Designing Phrase Builder: A Mobile

Real-Time Query Expansion Interface

Tim Paek, Bongshin Lee, Bo Thiesson
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

{timpaek, bongshin, thiesson}@microsoft.com

ABSTRACT

As users enter web queries, real-time query expansion (RTQE)
interfaces offer suggestions based on an index garnered from
query logs. In selecting a suggestion, users can potentially reduce
keystrokes, which can be very beneficial on mobile devices with
deficient input means. Unfortunately, RTQE interfaces typically
provide little assistance when only parts of an intended query
appear among the suggestion choices. In this paper, we introduce
Phrase Builder, an RTQE interface that reduces keystrokes by
facilitating the selection of individual query words and by
leveraging back-off query techniques to offer completions for out-
of-index queries. We describe how we implemented a small
memory footprint index and retrieval algorithm, and discuss
lessons learned from three versions of the user interface, which
was iteratively designed through user studies. Compared to
standard auto-completion and typing, the last version of Phrase
Builder reduced more keystrokes-per-character, was perceived to
be faster, and was overall preferred by users.

Categories and Subject Descriptors

H5.2 [Information Interfaces and Presentation]: User
Interfaces - Graphical user interfaces (GUI). H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval -
Query formulation.

General Terms
Design, Human Factors

Keywords
Interactive query expansion, real-time, mobile, auto-completion

1. INTRODUCTION

Nowadays, users of major search engines are probably all familiar
with having a drop-down box appear as they type their web
queries showing selectable popular matches garnered from search
query logs. Some engines (e.g., [13]) use prefix matching to show
query matches which complete the text entered so far (e.g.,
“speakeasy” for “spea”), along with the number of web results
that will appear for that query. Other engines (e.g., [16]) also
enable infix matching to show query matches which contain the
entered text anywhere in the suggestion (e.g., “britney spears” for
“spea”). In all cases, matches are shown in rank order according
to a relevance function. What looks like simple auto-completion
to the typical user is known in the information retrieval (IR)

Copyright is held by the author/owner(s).
MobileHCI°09, September 15 - 18, 2009, Bonn, Germany.
ACM 978-1-60558-281-8.

community as query expansion, the process of supplementing an
original query with additional terms that are ranked by some
numeric score [11]. Because query quality directly impacts search
result quality [9], query expansion has been pursued as a method
for improving IR performance. With interactive query expansion,
users participate in the selection of terms for the initial and/or
subsequent queries [11]. Real-time query expansion (RTQE) is a
variant of interactive query expansion in which expansion choices
are presented while users are still formulating their queries [32].
RTQE interfaces can display expansion choices (or simply
suggestions) after each word (e.g., [32]) or each character.
Suggestions can constitute completions [13][16], substring
matches [16], and even spelling corrections [11][13][16]. RTQE
interfaces have also been used as a mechanism for pseudo-
relevance feedback [32].

Although previous research has shown that RTQE interfaces can
lead to initial queries of better quality and more user engagement
in search [31], the question of whether RTQE interfaces can also
serve the purpose of reducing keystrokes for mobile search has
only recently begun to be explored [20]. By reducing keystrokes,
RTQE interfaces could alleviate some of the burden of using
mobile devices with deficient input means. In this paper, we
present a new RTQE interface called Phrase Builder that not only
retains the benefits of interactive query expansion, but also
captures an additional benefit: reduced keystrokes for mobile web
queries. In theory, RTQE interfaces should be able to reduce
keystrokes because users can select choices instead of having to
type them out in full. However, this benefit does not apply when
the query users have in mind either does not show up among the
suggestions or only partially appears among the suggestions. To
handle the former case (i.e., out-of-index queries), Phrase Builder
leverages back-off query techniques to suggest possible phrases
composed of words that are in the index. To handle the latter case
(i.e., partial matches), it enables the selection of individual words
as well as whole phrases in the suggestions. Shipped as part of
Live Search Mobile (Figure 1), Phrase Builder is available for
download" on all Windows Mobile phones.

This paper consists of three contributions. First, we elaborate on
the motivation for Phrase Builder and detail how we implemented
a small memory footprint index and retrieval algorithm with back-
off query techniques on a mobile device. Second, we describe
three versions of the user interface, which was iteratively designed
through user studies. Third, we evaluate the different versions at
both quantitative and qualitative levels, and discuss trade-offs that
were made in order to arrive at the final product version.

! Live Search Mobile download: http://wls.live.com


http://wls.live.com/

Live Search

&7 Live Search

|wikipedia mob @)
& wikipedia mobile >
(& wikipedia mobility [Me
@ wikipedia mobil

Cateqories Map

U q )

Directions Traffic

Figure 1. Screenshot of Phrase Builder for Live Search
Mobile on a Windows Mobile smartphone

2. APPROACH

2.1 Motivation

According to market research, mobile phones are poised to rival
the PC as the dominant Internet platform in the near future [17].
As mobile Internet usage continues to rise, a recent analysis has
shown that the limited text-input capabilities of mobile devices do
impact the way users search for information [5]. Furthermore,
because the average number of queries per session is significantly
less for mobile devices than for desktop computers, researchers
have highlighted the importance of getting useful query
expansions to users during their initial formulation of queries [21].

With the above mobile search findings in mind, we sought to
develop an RTQE interface customized for mobile usage. We
were motivated by three goals:

1. Always provide suggestions immediately.
2. Reduce keystrokes for web queries.

3. Design a user interface that requires little cognitive effort and
no training.

On the desktop, these three goals are easily achieved using
standard auto-completion. On the mobile device, where typing is
constrained, we endeavored to improve upon auto-completion by
allowing users to select the individual words of a suggestion and
complete queries that are out-of-index but whose words are in the
index.

To meet our first goal, our index and retrieval algorithm must not
only provide suggestions quickly, but always do so even when the
data connection is slow. For this reason, and the fact that we
wanted to allow for updating of our index with user-generated
queries (which can be cleared), we decided to perform RTQE on
the mobile device itself. As such, we needed a small memory
footprint index and retrieval algorithm, as well as techniques for
maximally utilizing whatever index we stored on the device.

For our second goal, we decided to minimize keystrokes instead
of time because measures of speed can be easily confounded by
factors such as familiarity with the keyboard layout, finger size,
nail length, age group, etc. By focusing on keystrokes (like
previous research [20]), we can avoid having to average across
lots of different participants for our experiments. In the long term,
as users become more proficient with an RTQE interface,
reducing keystrokes should also improve speed of entry.

