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ABSTRACT
WiBro (Wireless Broadband Internet), the Korean version of mo-
bile WiMAX compatible standard, provides high-speed mobile data
service. Although mobile WiMAX services are being deployed,
there exist few reports about WiBro performance. In this work, we
measure and analyze best-case performance of WiBro. In order to
measure one-way delay, we develop a GPS synchronization device
to measure one-way delay.

Our measurement shows that the maximum throughput over the
WiBro network is 10 Mbps in downlink and 2.5 Mbps in uplink.
We estimate that both the base station and WiBro modems have
large buffers up to 2 s and 500 ms and minimum one-way delay
of 76 ms and 11 ms for uplink and downlink, respectively. We
measure TCP throughput over WiBro by varying the send buffer
and receive buffer sizes. To fully exploit the high bandwidth of
Wibro, we conclude the TCP needs along with the minimum of
128 KB buffer size.

1. INTRODUCTION
WiBro (Wireless Broadband Internet), the Korean version of mo-

bile WiMAX compatible standard, provides high-speed mobile data
service. The strength of WiBro over cellular data services is its data
link speed. It supports up to 37 Mbps downlink and 10 Mbps uplink
in theory and 10 Mbps downlink and 2.5 Mbps uplink in current
deployment. The offered rates are faster than CDMA 1x EV-DO,
W-CDMA or HSUPA. WiBro supports mobility up to 120 km/h,
which is slower than 300 km/h cellular technologies, but still suf-
ficient for vehicular mobility. KT launched the world’s first WiBro
service in Korea in 2006 and it has since acquired more than 200,000
subscribers. Mobile WiMAX services are slowly gaining foothold
in other parts of the world. Clearwire started mobile WiMAX ser-
vice in Portland, Oregon, in September 2008 and UQ communica-
tions begun a trial service in Japan in February 2009.

Although mobile WiMAX services are being deployed, there
exist few reports about WiBro performance due to the following
difficulties in measuring it. First, the infrastructure-based WiBro
is yet to be widely deployed, and only a few cities have access.
Second, no information about the PHY and MAC layer is avail-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICNET’09, September 21, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-753-0/09/09 ...$10.00.

able to end users. WiBro provides various MCS (Modulation and
Coding Schema) levels to maximize the physical layer throughput.
The MCS level changes based on signal quality and determines the
transmission rate. Without the information about the MCS level, it
is hard to know the maximum available bandwidth of the moment.
In another example, it is hard to differentiate the sources of latency.
A base station receives bandwidth requests from WiBro modems
and allocates time and frequency slots. HARQ (Hybrid Automatic
Repeat reQuest) conducts automatic repeat of a frame at the phys-
ical layer or recovers bit errors in case of a failure. It reduces the
link layer loss rate, but increases the latency. Without information
about HARQ or scheduling at the base station, we cannot tell if
the latency of a particular packet is due to automatic repeat at the
physical layer or scheduling.

As described above, many factors contribute to the performance
of the WiBro network and complicates the analysis. The goal of this
work is to measure and analyze baseline performance of WiBro.
In order to reduce the variables in our experiment, we assume no
mobility and low signal variation by limiting the experiment site
to one physical location. We focus on the performance of a single
flow with no competing flow from the same end host.

In this work we study the performance of a single UDP flow
and a single TCP flow. In our UDP experiment, we have observed
2.5 Mbps and 10 Mbps for uplink and downlink, respectively. These
rates are larger than reported about any cellular networks. From
our measurments, we estimate that both the base station and WiBro
modems have large buffers up to 2 s and 500 ms and minimum
one-way delay of 76 ms and 11 ms for uplink and downlink, re-
spectively. In our TCP experiments, we have found that the small
TCP send buffer size is the bottleneck of TCP throughput because
of WiBro’s high bandwidth-delay product (BDP) characteristics. In
case of downlink, a single TCP flow achieves 1.5 Mbps with 17 KB
TCP socket buffer, the default size in Windows XP, and 5 Mbps,
just half of maximum UDP bandwidth, with 64 KB TCP socket
buffer (the maximum size on Windows XP without RFC 1323 ex-
tention). To fully exploit the high bandwidth of Wibro, the TCP
session needs the minimum of 128 KB or larger buffer size.

