
The Design of a Task Parallel Library

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt
Microsoft Research

{daan,schulte,sburckha}@microsoft.com

Abstract
The Task Parallel Library (TPL) is a library for .NET that
makes it easy to take advantage of potential parallelism in
a program. The library relies heavily on generics and del-
egate expressions to provide custom control structures ex-
pressing structured parallelism such as map-reduce in user
programs. The library implementation is built around the no-
tion of a task as a finite CPU-bound computation. To capture
the ubiquitous apply-to-all pattern the library also introduces
the novel concept of a replicable task. Tasks and replica-
ble tasks are assigned to threads using work stealing tech-
niques, but unlike traditional implementations based on the
THE protocol, the library uses a novel data structure called
a ‘duplicating queue’. A surprising feature of duplicating
queues is that they have sequentially inconsistent behavior
on architectures with weak memory models, but capture this
non-determinism in a benign way by sometimes duplicating
elements. TPL ships as part of the Microsoft Parallel Exten-
sions for the .NET framework 4.0, and forms the foundation
of Parallel LINQ queries (however, note that the productized
TPL library may differ in significant ways from the basic
design described in this article).

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Concurrent Programming Structures

General Terms Languages, Design

Keywords Domain specific languages, parallelism, work
stealing

1. Introduction
Many existing applications can be naturally decomposed so
that they can be executed in parallel. Take for example the
following (naı̈ve) method for multiplying two matrices:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

void MatrixMult(int size, double[,] m1

,double[,] m2, double[,] result){

for(int i = 0; i < size; i++){

for(int j = 0; j < size; j++){

result[i, j] = 0;

for(int k = 0; k < size; k++){

result[i, j] += m1[i, k] * m2[k, j];

}

}

}

}

In this example, the outer iterations are independent of each
other and can potentially be done in parallel. A straight-
forward way to parallelize this algorithm would be to use
size threads, where each thread would execute the two inner
loops with its corresponding iteration index — but wait: that
would be prohibitively expensive, since each thread needs a
stack and other book keeping information. It is better to use
a small pool of threads, and assign to them a set of tasks to
execute, where a task is a finite CPU bound computation,
like the body of a for loop. So instead of size threads we
should create size tasks, each of them executing the two in-
ner loops for its iteration index. The tasks would be executed
by n threads, where n is typically the number of processors.
Using tasks instead of threads has many benefits – not only
are they more efficient, they also abstract away from the the
underlying hardware and the OS specific thread scheduler.

The Task Parallel Library (TPL) enables programmers to
easily introduce this potential task parallelism in a program.
Using TPL we can replace the outer for loop of the matrix
multiplication with a call to the static Parallel.For method:

void ParMatrixMult(int size, double[,] m1

,double[,] m2, double[,] result){

Parallel.For(0, size, delegate(int i){

for(int j = 0; j < size; j++){

result[i, j] = 0;

for(int k = 0; k < size; k++){

result[i, j] += m1[i, k] * m2[k, j];

}

});

});

}

227

The Parallel.For construct is a static method of the Parallel
class that takes three arguments: the first two arguments
specify the iteration domain (between 0 and size), and the
last argument is a delegate expression that is called for each
index in the domain. The delegate represents the task to
execute. A delegate expression is the C# equivalent of an
anonymous function definition or lambda expression. In this
case, the delegate takes the iteration index as its first argu-
ment and executes the unchanged loop body of the origi-
nal algorithm. Note that in C# the delegate passed to the
Parallel.For loop automatically captures m1, m2, result,
and size. This automatic capture of free variables makes
it particularly easy to experiment with introducing concur-
rency in existing programs. In Section 6.1 we show to write a
parallel matrix computation by hand without using the TPL
and compare its performance.

TPL can be viewed as a small embedded domain specific
language and its methods behave like custom control struc-
tures in the language (Hudak 1996). We argue that the neces-
sary ingredients for such library approach in strongly typed
languages are parametric polymorphism (generics) and first-
class anonymous functions (delegates).

Moreover, through the abstraction provided by these two
ingredients, we can implement all the high level control
structures in terms of just two primitive concepts – tasks and
replicable tasks. This guarantees that the library abstractions
have consistent semantics and behave regularly.

The parallel abstractions offered by the library only ex-
press potential parallelism, but they do not guarantee it.
For example, on a single-processor machine, Parallel.For
loops are executed sequentially, closely matching the perfor-
mance of strictly sequential code. On a dual-core machine,
however, the library might use two worker threads to exe-
cute the loop in parallel, depending on the workload and
configuration. Since no concurrency is guaranteed, the li-
brary is specifically intended for speeding up CPU bound
computations, and not for asynchronous programming. TPL
also does not help to correctly synchronize parallel code that
uses shared memory. Other mechanisms, such as locks, are
needed to protect concurrent modifications to shared mem-
ory, and it is the programmer’s responsibility to ensure that
the code can be safely executed in parallel.

Under the hood, tasks and replicable tasks are assigned
by the runtime to special worker threads. TPL uses standard
work-stealing for this work distribution (Frigo et al. 1998)
where tasks are held in a thread local task queue. When the
task queue of a thread becomes empty, the thread will try to
steal tasks from the task queue of another thread. The per-
formance of work stealing algorithms is in a large part deter-
mined by the efficiency of their task queue implementations.

We provide a novel implementation of these task queues,
called duplicating queues. A surprising feature of the du-
plicating queue is that it behaves in a sequentially incon-
sistent way on weak memory models. However, the non-

determinism of the queue is carefully captured in a benign
way by sometimes duplicating elements in the queue (but
never losing or inventing elements, and still ensuring that
tasks are only executed once). Of course, exploiting weak
memory models is playing with fire. That’s why we verified
the correctness of the duplicating queue formally using the
Checkfence tool (Burckhardt et al. 2007).

Initially developed at Microsoft Research, TPL is ship-
ping as a major part of the Microsoft Parallel Extensions to
the .NET framework and currently available for download as
a Community Technology Preview (Microsoft 2008). TPL
forms the foundation of Parallel LINQ queries and has al-
ready been used for parallelizing various applications (we
will report on some of them). Note though that the produc-
tized library has changed in many ways including the inte-
gration with the new thread pool implementation of .NET
4.0. Consequently the design of TPL has evolved, and the
productized library may differ in significant ways from the
library as described in this paper (as an example, the produc-
tized TPL also contains support for asynchronous program-
ming and I/O bound computations).

To summarize, we make the following main contribu-
tions:

• We show how we can embed a realistic parallel frame-
work as a library in a strongly typed language, where the
combination of generics and delegates proved vital to de-
fine custom control structures.

• We show that the library needs just two primitives: tasks
and replicable tasks, where the latter forms a convenient
abstraction to capture parallel iteration and aggregation.

• A duplicating queue is a novel data structure for im-
plementing non-blocking task queues that can work ef-
ficiently on architectures with weak memory models.
These queues are sequentially inconsistent but capture
the resulting non-determinism in a benign way by some-
times duplicating elements.

• We verified the correctness of the duplicating queue for-
mally using Checkfence.

• We provide a detailed assessment of TPLs performance
and discuss its use in a Microsoft product.

