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Abstract

Distributed computing systems can suffer from occasional catastrophic violation
of performance goals; due to the complexity of these systems, manual diagnosis of the
cause of the crisis is prohibitive. Recognizing the recurrence of a problem automatically
can lead to cause diagnosis and / or informed intervention. We frame this as an online
clustering problem, where the labels (causes) of some of the previous crises may be
known. We give an effective solution using model-based clustering based on a Dirichlet
process mixture; the evolution of each crisis is modeled as a multivariate time series.

We perform fully Bayesian inference on clusters, giving a method for efficient on-
line computation. Such inferences allow for online expected-cost-minimizing decision
making in the distributed computing context. We apply our methods to Microsoft’s
FExchange Hosted Services.

1 Introduction

Distributed systems perform large computing tasks by farming out sub-tasks to a set of
servers. These servers may be spread out across geographical and corporate boundaries
in data centers containing tens of thousands of machines. Microsoft’s Exchange Hosted
Services, for instance, provides email processing in which incoming messages are routed to
servers that apply a set of filters and other processing steps before directing the emails to
the user, a spam repository, or other destination.

Such systems have performance goals such as maximum processing times; when these
goals are not met, attempts are made to diagnose the problem and intervene. Such problems
can occur, for instance, when demand is high and servers become overloaded, or due to
human misconfigurations (e.g., during software updates) or performance problems in lower-
level data centers on which the servers rely (e.g., for performing authentication services).
Often the violation of the performance goals is severe and occurs for nearly all of the servers,
and such periods are simply called system crises.

When a crisis occurs, it is desirable to identify any previous crises that exhibited similar
behavior, and consider the set of interventions, if any, that were successful in those cases. Due
to the large scale, the interdependence and the distributed nature of the systems, problems
tend to recur and, since human diagnosis is expensive, one must recognize the recurrence of
a problem in an automated fashion. A set of status measurements for the servers, such as



CPU utilization and queue length and throughput for various tasks, are available for this
purpose; there can be hundreds of these measurements per server (Bodik et al., 2009).

We consider the problem of matching a new crisis to previous crises of mixed known and
unknown causes; this is an online clustering problem with partial labeling, and is compli-
cated by the incompleteness of the data for the new crisis. Previous work in crisis / failure
identification (Cohen et al., 2005; Yuan et al., 2006; Duan and Babu, 2008; Bodik et al.,
2009) uses multi-stage approaches in which statistical, machine learning, or ad-hoc methods
are combined in a heuristic fashion. While giving practical solutions and valuable insights
into the structure and properties of the data, they do not provide a consistent model for the
process of interest. They also restrict to either completely labeled or completely unlabeled
data, and do not address the incomplete nature of the new crisis data.

We provide a solution using model-based clustering, where the evolution of each crisis is
modeled as a multivariate time series. Fully Bayesian inference is performed to estimate the
cluster assignments of the set of previous crises; then identification of the type of a new crisis
is simply a prediction problem using the incomplete data for this crisis. The fully Bayesian
inference on clusters can be performed during the typically lengthy periods between crises,
and when a new crisis begins one can then perform rapid prediction of its type by applying
a natural approximation.

A Dirichlet process mixture model (Escobar, 1994; Ishwaran and Zarepour, 2002) is used
for the cluster assignments; this allows the number of crisis types to increase as the number
of crises increases, while maintaining exchangeability between crises. Since the likelihood
function can be highly multimodal, we make the inference on clusters as efficient as possible
by combining parallel tempering (Geyer, 1991) with a collapsed-space split-merge Markov
chain method (Jain and Neal, 2004). We show that this combination can be superior to use
of the split-merge method alone.

We describe how to use our identification of a new crisis to perform optimal decision
making, i.e., to choose an intervention that minimizes expected cost. This fully accounts for
uncertainty in the crisis type assignments and the parameters of those types, only possible
using fully Bayesian inference.

To our knowledge this is the first instance of fully Bayesian online clustering in any
context. Dirichlet processes have been applied to online clustering of documents by Zhang
et al. (2004), obtaining a single cluster assignment based on the posterior, but in order
to perform optimal decision-making one must instead integrate over the entire posterior
distribution.

We demonstrate the accuracy of our crisis identification method using simulated data
and comparing with a distance-based clustering algorithm. Then we apply our method
to the Exchange Hosted Services. Priors for the parameters are obtained by a combining
information from experts with information in the data, and reflect the fact that the status
measurements are chosen with the goal of being indicative of crisis type, i.e. any particular
measurement has a non-trivial probability of behaving similarly across crises of a particular
type. We show that this careful prior choice improves clustering performance relative to a
“default” prior specification.

Performance of our method (which is quite general) applied to the EHS data without
any crisis labels is superior to that of the multi-stage data mining methods of Bodik et al.
(2009) that were developed using the same data set; accuracy is measured by comparing to



the known causes of some of the crises.

The rest of the article is organized as follows. In Section 2 we describe the data that
are typically available for distributed computing centers. Our model for the crisis evolution
and crisis types is given in Section 3. Posterior computation for this model is described
in Section 4, and methods for online prediction and optimal decision-making are given in
Section 5. The simulation study is presented in Section 6, while results for the Exchange
Hosted Services are given in Section 7. In Section 8 we draw conclusions.