The rest of this paper is organized as follows. We provide WiBro’s
MAC (Medium Access Control) layer mechanisms as an overview
and summarize related work in Section 2. Next, we describe the ar-
chitecture of our testbed, synchronization techniques and validate
our testbed by examining bandwidth and delay of each hop in Sec-
tion 3. In Section 4, we analyze TCP performance. We provide
the UDP performance of WiBro to compare it against TCP perfor-
mance. Then we demonstrate how the send buffer size and receive
window size of a TCP session affect TCP throughput. Finally, we
conclude in Section 5.



2. BACKGROUND AND RELATED WORK
Here we give a brief overview of WiBro technology. WiBro uses

Orthogonal Frequency Division Multiple Access (OFDMA) that al-
lows simultaneous transmission of multiple users by different car-
riers. The core of WiBro is an IP-based packet-switching network,
while WiBro employs a connection-oriented MAC layer service at
the base station. A WiBro modem requests bandwidth by sending
a stand-alone request message or piggybacking it on other uplink
data messages [9]. Uplink has a bigger latency than downlink be-
cause uplink requires an additional bandwidth request step. Theo-
retically, uplink provides up to 10 Mbps bandwidth and downlink
up to 37.5 Mbps with mobility up to 120 km/h [3, 9]. Depend-
ing on the quality of channels, WiBro adapts the MCS (Modula-
tion and Coding Scheme) level to maximize the data transmission
rate. WiBro has 8 different MCS levels for downlink and 4 lev-
els for uplink. The WiBro standard includes five kinds of QoS in-
cluding UGS (Unsolicited Grand Service), rtPS (Real-time Polling
Service), nrtPS (Non-real-time Polling Service), BE (Best Effort),
ertPS (Extended rtPS) as in WiMAX specifications, but only a BE
service is currently available.

Han et al. have evaluated Voice over IP (VoIP) performance over
WiBro [6]. Their results show that the WiBro network has small
jitter and low loss: WiBro offers as good as or better than toll qual-
ity. Their results are overly optimistic, for there apparently was no
other user contending for transmission. Kim et al. have reported
on achievable throughput over WiBro [8]. They have demonstrated
that the small default TCP receive window size prevents TCP from
fully utilizing the available bandwidth.

In this work we experiment with various TCP buffer sizes and
demonstrate that both the send and receive window sizes should be
adjusted to utilize the bandwidth of WiBro network to its fullest.

3. MEASUREMENT ENVIRONMENT

3.1 Overview
In all our measurements we use a mobile node (MN), equipped

with a WiBro Modem (SWD-H300K) and a desktop PC, called a
corresponding node (CN), connected to KREONET (Korea Re-
search Environment Open NETwork), a research network in Korea.
KREONET is directly connected to KT’s IP backbone network and
has low utilization such that we assume packet losses and delays
to occur mostly on the WiBro network. Both the MN and CN run
Windows XP.

We conducted all our experiments from a single location in Dae-
jeon, Korea, and the data was collected from April to May, 2009.
The 802.16 Standardization Forum defines two separate steps of
certification, conformance and interoperability testings, and each
step is known as Wave. Wave1 has the basic characteristics of mo-
bile WiMAX. Wave2 has enhanced features in the physical layer
and MAC layer, including MIMO (Multiple Input Multiple Output)
technology, scalable OFDMA and beam forming. The KT WiBro
service was upgraded to Wave2 in September 2008.

We use Iperf [1] for traffic generation and use WinPcap [2] to
capture transmitted packets. Original WinPcap creates a timestamp
using local time. We modify WinPcap to mark each packet with
CPU cycles instead of local time for ease of time synchronization.
Further details about time synchronization follow in the next sec-
tion.

3.2 Clock Synchronization
In order to measure one-way delay, we need two end hosts to

be synchronized. Two popular methods to synchronize comput-
ers are NTP (Network Time Protocol) and GPS (Global Position-

Figure 1: The Structure of GPS module

ing System). NTP is widely regarded as inadequate for one-way
network delay measurement [11]. Veitch et al. have proposed a
robust clock synchronization mechanism based on the TimeStamp
Counter (TSC) register of Pentium class PCs [10]. Their approach
requires kernel patches but no support is available for Windows XP.
In order to conduct outdoor measurement, we require a small low-
power GPS time synchronization device. Unfortunately, to the best
of our knowledge, a small off-the-shelve GPS time synchronization
device is not available. We develop a small GPS time synchroniza-
tion device that provides accurate UTC (Universal Time Coordi-
nated) information.

