj ,Mj) distributed according to the
Bayesian a-posterior distribution Pr[M,Φ,Ψ|O,A] described by eq. 8.

The Gibbs algorithm starts from an arbitrary state (Ψ0,Φ0) and iteratively
samples new marginal values for the profiles (Φj ,Mj ∼ Pr[Φ,M|Ψj−1,O,A])
and the valid assignments (Ψj ∼ Pr[Ψ|Mj ,Φj ,O,A]). The full matchings are
a deterministic function of the assignments and the observations, so we can
update them directly without any need for sampling (i.e. Mj = f(Ψj ,O)).
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As for the general Gibbs sampler, sampling from the desired marginal dis-
tributions can be done directly. Furthermore the Red-Blue model introduces
some simplifications that speed up inference:

• Sampling assignments. Sampling assignments of senders to Red nodes
(i.e. ΦRj ,Mj ∼ Pr[Φ,M|Ψj−1,O,A]) can be performed by adapting the
rejection sampling algorithm presented for the general model. The key
modification is that only assignments to Red receivers are of interest, and
only an arbitrary assignment to blue receivers is required (to ensure such
an assignment exists). This time for each Red output messages ox we
sample an input message ix according to the distribution:

ix → oy ∼Pr[ix → oy|free ix,∀assigned iv iv → ov,A,Ψ]

=
Pr[ix → oy|A] · Pr[Senx → Red|Ψx]∑

free ij
Pr[ij → oy|A] · Pr[Senj → Red|Ψx]

• Sampling profiles. Sampling a profile Ψj ∼ Pr[Ψ|Mj ,Φj ,O,A] for
every user x simply involves drawing a sample from a Beta distribution
with parameters related to the number of links to Blue and Red receivers.
To be formal we define a function CtM(Senx → Red, Blue) that counts
the number of messages in a match that a user sender x sends to a Red
or Blue receiver. The profile of user x is then sampled as:

Ψx ∼ Beta(CtM(Senx → Blue) + 1,CtM(Senx → Red) + 1)

This yields a binomial parameter that is the profile of user x, describing
the probability they send a message to a Red target user.

The cost of each iteration is proportional to sampling Nuser Beta distribu-
tions, and sample from the distribution of senders of each of the Red messages.
Both the sampling of profiles, and the sampling of assignments can be performed
in parallel, depending on the topology. In case a large number of samples are
needed multiple Gibbs samplers can be run on different cores or different com-
puters to produce them.

4.3 Evaluation

The Red-Blue model for inferring user profiles and assignments was evaluated
against synthetic anonymized communication traces, to test its effectiveness.
The communication traces include messages sent by up to 1000 senders to up to
1000 receivers. Each sender is assigned 5 contacts at random, to whom they send
messages with equal probability. Messages are anonymized in discrete rounds
using a threshold mix that gathers 100 messages before sending them to their
receivers as a batch.

The generation of communication patterns was peculiar to ensure a balance
between inferring the communications of a target user (as in the traditional
disclosure, hitting set and statistical disclosure attacks) to a designated Red
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Figure 12: Performance of the Red-Blue model in assigning senders to the target
red receiver, as a function of the number of rounds observed. Twenty sample
experiments are used per box plot.

receiver, as well as to gain enough information about other users to build helpful
profiles for them. A target sender was included in 20% of the rounds, and the
Red node was chosen to be one of their friends. A sequence of experiments were
performed to assess the accuracy of the attack after observing an increasing
number of rounds of communication.

The aim of each experiment is to use the samples returned by a Gibbs
sampler implementing the Red-Blue model to guess the sender of each message
that arrives at a designated Red receiver. The optimal Bayes criterion [8] is
used to select the candidate sender of each Red message: the sender with the
highest a-posterior probability is chosen as the best candidate. This probability
is estimated by counting the number of times each user were the sender of
a target Red message in the samples returned by the Gibbs algorithm. The
Bayesian probability of error, i.e. the probability another sender is responsible
for the Red message, is also extracted, as a measure of the certainty of each
of these “best guesses”. For each experiment the Gibbs sampler was used to
extract 200 samples, using 100 iterations of the Gibbs algorithm each. The
first 5 samples were discarded, to ensure stability is reached before drawing any
inferences.