2 Measuring Performance in Distributed Computing

In distributed computing a common set of measurements from each server capture its current
activity and state. These are typically aggregated over time intervals, which in the case of the
Exchange Hosted Services (EHS) are 15 minutes long. EHS handles email traffic, applying
a sequence of spam filters and other checks for validity, so that some of the measurements
are the number of emails that pass each filter, and the number blocked by each filter, during
the 15-minute period.

Distributed computing systems have a set of performance goals, often stated as bounds
on the acceptable value for one or more of the server measurements (called Key Performance
Indicators or KPIs). An extended period of violation of these performance goals is considered
to be a system crisis. In EHS the system is considered to be in violation if at least 25% of
the servers are above a threshold for a particular KPI (Bodik et al., 2009). Two consecutive
violation periods are considered to define the beginning of a crisis in EHS, and the crisis is
considered to continue until there are four consecutive periods of non-violation.

Traces of several KPIs and several non-KPI measurements (“metrics”) for EHS are shown
in Figure 1 for a ten-day period. The KPI traces show the percentage of servers exceeding
the threshold for that KPI, and the other traces are the medians of each of the metrics over
the set of servers. There are six crises shown here, namely the periods when one of the KPI
traces is above the dashed line. The first two crises are known to have particular causes “A”
and “B”, while the last four crises are believed to have the same cause “C”. It is clear that
the third metric is elevated during crises of type C, but not during crises of type A or B.
The second metric is elevated during crises of type C, but diminished during crises of type A
and B. The first metric appears to be elevated during crises of type C, possibly diminished
during crises of type B, and not strongly affected by crises of type A.

This plot suggests that the medians of the metrics over the servers are very informative
as to the crisis type. Furthermore, the median of any particular metric appears to be
consistently either low, normal, or high during crises of a particular type. This is supported
by the opinion of EHS experts, so we fit our models on the median values of the metrics,
discretizing according to thresholds that define “low”, “normal”, or “high” values.

We define the normal range of (the median value of) a metric to be the 2nd and 98th
quantile of that metric during non-crisis periods. Applying these quantiles to the EHS data,
“high” or “low” values of many of the metrics correspond closely with crisis periods. We
expect similar dimension reduction and discretization to be effective in other distributed
computing systems.



3 Clustering of System Crises

3.1 Crisis Modeling

We use a time series model for crisis evolution. Denote the vector of metrics for the ith crisis
in the [th time period after the start of the crisis by Y. = (Yiu, ..., Yas); for crises of type
k, we assume that the initial state vector Y;;. is sampled from a discrete distribution, and
that the state vector Yj;. subsequently evolves according to a Markov chain of order q.

Estimation of the full joint distribution of Y;;. and the full transition matrix is infeasible
when the number of crises [ is small and the number of metrics J is moderate or large, as is
typical (for EHS I = 27 and J = 18). For such small sample sizes, extremely parsimonious
conditional independence structures have been found both empirically and theoretically to
provide the best accuracy in estimation of a class variable (Friedman et al., 1997; Domingos
and Pazzani, 1997; Hand and Yu, 2001). In particular, naive Bayes models, which assume
conditional independence of all attributes conditional on the class, and augmented naive
Bayes models that assume only pairwise dependencies conditional on the class, have been
found to have the best accuracy.

We therefore assume independence of all metrics conditional on the crisis type (depen-
dencies between pairs of metrics can easily be accommodated by replacing each pair of
metrics, having three states each, with a single metric that has nine states). Conditional on
k, Yi1; then has a discrete distribution with probability vector fU*) = (ﬂfj k), éj k), ?Sj k)), and
Yi; evolves according to a Markov chain of order ¢ over the three states (1:low, 2:normal,
3:high). For parsimony We take q = 1; the elements of the row-stochastic Markov transition
matrix are denoted by TU* i ) where the subscripts s,t € {1,2,3} indicate the states. This
gives 8J free parameters for each crisis type, where J is the number of metrics. The result-
ing complete-data likelihood function is the following, where we condition on the unknown
type indicators Z; of each crisis ¢ = 1,...,] and where the values n;;;; are the number of
transitions of the jth metric from state s to state ¢ during crisis ¢:

(D | {Z} =1 {6(]k Uk }] k) :H [( t(sz'))l(Yi”:t) H (Ts(thi))"ijst] .

i, s

3.2 Cluster Modeling

The Dirichlet process mixture (DPM) model provides natural prior specification for online
clustering, allowing the number of clusters to increase as the number of crises increases. The
DPM can be obtained as the limit of a finite mixture model with Dirichlet prior distribution
on the mixing proportions (Escobar and West, 1995; Neal, 2000). In our context the DPM
is parameterized by a scalar o controlling the expected number of crisis types occurring in
a set of crises, and by a prior distribution Go(d{3V*, TY k)}j) for the set of all parameters
associated with each crisis type k, where GGy does not depend on k.

We take G to be the product over j of independent Dirichlet distributions for 3% (with

parameter vectors al?) = (agj ) aé ),aéj))) times the product over j and s of independent

(jk

Dirichlet distributions for the transition matrix rows T.Y" (with parameter vectors by =

(bg{), bg), bgjg))) The use of such a product Dirichlet prior distribution for the rows of an
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unconstrained transition matrix is standard practice (e.g., Carlin et al. (1992); Diaconis and
Rolles (2006)).