The rest of the paper is structured as follows: § 2 intro-
duces example abstractions for parallel programming pro-
vided by the TPL; § 3 defines these abstraction in terms of
the underlying task primitives; § 4 describes TPL’s strategy
for work distribution; § 5 introduces the duplicating queue
and provides correctness arguments; § 6 reports on experi-
ence by early adopters and provides performance numbers;
§ 7 discusses related work; § 8 concludes.

2. Using the TPL
This section introduces some basic abstractions for paral-
lelism in the TPL. One of the most basic patterns is standard

228

fork-join parallelism. As an example, consider the following
sequential quicksort implementation:

static void SeqQuickSort<T>(T[] dom, int lo, int hi)

where T : IComparable<T>

{

if(hi - lo <= Threshold)

InsertionSort(dom, lo, hi);

int pivot = Partition(dom, lo, hi);

SeqQuickSort(dom, lo, pivot - 1);

SeqQuickSort(dom, pivot + 1, hi);

}

The algorithm is generic in the element type T and only re-
quires that they can be compared. Under a certain threshold,
the algorithm falls back on insertion sort which performs
better for a small number of elements. Otherwise, we parti-
tion the input array in two parts and quick sort both parts sep-
arately. These two sorts can be performed in parallel since
each sort works on a distinct part of the array. We can ex-
press this conveniently using the Parallel.Do method:

static void ParQuickSort<T>(T[] dom, int lo, int hi)

where T : IComparable<T>

{

if(hi - lo <= Threshold)

InsertionSort(dom, lo, hi);

int pivot = Partition(dom, lo, hi);

Parallel.Do(

delegate{ ParQuickSort(dom, lo, pivot - 1); },

delegate{ ParQuickSort(dom, pivot + 1, hi); }

);

}

The Parallel.Do method is a static method that takes two or
more delegates as arguments and potentially executes them
in parallel. Since quick sort is recursive, a lot of parallelism
is exposed since every invocation introduces more parallel
tasks. Depending on the available number of threads how-
ever, the library might actually execute only some of the
tasks in parallel and the remaining ones sequentially. We will
later investigate why that is a good strategy.

The above code also shows how TPL acts as an embedded
domain specific language: the Parallel.Do method is very
close to extending the language with a parallel do statement.
Having first-class anonymous functions is essential to write a
parallel do conveniently. C# automatically captures the free
variables dom, lo, pivot, and hi. In Java programers need
to simulate anonymous functions using inner classes which
is less convenient and only variables marked as final can be
captured. In C++, the situation is very cumbersome as we
need to introduce a new class with the free variables as its
fields.

2.1 Map-reduce parallelism
Often, a for loop is used to iterate over a domain and ag-
gregate the values into a single result. Take for example the
following iteration that sums the prime numbers less than
10000:

int sum = 0;

for(int i = 0; i < 10000; i++){

if(isPrime(i))
sum += i;

}

Unfortunately we cannot parallelize this loop as it stands
since the iterations are not independent due to the modifi-
cation of the shared sum variable. A correct parallel version
would protect the addition with a lock, as in:

int sum = 0;

Parallel.For(0, 10000, delegate(int i){

if(isPrime(i)){
lock (this){ sum += i; }

}

});

This program now suffers from a performance problem since
all parallel iterations contend for both the same lock and the
same memory location. We can avoid this if each worker
thread maintains a thread local sum and only adds to the
global sum at the end of the loop. In TPL this particular
pattern is captured by the Parallel.Aggregate operation,
and we can rewrite the example as:

int sum = Parallel.Aggregate(

0, 10000, // domain
0, // initial value
delegate(int i){ return (isPrime(i) ? i : 0) },

delegate(int x, int y){ return x+y; }

);

The aggregate operation takes five arguments. The first two
specify the input domain, which can also be an enumerator.
The next argument is the initial value for the result. The
next two arguments are two delegate functions. The first
function is applied to each element, and the other is used to
combine the element results. The library will automatically
use a thread local variable to compute the thread local results
without any locking, only using a lock to combine the final
thread local results. If the aggregation is done in parallel, it is
possible that elements are combined in a different order than
a sequential aggregation. Therefore, it is required that the
combining delegate function is associative and commutative,
and where the initial value is its unit element.

2.2 Non-structured parallelism
For cases where there is no standard control abstraction, TPL
also allows the immediate use of tasks or futures. A future is
a task where the associated action returns a result. We show
the use of futures with a naıv̈e Fibonacci example. Assume

229

we have a sequential Fib function. Its parallel version, called
ParFib, looks as follows:

static int ParFib(int n){

if(n <= 8) return Fib(n);

var f2 = new Future<int>(() => ParFib(n-2));

int f1 = ParFib(n-1);

return (f1 + f2.Value);

}

The Future<int> call takes the int returning delegate () =>

ParFib(n-2) as a parameter. The result of the future is re-
trieved through Value. Since ParFib is recursive, an expo-
nential amount of parallelism is introduced: every ParFib(n-2)

branch of the call tree creates a subtask which can be done
in parallel. The call to f2.Value waits until the result is
available. Futures are a nice example why embedded do-
main specific languages need both first-class functions but
also parametric polymorphism (generics) in order to achieve
enough abstraction to define custom control structures.

The future abstraction works well with symbolic code
that is less structured than loops. Since futures are true first-
class values, one can use futures to introduce parallelism
between logically distinct parts of a program. For exam-
ple, one can store future values in data structures where an-
other distinct phase will actually request the values of these
futures. An interesting application domain is game devel-
opment. One phase calculates the new health of all actors
as a future, while the following phases use the values of
those health futures. Another example might be a just-in-
time compiler that starts off by generating code for the main
procedure, and storing the code for all other procedures in a
future value. When calling other procedures, the code may
now have been generated already by a parallel task.

3. Task primitives
When building a parallel library, it is important to have
just few primitive concepts in order to ensure that opera-
tions have regular and consistent semantics. Surprisingly, we
can build the entire library on just two primitive concepts,
namely tasks and replicable tasks. All other abstractions, like
futures and parallel for loops are expressed in terms of these
two primitives.

3.1 Tasks
A task represents a lightweight finite CPU bound computa-
tion. It is defined as:

delegate void Action();

class Task{

Task(Action action);

void Wait();

bool IsCompleted{ get; }

...

}

A task is created by supplying an associated action that
can potentially be executed in parallel, somewhere between
the creation time of the task, and the first call to the Wait

method. The associated action could potentially be executed
on another thread that created the task, but it is guaranteed
that actions do not migrate among threads. This is an impor-
tant guarantee since it enables us to safely use thread affine
operations.

The Wait method returns whenever the associated action
has finished. Any exception that is raised in the action is
stored, and re-raised whenever Wait is called which ensures
that exceptions are never lost and properly propagated to
dependent tasks.

Taking it all together, we can see tasks as an improved
thread pool where work items return a handle that can be
waited upon, and where exceptions are propagated.