A summary of the results for each experiment is presented in Figure 12. The
top graph illustrates the fraction of correct guesses per experiment (on the x axis
– we selected 20 random experiments to display per round number) grouped by
the number of rounds of communication observed (16, 32, 64, 128, 256, 512 and
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1024). For each experiment the fraction of correctly identified senders is marked
by a circle, along with its 90% confidence interval. The dashed line of the same
graph represents the prediction of error we get from the Bayesian probability
of error. The bottom graph on Figure 12 illustrates on a logarithmic scale the
inferred probability assigned to the Red node for the target sender, for each of
the experiments. The experiments for which a high value of this probability
are inferred (median greater than 1%) are marked by a solid red circle on both
graphs. The 50% confidence interval over the profile parameter is also plotted.

Some key conclusions emerge from the experiments illustrated on Figure 12:

• The key trend we observe is, as expected, that the longer the observation
in terms of rounds, the better the attack. Within 1024 rounds we expect
the target sender to have sent about 40 messages to the designated red
target. Yet, the communication is traced to them on average 80% of the
cases with high certainty. Even when only 256 rounds are observed the
correct assignment is guessed in about 50% of the time.

• The quality of the inference when it comes to the correspondence between
messages, senders and receivers, is intimately linked to the quality of the
profile inference. The solid red circles mark experiments that concluded
that the media value for the probability the target sender is friends with
the target Red receiver is high (greater than 1%). We observe that these
experiments are linked to high success rates when it comes to linking
individual messages to the target sender. We also observe the converse:
insufficient data leads to poor profiles, that in turn lead to poor predictions
about communication relationships.

• The probability of error estimates (represented on the top graph by a
dotted line) predict well the success rate of the experiments. The pre-
dicted error rate systematically falls within the 90% confidence interval of
the estimated error rate. This shows that the Red-Blue model is a good
representation of the process that generated the traces and thus the es-
timates coincide with the actual observed error rate, on average. This is
due to the very generic model for Red-Blue profiles that represent reality
accurately after a few rounds. Yet, when few rounds are observed the a-
prior distribution of profiles dominates the inference, and affects the error
estimates.

A key question is how the results from the Red-Blue model compare with
traditional traffic analysis attacks, like the SDA [40], the NSDA [60] or the
PMDA [60]. The SDA attack simply uses first order frequencies to guess the
profiles of senders. It is fast but inaccurate. The normalised SDA (NSDA)
constructs a traffic matrix from senders to receivers, that is normalised to be
doubly stochastic. The operation is as fast as matrix multiplication, and yields
very good results. The PMDA finds perfect matchings between senders and
receivers based on a rough profile extraction step – it is quite accurate but slow.

Figure 13 illustrates the relative performances of the different attacks com-
pared with the Red-Blue model proposed. We observe that the inference based
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Figure 13: Performance of the Red-Blue inference model compared to the SDA,
NSDA and PMDA.

technique is quite competitive, against the SDA, but performs worse than the
NSDA and PMDA in most settings. This is due to our strategy for extracting
best estimates for the senders: we use the output samples to chose the sender
with highest marginal probability instead of extracting a full match with the
maximal marginal probability. In that sense applying an algorithm to find the
maximal perfect matching based on the marginal probabilities output by the
RB attacks should produce much better results.

Despite the lower success rate inference based techniques can be advanta-
geous. Their key strength is the certainty that no systematic bias has been
introduced by reusing data twice, as reported in [27, 60], and the tangible and
reliable error estimate they output. A traffic analyst is thus able to judge the
quality of the inference to guide them operationally.