It is important to note that our second goal is to reduce keystrokes
for web queries, not general text entry. Predictive text entry
methods such as T9 [15] and POBox [30] utilize lexicons or

dictionaries that are general-purpose and domain-independent.
However, our index is a corpus of web queries with entries and
relevance (or popularity) scores that change over time, and the
back-off techniques we discuss in Section 2.4 relate specifically to
query structure. Although it is possible to use both predictive text
entry methods and RTQE, in practice, most RTQE interfaces
disable predictive text entry to avoid confusing users with
multiple suggestions.

Finally, our third goal, which is the main focus of this paper,
relates to mobile usability. As will be evident in our user studies,
this goal required us to ultimately sacrifice some novelty in the
user interface for familiarity and ease-of-use. Starting from
Section 3, we discuss how we iteratively designed our user
interface to achieve this critical goal.

2.2 Device Details

Because most Windows Mobile users, our target audience for
Live Search Mobile, own smartphones with a directional pad (i.e.,
d-pad), we specifically designed our RTQE interaction around this
input modality. Although we could have evaluated our interface
on a smartphone with a numeric keypad, we decided to use a
smartphone with a miniature QWERTY keyboard for three
reasons: 1) any significant keystroke reduction we find on a
Qwerty device is likely to be more significant for a numeric
keypad device, because typing is not as constrained, 2) QWERTY
devices make up the majority of the smartphone market [23], and
3) previous research has already demonstrated that RTQE can
reduce keystrokes on numeric keypad devices [20].

We implemented our Phrase Builder prototype on a Samsung
Blackjack SGH-i608 smartphone with a 320x240 pixel QVGA
screen. The user interface was developed using Microsoft
Windows Mobile 5 Smartphone SDK and PocketPiccolo.NET
[14].

2.3 Index and Retrieval Algorithm

In this section, we describe how we implemented a small memory
footprint index and retrieval algorithm for mobile search based on
k-best suffix arrays. A k-best suffix array is a convenient data
structure for encoding an index which facilitates fast and efficient
retrieval of k “best” matches according to some numeric score.
Here, we provide sufficient technical details for those familiar
with a k-best suffix array to reproduce our implementation. To
learn more about k-best suffix arrays and how they compare to
other data structures and retrieval algorithms, we refer the reader
to [6][8].

Similar to traditional suffix arrays [29], k-best suffix arrays
arrange all suffixes in the dictionary (in our case, the query logs)
into an array. However, k-best suffix arrays arrange the suffixes
according to two alternating orders — the usual lexicographical
ordering and an ordering based on a numeric figure of merit [3].
Because the k-best suffix array can be sorted by both
lexicographic order and the figure of merit, it is a convenient data
structure for finding the k-most popular matches for a substring.
For notation, we henceforth express substrings as wildcard
queries, or queries that utilize wildcards (*) to match zero or more
characters. We also denote the text the user has entered via typing
or selection at the time of the query as the text-so-far. In providing
suggestions, k-best suffix arrays can support both prefix matching
(by appending a wildcard to the end of the text-so-far; e.g.,
“spea*” retrieves “speakeasy”) as well as infix matching (by
appending a wildcard to the beginning and end of the text-so-far;



e.g., “*spea*” retrieves “britney spears”) in a computationally
efficient way.

In order to minimize memory footprint, we decided to exclude
substring matching within words (e.g., “i-speak™) and to modify
k-best suffix arrays to support only substring matching of word
prefixes (e.g., “britney spears”). Technically, this modification is
achieved by allowing the k-best suffix array to contain only
pointers (see [6] for more details) to the beginning of words. We
viewed the word prefix matching as sufficient for mobile RTQE.
By making this modification, we were able to reduce the memory
footprint by a factor of 5. Overall, our index is roughly 1.3 times?
the size of the raw dictionary text (without the figure of merit).

Besides meeting memory constraints, our retrieval algorithm has
to be computationally efficient. With k-best suffix arrays, the k-
most popular matches can be found in time close to O(log N) for
most practical situations, with a worst case guarantee of O(sqrt
N), where N is the number of words in the query logs [6]. In
contrast, a standard suffix array finds all matches to a substring in
O(log N) time [29], but does not order the matches by popularity
(one of the most commonly used figure of merits). Finding the k-
best matches for short substrings, as the users begin to type their
intended queries, can therefore be prohibitively demanding for the
standard suffix array, because in this case we will have to
sequentially search through a large set of returned matches in
order to determine the k-best.

The query logs used for the Phrase Builder index were collected
from Live Search Mobile for a period of four months. Because the
Blackjack smartphone only has about 25 MB of available RAM,
in encoding the k-best suffix arrays, we limited the query logs to
include just those queries which had at least 5K popularity hits.
Overall, this left us with an index of roughly 122K unique queries
taking up only 2.2 MB of storage space.

2.4 Back-off Techniques

The size of the index used for RTQE naturally affects the quality
of the suggestions. With only 122K entries, many intended
queries may not exist in our index. In this section, we describe
back-off query techniques that allow Phrase Builder to provide
suggestions for many out-of-index queries, thereby increasing the
coverage of our index.

In order to fully capitalize on the vocabulary of the index, we use
the following algorithm to generate supplementary suggestions.
This algorithm is used whenever we cannot retrieve enough
suggestions for the text-so-far:

(1) From the text-so-far, generate back-off queries by iteratively
replacing the token words w; to w,_; of the text-so-far with
wildcards until only the last word w,, is left.

(2) For each back-off query, retrieve matches from the index
(which we henceforth denote as back-off matches).

(3) For each back-off match, replace the substring in the back-
off match corresponding to the wildcard with the substring in
the text-so-far that was initially replaced in step (1).

2 The factor depends on the average length of entries in the index.
The factor of 1.3 is calculated for our index of query logs which
had an average entry length of 14 characters. The factor is
smaller for an index with longer entry lengths, and the other
way around.