The DPM model for the crisis types {Z;}/_, and crisis parameters 3% TY" can be
written as follows, in the case where the causes of the crises are all unknown:

m({23) = (20 [T 7 (Zil{Zi}ecs)
a 1

where m; = max{Z; : ¢ <i} for i > 0 and my = 0, and

7 (A{399, 799, 1 (Z),) = [ Go (4899, 709}, )

k=1

Here we have integrated over the Dirichlet process, obtaining a generalized Polya urn scheme
(Blackwell and MacQueen, 1973). This form is also called the “Chinese Restaurant Process”;
each observation 7 is conceptually a guest who, upon entering a restaurant, either sits at a
table that is already occupied, with probability proportional to the number of guests at that
table, or sits at an empty table.

When the causes of some of the crises are known (i.e., the partially labeled case), this
information can be captured by indicator functions 1(Z; = Z;) for pairs of crises i, ¢’ that
are known to have the same type (denoted by i ~ i'). In this case the prior w({Z;}L_,)
is proportional to the expression in (1) multiplied by [] 1(Z; = Zy), while the prior

invg/

m(d{BYP, T.Qk)}j,k\{Zi}f:l) is unchanged.

3.3 Choice of prior constants

We select the prior hyperparameters «, o), and Y by combining information elicited from
domain experts with information in the data. The former is formal Bayes, while the latter
is empirical Bayes (Carlin and Louis, 2009).

According to the Dirichlet process mixture model, the probability that two randomly
chosen crises are of the same type is 1/(a+ 1). The EHS experts estimate this to be 0.1,
yielding & = 9. This implies that the expected number of crisis types in the EHS data is
12.9 (for 27 crises), which the experts agree is reasonable.

Our choices of a¥) and by reflect the fact that the metrics are selected to be indicative
of crisis type, i.e. any metric has non-trivial probability of behaving similarly across crises
of a particular type. EHS experts believe that there is a substantial prior probability for
any 7 and k that one of the values ﬁt(j " is “close” to one. This is formalized by specifying
a 50% prior probability that ﬂfjk) > .85, 6§jk) > .95, or éjk) > .85 (the threshold is higher
for ﬂéj ") since the value “normal” is more common than the values “low” or “high”). aV)
is then uniquely determined by the prior mean for 3Y*%), which we take to be the empirical



distribution 5* = (57, 55, B%) of the first value of all metrics in all crises. Sensitivity to these
choice is examined in Section 7.1.

Selection of by is analogous. We use the data for all crises and all metrics to find the
empirical transition probabilities 77 from each starting state s, and set the prior mean of
T9% equal to T*. Then we consider the limiting distribution #@% = (p0% 0k .0k o
a Markov chain with transition kernel 7V, Since the metrics tend to behave consistently
across crises of a particular type, there is non—tr1v1al probability that one of the Values 7“(] )
is “close” to one. This is formalized via a 50% prior probability that r(] RIS .85, 7‘2 ) > .95,
or réjk) > .85. By specifying the prior weight of evidence, meaning the sum of bgj), to be
equal for each row s of the transition matrix, the values of bY) are then uniquely determined.

Default §)r10r specification: One might alternatively consider the “default” choice of

= bsi = 1 for all 7, s, and t; this gives a generalized uniform prior for each of the
vectors [BU%) and each of the rows T. 7k) of the transition matrices, and is the most common
choice when performing Bayesian inference on discrete distributions or transition matrices
(Carlin et al., 1992; Diaconis and Rolles, 2006). However, this choice conflicts with expert
opinion and the data, implying a very small prior probability that a particular metric behaves
similarly across crises of a particular type, in the sense above. This discrepancy negatively

impacts clustering performance (Section 7.1).

4 Posterior Computation

For a fixed set of crises, Markov chain methods can be used to obtain samples from the
posterior distribution 7({Z;}/_,, {3U*), M }j,k|D) of the clustering model given in Section 3.
We use a collapsed-space Markov chaln method (Jain and Neal, 2004), modified with parallel
tempering (Geyer, 1991). The collapsed-space sampler simulates a Markov chain with target
distribution 7({Z;}._,|D) on the reduced space {Z;}_;; this is possible by marginalizing out
the cluster-specific parameters, in our case {3U%) ,T.Q k) }j.k- Posterior samples for the cluster
parameters can then be obtained by sampling from their conditional posterior distribution;
details are given in Appendix A. Collapsed-space samplers have been found both empirically
and theoretically to be more efficient than their full-space counterparts (Liu, 1994).

Collapsed-space sampler: The basic collapsed-space sampler is composed of Gibbs up-
dates of each Z; in turn. In order to address the potential multimodality of the posterior
distribution 7({Z;}!_;|D), Jain and Neal (2004) add a Metropolis-Hastings move that merges
two clusters into one or splits a cluster into two. The authors give empirical evidence showing
that the addition of this move speeds convergence.

In the distributed computing context, the number of metrics can be large, and the re-
sulting likelihood can have extremely narrow and well-separated modes corresponding to
distinct cluster assignments. Here even the collapsed-space sampler with split-merge moves
can have difficulty mixing between the modes. Additionally, convergence diagnostics can be
difficult to apply; the parameters are the cluster indicators Z; of the individual crises, which



for a particular crisis may take only one or two values for the entire simulation even when
the mixing is good.