A second important advantage is the ability to infer who is the “second most
likely” receiver, compute anonymity metrics, or other arbitrary statements on
the a-posterior probability distribution of profiles and assignments. This can be
done efficiently simply using the samples output by the Gibbs algorithm. Fur-
thermore the correct probabilities of error can be associated with those proba-
bilistic statements.

4.4 Discussion & future directions

The Bayesian treatment of long term attacks against anonymity systems is
promising, but still at its infancy. We foresee some key theoretical as well
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as implementation steps to move the state of the art forward.

• Bipartite weighted anonymity set. The Black-box model as well as
the Red-Blue model proposed represent an observation from an anonymity
system as a generic weighted bipartite graph, linking senders with re-
ceivers. Our experiments, on the other hand, only considered anonymity
systems working in discrete rounds, forming full bipartite sub-graphs with
a number of senders equal to the batch size. This is a limitation of our
sampler implementation, that could be extended to deal with the general
case of any bipartite weighted network.

While in theory this modification is straightforward, in practice it is harder
to sample directly matchings from arbitrary bipartite graphs. The rejec-
tion sampling algorithm suggested can be inefficient, since it might use
links that are not part of a perfect matching, forcing multiple aborts. It
might be wise to first prune the assignment graph from such edges us-
ing techniques from the constrain satisfaction literature such as Regin’s
algorithm [50].

• Profile models. The a-prior model for user profiles is very generic, mean-
ing that it can represent, and thus learn, any multinomial distribution of
receivers per sender. While being generic more information could be in-
corporated if it is established that the profile belongs to a social network
(with some standard characteristics like degree, clustering etc). Tradi-
tional hitting set as well as disclosure attacks make extensive use of the
number of friends of a target sender to be applicable at all, whereas the
presented approaches do not require such information. Yet, adding related
constraints would yield better results.

• Learning social networks. It has been an open problem in the liter-
ature how to incorporate known information about communication pat-
terns to help the inference of unknown communication patterns, and some
ad-hoc techniques were presented to combine social network information
to de-anonymize traces, along with a discussion of systematic errors in-
troduced [27]. The sampling techniques presented in this work can be
straightforwardly modified to incorporate known correspondences between
senders and receivers: the Gibbs sampler is modified to only sample valid
assignments that contain the known matches. These known assignments,
far from being useless, drive the sampling of profiles (as part of the Gibbs
sampling) leading to higher quality profiles, which in turn become higher
quality assignments for the unknown messages.

• Beyond communications. Both models presented are very generic and
apply to attempts to anonymize traces that are not communications. As
long as a system has users with multinomial preferences, that are ex-
pressed and anonymized in an arbitrary manner (as long as there is one
expressed preference per observed action), our algorithms are applicable
to de-anonymize the preferences and extract user profiles. This problem
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has recently received considerable attention though de-anonymization al-
gorithms applied to the NetFlix database [44].

5 Conclusions

Each proposed mix system is slightly different from others, and our model has
to still be extended to deal with different mixing strategies [54, 46], dummy
traffic [19, 25, 46] as well as observations that start while the mix network is
running. The model of mix networks is flexible enough to be the basis of such
models, although performing efficient inference to estimate the probability of
their hidden state might require some craftsmanship.

Beyond mix networks, the ‘Holy Grail’ of Bayesian traffic analysis would be
its application to the setting of low-latency anonymity systems based on onion-
routing [57], such as Tor [28]. An adversary in such system is constrained to
observe only a fraction of the network, but the observations leak precise cell
timing data that can be used to trace streams. Murdoch and Zielinski [42]
present a simplified analytical Bayesian analysis in such a setting, under the
assumptions that traffic is Poisson distributed. Presenting a general model of
an onion routing system, and a practical sampler to perform inference is the
next significant step in this line of work.