Table 1. Back-off queries, back-off matches and generated
suggestions for the query “chai tea i”

‘ Query Index Match Suggestion
chai tea i* X X
* tea i* green tea ice cream | chai tea ice cream
*jx google images chai tea images
i* itunes chai tea itunes

To illustrate how this algorithm works, suppose the user is
intending to search for “chai tea ice cream” and has already typed
“chai tea i.” We first attempt to find suggestions for the query
“chai tea i*.” If too few choices are returned, according to step
(1), we generate the back-off queries listed in the first column of
Table 1. The first back-off query is “* tea i*” which was obtained
by replacing the first word “chai” with a wildcard. Submitting this
as a new query in step (2), we retrieve “green tea ice cream” from
the index. Applying step (3), we now replace the word “green” in
the back-off match corresponding to the wildcard with the
originally replaced word in the text-so-far in step (1), viz. “chai.”
This produces the suggestion “chai tea ice cream” in the third
column. If we still do not have enough suggestions, we back-off
to “* i*” which retrieves “google images,” resulting in “chai tea
images.” Finally, we continue backing-off until we have enough
suggestions or until we ultimately back-off to the individual word,
or unigram, “i*.”” By the time we reach the unigram, we have lost
all surrounding context; hence, “i*” retrieves “itunes” resulting in
the peculiar suggestion “chai tea itunes.”

In order to avoid peculiar suggestions in the shipped version of
Phrase Builder, which has 6 separate indexes, we decided to rank
back-off suggestions lower than non-back-off suggestions, and to
sort back-off suggestions by how much of the original text-so-far
was replaced by wildcards. A promising research direction for
improving the relevance of back-off suggestions is to generate
back-off queries using semantic (e.g., <NamedEntity>) and
syntactic categories (e.g., <Adjective>) to inform which words to
replace with wildcards.

Because Phrase Builder employs back-off queries that ultimately
match unigrams, it almost always provides suggestions. Even for
out-of-index queries such as “this is a test of the american
broadcast system,” as long as the words are somewhere in the
index, and individual word selection is possible (as we discuss in
Section 3), we can provide suggestions for each word, and hence,
compositionally for the entire phrase. In the worst case, for out-of-
vocabulary (OOV) words, the user will have to type out the word
verbatim. But because the shipped version of Phrase Builder adds
recent queries to the index, OOV words quickly become in-
vocabulary (IV) and hence available for back-off matching.

2.4.1 Pruning the Index

Our back-off query techniques are very similar to those used in
speech recognition for pruning language models [18], where the
probability of an unseen or infrequent n-word sequence (i.e., n-
gram) is estimated by the probability of its (n-1)-word sequence
until finally, the unigram (1-word) estimate is used [24]. The goal
of language model pruning is to exclude those n-grams which can
be estimated by their back-off probabilities so as to take a small
loss in coverage but acquire a big gain in memory performance
(since pruning reduces the number of parameters to estimate).
Similarly, for RTQE we can prune what queries are included in



Phrase B Phrase Builc Phrase Builder rnrase bullc D
e e e
amazon .
GC| E.‘.“.nh earth earthguake
ehay o earthlink earthquakes
google search ebay o | eastbay [!1:""5”] 9 [esrthquake]  [in]  [hawsii ]
myspace tCl-(C-|ba'|' espn eb
i u i m
yahoo video expedia ebsumsiorld

(b)

the index to reduce the storage size on the mobile device. One
simple pruning algorithm is to iterate through the query logs in
rank order building up a lexicon and adding only queries with
OOV words to the index. For example, if the index already
contains “britney spears music” and “music video,” we do not
need to add “britney spears music video” since our back-off query
techniques would provide that as a suggestion.

2.5 Related Research

Besides the previously mentioned RTQE interface that initiates
query suggestions after each word [31], very little research has
investigated mobile RTQE. Recently, [20] found that RTQE on a
numeric keypad phone could reduce keystrokes by about 50%,
though this result was for multi-tap and only for queries that
existed in the index. To our knowledge, no prior research has
examined how to facilitate RTQE when the query users have in
mind does not appear in the index (for which we use back-off
query techniques), or partially appears among the choices (for
which we use individual word selection), nor how to deal with
these cases within the constraints imposed by mobile devices.

In IR, many different methods for generating query
recommendations and expansions have been pursued. Among
methods that utilize query logs, [34] combined a model of
sequential search behavior with content-based similarity to
recommend related queries. [10] used probabilistic correlations
between query words and document words in the query logs to
generate expansion words. For mobile devices, [22] used
contextual signals such as time of day and inferred location to
predict and rank expansions.

Outside of query expansion, [4] investigated automatically
enriching mobile page content by adding additional relevant
words for indexing. Because many mobile devices have small
displays, [7] explored displaying related queries instead of snippet
text in the search results. [19] proposed design guidelines for
mobile search interfaces on small screens, but did not consider
any interfaces with RTQE. [31] explored treating individual
words of a suggestion list as buttons that can be touched in
multimodal refinement of a voice search results.

To deal with the difficulties of text entry on numeric keypad
phones, various consecutive and concurrent text-entry techniques,
which typically utilize a general-purpose lexicon as discussed
previously, have been developed [27][30][33], with T9 being the
most commercially successful [15].

(c) (d)

Figure 2. Screenshots of Phrase Builder V1 showing how users can compositionally build query phrases from word columns.

3. USER INTERFACES

We now survey three versions of the Phrase Builder user interface
corresponding to three attempts to realize the second and third
goals outlined in Section 2.1. Our intention is not to argue that one
is definitively better than another, but to highlight the trade-offs
that had to be made in order to better fulfill our goals. Other
researchers may find the lessons we learned to be useful for
developing their own RTQE interface. For a live demonstration of
the three versions, please see our video supplement.

3.1 Version1

Previous studies have shown that increasing the level of user
control over query term selection in general seems to improve
search effectiveness [1][25]. For the first version, we designed a
user interface where users could not only select individual words
and compositionally build up phrases, but also retrace their word
selections. In formulating queries, users could in effect “browse”
the search query logs. We facilitated this kind of browsing
through word columns.