On top of these basic tasks we can easily add more ad-
vanced abstractions. The parallel Do method, for example,
can be implemented as follows:

static void Do(Action action1, Action action2){

Task t = new Task(action1); // do potentially in parallel
action2(); // call action2 directly
t.Wait(); // wait for action1

}

Futures are a variation of tasks, where the associated action
computes a result:

delegate T Func<T>();

class Future<T> : Task{

Future (Func<T> function);

T Value{ get; } // does an implicit wait
}

A future is constructed with a delegate having the Func<T>

type where T is the return type of the delegate. The result
of the future is retrieved through the Value property, which
calls Wait internally to ensure that the task has completed
and the result value has been computed. Since Wait is called,
calling Value will throw any exception that was raised dur-
ing the computation of the future value. One can view futures
as returning either a result value or an exceptional value.

Futures are an old concept already implemented in multi-
lisp (Halstead jr. 1985). Our notion of a future is not “safe”,
in the sense that that the programmer is responsible for
properly accessing shared memory. This is in contrast with
some earlier approaches like Moreau (Moreau 1996) where
the action of a future is wrapped automatically in a memory
transaction.

3.2 Replicable tasks
The second primitive concept of our library are replicable
tasks which form the basic abstraction to implement parallel
distribution. A replicable task can potentially execute its
associated action itself in parallel. It is defined as:

230

class ReplicableTask : Task{

ReplicableTask(Action action);

}

The constructor takes an action that can potentially be exe-
cuted in parallel. If an exception is raised in any of those ex-
ecutions, only one of them is stored and re-thrown by Wait.

Replicable tasks are a new concept and have proved to
be invaluable for the implementation of the many parallel
iteration abstractions that the library implements. In particu-
lar, all the Parallel.For variations of the library are imple-
mented using replicable tasks. Here is for example a straight-
forward implementation of the basic Parallel.For abstrac-
tion1:

static void For(int from, int to, Action<int> body){

int index = from;

var rtask = new ReplicableTask(delegate{
int i;

while ((i = InterLocked.Increment(ref index)) <= to){

body(i-1);

}

});

rtask.Wait();

}

In this example, the action delegate associated with the repli-
cable task captures a shared index variable index. This ac-
tion can potentially execute in parallel by multiple threads
and access to this shared index is coordinated through in-
terlocked operations, where each execution ‘claims’ one in-
dex at a time. Note how we completely abstracted away over
work distribution and only express the essential details of
the algorithm. As we will see in Section 4.2, the schedul-
ing algorithm in the library automatically ensures that idling
processors will participate in doing the work for a replicable
task, and that nested parallel for loops are scheduled effi-
ciently.

Replicable futures are replicable tasks that return a value.
They are defined as:

class ReplicableFuture<T> : Future<T>{

ReplicableFuture<T> (Func<T> function

,Func<T,T,T> combine);

}

A replicable future takes as arguments a function that re-
turns a result, and a combining function that is commutative
and associative. Just like replicable tasks, the function ar-
gument can potentially be executed in parallel by multiple
processors, and in that case the combine function is used to
combine the parallel results. Just as replicable tasks are a
good abstraction for implementing parallel iteration, replica-
ble futures are a good abstraction for implementing parallel

1 An Action<T> delegate is an action that returns a value of type T.

aggregation. As an example, here is an implementation for
the Parallel.Aggregate method2:

static T Aggregate<T>(int from, int to, T init,

Func<T> body,

Func<T,T,T> combine){

int index = from;

var rfuture = new ReplicableFuture<T>(

delegate{
int i;

T acc = init;

while ((i = Interlocked.Increment(ref index)) <= to){

acc = combine(acc, body(i-1));

}

return acc;

},

combine

);

return rfuture.Value;

}

Replicable tasks and futures are a powerful abstraction to
implement different parallel iteration strategies. However,
they need to be used with care and we mostly see them as a
tool for writing extension libraries that capture domain spe-
cific parallel patterns. Also note that only tasks and replica-
ble tasks are really primitive to the TPL, since both futures
and replicable futures can be implemented in terms of tasks
or replicable tasks.

4. Work distribution
As we have seen TPL is convenient to use, but it can only be
successful if besides elegance, it is also performant. In this
section we focus on important high-level design decisions
and focus later on how these decisions inform the design of
the work stealing implementation.

4.1 Design for efficiency
The most important contributor for efficiency is the decision
to give no concurrency guarantees. Parallel tasks are only
potentially run in parallel. The library specifies that a task
is executed between its creation and the first call to Wait.
This means that we can give a valid implementation that is
fully sequential. Indeed, there is a special debug mode where
all tasks are executed sequentially when Wait is called (and
will therefore never have race conditions). Effectively, there
are no fairness guarantees for parallel tasks. In contrast with
OS threads, parallel tasks are only good for finite cpu-bound
tasks, but not for asynchronous programming.

This means that an implementation has a lot of freedom
in choosing the most efficient scheduling that processes all
tasks in the quickest way possible. For example, on a sin-

2 A Func<R,A,B> delegate is a function that takes two arguments of type
A and B respectively, and returns a value of type R.

231

gle core machine, a parallel for loop can just be executed
sequentially.

The ability to execute tasks sequentially also enables an
efficient implementation of waiting. Let’s look at the last line
of of the ParFib function from § 2.2 to see why. When a
thread executes f2.Value it has to distinguish three cases:

1. The task f2 has already been executed by another worker
thread in parallel. This is the ideal case and f2.Value

immediately returns with the result value and we achieve
a (significant) speedup relative to single core execution.

2. The task f2 is still being executed by another worker
thread in parallel. This is the worst case, and there is no
other choice than to wait until the result is available. In
this case, another worker thread will be scheduled on that
particular core in order to maintain the ideal concurrency
level.

3. The task f2 has not been started yet. This is actually a
very common scenario and always the case on single core
machines. In this case, a valid strategy is to call the asso-
ciated action of f2 directly and compute it sequentially!3

Case 3 is the major source of efficiency for the library and
we put most of our efforts in trying to optimize this case. In
particular, this lead us to abandon the usual implementation
of work-stealing queues (Herlihy and Shavit 2008) and de-
velop ‘duplicating queues’ instead (see § 5).

Also note that in case 3, we execute the associated action
of the task on the calling thread. If this action does a thread
affine operation, like changing the locale or other thread lo-
cal state, this effect is seen afterwards. We feel that this is fair
since we consider a call to Value as similar to a method call.
Moreover, since we know what code is potentially executed,
we can still reason about the thread local state.

Similarly, when we end up in case 2, we always com-
pletely block the calling thread and do not use the thread
to execute other pending tasks. We schedule a fresh worker
thread on that core instead. This is important for two reasons.
First, unknown pending tasks could execute thread affine
operations and prevent us from reasoning about the thread-
local state. Second, it is vital to prevent deadlocks: if a task
needs to wait on another task, and we would continue execu-
tion on the same stack, we may end up in a situation where a
task is waiting (indirectly) for a task that is higher up on the
stack and where no further progress is possible even if the
tasks are not in a circular dependency themselves.

4.2 Work stealing
The TPL runtime reuses the ideas of the well known work
stealing techniques as implemented for example in CILK
(Danaher et al. 2005; Frigo et al. 1998) and the Java fork-

3 Contrast this with waiting on operating system signals, where it is not
possible to ‘make the signal happen’ and the only thing that can be done is
blocking the calling thread.

join framework (Lea 2000). We shortly discuss its principles
and focus on why our implementation differs.