Parallel tempering: In order to further improve the efficiency of the Markov chain, and
to facilitate the use of convergence diagnostics, we modify the Markov chain by applying
parallel tempering. This technique has been proven to dramatically improve Markov chain
efficiency for many multimodal distributions (Woodard et al., 2009). It simulates parallel
Markov chains indexed by [ = 1,..., L using identical updating strategies but distinct target
distributions ¢;; we take ¢;({Z;}_,) oc 1({Z;}_)w(DI{ Z;}_))* where m(D|{Z;}L,) is the
marginal likelihood (see Appendix A) and 0 < 31 < ... < 8 = 1. The first distribution ¢, is
close to the prior if 3; =~ 0, so that chain 1 efficiently explores the state space, and the other
target distributions ¢, interpolate between ¢; and the posterior ¢ = w({Z;}._,|D). The
chains share samples in the sense that swaps are proposed between the states of adjacent
chains; these swaps are constructed to guarantee convergence of the joint process to the
product distribution HlL:1 ¢;. The samples from chain L converge marginally to the posterior
¢r,, and can be used for Monte Carlo inference.

The “inverse temperatures” (; are chosen as follows. We take 3; = 0, and select the
smallest set of inverse temperatures (3, that gives swap acceptance rates of at least 20%;
theoretical and empirical results to support this choice of spacing are given in Atchadé et al.
(2009). This full set of inverse temperatures are used in Section 7.1 for the EHS data,
although for the purposes of the simulation experiments in Section 6 we simplify by using
the five largest inverse temperatures (L = 5, still chosen to have swap acceptance ~ 20%)
instead of the full set; this simplification appears to have little practical impact and saves
time for these experiments.

Convergence diagnosis: We apply standard convergence diagnostics (Cowles and Carlin,
1996) to assess convergence of the parallel tempering process. Even if for a particular crisis
1 the indicator Z; takes only a single value at the lowest temperature, Z; takes many values
at the higher temperatures, allowing convergence diagnosis.

To detect any lack of convergence due to multimodality, we simulate the parallel tem-
pering process multiple times and apply the convergence diagnostic by Gelman and Ru-
bin (1992). This requires sampling the initial parameter vectors from a distribution that
is “overdispersed” relative to the posterior distribution, so we draw these from the prior

T({Zi}izh)-

5 Online Prediction and Decision-Making

We wish to identify a new crisis in real time, given the data D from previous crises and the
data D, so far for the new crisis. This consists of estimating Pr(Z,c., = Zi|D, Dpew) for
each previous crisis i = 1,...,I and Pr(Z,c, # Z; Vi|D, Dpew) Where Z,.,, is an indicator of
the type of the new crisis.



5.1 Exact Prediction

To perform inference for Z,.,, we can apply the Markov chain method from Section 4 to the
data from past crises plus the data available so far for the new crisis, i.e., clustering the I 41
crises. This can be done with as little as a single time period of data for the new crisis, since
the time series model given in Section 3.1 still applies. We then have Monte Carlo estimates
for the desired probabilities:

120, = 2")

new

Iﬁr(Znew - Zz|Da Dnew) =

=1
] =

=1

~

Pr(Zpew # Zi Vi|D, Dpew) = 120, + 79 vi)

new

Sl
] =

=1

where ({Zi(l) L Z,(lle)w> for [ = 1,..., L are the posterior sample vectors from the Markov

chain.

This is practical when the number of past crises is small (for = 15, J = 15 the Markov
chain Monte Carlo computation takes less than 5 minutes on a standard processor), but after
many crises this is unacceptably slow for a context requiring rapid decision-making.

5.2 Approximate Prediction

We provide an efficient alternative for prediction, based on the approximation:

Pr(Znew - Zz|Da Dnew) = Z Pr(Znew - Zz|{Zz}f:1a D, Dnew) Pr({Zi}iI:1|D>Dnew)
{Zi}fﬂ
~ Y Pr(Zuew = Zil{Zi}_,. D, Dyew) Pr({Zi}_,|D) (3)
{Zi}{:l
and the analogous approximation for Pr(Z,c., # Z; Vi|D, D). These assume that the data

from the new crisis do not tell us very much about the past crisis types {Z;}/_;; this is quite
accurate in practice, as demonstrated in Section 6.2.

The conditional distribution Pr(Z,ew|{Zi}._;, D, Dnew) Of Zpew is obtained by:
Pr(ZnewHZi};'r:la D, Dnew) X Pr(Znew> {Zz}zjzl |D, Dnew)
(8 Pr(ZHGUJHZi}iI:l) PI"(D, Dnew|Znew> {Zz}le)

where Pr(D, Dyew| Znew, {Zi}_,) is available in closed form as shown in the Appendix, and
where (from the Dirichlet process mixture model in (1))

I
Pr(Znew { Zity) o 01 (Zew = my + 1) + > 1 (Znew = Zur) .

=1

Given these facts, we propose the following two-step method:



Method for Approximate Prediction

1. After the end of each crisis, refit the clustering model by smlulatmg the Markov
chain described in Section 4. This yields sample vectors {Z } from the posterior
distribution w({Z;}/_,|D).