Figure 2 shows a sequence of interactions with Phrase Builder
Version 1 (V1) for the intended query “earthquake in hawaii.” In
Figure 2(a), the user has not yet entered any characters into the
textbox. The first column contains suggestions for the first word.
Once a word is put into focus in the first column, the second
column is updated to show suggestions for the second word
conditioned on the first word. V1 animates this update to help
users stay in context. Focused words are marked with a sky blue
border. Since “google” has the focus in the first column, V1
shows all suggestions for the second word, conditioned on
“google” as the first word. In Figure 2(b), the user has typed “e,”
so V1 displays all suggestions in the first column that start with
“e.” The ellipsis represents all suggestions that occur
lexicographically within a word range. For example, in Figure
2(b), the range is between “earthlink” and “ebay.” When the user
shifts the focus to an ellipsis (i.e., “...”"), no words are displayed in
the next column. When the user selects the ellipsis by clicking the
‘OK’ button at the center of the d-pad, suggestions between
“earthlink” and “ebay” are displayed in the column, as shown in
Figure 2(c). Notice that word ranges are marked in orange at the
top and bottom of the column. Furthermore, the back button icon
is now shown to the left of the column to allow users to return to
the previous choices.

Each word column is conditioned on selections in the previous
columns. Similar to typing, queries are composed in a left-to-right
fashion. To compose an entire phrase, the user simply moves the



Phrase Builder 4 Phrase Builder Phrase Builder
cus cus cus
customer | customer | customer customer
custom custom service service service
i i week week
cushings cushings | | support support __ .
N .| | training training
customs customs relationship relationship . .
i i ips ips
customers customers | | preview preview P P
L L jobs jobs
cushman cushman satisfaction satisfaction
cushions cushions

@ (®)

focus from one word column to the next column on the right by
clicking the right arrow on the d-pad. Once a word is selected, the
column is collapsed to a focused word (Figure 2(d)). If the entire
sequence of focused words is what the user desires, the user just
clicks ‘OK’ on the d-pad. This causes the entire phrase to be
pasted into the textbox. To retrace, the user can simply move the
focus to the left, to whichever word column is desired. For
example, if the user wishes to just type “earthquake,” the user can
move left until “earthquake” is highlighted and then click ‘OK.’
Finally, the user is never prohibited from inserting new characters
into their queries, which can be performed by changing the focus
to the textbox and placing the cursor wherever desired.

3.1.1 Generating Word Column Suggestions

We now describe how we generate suggestions for the word
columns. For any word column, we only have n word-only slots in
which to place words, and (n+1) open slots in which to place
either words or ellipses. The middle slot always contains the
highest ranked expansion word. For example, because “google” is
the most popular word in the query logs, it is placed in the middle
slot of the first column in Figure 2(a). Above and below the
middle slots are open slots and word-only slots in alternating
fashion.

Our algorithm for filling suggestions in the word columns
proceeds as follows: After placing the highest ranked word in the
middle slot with a focus, we iterate through the k-best words that
have been retrieved from the index and place them in the word-
only slots either before or after the highest ranked word,
depending on lexicographical order. After the word-only slots are
filled, if only one word can fill an open slot, we place the word in
that slot (e.g., “amazon” in the first column in Figure 2(a)).
Otherwise, we place an ellipsis. In actuality, our algorithm for
retrieving k-best words retrieves k-best phrase matches. To
generate the words, we split the phrase matches into words and
place the words into the appropriate columns.

3.1.2 Usability Study & Lessons

We conducted a usability study to evaluate V1 using the “think-
aloud” protocol [26], where participants verbalized their thoughts
about the interface as they entered their own queries as well as
specified queries. Due to space limitations, here we just
summarize the Methods and Results.

Ten participants (5 males and 5 females) from the Seattle
metropolitan area were recruited by a professional contracting
service. Because no screening was conducted for age, the age of
the participants ranged from 42 to 66 with an average of 56.2,
which was unexpectedly higher than the age of our target

o -

Figure 3. Screenshots of Phrase Builder V2 showing word columns without word ranges for drilling down.

audience. In terms of Procedure, we first taught participants the
basics of using a Blackjack Smartphone and then introduced them
to the V1 interface. As the participants interacted with the V1
interface, they voiced aloud their impressions.

In terms of Results, with respect to query formulation, several
participants liked how the interface allowed them to browse what
other people had searched for on the web. They noted how
surprised they were to see certain queries in the logs. Regarding
composition, many participants enjoyed how they could paste all
or part of a query phrase into the textbox by simply clicking the
‘OK’ button on the d-pad. Several participants also enjoyed the
spelling correction aspect of V1, which has also been noted as a
benefit of other RTQE interfaces [11].

On the other hand, participants were less enthusiastic about
entering queries for which they knew their desired terms. Almost
all participants stated that selecting query terms in the word
columns seemed “disruptive.” This observation is consistent with
previous research in which users were more likely to use
interactive query expansion when their information needs were
vague and unarticulated [12][32]. In particular, many participants
found the task of examining suggestions to be cognitively
demanding, which is also consistent with prior research showing
how reluctance to use interactive query expansion may be linked
to the added cognitive load of judging the relevance of suggested
terms [2]. Finally, most participants found it burdensome to keep
track of the word ranges in drilling in and out of an ellipsis. Many
participants also felt that the animation used to splay suggestions
and collapse word columns slowed them down.

3.2 Version 2

Because allowing users to browse the search query logs is not one
of our goals but reducing keystrokes for mobile web queries is, we
decided to re-design our user interface to overcome the drawbacks
participants had noted in the previous usability study. In
particular, we removed all animation, made all open slots into
word-only slots (i.e., no ellipsis and drill-downs), and re-ordered
the word-only slots by popularity from top to bottom. These
changes were all made as an effort to reduce cognitive load.
Figure 3 shows a sequence of interactions with Phrase Builder V2
for the intended query “customer service training.”

Notice that the appearance of V2 is more in the direction of RTQE
interfaces that users are accustomed to on the desktop, namely,
auto-completion. The major difference is that instead of showing
suggestions as whole phrases for selection, individual words can
be selected via the word columns. For example, in Figure 3(a), the
user has typed “cus.” Seeing that the word “customer” has come



der Phrase Builder S Phrase Builder gl Phrase Builder

cus cus customer customer service

customer service customer service » customer service » customer service week

custom wheels custom wheels customer support customer service fraining »
customers.countrywide.com customers.countrywide.com customer relationship management customer service pack

custom motorcycles custom motorcycles customer service week

custom custom customer service training

Figure 4. Screenshots of Phrase Builder V3 showi

up on top, the user focuses on the word in Figure 3(b) and then
selects the next desired words in Figures 3(c)-(d) by moving right.
Because suggestions are organized into word columns, if the user
decides to remove a word, they can easily retrace by moving left,
just as in the V1 user interface.