The runtime system uses one worker group per processor.
Each group contains one or more worker threads where only
one of them is running and where all others are blocked.
Whenever this running worker thread becomes blocked too
(due to the previous case 2 for example) an extra running
worker thread is added to that group such that the processor
is always busy. A worker thread can also be retired and give
control to another worker in its group when that worker can
be unblocked (because the task on which it was waiting has
completed for example).

Each worker group keeps tasks in its own doubled-ended
queue. The task queue provides the operations Push, Pop

and Take. When a task is created, the running worker thread
pushes the task onto the local queue of its group. If it fin-
ishes its current task, it will try to pop a task from the group
queue and continue with that. This way, a task is always
pushed and popped locally, which benefits both the data lo-
cality of the task and reduces the amount of synchronization
needed. If a worker thread finds there are no more tasks in
its queue (and none of the other workers in its group can
be unblocked), it becomes a thief : it chooses another task
queue of another worker group at random and tries to steal
a task or replicable task from the (non-local) end of the task
queue using Take. For many parallel conquer-and-divide al-
gorithms, this ensures that the largest tasks are stolen first.
For loops, which are typically implemented via replicable
tasks, it means that tasks are only replicated on demand, i.e.
when another thread starts idling. Unfortunately, at this point
we have to do more synchronization for our queues, since we
have multiple parties that can try to steal at the same time
from the same queue, and we can have interaction between
the worker thread associated with that queue and the stealing
thread.

The performance of work stealing is largely dependent
on the performance of its task queue implementation. In
particular, we need to ensure that each pushed task is only
popped or taken once such that each task is only executed
once. To achieve atomic take and pop operations, most im-
plementations, like (Arora et al. 1998b), rely on the THE
protocol (Dijkstra 1965), which allow the common Push

and Pop operations to be implemented without using expen-
sive atomic compare-and-swap operations. Unfortunately,
this only works on machines with a sequentially consistent
memory model, and in practice there are just few architec-
tures that support this. On the x86 for example, one needs to
insert a memory barrier in Pop operation which is almost as
expensive as taking a lock in the first place.

Moreover, there is an even bigger disadvantage to queues
based on the THE protocol which is more subtle. As shown
in Section 4.1, whenever f2.Value is called where the future
f2 has not yet started, we should execute it directly on the
calling thread. But if we use the THE protocol, there is

232

no mechanism to get f2 exclusively: we can only Pop it
from our queue if it happens to be the last task that was
pushed, otherwise one cannot determine whether f2 is on
the local queue, or resides in a queue of another worker
group. Without gaining exclusive access in some other way,
we cannot execute the task directly or otherwise we may
execute a task more than once since it can concurrently be
taken by another worker, or popped if it resided on a non-
local task queue.

Since this is exactly the common case that we need to
optimize, we opted for another approach where each task
uses internally an atomic compare-and-swap operation to
ensure that it only executes once. We assign to each task
an associated state, Init, Running, and Done. The internal
Run method on a task performs an atomic compare-and-swap
operation to try to switch from Init to Running. If the atomic
operation succeeds, the associated action is executed and the
state is set to Done afterwards:

void Task.Run(){

if(CompareAndSwap(ref state, Init, Running)){

Execute(); // execute the associated action
state = Done;

}

}

Effectively, this ensures that each task is only executed once,
or stated differently: running a task is an idempotent opera-
tion. Unfortunately, if we would use task queues based on
the THE protocol we now use two mechanisms for mutual
exclusion, and execute both a memory barrier instruction on
a Pop operation, and an interlocked instruction when calling
Run. Since these are expensive instructions that require syn-
chronization among the processors, we would like to avoid
these. As shown in the previous paragraphs, the interlocked
instruction in the Run method is essential and since we now
ensure exclusivity on the task level, it is possible to use a
weaker data structure for the task queues. In particular, this
leads to the development of the duplicating queue.

Note that only tasks need this additional check; for repli-
cating tasks there is no need to do the atomic compare-and-
swap operation since they already implement their own mu-
tual exclusion.

5. Duplicating queues
A duplicating queue is a double-ended queue that potentially
returns a pushed element more than once. In particular, the
Push and Pop operations behave like normal, but the Take

operation is allowed to either take an element (and remove it
from the queue), or to just duplicate an element in the queue.
While this nondeterminism might be dangerous for many
clients, it is fine for our usage of the duplicating queue: the
Task’s Run method is idempotent and ReplicableTask’s ex-
pect to be executed in parallel. Other properties of a duplicat-
ing queues are as usual: a duplicating queue never loses an

element, and returns all pushed elements after a finite num-
ber of Pop (and Take) operations.

By allowing duplication we can avoid an expensive mem-
ory barrier instruction in the Pop operation on the x86 archi-
tecture. More generally, our duplicating queue is designed
specifically to be correct on architectures satisfying the To-
tal Store Order (TSO) memory model (Sindhu et al. 1991)
or stronger model. To our knowledge, this is one of the first
data structures that takes specific advantage of weaker mem-
ory models to avoid memory barriers. An interesting aspect
is that the non-determinism that is introduced by the weaker
memory model is captured in a benign way where the num-
ber of duplicated elements is non-deterministically deter-
mined.

5.1 Total Store Order
Before explaining and verifying the algorithm, we first give
a short specification of the TSO memory model along the
lines of (Collier 1992; Gharachorloo et al. 1992; Sindhu
et al. 1991). We write LA for load at address A, and SA

for a store at address A. The memory order is an order on
all the memory transactions from the processors, and we
write op1 <m op2 if instruction op1 precedes instruction
op2 in a particular memory order. Similarly, we can define a
program order which is the order of instructions as executed
by the processors. The order is total for each processor,
while the order on all instructions is a partial order defined
by an interleaving of the total order on each processor. We
write op1 <p op2 if an instruction op1 precedes another
instruction op2 in program order.

We can now define the TSO memory model as a set of
axioms on the possible memory order:

1. In TSO, the stores are in a total memory order, i.e.

∀SS′. S <m S′ ∨ S′ <m S

2. If two stores occur in program order, then these stores are
in memory order too:

S <p S′ ⇒ S <m S′

Informally, this means that a local store buffer on a pro-
cessor is kept in FIFO order where memory stores cannot
be reordered.

3. If a load occurs before another operation in program
order, it also precedes it in memory order:

L <p op ⇒ L <m op

Together with the previous axiom, this effectively means
that only a load that succeeds a store in program order,
may be reordered to precede it in the global memory
order.

4. Finally, loads will always return the last value stored
where stores that precede it in program order are seen

233

even if such store occurs after the load in memory order.
Writing val(op) for the value that is stored or loaded, we
formalize this as:

val(LA) = val(maxm({SA |SA <m LA}∪
{SA |SA <p LA}))

where maxm is the maximum store under the memory
order relation (<m). Informally, this axiom describes that
processors always see their local stores where a load
‘snoops’ the store buffer.

The TSO memory model is for example supported by the
Sparc architecture. The widely available x86 architecture al-
most implements TSO except that stores do not always form
a total order (axiom 1). In particular, with four processors
it is possible that two stores by two processors are seen in
an opposite order by the other two processors, i.e. stores
to memory may be seen at different times by different pro-
cessors depending on the physical layout of the processors.
However, as we will see below, we will arrange that the du-
plicating queue is only accessed by at most two concurrent
processes, and therefore the x86 behaves just like a TSO ar-
chitecture for our particular purposes.

