
Web Crawler Architecture

MARC NAJORK
Microsoft Research, Mountain View, CA, USA

Synonyms
Web crawler; Robot; Spider

Definition
A web crawler is a program that, given one or more
seed URLs, downloads the web pages associated with
these URLs, extracts any hyperlinks contained in them,
and recursively continues to download the web pages
identified by these hyperlinks. Web crawlers are an
important component of web search engines, where
they are used to collect the corpus of web pages
indexed by the search engine. Moreover, they are used
in many other applications that process large numbers
of web pages, such as web data mining, comparison
shopping engines, and so on. Despite their conceptual
simplicity, implementing high-performance web
crawlers poses major engineering challenges due to the
scale of the web. In order to crawl a substantial fraction
of the “surface web” in a reasonable amount of time,
web crawlers must download thousands of pages per
second, and are typically distributed over tens or
hundreds of computers. Their two main data structures
– the “frontier” set of yet-to-be-crawled URLs and the
set of discovered URLs – typically do not fit into main
memory, so efficient disk-based representations need to
be used. Finally, the need to be “polite” to content
providers and not to overload any particular web
server, and a desire to prioritize the crawl towards
high-quality pages and to maintain corpus freshness
impose additional engineering challenges.

Historical Background
Web crawlers are almost as old as the web itself. In the
spring of 1993, just months after the release of NCSA
Mosaic, Matthew Gray [6] wrote the first web crawler,
the World Wide Web Wanderer, which was used from
1993 to 1996 to compile statistics about the growth of
the web. A year later, David Eichmann [5] wrote the
first research paper containing a short description of a
web crawler, the RBSE spider. Burner provided the
first detailed description of the architecture of a web
crawler, namely the original Internet Archive crawler
[3]. Brin and Page’s seminal paper on the (early)
architecture of the Google search engine contained a
brief description of the Google crawler, which used a
distributed system of page-fetching processes and a

central database for coordinating the crawl. Heydon
and Najork described Mercator [8,9], a distributed and
extensible web crawler that was to become the
blueprint for a number of other crawlers. Other
distributed crawling systems described in the literature
include PolyBot [11], UbiCrawler [1], C-proc [4] and
Dominos [7].

Foundations
Conceptually, the algorithm executed by a web crawler
is extremely simple: select a URL from a set of
candidates, download the associated web pages, extract
the URLs (hyperlinks) contained therein, and add those
URLs that have not been encountered before to the
candidate set. Indeed, it is quite possible to implement
a simple functioning web crawler in a few lines of a
high-level scripting language such as Perl.

However, building a web-scale web crawler
imposes major engineering challenges, all of which are
ultimately related to scale. In order to maintain a search
engine corpus of say, ten billion web pages, in a
reasonable state of freshness, say with pages being
refreshed every 4 weeks on average, the crawler must
download over 4,000 pages/second. In order to achieve
this, the crawler must be distributed over multiple
computers, and each crawling machine must pursue
multiple downloads in parallel. But if a distributed and
highly parallel web crawler were to issue many
concurrent requests to a single web server, it would in
all likelihood overload and crash that web server.
Therefore, web crawlers need to implement politeness
policies that rate-limit the amount of traffic directed to
any particular web server (possibly informed by that
server’s observed responsiveness). There are many
possible politeness policies; one that is particularly
easy to implement is to disallow concurrent requests to
the same web server; a slightly more sophisticated
policy would be to wait for time proportional to the last
download time before contacting a given web server
again.

In some web crawler designs (e.g., the original
Google crawler [2] and PolyBot [11]), the page
downloading processes are distributed, while the major
data structures – the set of discovered URLs and the set
of URLs that have to be downloaded – are maintained
by a single machine. This design is conceptually
simple, but it does not scale indefinitely; eventually the
central data structures become a bottleneck. The
alternative is to partition the major data structures over
the crawling machines. Ideally, this should be done in
such a way as to minimize communication between the

crawlers. One way to achieve this is to assign URLs to
crawling machines based on their host name.
Partitioning URLs by host name means that the crawl
scheduling decisions entailed by the politeness policies
can be made locally, without any communication with
peer nodes. Moreover, since most hyperlinks refer to
pages on the same web server, the majority of links
extracted from downloaded web pages is tested against
and added to local data structures, not communicated to
peer crawlers. Mercator and C-proc adopted this design
[9,4].

Once a hyperlink has been extracted from a web
page, the crawler needs to test whether this URL has
been encountered before, in order to avoid adding
multiple instances of the same URL to its set of
pending URLs. This requires a data structure that
supports set membership test, such as a hash table.
Care should be taken that the hash function used is
collision-resistant, and that the hash values are large
enough (maintaining a set of n URLs requires hash
values with log2n2 bits each). If RAM is not an issue,
the table can be maintained in memory (and
occasionally persisted to disk for fault tolerance);
otherwise a disk-based implementation must be used.
Implementing fast disk-based set membership tests is
extremely hard, due to the physical limitations of hard
drives (a single seek operation takes on the order of 10
ms). For a disk-based design that leverages locality
properties in the stream of discovered URLs as well as
the domain-specific properties of web crawling, see
[9]. If the URL space is partitioned according to host
names among the web crawlers, the set data structure is
partitioned in the same way, with each web crawling
machine maintaining only the portion of the set
containing its hosts. Consequently, an extracted URL
that is not maintained by the crawler that extracted it
must be sent to the peer crawler responsible for it.