2. When a new crisis begins, use its data D,,.,, to calculate the Monte Carlo estimates:

pr(Znew = Zz|Da Dnew) = Pr(Znew - Zl(l)|{ZZ(/l = 1>D Dnew)

=1
M) =

=1

Pr(Znew # 2 Vil{ZPV_, D, Dpew).

Sl
Mh

]-ﬁr(Znew # Z; VZ‘,D7 Dnew) -

=1

Part 1 is the slower part of the computation, but takes much less than the hours or days that
typically pass between crises. The computation in part 2 above is O(LI.J), very manageable
in real time.

5.3 Expected-Cost-Minimizing Decision Making

Given an appropriate cost function, we can use our inferences for a new crisis to perform
expected-cost-minimizing decision making. In fact, performing optimal decision making, i.e.,
while conditioning only on the data and not on particular estimates of the parameters, can
only be done via fully Bayesian inference such as we have described (Robert, 2001).

A cost function specifies the total cost of a crisis as a function of the true crisis type
and the action taken. Taking an action that quickly resolves a crisis gives low total cost,
while taking an action that prolongs a crisis leads to high total cost. The costs of a crisis
include, for instance, payouts to clients for violation of service agreements as well as client
dissatisfaction.

More precisely, the total cost of the new crisis is a function Clo, ({213, Z;.,,)] of the
action ¢ and the entire vector of true crisis types ({Z;:},,

Zw) due to the fact that 77,
is only meamngful in the context of {Z;}/_,. If we knew C, and given posterior sample

vectors ({Zz A Zr(Le)w) as in Section 5.1, the expected cost of taking ¢ during the new

crisis could be estimated consistently as
)
ZC |: Zz( zI 1 Zr(Lle)w)] .

A similar expression is obtained When using the approximation given in Section 5.2.

The expected-cost-minimizing action is the value of ¢ that minimizes E(C). Although
the cost function C' is not known in practice, for actions ¢ that have been taken during
previous crises the realized costs can be used to estimate C', and for other actions expert
knowledge can be used to estimate C'.

We will evaluate the accuracy of our crisis identification method while keeping in mind the
ultimate goal, namely choosing the optimal action. For this reason we will avoid choosing a



particular estimate of the crisis types ({Zi}le, Znew), and instead will consider the accuracy
of the soft identification, i.e., the posterior distribution over ({Z;}._;, Z,ew) as given in
Sections 5.1 and 5.2.

6 A Simulation Study

We demonstrate the accuracy of our methods on simulated data. We first address the offline
setting, i.e., applying the fully Bayesian clustering algorithm described in Sections 3 and 4
to a fixed set of crises. Then we consider accuracy of online prediction.

6.1 Offline Accuracy

We examine offline accuracy, varying the number of crises and metrics and comparing with a
distance-based clustering algorithm. We sample [ crises of e(% al length M by first drawing
the vector of crisis type indicators and the parameters 3V TV ") of the crisis types according
to the Dirichlet process mixture model described in Section 3.2, then simulating the metrics
for each crisis from the model described in Section 3.1. The crisis lengths must be equal in
order to allow for comparison with distance-based clustering.

Inferences for the model-based clustering method are obtained as described in Section 4.
We compare this method with K-means, a common distance-based clustering algorithm
(Hartigan and Wong, 1979). We apply K-means using Euclidean distance between the ob-
servation vectors, which consist of the values (1, 2, or 3) of all of the metrics during all of
the time periods of each crisis. We find that in our context standard K-means criteria for
estimating the number of crisis types perform very poorly (typically estimating only a few
clusters). In order to obtain best-case accuracy measures for K-means, we therefore apply
it with either the true number of clusters (“K-Means 17), or with half the true number of
clusters (“K-Means 2”), since using fewer than the true number of clusters can improve the
performance of K-means (Booth et al., 2008). These scenarios are unrealistically optimistic
since the number of clusters is unknown, but as we will see the performance of K-means is
still dramatically lower than that of our model-based clustering method.

Twenty data sets are simulated for each of several combinations of I and J, and the
following measures of accuracy are obtained for model-based clustering (MBC) and for K-
means 1 and 2:

1. Pairwise Sensitivity: Of the pairs of crises that are of the same type, the percentage
that are assigned to the same cluster (for MBC, that have posterior probability greater
than 0.5 of being in the same cluster).

2. Pairwise Specificity: Of the pairs of crises that are not of the same type, the percent-
age that are not assigned to the same cluster (for MBC, that have posterior probability
no more than 0.5 of being in the same cluster).

3. Error of No. Crisis Types: The absolute error of the estimated number of crisis
types occurring in the data, divided by the true number of crisis types. This is only
relevant for MBC, and in this case the posterior mean is used to estimate the number
of types.
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The first two measures have been used, e.g., in Booth et al. (2008). Some variant of the last
measure is used in almost all analyses of clustering performance.

In order to simulate data that are as realistic as possible, we take the crisis length to be
that of most of the crises in the EHS data (8 time periods, due to the truncation described in
Section 7.1) and take the hyperparameter values a(), bY) to be those obtained for the EHS
data as described in Section 3.3. We use a smaller value of a (o = 4) than that obtained
for EHS, in order to estimate the pairwise sensitivity accurately when the number of crises
is small.