Figure 1 is a structural diagram of our synchronization device.
Our device consists of the GPS module u-blox LEA-5, a USB in-
terface, an RS232 interface, and LAN cables connecting the GPS
module to the two interfaces. The GPS module outputs the NMEA
(The National Marine Electronics Association) 0183 signal and a
5V pulse-per-second (PPS) signal. The NMEA 0183 application
data sentences include the UTC time, the geographic position, and
the moving velocity of the module. A typical GPS device in today’s
market delivers the NMEA signal via USB for location-based ser-
vice applications and does not use the PPS signal. However, the
USB interface adds fluctuating delay up to 50 ms and is inadequate
for our purpose. We rewired the output of the GPS module such
that the NMEA signal connects to the PC via USB, and the PPS
signal reaches the PC via RS232C. Upon receipt of the PPS signal,
the PC records the CPU cycles counted from the machine startup.
As we describe earlier, our modified WinPcap records the CPU cy-
cles for each packet. By aligning the CPU cycles recorded at every
PPS signal with those recorded per packet, we can infer the time of
each packet accurately in a globally synchronized manner.

We test our GPS synchronization device in a LAN environment.
We connect two computers via an Ethernet switch. The two com-
puters send and receive UDP traffic and we use our synchroniza-
tion device and mechanism to calculate one-way delay for both
directions. One-way delays for both directions are positive and
strictly smaller than 0.8 ms, but greater than 0.2 ms. This indi-
cates our synchronization mechanism provides sub-millisecond ac-
curacy. Sub-millisecond accuracy is adequate in measuring the la-
tency of WiBro that we expect to be in tens of milliseconds in both
directions.

4. BASIC CHARACTERISTICS OF WIBRO
We begin our WiBro performance evaluation with UDP traffic.

We measure the one-way delay of low rate UDP traffic and calcu-
late the minimum delay of the WiBro network. Then we generate
enough traffic to saturate the WiBro link in order to see the max-
imum throughput and one-way delay under congestion. From the
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Figure 2: RTT by the hop

worst-case one-way delay, we estimate the buffer size at both the
uplink and downlink directions.

All traffic we collect is 5-minute-long traces of UDP traffic gen-
erated by Iperf. Our measurement location has CINR (Carrier to
Interference plus Noise Ratio) values higher than 30 dB and vari-
ance of less than 1. This is the best signal strength in WiBro. For
reference, the signal strength we measured at various locations in
downtown Seoul was between 3 dB to 25 dB.

4.1 Validation of Our Experiment Setting
In order to study the characteristics of the WiBro link, we first

check to see if the WiBro link is the bottleneck in the end-to-
end path of our experiment setting. We use two tools ping and
tracert in order to show that the WiBro link accounts for the
majority of delay and jitter, as well as loss. RTT at each hop in
Figure 2 is the minimum from 15 runs of tracert. The first hop
from the MN in the uplink direction and the last hop before the MN
in the downlink direction did not respond to tracert. We looked
at the DHCP configuration and obtained the default gateway. We
then sent ping to the default gateway and found the gateway to
answer to ping requests. We mark delays obtained from ping in
the figure with an asterisk to distinguish from tracert measure-
ments. There are 14 hops from the CN to the MN (uplink) and 12
hops the other way. This path asymmetry is at the router level, not
at the AS path level, and is due to AS-internal network configura-
tions. The uplink RTT measurements exhibit larger variation. It is
because the WiBro link is included in every measurement, while
the downlink RTT measurement includes the WiBro link only at
the last hop. From the RTT measurements in both directions we
are convinced that the majority of the one-way delay in our mea-
surement setting comes from the WiBro link.

We have checked the link utilization on all links from the CN to
the link between KT and KREONET and seen that they were never
utilized over 50% during our measurement experiment.