5.2 Implementation
We describe the duplicating queue using C# code. We have
chosen to present not the simplest possible implementation,
but to use a fairly realistic implementation that represents the
queue as an array and uses wrap around to prevent shifting
the elements. The members of the queue are defined as:

class DupQueue{

Task[] tasks;

int size; // size > 2

int tailMin = ∞;

volatile int tail = 0;

volatile int head = 0;

...

}

The tasks array contains the elements of the queue, where
size is the size of the array. The tailMin member is essential
to prevent losing elements and is discussed later. The head

and tail are indices in the array and represent the head and
tail of the queue. When head == tail the queue is empty.
There are three main operations on the queue: the Take

operation is called by other worker threads to steal elements
from the head of the queue by incrementing the head index.
The Push and Pop operations are called by the worker thread
that owns the queue and pushes and pops elements to the tail
of the queue, by respectively incrementing and decrementing
the tail index. By declaring the head and tail as volatile
we prevent the compiler from rearranging accesses to those
members.

The Take operation is called by thiefs and is the simplest
and least often performed operation. Its definition is given

public Task Take(){

lock(this){
if(head < tail){

Task task = tasks[head%size];

head = head + 1;

return task;

}

else{
return null;

}

}

}

Figure 1. The Take operation is called by a thief

in Figure 1. Since multiple thiefs may try to steal a task
at the same time, the code first takes a lock. This allows
us to reason about the algorithm as if there are only two
concurrent threads: a thief that calls Take, and a worker
thread that calls Push and Pop (to make tasks available for
stealing). If the queue is not empty, the head element of the
queue is returned. For efficiency, the elements are accessed
modulo the size of the array. This way, we do not have to
shift the elements in the array once the end of the array is
reached but can simply wrap around.

The thief is the only thread that modifies the head field
(and reads tasks). The worker is the only thread that modi-
fies the tail field and the tasks array. Since these fields are
modified without using atomic operations, this means that
on a TSO architecture the thief may see an outdated tail

field or element, while the worker thread may see an out-
dated head field. To make this more explicit in the code, we
denote a potentially outdated tail field in a thief thread as
tail , and a potentially outdated head field in the worker
thread as head .

More formally we can have the order:

Lw
tail <m Lt

tail
<m Sw

tail and Sw
tail <p Lw

tail

where we use the superscript w for operations in the worker
thread, and t for operations in the stealing thread. In this
case, the load Lw

tail sees the value stored by Sw
tail due to

the program order (and axiom 4), while the load executed in
the thief Lt

tail
sees the old value of the tail field before

the Sw
tail store happened.

Since the head field is only incremented we have the
following invariants:

A. head > head

Also, in the Take operation, we can assume:

B. Any elem[i%size] where head 6 i < tail is valid or
null.

Note that tail > tail does not hold since the tail can be
decremented by the Pop operation (as described below).

234

public Task Pop(){

tail = tail - 1;

// can we pop safely?
if(head <= Math.Min(tailMin,tail)){

if(tailMin > tail) tailMin = tail;

Task task = tasks[tail%size];

tasks[tail%size] = null;
return task;

}

else{
lock (this){

// adjust head and reset tailMin
if(head > tailMin) head = tailMin;

tailMin = ∞;

// try to pop again
if(head <= tail){

Task task = tasks[tail%size];

tasks[tail%size] = null;
return task;

}

else{
tail = tail + 1; // restore tail when empty
return null;

}

}

}

}

Figure 2. The Pop operation is called by a worker

Informally this means that Take can return an arbitrary
element of the queue. Also head might be overwritten, i.e.
the returned element is not deleted.

Figures 2 and 3 define the Pop and Push operations. Both
of these operations are only called from the same worker
thread and therefore do not need to take a lock. The tailMin

field contains the minimal index at which an element was
popped.

The Pop operation decrements the tail field opportunis-
tically and tests whether the queue still contains elements
(head <= tail) and if the head field is smaller or equal to
the tailMin. This test is written as head <= Math.Min(tailMin,

tail) to combine both tests using a single load of the head

field (as a subsequent load may give a different (higher)
value). If the test succeeds, the tailMin field is updated and
an element is popped. To prevent space leaks a null value is
written to the popped location. If the test fails, we fall back
on a safe routine and take an explicit lock. In this case, there
are no concurrent thiefs and the head value is current due
to the implicit memory barrier of a lock, and we can safely
determine whether the queue was empty or not.

The initial test head <= tail ensures we only pop ele-
ments that have previously been pushed. Theoretically, many

public void Push(Task task)

{

if(task == null) return ;

// queue not full and no index overflow?
if(tail < Math.Min(tailMin,head)+size &&

tail < int.MaxValue/2){
tasks[tail%size] = task;

tail = tail + 1;

}

else{
lock(this){

if(head > tailMin) head = tailMin;

tailMin = ∞;

// adjust the indices to prevent overflow
int count = Math.Max(0,tail - head);

head = head % size;

tail = head + count;

}

// just run this task eagerly
task.Run();

}

}

Figure 3. The Push operation is called by a worker

steals could have happened where head is much larger than
head . However, it is still safe to pop those elements: i.e. re-
turn an element both from a Take and from a Pop operation
even though the element has only been pushed once - the Run
method, which consumes the returned task takes care that a
duplicate task is executed only once. The second initial test
head <= tailMin prevents losing elements. In particular, on
a TSO architecture the following sequence of events could
occur:

1) We push an element A and tail and tail are 1.

2) There is steal of A and head = 1 but head is still 0.

3) There is a pop of A and tail and tailMin become 0.

4) There is a push of B where tail becomes 1 again.

5) By now the value of head becomes equal to head

(i.e. 1).

Suppose we have a Pop operation now. If we would only
test for head <= tail, we would assume that the queue
is empty and the B element would be lost! This situation
is prevented by the tailMin field. Since the test head <=

Math.Min(tailMin, tail) fails, the safe path is taken. After
the lock is taken, the Pop operation potentially resets the
head field to the tailMin field, and resets the tailMin field
to ∞. In the above scenario, head becomes 0 again and the

235

B element is immediately popped. With the addition of the
tailMin field, we have the following invariants:

C. Any elem[i%size] where min(head , tailMin, tail) 6
i < tail is valid or null.

D. tailMin > head 0 where head 0 is the first head value
loaded since initialization or taking a lock.

The Push operation in Figure 2 also avoids a lock in almost
all cases. If a null value is pushed the method returns imme-
diately. It then tests whether there is still room in the queue.
One may think that the test tail < head + size would suf-
fice but that would not be strong enough. Indeed, as cap-
tured in invariant C, the tailMin field could be lower as
head and we should be careful not to overwrite those values.
Therefore, the push operation tests whether the tail field is
smaller as min(tailMin, head) + size. Also, to prevent in-
teger overflow after many steals and pushes, there is a test to
prevent the tail value from getting too large.

If there is still room in the queue, the element is pushed
and the tail is incremented. Otherwise, a lock is taken to
prevent concurrent thiefs. Just like in Pop, the head value
potentially is set to the tailMin field, and tailMin is set to
∞. To prevent integer overflow, the head and tail field are
both adjusted to their minimal values. Finally, the pushed
task is just run eagerly: indeed, pushing a task is only done
to enable it to be stolen by other worker threads. If the work
queue is full, there is no reason to enlarge it further since
there are still enough tasks that can be stolen and we can just
as well execute it directly.