In the next section, we discuss the results of a controlled
experiment we conducted assessing V2 against standard auto-
completion, which does not allow individual word selection. Since
the evaluation of the final Phrase Builder user interface utilizes
the same methods and evaluation criteria, we now introduce the
final version and postpone discussion of V2’s evaluation for
Section 4.

3.3 Version 3

The final user interface can be viewed as a marriage of V2 and
auto-completion, the RTQE interface most common on desktop
search engines. Figure 4 shows a sequence of interactions with
Phrase Builder V3 for the intended query “customer service
training.” As users type characters, a drop-down box appears
showing suggestions for the text-so-far. If they notice the intended
query among the suggestions in the drop-down box, they can use
the d-pad to select it. Contrary to auto-completion on the desktop,
in V3, the focused phrase (highlighted with the sky blue
background) is not automatically added to the textbox. This
difference facilitates individual word selection, which is conveyed
to users by the orange font color and underlining of an individual
word that will be inserted into the textbox if they move right on
the d-pad. The underlined text always matches the text-so-far up
to a word boundary. For example, in Figure 4(b), even though
“customer service” matches “cus*,” only “customer” is colored in
orange and underlined. To further convey to users that the colored
and underlined word will be added to the textbox if they move
right on a selection, we placed a right-arrow icon of the same
color on the far right-hand side of the of the focused phrase
(shown in Figures 4(b)-(d)). We also displayed what word would
show up in the textbox as grayed-out “phantom” text. Note that in
auto-completion, moving right on a selection typically serves no
function. Finally, users select whole phrases in the usual way — by
hitting the ‘OK’ button at the center of the d-pad. In short, V3
supports individual word selection in addition to the typical
selection method that is afforded by auto-completion.

Notice that the sequence of word selections in Figure 4 for V3 is
exactly the same as for V2 in Figure 3: After typing “cus,” the
user notices that the word “customer” has appeared on top (Figure
4(a) and moves down into the drop-down box (Figure 4(b)). The
underlined word is then selected by moving right in Figure 4(c).
Henceforth, that word is pinned (i.e., added to the textbox) and the
rest of the suggestions all begin with the pinned text (i.e.,

ng word selection integrated into the expansion choices.

“customer*”). Pinning is akin to setting a focus on a word in the
word columns of V2 and collapsing to a focused word in V1. In
Figure 4(c), the user finds and pins the next word. Seeing the
intended query among the suggestions in Figure 4(d), the user
simply clicks the ‘OK’ button and is done.

4. EVALUATION

In order to assess whether users could easily learn the different
versions of the Phrase Builder user interface and leverage
individual word selection to reduce keystrokes, we conducted two
controlled experiments. In Experiment 1, we tested V2 against
auto-completion (AC) as it functions on the desktop. In
Experiment 2, we tested V3 against both AC and typing. For
typing, we simply turned off all suggestions. In order to create the
AC interface, which is shown in Figure 5, we simply disabled
individual word selection and removed all associated visual cues
(e.g., underlining). AC displays suggestions in exactly the same
way as V3 in Figure 4(a), and uses the same sky blue background
for the focused phrase. Because we expected that users would be
more familiar with suggestions based on prefix matching, we also
disabled infix matching (e.g., britney spears) for AC, V2, and V3.
Furthermore, Phrase Builder V2 in Experiment 1 did not leverage
back-off suggestions simply because we did not conceive of the
techniques described in Section 2.4 until after we created V2. As
such only V3 presented users with back-off suggestions.

4.1 Method

4.1.1 Participants

For Experiment 1, we recruited 18 participants (16 males and 2
females) between the ages of 19 and 52 from the Seattle
metropolitan area by a professional contracting service. The
average age of participants was 35.5. Participants came from a
wide variety of occupational backgrounds. For Experiment 2, we
recruited 12 participants (5 males and 7 females) from the same
demographics as Experiment 1. The average age of participants

Auto-Comple
lud

ludacris

ludacris lyrics
ludwika paleta
ludington daily news
lucwig drums

ludwig van beethoven
ludhwig

Figure 5. Screenshot of the auto-completion interface.



was 30.4. All participants were compensated for their time.

During recruiting, all participants answered that they were
familiar with the QWERTY layout and could type on a normal
size keyboard without frequently looking at the keys. We also
tried to counter-balance the number of participants who owned a
numeric keypad phone, a QWERTY keyboard phone, and a
touch-only phone. For both experiments, we found that the type of
phone owned by the participants was not statistically significant in
predicting our dependent measures.

4.1.2 Procedure

All participants were first taught the basics of using a Blackjack
smartphone. We then repeated the following procedure for each
RTQE interface. We provided a short tutorial on how to use the
interface and walked them through training stimuli. We presented
participants with target queries on a desktop computer, which they
then had to type into their mobile devices using the interface.
Participants were encouraged to take as much time as necessary to
look at the target queries before starting. We informed the
participants that they would be timed, but that they should not
sacrifice accuracy for speed. We also informed them that they
always had the option of simply typing in the entire target query.
Once the entire target query was entered into the textbox, with or
without assistance from any RTQE interface, participants pressed
a soft-key button on the Blackjack smartphone for ‘Done’ and
moved on to the next item. At the end of the session, participants
answered a questionnaire comparing the different interfaces. The
entire session lasted about 1.5 hours.

Note that for entering the target queries, following the
“unconstrained text entry evaluation paradigm” [28], we did not
disable backspace and other error correction mechanisms. In
Experiment 1, we gave participants the option of skipping target
queries, but this occurred in only 1.8% of the data, so we did not
present this option in Experiment 2.

4.1.3 Design

Our primary independent variable was Ul. For Experiment 1, we
compared V2 against AC. For Experiment 2, we compared V3
against AC and typing (our control condition). Because Phrase
Builder was designed to be particularly useful when intended
queries only partially matched the suggestions, as our second
independent variable we examined Query Log Presence
(LogPresence): whether a target query could be retrieved as a
complete phrase in the search query logs (Complete) or only
partially (Partial). We hypothesized that both V2 and V3 would
reduce keystrokes more than AC when the LogPresence of the
target query was Partial than when it was Complete.