4.2 Minimum one-way delay
In order to measure the minimum one-way delay and loss (or the

best performance), we use 4 Kbps UDP traffic (20 bytes of pay-
load every 40 ms) and measured the one-way delay and loss. The
downlink delay has very little variance and has the minimum of
14 ms. The uplink delay fluctuates between 25 ms and 100 ms.
The main reason behind this variation is packet bundling, similar
to piggybacking, as explained in Section 2. Packet bundling takes
place when one packet is scheduled to be delivered uplink, another
packet arrives and is delivered along with the first packet, thus sav-
ing scheduling time. The difference between bundling and piggy-

backing lies in what gets opportunistic scheduling advantage, the
packet itself or a request for a transmission slot. Without bundling
the minimum uplink delay is 80 ms, and with bundling the delay
reduces to 25 ms.

We have shown that the RTT of the wired portion is less than
7 ms and one-way delay of wired link is less than 4 ms. Therefore,
the one-way delay of WiBro link is about 76 ms uplink and 10 ms
downlink. During this measurement, no packet was lost.

4.3 Performance of a saturated WiBro link
Now we turn our attention to WiBro performance under heavy

traffic. In order to saturate the WiBro link, we generate 5 Mbps and
12 Mbps for uplink and downlink, respectively. We use the packet
size of 1410 bytes. Figure 3(a) plots the throughput at the receiving
end, calculated per second. The maximum uplink throughput is
2.5 Mbps and downlink 10 Mbps. The rest of the generated traffic
is dropped. The one-way delay is expected to be larger than what
we report in Section 4.2, as the queues before the Wibro link build
up due to heavy traffic. Figure 3(b) plots the first 3 seconds of one-
way delay of the same trace and Figure 3(c) shows the cumulative
distribution function (CDF) of one-way delay. We see the one-way
delay gradually increasing as the queue builds up over time. The
one-way delay increases until the queue is full and starts to drop
packets.

As we use packets of a different size from Section 4.2, we mea-
sure the minimum one-way delay again, this time with 256 Kbps
uplink and 1 Mbps downlink traffic. The minimum one-way de-
lays are 30 ms uplink and 15 ms downlink, larger than reported in
Section 4.2. This increase in delay could easily be explained with
increase in transmission delay, as the packet size grew from 62 to
1410 bytes.

The one-way delay when the queue is full translates to the worst-
case performance of the network. Because we generate more traffic
than maximum measured throughput, the queue is never drained
once the queue has built up to its full capacity. We calculate the
minimum one-way delay excluding the first and last 5 seconds to
assure that the queue remains full. The minimum delay when the
queue is full includes the full queueing delay, while minimizing
the effect of HARQ and low signal variation. The difference be-
tween minimum one-way delay with and without queueing delay
translates to the queue size. We estimate the queue size in bytes by
multiplying the queue size in time and the bandwidth at the time.
The estimated queue sizes are about 110 KB uplink and 1, 100 KB
downlink. We note that the downlink has 10 times larger queue
than uplink, although the bandwidth is only 5 times larger. The de-
lay larger than what can be accounted for queueing in Figure 3(c)
is likely to be due to HARQ retransmissions, scheduling, and vari-
ation in signal strength. Without access to PHY and MAC layer
information, we can not verify how much each contributes to the
overall delay. About half the packets experience more than 1 s de-
lay downlink when the queue is saturated. The large buffer size
in the wired network has been a topic of hot debate[4]. The large
buffer size in wireless network can be as serious or doubly serious
as we observe in this work.

5. ANALYSIS OF TCP PERFORMANCE
In this section we measure and analyze the TCP performance.

We first measure the TCP throughput and compare it with that from
UDP. We also measure and compare the TCP delay against the min-
imum round-trip time and one-way delay of UDP traffic.

All traffic we collect is 5-minute-long traces of TCP traffic gen-
erated by Iperf. We collect TCP traces with different TCP socket
buffer sizes. We increase Windows XP’s default TCP socket buffer
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Figure 3: UDP performance over a saturated WiBro link
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Figure 4: Sequence graph in slow start (Downlink)

size to 1 MB using RFC 1323 [7] option and change the TCP socket
buffer size of each TCP flow by setting the option in the application
layer.