Values of the accuracy measures are reported in Table 1, averaged over the simulated
data sets and along with their standard errors. The performance of both K-means 1 and 2 is
dramatically lower than that of MBC in terms of the pairwise accuracy measures. K-means
2 has higher pairwise sensitivity and lower pairwise specificity than K-means 1, since it uses
fewer clusters.

Increasing the number of metrics results in improved performance of MBC by all mea-
sures. This is expected, since more metrics means more evidence available to estimate the
clusters. By contrast, the number of crises in the data does not appear to have a strong
effect on any of the accuracy measures. This helps explain the excellent accuracy that we
find in the online context (Section 6.2), where the number of crises starts small and gradually
increases.

6.2 Online Accuracy

We examine the accuracy of our method in the online context; given a set of simulated
crises in a particular order, we predict the type of each crisis based on the data from the
previous crises and partial data for the new crisis. Here it is not possible to apply distance-
based clustering methods since the length of the available data for the new crisis can be
different from that for the previous crises. We instead compare predictive accuracy of the
approximate method given in Section 5.2 (“MBC”) to that of the exact method in Section 5.1
(“MBC-EX”), in order to justify the approximation. For data simulated as in Section 6.1,
we evaluate several measures of accuracy for MBC and MBC-EX:

1. Full-data misclassification rate: The percentage of crises whose predicted type is
incorrect, using all of the data for the new crisis. Here “correct” predicted type means
that lﬁr(Znew # Z; Yi|D, Dpew) > 0.5 if Zy0y # Z; Vi according to the gold standard
(here, the truth), and otherwise that P;r(Znew = Z;|D, Dyers) > 0.5 for some ¢ < I such
that Z,.., = Z; according to the gold standard.

2. p-period misclassification rate: The percentage of crises whose predicted type is
incorrect, using the first p time periods of data for the new crisis.

3. Average time to correct identification: The average number of time periods
required to obtain the correct identification, for crises that are correctly identified
when using the full data for the new crisis.

We do not evaluate the average time to correct identification for MBC-EX, since this is
extremely computationally intensive. The average values of the above accuracy measures
over five simulated data sets are shown in Table 2 for several combinations of I and J.
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The accuracy is high for both MBC and MBC-EX, correctly classifying over 80% of crises
in every setting we considered. The performance of MBC is not significantly worse than that
of MBC-EX, showing the accuracy of the approximation given in Section 5.2. Using more
metrics shortens the average time to identification, and there is some evidence that it also
reduces the misclassification rates.

The accuracy of both methods degrades when using the data from only the first three
time periods of the new crisis, but still over 80% of crises are correctly classified in all cases.
The average time to correct identification for MBC is between one and two time periods—this
means that on average crises are correctly identified before the key performance indicators
exceed their thresholds. Such early identification of a crisis is extremely helpful in choosing
an appropriate intervention.

7 Application to Exchange Hosted Services

In the first four months of 2008, 27 crises occurred in EHS. The causes of some of these crises
have been diagnosed by EHS experts, and are listed in Table 3.

Preprocessing as in Bodik et al. (2009): We choose a subset of the available metrics
by applying their feature selection procedure. In cases of pairs of metrics with correlation
greater than 0.95 we remove one, leaving 18 metrics.

To facilitate early crisis identification, it is helpful to include the data from the half-hour
just before the start of each crisis in fitting the model and estimating the type of a new
crisis. Additionally, we do not use data after the first hour and a half of each crisis, since
the metrics are not believed to be informative as to the crisis type after this time.

7.1 Offline Application

To test the accuracy of the offline crisis identification method given in Section 4, we apply
it to the whole set of EHS crises without the known crisis labels, and compare our results to
those labels.

Markov chain trace plots are shown in Figure 2, illustrating the convergence of the chains.
The samples of Z,, for several values of the inverse temperature § are shown. The chain
with @ = 1, which samples from the posterior distribution 7({Z;}/_,|D), primarily visits
the single value Z5, = 2, while the chains with smaller values of 3 visit progressively more
values of Zy. This facilitates convergence diagnosis and exploration of the space. Using
109 iterations, the smallest Geweke diagnostic p-value for the Markov chains is 0.44 after
Bonferroni correction, detecting no lack of convergence. Here univariate tests are done for
each parameter Z; : i # 1 at each inverse temperature. Similarly, we obtain a maximum
Gelman-Rubin scale factor of 1.01, again evidence of good convergence. This maximum is
taken over Z; : i # 1 for inverse temperatures (3 less than 0.5 (for 5 > 0.5 there are numerical
difficulties, since some Z; take a single value for almost all iterations).

The sizes of the clusters from the posterior mode cluster assignment are shown in Table 3.
This cluster assignment has 58% posterior probability, and along with the second-highest
probability assignment accounts for a total of 93.8% of the posterior probability. This second
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assignment has only a single difference with the first, namely a change in the labeling of one
crisis, increasing the count of type B to 15 and decreasing the count of type K to 5. We will
summarize the accuracy of the posterior mode clustering assignment relative to the known
causes, but this summary applies equally well to the second assignment since the crisis for
which they differ has unknown cause.