In short, for Experiment 1, we conducted a 2 (Ul) x 2
(LogPresence) within-subjects factorial design experiment, where
participants used both RTQE interfaces in counter-balanced order
for two sets of target queries (see next section). For Experiment 2,
we conducted a 3 (Ul) x 2 (LogPresence) experiment. We again
counter-balanced the order of the three Ul conditions.

Because our second goal for designing a mobile RTQE interface
is to reduce keystrokes, we decided to directly assess Keystrokes
per Character (KSPC) as our primary dependent variable, which
is computed as:
IS
KSPC = || ||

where |IS| denotes the length of the input stream, including all d-
pad keystrokes as well as backspaces, and |T| denotes the length of
the target query [28]. Although KSPC for the different Ul
conditions could have been theoretically calculated for the stimuli,
we decided to measure KSPC in an experimental setting in order
to account for button-pressing mistakes, which are common on
miniature QWERTY keyboard phones. In other words, we wanted
to assess real performance on real devices. Assuming that no
RTQE interface or any predictive text entry method is in place,
participants must type every character of a target query using the
QWERTY keyboard. As such, if participants make no button-
pressing mistakes, the baseline KSPC for a QWERTY phone is 1.

As secondary dependent variables, we also examined the elapsed
Duration for entering target queries as well as two accuracy
metrics: IsCorrect measures whether the final user text matched
the target query, and MSDErrorRate measures error rate as a
function of the minimum string distance (MSD) between two
strings. MSD computes the distance between two strings in terms
of the lowest number of error-correction operations required to
turn one string into the other (see [28] for more details). Turned
into an error rate measure, MSDErrorRate is calculated as:

MSD(T,U)
MAX ([T|,JU])

where T denotes the target query, U denotes the user text, and
MSD is the minimal edit distance between T and U.

4.1.4 Stimuli

In order to obtain the target queries for the experiments, we wrote
a script to randomly sample queries from the search query logs of
Live Search Mobile, described in Section 2.3. As discussed
previously, to reduce storage space, we only encoded those
queries which had at least 5K popularity hits. This produced an
encoded index of roughly 122K queries from a base index of over
1 million queries. Because users do not typically use RTQE for
short queries, we constrained our sampling method to select only
queries of length greater than 14 characters, which was the
average query length of the base index. To obtain stimuli
matching the LogPresence conditions, we sampled Complete
queries directly from the encoded index, and Partial queries from
the base index excluding queries in the encoded index. Note that
the Partial queries in this way are by definition out-of-index (i.e.,
not in the encoded index). In sampling the Partial queries, we
selected only queries that contained at least one word which could
be found in the vocabulary of the encoded index.

MSDErrorRate =

For Experiment 1, we created 2 stimuli sets of 20 target queries,
and for Experiment 2, we created 3 stimuli sets of 20 target
queries for the different Ul conditions. The target queries were
then randomly shuffled. Note that the average character length of
the target queries between the stimuli sets was not found to be
significantly different. We also created training stimuli sets of 8
(for Experiment 1) and 10 (for Experiment 2) target queries,
which we repeatedly used in the experiments for the different Ul
conditions during the tutorials.

5. RESULTS
5.1 Experiment1

5.1.1 Quantitative
In performing descriptive statistics, we immediately noticed an
interesting trend. KSPC and Duration seemed to be decreasing as



092 1.00

090

085

0.07

0.06

088

0.86 0.90

0.84

082 0.85

KSPC

0.80

IsCorrect

078 0.80

0.76 075
0.74

072 0.70

AC V2

(a)

AC

0.05

0.04

0.03

0.0z

MSDError Rate

0.01

0.00
V2 AC V2

(b) ()

Figure 6. (a) Mean KSPC for AC and Phrase Builder V2. (b) Mean IsCorrect for AC and V2. (c) Mean MSDErrorRate for AC and
V2. Error bars represent standard errors about the mean.

participants used V2 and became more familiar with this interface.
This learning effect was not observed for AC, presumably because
participants were already familiar with the interface. We
conducted one-way ANOVAs to examine the relationship
between our dependent variables and two independent variables,
Ul and a new variable, ItemOrder. In particular, we divided
ItemOrder into Beginning or End, depending on whether a stimuli
item (target query) occurred among the first 10 or the last 10
items. For KSPC, we found a main effect for ItemOrder
(F1714=6.74, p<.05) and an interaction effect between ItemOrder
and Ul (F; 714=4.99, p<.05). For Duration, we found a main effect
for Ul (Fy714=16.19, p<.001), ItemOrder (F;714=9.35, p<.01), as
well as an interaction effect between the two (F;71,=6.51, p<.05).
Because these results imply that there was a learning effect for
V2, we decided to utilize data from only the last 10 items of each
stimuli set in order to explore how well V2 could reduce
keystrokes once users became accustomed to the interface.

For our primary dependent variable, KSPC, we found a significant
main effect for Ul (Fy10,=6.13, p<.05), with V2 exhibiting lower
KSPC than AC, as shown in Figure 6(a). We also found a
significant interaction effect between Ul and LogPresence
(F1102=31.16, p<.001). In particular, AC displayed lower KSPC
(n=.67, 0=.03) than V2 (u=.77, 0=.03) for Complete queries, most
likely because V2 requires participants to select every word in the
target query, in contrast to the full query selection method of AC
(and V3, as we discuss later). On the other hand, just as we
hypothesized, for Partial queries, V2 (u=.86, 6=.04) had lower
KSPC than AC (u=1.10, 6=.03), which, being greater than 1.0,
was as bad as typing with occasional errors — this finding is
consistent with [20] which found that users often ignored the
benefit of accepting a suggestion, presumably because it requires
less cognitive load.

Among our secondary dependent variables, although we did not
find a significant main effect of Ul on Duration, we did find main
effects for the accuracy metrics IsCorrect (F; ;9,=6.83, p<.05) and
MSDErrorRate (Fy19,=5.66, p<.05). Overall, V2 clearly stood out
for its higher IsCorrect accuracy (Figure 6(b)) and lower
MSDErrorRate (Figure 6(c)).