We measure the TCP throughput with Windows XP’s default set-
tings and it comes out to be only about 1 Mbps, ten times smaller
than UDP’s. Even taking into consideration the undulating na-
ture of TCP traffic due to congestion control, we find tenfold de-
crease to be too significant. In order to identify the cause of the
small throughput, we investigate how packets are transmitted and
whether many packets are retransmitted. Figure 4(a) plots the se-
quence numbers of both data and acknowledgement packets against
time. In this experiment we use the Windows default socket buffer
sizes: 17 KB for the send socket buffer and 64 KB for the receive
side. Figure 4(a) shows that after a few rounds in the slow start
phase, the packets worth of the full send buffer size are transmitted,
but the send buffer size does not grow in the next round. That is, the
TCP congestion window size reaches the maximum of 17 KB and
does not increase any more. This literally caps the TCP throughput.

Bandwidth-delay product indicates the maximum amount of data
that can be in transit from a sender to a receiver and is used in pro-
visioning the buffer size inside the network. If the available band-
width of an end-to-end path is small or delay short, the bandwidth-
delay product is small and a small send buffer size is sufficient to
keep the pipe full. In case of WiBro, the delay is relatively large, but
the bandwidth is also large, which in turn increases the bandwidth-
delay product. However, with the TCP send buffer size capped at

17 KB, a single TCP flow cannot exploit the full capacity of the
WiBro network. Now that we understand the cause of low TCP
throughout, we conduct the same experiment with 256 KB for both
TCP send and receive buffer sizes and plot the sequence numbers
against time in Figure 4(b). In contrast to Figure 4(a) the conges-
tion window continues to grow after the first second in Figure 4(b).

Kim et al. have shown that the small receive window size of
Windows is indeed the bottleneck in WiBro [8]. According to their
results, the TCP throughput increases when the receive window
size is changed from 17 KB to 64 KB. Halepovic et al. show that
increased throughput of TCP with increasing socket buffer sizes up
to 64 KB and auto-tuned socket buffer size. They show that 64 KB
is enough to support 1.5 Mbps in WiMAX [5]. We have found
out that not only the receive window size, but also the send socket
buffer size affects the performance of TCP. When a TCP sender re-
ceives an ACK, it can grow its window size, but never over the limit
exceeding the sender window size. As our WiBro environment sup-
ports much higher bandwidth and low loss rate, we conduct the next
experiment varying both the send and receive buffer sizes.

We vary the send and receive buffer sizes from 17 to 32, 64, 128,
256, 512, and 1, 024 KB and measure the TCP throughput. We
see in Figure 5(a) that only with the buffer size set at 128 KB the
downlink TCP throughput reaches about 10 Mbps comparable to
that of UDP traffic. If the buffer size grows over 512 KB, the single
TCP flow induces queueing and loss onto itself and experiences
reduced throughput.
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Figure 5: Characteristics TCP traffic in Wave2

Samke et al. have proposed that auto-tuning of send buffer size
for high-speed WAN networking environment (in their times in the
order of 100 Mbps). We find it rather interesting to see their auto-
tuning to apply these days to wireless networking of drastically in-
creased bandwidth. Yet still our work suggests that not only the
send buffer size, but also the receive buffer size should increase.
Linux 2.6 and later versions implement auto-tuning of both send
and receive buffer sizes. Windows Vista implements receiver-side
auto-tuning. We leave evaluation of Linux and Windows Vista’s
auto-tuning mechanisms for future work.

We then examine the RTT in our TCP experiments. Figure 5(b)
plots the median and inter-quartile RTTs at various buffer sizes.
As the buffer size grows, so does RTT, indicating queueing. Once
the buffer size grows over 1, 024 KB, the RTT fluctuates greatly.
This indicates that with the buffer size of 1, 024 KB, the single
TCP flow enters congestion regime and the queue is drained after
timeouts and the shrunk congestion window size. The one-way
delay follows similar pattern as the RTT.

6. CONCLUSION
In this work we measure the best-case performance of a WiBro

network for a single flow. Our measurement shows that the max-
imum throughput over the WiBro network is 10 Mbps downlink
and 2.5 Mbps uplink. We develop a GPS synchronization device to
measure one-way delay. The minimum one-way delay in downlink
is 11 ms and that in uplink varies from 21 ms to 76 ms depend-
ing on the packet bundling. We estimate that both the base station
and WiBro modems have large buffers up to 2 s and 500 ms and
minimum one-way delay of 11 ms and 76 ms, respectively. We
measure TCP throughput over WiBro by varying send and receive
buffer sizes. Due to high bandwidth and long delay over the WiBro
network, at least 128 KB is required to fully utilize the link.
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