Once it has been determined that a URL has not
been previously discovered, it is added to the frontier
set containing the URLs that have yet to be
downloaded. The frontier set is generally too large to
be maintained in main memory (given that the average
URL is about 100 characters long and the crawling
system might maintain a frontier of ten billion URLs).
The frontier could be implemented by a simple disk-
based FIFO queue, but such a design would make it
hard to enforce the politeness policies, and also to
prioritize certain URLs (say URLs referring to fast-
changing news web sites) over other URLs. URL
prioritization could be achieved by using a priority
queue implemented as a heap data structure, but a disk-

based heap would be far too expensive, since adding
and removing a URL would require multiple seek
operations. The Mercator design uses a frontier data
structure that has two stages: a front-end that supports
prioritization of individual URLs and a back-end that
enforces politeness policies; both the front-end and the
back-end are composed of a number of parallel FIFO
queues [9]. If the URL space is partitioned according to
host names among the web crawlers, the frontier data
structure is partitioned along the same lines.

In the simplest case, the frontier data structure is
just a collection of URLs. However, in many settings it
is desirable to attach some attributes to each URL, such
as the time when it was discovered, or (in the scenario
of continuous crawling) the time of last download and
a checksum or sketch of the document. Such historical
information makes it easy to determine whether the
document has changed in a meaningful way, and to
adjust its crawl priority.

In general, URLs should be crawled in such a way
as to maximize the utility of the crawled corpus.
Factors that influence the utility are the aggregate
quality of the pages, the demand for certain pages and
topics, and the freshness of the individual pages. All
these factors should be considered when deciding on
the crawl priority of a page: a high-quality, highly-
demanded and fast-changing page (such as the front
page of an online newspaper) should be recrawled
frequently, while high-quality but slow-changing and
fast-changing but low-quality pages should receive a
lower priority. The priority of newly discovered pages
cannot be based on historical information about the
page itself, but it is possible to make educated guesses
based on per-site statistics. Page quality is hard to
quantify; popular proxies include link-based measures
such as PageRank and behavioral measures such as
page or site visits (obtained from web beacons or
toolbar data).

In addition to these major data structures, most
web-scale web crawlers also maintain some auxiliary
data structures, such as caches for DNS lookup results.
Again, these data structures may be partitioned across
the crawling machines.

Key Applications
Web crawlers are a key component of web search
engines, where they are used to collect the pages that
are to be indexed. Crawlers have many applications
beyond general search, for example in web data mining
(e.g., Attributor, a service that mines the web for

copyright violations, or ShopWiki, a price comparison
service).

Future Directions
Commercial search engines are global companies
serving a global audience, and as such they maintain
data centers around the world. In order to collect the
corpora for these geographically distributed data
centers, one could crawl the entire web from one data
center and then replicate the crawled pages (or the
derived data structures) to the other data centers; one
could perform independent crawls at each data center
and thus serve different indices to different
geographies; or one could perform a single
geographically-distributed crawl, where crawlers in a
given data center crawl web servers that are
(topologically) close-by, and then propagate the
crawled pages to their peer data centers. The third
solution is the most elegant one, but it has not been
explored in the research literature, and it is not clear if
existing designs for distributed crawlers would scale to
a geographically distributed setting.

URL to Code
Heritrix is a distributed, extensible, web-scale crawler
written in Java and distributed as open source by the
Internet Archive. It can be found at http://crawler.
archive.org/

Cross-references
► Focused Web Crawling
► Incremental Crawling
► Indexing the Web
► Web Harvesting
► Web Page Quality Metrics

Recommended Reading
1. Boldi P., Codenotti B., Santini M., and Vigna S. UbiCrawler: a

scalable fully distributed web crawler. Software Pract. Exper.,
34(8):711–726, 2004.

2. Brin S. and Page L. The anatomy of a large-scale hypertextual
search engine. In Proc. 7th Int. World Wide Web Conference,
1998, pp. 107–117.

3. Burner M. Crawling towards eternity: building an archive of the
World Wide Web. Web Tech. Mag., 2(5):37–40, 1997.

4. Cho J. and Garcia-Molina H. Parallel crawlers. In Proc. 11th Int.
World Wide Web Conference, 2002, pp. 124–135.

5. Eichmann D. The RBSE Spider – Balancing effective search
against web load. In Proc. 3rd Int. World Wide Web Conference,
1994.

6. Gray M. Internet Growth and Statistics: Credits and background.
http://www.mit.edu/people/mkgray/net/background.html

7. Hafri Y. and Djeraba C. High performance crawling system. In
Proc. 6th ACM SIGMM Int. Workshop on Multimedia
Information Retrieval, 2004, pp. 299–306.

8. Heydon A. and Najork M. Mercator: a scalable, extensible web
crawler. World Wide Web, 2(4):219–229, December 1999.

9. Najork M. and Heydon A. High-performance web crawling.
Compaq SRC Research Report 173, September 2001.

10. Raghavan S. and Garcia-Molina H. Crawling the hidden web. In
Proc. 27th Int. Conf. on Very Large Data Bases, 2001, pp. 129–
138.

11. Shkapenyuk V. and Suel T. Design and Implementation of a
high-performance distributed web crawler. In Proc. 18th Int.
Conf. on Data Engineering, 2002, pp. 357–368.

http://crawler.archive.org/
http://crawler.archive.org/
http://dx.doi.org/10.1007/978-0-387-39940-9_165
http://dx.doi.org/10.1007/978-0-387-39940-9_196
http://dx.doi.org/10.1007/978-0-387-39940-9_1145
http://dx.doi.org/10.1007/978-0-387-39940-9_1172
http://dx.doi.org/10.1007/978-0-387-39940-9_460
http://www.mit.edu/people/mkgray/net/background.html