5.1.2 Qualitative

After participants finished the study, we asked them to decide
which interface they preferred overall. 8 participants chose V2
while 10 participants chose AC. When asked which interface they
perceived to be the fastest, 13 out of 18 participants answered AC,
despite the fact that V2 had lower KSPC and there was no

significant difference in Duration. In follow-up discussions, we
learned that participants who preferred AC did so primarily
because of familiarity and perceived ease-of-use (which is related
to familiarity). On the other hand, participants who preferred V2
did so because it “seemed to require less typing.” Some
participants even mentioned that they thought they would be more
efficient over time with V2. The qualitative feedback we received
from Experiment 1 motivated us to the design V3 as a marriage
between V2 and AC. In short, we aimed to capture the familiarity
and ease-of-use of AC but with the extra functionality of
individual word selection.

5.1.3 Discussion of Experiment 1

Although V2 demonstrated lower KSPC than AC, and allowed for
greater accuracy in terms of both IsCorrect and MSDErrorRate, it
had two major flaws: 1) participants did not overwhelmingly
prefer V2, due primarily to their greater familiarity with AC, and
2) AC exhibited lower KSPC for Complete queries. Although the
first flaw was reason enough for us to re-design V2, the second
flaw gave us concern. This is because in our experiment, we had
an equal number of Complete and Partial target queries, but in
real usage, it is likely that users will be intending mostly Complete
queries — since that is how these queries become popular. As such,
in formulating a new design for V3, we needed to make sure that
Phrase Builder was as good as AC on Complete queries.

5.2 Experiment 2

5.2.1 Quantitative

Having experienced an ItemOrder effect in Experiment 1, we
decided to spend more time teaching participants about the
different interfaces in our tutorials. Hence, we slightly increased
the number of training stimuli from 8 to 10 target queries. As a
result, for Experiment 2, we did not find any statistically
significant effect of ItemOrder on our dependent variables nor did
we find any significant interaction effects with Ul, as we did in
Experiment 1.

For our primary dependent variable, KSPC, we again found a
significant main effect for Ul (Fy 762057=84.94, p<.001)3 with V3
(1=.80, 0=.02) exhibiting lower KSPC than both AC (u=.93,
0=.02) and typing (p=1.12, ©=.02). Post-hoc, pairwise

% Because the sphericity assumption had been violated for Ul
(x*(2)=17.17, p<.001), we corrected the degrees of freedom
(1.76, 205.7) using the Greenhouse-Geisser estimates (¢=.88).



KSPC

V3 Typing ! Typing

Partial Complete

Figure 7. Mean KSPC for AC, Phrase Builder V3, and typing
separated into Partial and Complete queries (LogPresence).
Error bars represent standard errors about the mean.

comparisons revealed that all three of the Ul conditions were
significantly different from each other (all p<.001). We also found
a main effect for LogPresence (F;1,,=152.58, p<.001), as well as
an interaction effect with Ul (F,,3,=49.25, p<.001). Figure 7
shows the mean KSPC for each user interface broken down by
whether the LogPresence was Complete or Partial. As expected,
typing, our baseline, showed no significant difference in KSPC
between Complete and Partial queries. Interestingly, AC did not
show significantly lower KSPC than typing for Partial queries,
but V3 did (p<.001). We were pleased to see that for even
Complete queries, V3 exhibited lower KSPC than AC (p<.05).

Finally, unlike Experiment 1, we did not find any significant
effects for our secondary dependent variables. In particular, we
lost our previous main effects for IsCorrect and MSDErrorRate.

5.2.2 Qualitative

After participants finished the study, we asked them to rank the
interfaces in order of preference. 10 out of 12 participants rated
V3 as their top choice. V3 was significantly preferred over AC, as
revealed in a non-parametric Kruskal-Wallis test (%(2)=16.29,
p<.001) and a follow-up pair-wise comparison. We also asked
participants to rank the interfaces in terms of which they
perceived to be the fastest. In 10 out 12 cases, V3 was rated as the
fastest. The difference between V3 and AC was again significant
(x*(2)=19.20, p<.001). During discussions, the most common
reason participants gave for their preference was that V3 seemed
just like AC except more efficient.

5.2.3 Discussion of Experiment 2

In designing V3, we deliberately assayed to capture the familiarity
of AC. In fact, if the user never moves right on the d-pad to pin
words, the functionality of V3 is equivalent to AC. However, V3
has more functionality than AC; it supports individual word
selection to facilitate completion of Partial queries. Because
participants recognized the added benefit of V3, they ranked it
higher in user preference to AC. Interestingly, perceived V3 to be
faster than AC, despite that fact that there was no statistically
significant difference in Duration between the two.

In terms of KSPC, V3 outperformed AC as well as the typing
baseline. For Partial queries, we hypothesized that this would be
the case. However, for Complete queries, the difference came as a

pleasant surprise. One possible explanation is that by underlining
the currently focused word, V3 may be assisting recognition of
target queries when they appear among the suggestions. Overall,
the difference between AC and V3 was greater for Partial than
Complete queries. This may have to do with the availability of
back-off suggestions, though teasing apart the effect of back-off
suggestions requires a separate study. We consider this future
research.

5.3 Discussion

Although both V2 and V3 significantly reduced keystrokes, as
measured by KSPC, participants perceived V3 to be faster than
AC but not V2. The reason for this perception is unclear, though it
may relate to participants realizing that V3 enables the same kind
of interaction as AC except with more functionality — particularly
for Partial queries.

Having found significant main effects for the two accuracy
measures, IsCorrect and MSDErrorRate, in Experiment 1 but not
in Experiment 2, we investigated how this might have happened.
Interestingly, for Experiment 2, we noticed that participants in
general made very few errors. In fact, all three interfaces had
mean accuracies between the ranges of .94 and .95, which is quite
high. With longer tutorials, more stimuli, and a similar look-and-
feel between AC and V3, participants may have just received
more practice to get better at using AC on the mobile device.
Another possible explanation relates to age. The average and
median ages for Experiment 1 were 36 and 35 respectively
whereas for Experiment 2, they were 30 and 26. It could be that
we had younger participants in Experiment 2 who were more
accustomed to typing on mobile devices, and as such made less
errors.

6. Conclusion and Future Directions

In this paper, we introduced Phrase Builder, an RTQE interface
that reduces keystrokes by facilitating the selection of individual
words in addition to whole phrases, and by leveraging back-off
query techniques to offer suggestions for out-of-index queries. We
described how we implemented a small memory footprint index
and retrieval algorithm as well as the back-off suggestions, and
then discussed lessons learned from three versions of the Phrase
Builder user interface.