5.3 Verification
As apparent from the above description, the individual oper-
ations of the duplicating queue are simple, but the concurrent
interaction between them is very subtle. To gain confidence
in the correctness of the algorithms, we applied CheckFence
(Burckhardt et al. 2007) to verify the data structure formally
under the TSO memory model.

CheckFence takes three inputs: (1) a sequential reference
implementation of the duplicating queue which serves as a
specification, (2) a suite of concurrent unit tests, and (3) an
axiomatic specification of the memory model. It then uses
a SAT solver to verify that all possible concurrent execu-
tions of the tests on the given memory model are obser-
vationally equivalent to some interleaved, atomic execution
of the reference implementation. Our experience confirmed
that this methodology is very effective for finding subtle con-
currency bugs. We had to revise our initial implementation
several times based on the counterexample traces produced
by CheckFence. The specific test suite we used is described
in Appendix A.

To specify the permitted behaviors of the duplicating
queue, we expressed the ‘duplication’ by introducing non-
determinism into the Take operation. Our specification op-
erates like a normal double-ended queue insofar Push and

Pop operations are concerned (they simply add/remove el-
ements at the tail end of the queue). In contrast, the Take

operation nondeterministically chooses between two behav-
iors, either (1) removing an element from the head end of the
queue as usual, or (2) returning a nondeterministically cho-
sen element of the queue without removing it. Clearly, this
specification is strong enough to ensure correct work steal-
ing: no elements are lost or invented, and repeated Pop calls
will reliably empty the queue.

CheckFence indeed verified that our queue algorithm
never produces answers outside of the specification. Even
though the correctness proof is limited to test sequences de-
scribed in the appendix, they are verified under all possible
interleavings allowed by the TSO memory model. In this re-
spect our methodology goes well beyond common practice,
and given the complexity of reasoning about concurrent data
structures under weak memory models, we feel that this is a
strong result.

6. Performance
Given the continuous improvements in virtual machines and
compilers for managed code, we feel that absolute compar-
isons against other languages and frameworks is of limited
value. Therefore, we measure only intrinsic properties of our
library like scalability and relative speedups.

6.1 Matrix multiplication revisited
TPL can only succeed if it is simple to use and well-
performing. So let’s compare the performance of the in-
troductory matrix-multiplication with a hand written solu-
tion using the standard thread pool to introduce parallelism.
Figure 4 shows a fairly sophisticated implementation: for
instance, the code statically divides the loop into chunks
depending on the number of processors, creating twice as
many as necessary to adapt better to dynamic workloads;
also to minimize the number of kernel transitions the code
introduces a counter together with a single wait handle.

Clearly, this code is harder to write, and more error prone
than the Parallel.For method. Perhaps it performs better?
Even though it is hand tuned and uses a near optimal division
of work, it performs generally worse than Parallel.For.
Figure 5 shows the speedups obtained on an eight core ma-
chine relative to running the sequential for loop. Note how
the Parallel.For version is just slightly slower (≈99%)
than a direct for loop on a single core machine.

Note also that this hand-optimized code is not composi-
tional, for instance you have to do a major rewrite if you
wanted to parallelize both outer loops; TPL however is
composable, so you can simply exchange both outer loops
with Parallel.Fors. Also, in contrast to TPL, the hand-
optimized version does not propagate exceptions raised in
the loop body.

236

void ThreadMatrixMul(int size, double[,] m1

,double[,] m2, double[,] res)

{

int N = size;

int P = 2 * Environment.ProcessorCount;

int Chunk = N / P; // size of a work chunk
AutoResetEvent sig = new AutoResetEvent(false);

int counter = P;

for(int c = 0; c < P; c++){ // for each chunk
ThreadPool.QueueUserWorkItem(

delegate(Object o){

int lc = (int)o;
for(int i = lc * Chunk; // for each item

i < (lc + 1 == P ? N : (lc + 1) * Chunk);

i++){

// original inner loop body
for(int j = 0; j < size; j++){

res[i, j] = 0;

for(int k = 0; k < size; k++){

res[i, j] += m1[i, k] * m2[k, j];

}

}

}

// use efficient interlocked instructions
if(Interlocked.Decrement(ref counter) == 0){

sig.Set(); // kernel transition only when done
}

}, c);

}

sig.WaitOne();

}

Figure 4. Parallel matrix multiplication without using the
TPL leads to static work distribution and explicit synchro-
nization.

6.2 Scaling
The library should also scale well with common parallel pat-
terns. We used a collection of common benchmarks adapted
from the CILK and Java fork/join library benchmarks:

• Fib: The fibonacci of 44 using a threshold of 18.
• Tree: Summation of nodes in a balanced tree of depth 28

with a threshold of 11.
• Matrix: Naı̈ve matrix multiplication of a 1024x1024 ma-

trix of doubles.
• Quad: Divide-and-conquer quad matrix multiplication of

a 1024x1024 matrix of doubles.
• Integrate: Recursive Gaussian quadrature of (2i−1)x2i−1

summing over odd values of 1 6 i 6 6 and integrating
from -11 to 12.

0

1

2

3

4

5

6

7

8

1 2 4 8

Sp
e
e
d
u
p

Processors

Parallel.For Hand-tuned using the threadpool

Figure 5. Relative speedup of parallelizing the outer loop of
a matrix multiplication with 750x750 elements, where 1 is
the running time of a normal for-loop. The tests were run on
a 4-socket dual-core Intel Xeon machine with 3Gb memory
running Windows Vista.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
d

u
p

Processors

Fib

Tree

Matrix

Quad

Integrate

Jacobi

Quick Sort

LU

Figure 6. Relative speedup of standard benchmarks. The
benchmarks were run on a 4-socket dual-core Intel Xeon
machine with 32Gb running Windows Server 2008. Note
that Quick Sort cannot be fully parallelized.

• Jacobi: Iterative mesh with 100 steps of nearest neighbor
averaging on a 4096x4096 matrix of doubles.

• Quick Sort: Traditional quick sort algorithm on a 1.6 mil-
lion element array with a sequential quick sort threshold
of 4000 elements. This algorithm will not scale linearly
when run in parallel but the parallel speedup is bounded
by Plog2(N)

2P−2+log2(N/P) (Thornley 1995).

• LU: Matrix decomposition of a 4096x4096 matrix of
doubles.

Figure 6 shows that all these algorithms have good linear
speedups when run on multiple processors. The exception is
the traditional quick sort benchmark which does not scale
linearly but we come very close to the ideal speedup. An-
other important point is that all of the benchmarks run (al-
most) as fast on a single processor as their sequential coun-

237

2 4 8 16

0

1

2

3

4

1 2 4 8 16

R
el

at
iv

e
sp

ee
d

u
p

Processors

Figure 7. Relative speedup of laying out three extreme
graphs using MSAGL. The test were run on a 8- socket dual-
core Intel Xeon machine with 4Gb memory running Win-
dows Vista.

terparts which is important when running parallelized soft-
ware on older machines.