Comparison to known causes: The posterior mode crisis labels for the most part match
the known causes, with the exception of four uncommon crisis types that are incorrectly
clustered with more common types. The largest cluster obtained by MBC corresponds to
the cause “overloaded back-end”; all eight of the crises known to be of this type are correctly
clustered together, along with six other crises (most of which have unknown cause). The
“overloaded back-end” problem occurs due to poor performance of another data center,
one on which the servers depend. The EHS technicians cannot intervene to improve the
performance of that separate data center, explaining why this is the most common type of
crisis.

The two crises of known cause “overloaded front-end” are also correctly clustered to-
gether. Similarly, the “database configuration error”, “workload spike”, and “request routing
error” clusters are correctly identified.

Four uncommon crisis types are incorrectly clustered with more common types. For
instance, the “configuration error” crisis is clustered with the “overloaded front-end” crises.
This type of mistake occurs partly due to the fact that crises having different causes can
have the same patterns in their metrics. In the most extreme case, the metrics appear to be
indistinguishable between the two crisis types.

However, in the other cases while the large majority of metrics are indistinguishable
between the crisis types, a few metrics show distinct behavior between the types. Since we
have assumed the parameters of distinct crisis types to be independent a priori, the presence
of distinct crisis types with similar patterns for most metrics is very improbable under the
prior. Such crisis types are therefore clustered together. This issue could potentially be
fixed by creating an appropriate dependence structure between the crisis types in the prior
distribution.

7.1.1 Sensitivity to Prior Specification

When applying our method for crisis identification, use of the generalized uniform prior
(having an) = bg) = 1 for all j, s, and t) can lead to nonsensical results, for reasons
described in Section 3.3. Most or all of the crises are assigned to the same cluster; for EHS,
all crises except one are assigned to a single cluster.

As long as the prior is not dramatically inconsistent with the data, results are not sensitive
to the prior specification. Changing the prior described in Section 3.3 to obtain a 50% prior
probability that ﬁ%jk) > .95, ﬁéjk) > .97, or ﬁéjk) > .95 and a 50% prior probability that
7’§jk) > .95, rgjk) > .97, or réjk) > .95, for instance, does not change the posterior mode
clustering assignment.
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7.2 Online Application

We evaluate the accuracy of online clustering for the EHS data, relative to the offline cluster-
ing assignment. Permuting the order of the EHS crises, we apply the online crisis identifica-
tion method given in Section 5.1 and evaluate the accuracy measures described in Section 6.2,
treating the posterior mode cluster assignments from the offline context (Section 7.1) as the
gold standard.

For the original crisis ordering, we obtain a full-data misclassification rate of 7.4%, a
3-period misclassification rate of 14.8%, and an average time to correct identification of
1.81 time periods. This means that on average the crises are identified correctly before the
key performance indicators exceed their thresholds. Two-thirds of the crises are identified
correctly in the first time period.

Taking the average over five random permutations of the crises, we obtain a full-data mis-
classification rate of 5.9% (SE=3.4%), a 3-period misclassification rate of 11.8% (SE=3.2%),
and an average time to correct identification of 1.56 (SE=0.07). The excellent identification
performance of MBC clearly does not depend on the particular ordering of the crises. Our
full-data misclassification rate on permuted data is superior to that reported in Bodik et al.
(2009), which is over 20% using the same data and permutation procedure.

8 Conclusions

We have given a method for fully Bayesian online crisis identification in distributed comput-
ing, and have described how to use this to perform expected-cost-minimizing crisis mitiga-
tion. Accuracy has been demonstrated on both simulated data and data from the Exchange
Hosted Services; our method outperforms a distance-based classifier in the offline setting,
and the multi-stage data mining methods of Bodik et al. (2009) in the online setting, in both
cases by a large margin.

Importantly, our method provides natural solutions to several related problems; these
are explored in Goldszmidt and Woodard (2009). First, during a crisis one can forecast its
evolution. Second, the model-based approach allows for interpretation of the crisis types,
which can aid identification of the causes. For instance, one can distinguish the system status
metrics that are most strongly associated with crises of a particular type. This question alone
has received considerable attention (Cohen et al., 2004; Zhang et al., 2005), and is resolved
naturally in the context of our time series model. Finally, one could potentially model not
just the evolution of crises of a particular type, but also how this evolution depends on the
intervention taken.
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A Markov Chain Monte Carlo Computations

The marginal likelihood given {Z;}1_, is:
RO ZHr) = [ 7 (D12 BT ) 7 (4399, 709 0] {20}
Yipj=t) | 24 . . .
/[HH( OZ) 1] ]HHDlrlchlet k) gGR) glikly. () x

i=1 jt k=1 J

1
1111 (Ts(tjz) US] HHDlrlchlet (d(TY® TGP TGk, p0)y
i=1 j,s,t k=1 j,s

where Dirichlet(d(Ts(fk), Ts(gk),Ts(gk)); by )) is the finite-dimensional Dirichlet distribution for
(19", 7Y" TUMY with parameter vector bY). By multinomial-Dirichlet conjugacy (Gelman
et al., 2004),

n(D{Z}L,) = kﬁll;[ ;((fsl‘j:));gf (@ _ :} )1(;1;:)) X (4)

teZs

2

H H teEls teZs 1:2;=k
r (2 [bﬁi’ + 3 ”D I r(e)