Our work has demonstrated that we can extract accurate a-posterior distri-
butions about who is talking to whom, from a complex anonymity system, with
a vast hidden state-space, and a large observation. For the first time we are
able to calculate the distributions necessary to apply any information theoretic
or decision theoretic anonymity metrics, without resorting to heuristics.

The second contribution of this work is Vida, the first truly general model for
abstracting any anonymity system, in the long term, to perform de-anonymization
attacks. Users and their preferences are modelled in the most generic way, using
multinomial profile, eliminating the need to know the number of contacts each
sender has. Instead of abstracting an anonymity system as a single threshold
mix, or even pool mix, an arbitrary weighted mapping of input to output mes-
sages can be used. We show that the model performs well when it comes to
guessing who is talking to whom, as well as guessing the profiles of senders.
The Vida Red-Blue model focuses on the need the working traffic analyst has
to infer patterns of communications to specific targets – it has the potential to
be implemented efficiently and parallelized aggressively.

The third contribution is methodological, and might be even more significant
than the specific models. We demonstrate that probabilistic modelling, Bayesian
inference, and the associated conceptual toolkit relating to Monte Carlo Markov
Chain sampling is an appropriate framework upon which to build traffic analysis
attacks. It ensures that information is used properly avoiding over fitting or
systematic biases; it provides a clear framework to perform the analysis starting
with the definition of a probabilistic model, that is inverted and sampled to
estimate quantities of interest; it provides good and clear estimates of error, as
well as the ability to answer arbitrary questions about the hidden state with a
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clear probability statement. These qualities are in sharp contrast with the state
of the art in traffic analysis, that provides ah-hoc best guesses of very specific
quantities, with a separate analysis to establish their accuracy based on labeled
data – something that the traffic analyst does not have on the ground.

We hope this work is the start of an exploration of the applicability of infer-
ence techniques to problems in traffic analysis – that will eventually outperform
established techniques. Some clear future directions include the definition of
better user models, the analysis of the internals of anonymity systems, as well
as a better integration of prior information and learning. The inference ap-
proach leans itself well to be extended to encompass these problems, that have
in the past been a thorn on the side of traffic analysis techniques.
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A Notation

Table 4: Notation I
Symbol Meaning
A Generic anonymity system

α � β α sends a message to β
C Set of constraints imposed by the system
C Set of constraints for non compliant users

Ct(α � β) number of times α � β appears in the set of samples
cp Path compliant with system standard specifications
cp Path non compliant with system standard specifications
Φ Assignment of inputs to outputs
HS Hidden State
ix Input message x

ι
Number of iterations in the Metropolis-Hasting simulation between the collec-
tion of two samples

Lx Length of path Px
Labx Label of path x (Labx = cp or Labx = cp)
Mx Sequence of mixes belonging to path Px
M Matching between senders and receivers
Nmix Number of mixes in the network
Nmsg Number of messages in the system
Nuser Number of users in the population
Ndet Number of deterministic paths in an observation
O Observation

NMH Number of samples gathered in the MH simulation
oy Output message y
oy Output message y that has not been sampled
P The set of all paths in the observation
Px Path x, starting at input message ix

Pr[HS] Abbreviation for Pr[HS|O, C] = Pr[P|C]
pcp Probability of non-compliant client

pflip(a, b) Probability of changing the label of a path from Labx = a to Labx = b

B A typical small trace
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Table 5: Notation II
Symbol Meaning

psampled(a, b)
Mean of the probabilities given the MH-simulation for events with probability
a ≤ Pr[event] < b

pempirical(a, b)
Mean of the probabilities given the observations for events with probability
a ≤ Pr[event] < b

π Permutation of relation between input and output messages
Ψx Sending profile of user Senx

Recy Receiver of output message oy
Senx Sender of input message ix

T0, Tmax Beginning and end of the observation time
t Threshold of mixes

unf Subscript related to paths ending in an unflushed mix
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Figure 14: A typical non-toy observation
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