Even though the above benchmarks show great speedups,
we believe that for most realistic programs the speedups will
be much more modest. According to Amdahl’s law the se-
quential part of a program will eventually dominate the run-
ning time. For example, even when just 10% of your appli-
cation is intrinsically sequential, we can at most make this
program run 10 times as fast when perfectly parallelizing
the other 90%. In practice this means that especially the first
8 cores can make a substantial difference in running times,
but adding more cores will have little effect.

Microsoft product groups have started using TPL and
have observed this effect. For instance, Figure 7 describes
the relative speedup of the Microsoft Automatic Graph Lay-
out library (MSAGL) (Nachmanson and Powers 2008) for
three extreme graphs. MSAGL is a large and complex library
and we just replaced a single for loop with a Parallel.For

to parallelize MSAGL’s spline computations. Unfortunately,
only part of the layout algorithm can be parallelized this
easily, as the other parts currently consist of intrinsically
sequential algorithms, like a sequential simplex algorithm.
When looking at the figure, we see that the sequential parts
dominate and the speedups are modest, between 1.2 to 2.2
times faster on 8 processors. Still, since MSAGL is used for
example to layout large XML diagrams in real time in Visual
Studio, the speedup is often noticeable in practice.

Of course, in many cases we can take advantage of ever
more cores, as long as we can make the parallel part rela-
tively larger by just adding more data. This happens in par-
ticular in domains like games or speech analysis.

6.3 Duplicating queues
Measuring the performance of the duplicating queue in iso-
lation is not very useful. The reason is that the main perfor-
mance benefit does not come from the duplicating queue, but

from being able to guarantee mutual exclusivity in the tasks
themselves, such that a task can be executed directly when
Wait is called and the task has not started yet. Since the task
queues no longer need to guarantee mutual exclusivity, the
duplicating queue is mostly an optimization to avoid using
too many expensive interlocked instructions.

Therefore, it is better to measure the benefit of being able
to directly execute a task for which Wait is called (and which
has not started yet). We created two versions of the library:
one based on a duplicating queue with direct execution of
tasks, and a traditional implementation based on the standard
THE protocol. The standard fibonacci benchmark represents
one of the worst-case examples since most waits are for
tasks that were just pushed on the stack (and reside on the
top of the stack). We ran this benchmark on a 4 processor
machine which used 196418 tasks (≈ 500.000 tasks per
second). The implementation based on the duplicating queue
was 1.4 times faster when using all processors. Here are
some statistics, where DUP refers to the duplicating queue
implementation, and THE to the implementation based on the
THE protocol.

speedup steal switch migrate workers
DUP 3.89 29 20 6 20
THE 2.78 37 2452 9596 53

As we can see, the performance of THE mostly suffered
because there were many more switches between threads,
and many more thread migrations. This happened precisely
when Wait was called for a task that had not yet started.
Since one cannot reliably determine whether this task was
on the local queue, a fresh worker thread was needed to
execute the task resulting in a thread switch. Of course, this
automatically also lead to more migration of threads where
ready worker threads were stolen by another worker group.
Interestingly, the number of task steals are about the same
as this is mostly determined by the particular algorithm and
sizes of the tasks.

Of course, for most fork-join parallelism (including the
fibonacci benchmark), the task to be waited upon is often
right on the top of the local task queue. When Wait is called
on a task that has not started yet, we can optimize for this
case in the THE implementation by simply popping the top
of the stack if that happens to be our task and execute
it directly. When applying this simple optimization, both
implementations perform very similar for this benchmark.
Of course, the DUP implementation outperforms again when
the parallelism is less structured using futures for example,
and in general at any time when Wait is called on a task that
is not on the top of the stack.

7. Related work
There is a wealth of research into parallel scheduling algo-
rithms, data structures, and language designs, and we neces-

238

sarily restrict this section to work that is directly relevant to
work stealing and embedded library designs.

The idea of duplicating queues has recently been descibed
by Maged Michael et al (2009) as “idempotent” queues. We
were not aware of this work at the time of writing this paper
and arrived at our results independently (doing our first im-
plementation in January 2008). Their general motivation and
the semantics of the idempotent queue seem largely identi-
cal, but the implementation is quite different. Their elegant
implementation packs fields together in a memory word and
relies strictly on atomic compare-and-swap and memory or-
dering instructions. In contrast, our implementation uses a
simple lock on all but the critical paths which can simplify
many implementation aspects and also removes a level of
indirection on the critical path.

Futures are a well known concept and were already im-
plemented for multi-lisp (Halstead jr. 1985). It is important
to distinguish safe futures from the futures as described in
this article. Safe futures have no observable side effect and
can therefore always be safely evaluated in parallel. In con-
trast, TPL futures have no such restrictions and program-
mers have to be careful when accessing shared state. Safe fu-
tures in the context of Java have been studied for example by
Pratikakis et al. (2004) and Welc et al. (2005). The semantics
of futures with side effects and exceptions has been studied
by Moreau (Moreau 1996) and by Flanagan and Felleisen in
the context of optimization (Flanagan and Felleisen 1995).

CILK (Randall 1998) championed lightweight task exe-
cution frameworks for C. The CILK runtime used the THE
protocol to implement task queues (Frigo et al. 1998; Dijk-
stra 1965). Tasks are created using the spawn primitive, and
synchronized with the sync keyword. In contrast to TPL, the
liveness of CILK tasks is determined by their lexical scope
which enables the CILK compiler to allocate tasks on the
stack instead of the heap which can be more efficient. On
the other hand, it makes tasks second-class citizens and re-
stricts how they can be used. More recent work on a Java
based CILK implementation studies the interaction of Java
exceptions with the CILK sync and spawn primitives (Dana-
her et al. 2005, 2006).

There also exist quite a few task based libraries for light-
weight parallel programming in standard C and C++ based
on workstealing. Some of the more well-known include
StackThreads (Taura et al. 1999), the Filaments library (En-
gler et al. 1993), and Hood (Blumofe and Papadopoulos
1999; Blumofe et al. 1995).

Blumofe and Leiserson (Blumofe and Leiserson 1999)
proved that the work-stealing algorithm is efficient with re-
spect to time, space, and communication for the class of
fully strict multithreaded computations. Arora, Blumofe, and
Plaxton (Arora et al. 1998a) extended the time bound re-
sult to arbitrary multithreaded computations. In addition,
Acar, Blelloch, and Blumofe (Acar et al. 2000) show that
work-stealing schedulers are efficient with respect to cache

misses for jobs with nested parallelism. Agrawal looked into
improving the heuristics of work stealing through adaptive
scheduling (Agrawal et al. 2006).

There exist many languages with light weight task par-
allelism. For instance, the Fortress language (Steele 2006;
Allen et al. 2007; Aditya et al. 1995) makes parallelism the
default execution mode, and internally uses work stealing to
schedule tasks efficiently.

Our main inspiration is the widely used Java fork-join
framework by Doug Lea (Lea 2000, 1999) which is now
part of the standard Java libraries. Just like CILK, tasks are
restricted to fork-join style parallelism only and should not
escape their lexical scope. This is not enforced though which
can be dangerous as the library can deadlock when tasks are
used outside the lexical scope (even if there is no circular
dependency among tasks).