k=1 j,s
teZs 1:2;=k teZs

The posterior distribution of {Z;}/_, is proportional to the product of 7({Z;}._,) and
7(D{Z;}1_,), given in (1) and (5), respectively. A Markov chain can then be constructed
to sample on this reduced space. For instance, a Gibbs sampler for {Z;} updates each Z;
conditional on Z|_;; = {Zy}ix. The posterior distribution of Z; conditional on Z_; is
proportional to 7T({Z M |D); computation consists of enumerating over the possible values
of Z; and normalizing to obtain the conditional distribution. The possible options are that
Z; is equal to one of the values in Z|_;), or that it is not equal to any of the values in Z|_;).
Notice that any of these possibilities may require relabeling of the crisis types, to ensure that
the first occurrences of the types are correctly ordered.

Once we have obtained a set of posterior samples of {Z;}/_, by simulating such a Markov

chain, we can also obtain posterior samples of {3*) ,T.Q k) }ks by noticing that

mr

7({899), TR} {Z Ly, D) = [ [ Divichlet (d(87Y, 85, 55M); a) x
k=1 j
mr

H H Dirichlet(d(Ts(fk), Tgk), T(gk)); B(j)) (6)

k=1 j,s
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where 4V = o) + > 1(Yy; = t) and b9 = pld) 4 > s for t = 1,2,3. For each
i:Z;=k i:Z;=k

posterior sample of {Z;}_,, generate one sample from ﬂ({ﬁ(jk),TQk)}M\{'Zi}{:l,D); this
gives joint posterior samples of the full set of parameters ({Z;}._,, {30, T,Qk)}jvk).
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Figure 1: Traces of several KPIs and metrics for EHS over a period of ten days.

No. Crises | No. Metrics | Method Pairwise Pairwise % Error
Sensitivity Specificity | No. Types

15 10 MBC 94.6 (2.08) | 99.0 (0.50) | 9.3 (1.87)
K-Means 1 | 47.8 (4.26) | 95.3 (0.57) -

K-Means 2 | 74.8 (5.39) | 77.9 (1.73) —

15 15 MBC 99.0 (1.00) | 99.4 (0.41) | 3.7 (0.95)
K-Means 1 | 69.6 (4.76) | 97.0 (0.54) -

K-Means 2 | 88.3 (4.01) 78.2 (2.13) -

25 10 MBC 91.9 (1.88) | 98.8 (0.40) | 7.4 (1.58)
K-Means 1 | 57.7 (3.19) | 95.5 (0.54) =

K-Means 2 | 76.0 (4.01) | 82.9 (1.16) -

25 15 MBC 99.6 (0.23) | 99.9 (0.05) | 3.5 (1.13)
K-Means 1 | 56.5 (3.76) | 95.8 (0.57) -

K-Means 2 | 82.4 (4.76) | 83.0 (1.83) -

35 10 MBC 97.6 (0.65) | 99.8 (0.08) | 6.4 (1.81)
K-Means 1 | 56.5 (3.43) | 95.9 (0.48) =

K-Means 2 | 74.0 (3.93) | 83.9 (1.15) -

35 15 MBC 99.5 (0.24) | 99.9 (0.03) | 3.4 (0.67)
K-Means 1 | 59.3 (4.07) | 97.8 (0.27) -

K-Means 2 | 81.1 (4.74) | 86.7 (1.48) -

Table 1: Offline accuracy of MBC and K-Means for simulated data. Standard errors are

shown in parentheses.
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No. Crises | No. Metrics | Method Full-data 3-period | Avg. Time to

Misclassification | Misclassification | Identification

15 10 MBC 6.7 (3.0) 10.7 (4.5) | 1.31 (0.11)
MBC-EX 8 (2.5) 10.7 (4.5)

15 15 MBC 6.7 (5.2) 9.3 (6.2) 1.13 (0.08)
MBC-EX 5.3 (3.9) 8.0 (4.9)

25 10 MBC 13.6 (2.7) 15.2 (2.7) | 1.33 (0.13)
MBC-EX 9.6 (2.0) 15.2 (3.4)

25 15 MBC 2.4 (1.6) 4.0 (1.8) 1.15 (0.06)
MBC-EX 3.2 (1.5) 3.2 (1.5)

Table 2: Online accuracy of MBC and MBC-EX for simulated data. Standard errors are

shown in parentheses.
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Figure 2: Trace plots of the parallel tempering Markov chain samples of Z5,. Three inverse
temperatures 3 are shown; x-axes correspond to the iterations of the Markov chain.
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ID Cause No. of known No. identified No. MBC crises
crises by MBC matching known

A overloaded front-end 2 3 2

B overloaded back-end 8 14 8

C database configuration error 1 2 1

D  configuration error 1 0 0 (labeled as A)

F  performance issue 1 0 0 (labeled as B)

G middle-tier issue 1 0 0 (labeled as K)

I whole DC turned off and on 1 0 0 (labeled as B)

J  workload spike 1 1 1

K request routing error 1 6 1

Table 3: EHS crises types. The number of crises known to be of each type is given in column
3. The number of crises identified by MBC as being of this type is given in column 4, and
the number of these that correspond to the crises of known type is given in column 5.
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