Ultimately, for the purposes of productizing an easy-to-use mobile
RTQE interface that can reduce keystrokes, we settled on V3.
Although it is possible that V2 may facilitate higher accuracy for
entering intended queries, the lack of familiarity with the interface
and subsequently lack of user preference deterred us from
productizing it. However, V2 may have potential outside of
RTQE as a general text entry tool. Finally, although V1 had a
dynamic user interface for browsing search query logs, users
found it unhelpful for entering intended queries. Note that the
final product version of Phrase Builder (Figure 1) is not identical
to V3; in particular, the phantom text feature of V3 was removed
due to lack of testing resources.

With regards to future research, one pressing direction is to
conduct a more thorough analysis of the benefits of our back-off
query techniques for generating relevant out-of-index suggestions
that are in-vocabulary. As discussed previously, incorporating
semantic and syntactic information in selecting words to replace
with wildcards for generating back-off queries also seems
promising.



With regards to the user interface, because our experiments were
conducted in a laboratory setting, it will be interesting to see how
users perceive the shipped Phrase Builder in real mobile
scenarios. Finally, we plan to investigate how to best customize
Phrase Builder for touch-only mobile devices.

7. REFERENCES

[1] Beaulieu, M. 1997. Experiments with interfaces to sup-port
query expansion. Jour. of Documentation, 53(1), 8-19.

[2] Beaulieu, M., Do. T., Payne, A., & Jones, S. 1997.
ENQUIRE Okapi Project. British Library Research and
Innovation Report 17.

[3] Bentley, L. 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9), 509-517.

[4] Church, K. & Smyth, B., 2007. Mobile content enrichment.
Proc. of IUI, 112-121.

[5] Church, K., Smyth, B., Cotter, P. & Bradley, K. 2007.
Mobile information access: A study of emerging search
behavior on the mobile Internet. ACM Transactions on the
Web, 1(1), 1-38.

[6] Church, K., Thiesson, B., & Ragno, R. 2007. K-best suffix
arrays. Proc. of NAACL-HLT, companion volume, 17-20.

[7]1 Church, K., Keane, M.T., & Smyth, B. 2005. Towards more
intelligent mobile search. Proc. of 1JCAI, 1675-1676.

[8] Church, K. & Thiesson, B. 2005. The Wild Thing! Proc. of
ACL, 93-96.

[9] Croft, W.B. & Thompson, R.H. 1987. I3R: A new approach
to the design of document retrieval systems. Jour. of the
American Society for Information Science, 38(6), 389-404.

[10] Cui, H., Wen, R.R., Nie, J.Y. & Ma, W. 2002. Probabilistic
query expansion using query logs. Proc. of WWW, 325-332.

[11] Efthimiadis, E.N. 1996. Query expansion. Annual Review of
Information Systems and Technology, 31, 121-187.

[12] Fowkes, H. & Beaulieu, M. 2000. Interactive searching

behavior: Okapi experiment for TREC-8. Proc. of the IRSG
2000 Colloquium on IR Research.

[13] http://www.google.com

[14] http://www.piccolo2d.org

[15] http://www.t9.com
[16] http://www.yahoo.com

[17] Ipsos Insight. 2006. Mobile phones could soon rival the PC
as world’s dominant Internet platform.
http://www.ipsosna.com/news/pressrelease.cfm?id=3049,
April 2006. Accessed June 2009.

[18] Jelinek, F. 1997. Statistical methods for speech recognition.
Cambridge, MA: MIT Press

[19] Jones, M., Buchanan, G., & Thimbleby, H. 2002. Sorting out
searching on small screen devices, Proc. of Mobile HCI, 81-
94,

[20] Kamvar, M. & Baluja, S. 2008. Query suggestions for mobile
search: Understanding usage patterns. Proc. of CHI, 1013-
1016.

[21] Kamvar, M. & Baluja, S. 2006. A large scale study of
wireless search behavior: Google mobile search. Proc. of
CHI, 701-709.

[22] Kamvar, M. & Baluja, S. 2006. The role of context in query
input: Using contexual signals to complete queries on mobile
devices. Proc. of Mobile HCI, 405-412.

[23] Kang, T. 2008. Value share: global handset vendor financial
metrics in Q1 2008. Strategy Analytics. Dated: 06-01-2008.

[24] Katz, S. 1987. Estimation of probabilities from sparse data
for the language model component of a speech recogniser.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 35(3), 400-401.

[25] Koenenman, J. & Belkin, N.J. 1996. A case for inter-action:

A study of interactive information retrieval behavior and
effectiveness. Proc. of CHI, 205-212.

[26] Lewis, C., & Rieman, J. 1993. Task-Centered User Interface
Design: A Practical Introduction. Distributed via anonymous
ftp (ftp.cs.colorado.edu).

[27] MacKenzie, I., Kober, H., Smith, D., Jones, T. & Skepner, E.

2001 LetterWise: Prefix-based disambiguation for mobile
text input. Proc. of UIST, 111-120.

[28] MacKenzie, 1., & Tanaka-Ishii, K. 2007. Text entry systems:
Mobility, accessibility, universality. San Francisco: Morgan
Kaufmann Publishers.

[29] Manber, U. & Myers, G. 1990. Suffix arrays: A new method
for on-line string searches, Proc. of SODA, 319-327.

[30] Masui, T. 1999. POBox: An efficient text input method for
handheld and ubiquitous computers. H. Gellersen, Ed.
Lecture Notes in Computer Science, 1707, 288-300.

[31] Paek, T., Thiesson, B., Ju, Y.C., & Lee, B. 2008. Search
Vox: Leveraging multimodal refinement and partial
knowledge for mobile voice search. Proc. of UIST, 141-150.

[32] White, R. & Marchionini, G. 2007. Examining the
effectiveness of real-time query expansion. Information
Processing and Management, 43(3), 685-704.

[33] Wigdor, D. & Balakrishnan, R. 2004. A comparison of
consecutive and concurrent input text entry techniques for
mobile phones. Proc. of CHI, 81-88.

[34] Zhang, Z. & Nasraoui, O. 2006. Mining search engine query
logs for query recommendations. Proc. of WWW, 1039-1040.


http://www.google.com/
http://www.piccolo2d.org/
http://www.t9.com/
http://www.yahoo.com/