8. Conclusion
We described the lessons learned in the design of a library
for parallel programming. TPL is an example of the possi-
bilities of an embedded domain specific language that relies
heavily on parametric polymorphism and first-class anony-
mous functions, and we hope to apply this to other domains
as well.

To the best of our knowledge, the duplicating queue is one
of the first data structures that explicitly takes the properties
of weak memory models into account, and it is surprising we
can capture the resulting non-determinism in a benign way
without for example losing or inventing elements. It would
be interesting to see if we can adapt the structure such that it
can be applied for other parallel algorithms too.

Acknowledgments
The authors would like to thank Vance Morrison, Joe Duffy,
and Stephen Toub for their feedback and help in the design
and implementation of TPL.

References
Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe.

The data locality of work stealing. In SPAA ’00: Proceed-
ings of the twelfth annual ACM symposium on Parallel
algorithms and architectures, pages 1–12, 2000.

Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem
Maessen, and Rishiyur S. Nikhil. Semantics of pH: A
Parallel Dialect of Haskell. In Paul Hudak, editor, Proc.
Haskell Workshop, La Jolla, CA USA, pages 35–49, June
1995.

Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E.
Leiserson. Adaptive scheduling with parallelism feed-
back. In PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of par-
allel programming, pages 100–109, 2006.

239

Eric Allen, David Chase, Christine Flood, Victor
Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
and Guy L. Steele Jr. Project fortress: A multicore
language for multicore processors. In Linux Magazine,
September 2007.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors.
In ACM Symposium on Parallel Algorithms and Architec-
tures, pages 119–129, 1998a.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors.
In SPAA ’98: Proceedings of the tenth annual ACM sym-
posium on Parallel algorithms and architectures, pages
119–129, 1998b.

Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal of
the ACM, 46(5):720–748, September 1999.

Robert D. Blumofe and Dionisios Papadopoulos. Hood: A
user-level threads library for multiprogrammed multipro-
cessors. Technical report, University of Texas, Austin,
1999.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. Cilk: an efficient multithreaded runtime system.
SIGPLAN Not., 30(8):207–216, 1995.

S. Burckhardt, R. Alur, and M. Martin. CheckFence: Check-
ing consistency of concurrent data types on relaxed mem-
ory models. In Programming Language Design and Im-
plementation (PLDI), pages 12–21, 2007.

William W. Collier. Reasoning about Parallel Architectures.
Prentice Hall, 1992.

John S. Danaher, I-Ting Angelina Lee, and Charles E. Leis-
erson. The jcilk language for multithreaded comput-
ing. In Synchronization and Concurrency in Object-
Oriented Languages (SCOOL), San Diego, California,
October 2005.

John S. Danaher, I-Ting Angelina Lee, and Charles E. Leis-
erson. Programming with exceptions in jcilk. Science of
Computer Programming (SCP), 63(2):147–171, Decem-
ber 2006.

E. W. Dijkstra. Solution of a problem in concurrent pro-
gramming control. Commun. ACM, 8(9):569, 1965.

Dawson R. Engler, Dawson R. Engler, Gregory R. Andrews,
Gregory R. Andrews, David K. Lowenthal, and David K.
Lowenthal. Filaments: Efficient support for fine-grain
parallelism. Technical Report TR 93-13a, University of
Arizona, 1993.

Cormac Flanagan and Matthias Felleisen. The semantics
of future and its use in program optimization. In Rice
University, pages 209–220, 1995.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN ’98 Conference
on Programming Language Design and Implementation,
pages 212–223, Montreal, Quebec, Canada, June 1998.
Proceedings published ACM SIGPLAN Notices, Vol. 33,
No. 5, May, 1998.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta,
John L. Hennessy, and Mark D. Hill. Programming for
different memory consistency models. Journal of Parallel
and Distributed Computing, 15:399–407, 1992.

R.H. Halstead jr. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming
Languages and Systems, 7(4):501–538, October 1985.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, March 2008.

Paul Hudak. Building domain-specific embedded languages.
ACM Comput. Surv., page 196, 1996.

Doug Lea. Concurrent Programming in Java. Second Edi-
tion: Design Principles and Patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.
ISBN 0201310090.

Doug Lea. A java fork/join framework. In Java Grande,
pages 36–43, 2000.

Maged M. Michael, Martin T. Vechev, and Vijay A.
Saraswat. Idempotent work stealing. In PPoPP ’09: Pro-
ceedings of the 14th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 45–
54, 2009.

Microsoft. Parallel extensions to .NET. June 2008. URL
http://msdn.microsoft.com/en-us/concurrency.

Luc Moreau. The semantics of scheme with future. In In In
ACM SIGPLAN International Conference on Functional
Programming (ICFP’96, pages 146–156, 1996.

Lev Nachmanson and Lynn Powers. Microsoft automatic
graph layout library (msagl). research.microsoft.
com/en-us/projects/msagl, 2008.

Polyvios Pratikakis, Jaime Spacco, and Michael Hicks.
Transparent proxies for java futures. SIGPLAN Not., 39
(10):206–223, 2004. ISSN 0362-1340.

Keith H. Randall. Cilk: Efficient Multithreaded Comput-
ing. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Tech-
nology, May 1998.

Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cek-
leov. Formal specification of memory models. Techni-
cal Report CSL-91-11, Xerox Palo Alto Research Center,
December 1991.

Guy Steele. Parallel programming and parallel abstractions
in fortress. In Invited talk at the Eighth International Sym-

240

posium on Functional and Logic Programming (FLOPS),
April 2006.

Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. Stack-
threads/mp: integrating futures into calling standards.
SIGPLAN Not., 34(8):60–71, 1999.

John Thornley. Performance of a class of highly-
parallel divide-and-conquer algorithms. Technical Re-
port 1995.cs-tr-95-10, California Institute of Technology,
1995.

Adam Welc, Suresh Jagannathan, and Antony Hosking.
Safe futures for java. In OOPSLA ’05: Proceedings of
the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applica-
tions, pages 439–453, 2005.

A. Verification test sequences
We modelled the following test sequences in checkfence,
where i2 and i4 initialize a queue of size 2 and 4 respec-
tively, ps is a push operation, pp a pop operation, tk a take
operation, and the bar (|) operator composes operation se-
quences in parallel:

i2 (ps pp | tk)

i4 (ps ps pp | tk tk)

i4 (ps ps pp | tk)

i4 (ps pp pp | tk | tk)

i4 (ps ps pp pp | tk)

i4 (ps pp ps pp | tk | tk tk)

i4 (ps ps pp pp | tk | tk)

i4 (ps ps pp pp | tk tk)

i4 (ps ps ps pp pp pp | tk)

i4 (ps pp ps ps pp pp | tk)

i4 (ps pp ps pp pp ps | tk | tk)

i4 (ps ps ps pp pp pp | tk | tk tk)

i4 (ps ps pp ps ps pp pp pp | tk tk)

B. Differences with the productized TPL
At the time of writing, there are the following API differ-
ences with the productized TPL (.NET Framework 4.0, Beta
1):

• A task is started as Task.Factory.StartNew(action),
and a future as Task.Factory.StartNew(function).

• The value of a future is retrieved as future.Result.
• Parallel.Aggregate is only available through PLINQ.
• Replicable tasks are not exposed.

241

