
Toward Automatic Policy Refinement in Repair
Services for Large Distributed Systems

Moises Goldszmidt, Mihai Budiu, Yue Zhang, Michael Pechuk
Microsoft Research and Microsoft Windows Azure

Silicon Valley Campus

ABSTRACT
In order to be economically feasible and to offer high
levels of availability and performance, large scale dis-
tributed systems depend on the automation of repair ser-
vices. While there has been considerable work on mech-
anisms for such automated services, a framework for eval-
uating and optimizing the policies governing such mech-
anisms has been lacking. In this paper we propose one
such framework and report on our initial experience in
applying the framework to analyze and optimize the op-
eration a geo-distributed cloud storage system at Microsoft.

1. INTRODUCTION
Researchers and practitioners have made a convinc-

ing argument for automated repair services in large dis-
tributed systems [9, 1]. This work been accompanied
by significant amounts of research into the implementa-
tion of the necessary mechanisms for making these auto-
mated repair services a reality [6, 3]. However, we have
seen little research on (a) evaluating the policies govern-
ing these services, and (b) refining and optimizing these
policies. In this paper we present some first steps toward
these goals. Our approach is grounded in survival anal-
ysis and statistical machine learning, in order (a) to esti-
mate from log data the effects of a specific repair action,
and (b) to automatically extract the factors that predict
the effect of each repair action.

We analyze a repair service similar to Autopilot [6].
The unit of failure is a “device” rather than a process.
The available remedies range from doing nothing, auto-
mated reboots and re-imaging, up to several levels of ex-
pert human intervention. Faults are detected using moni-
toring agents that send event signals to the repair service.
The life-cycle of each device is managed by a state ma-
chine; the state changes as a function of the signals from
the agents, the repair actions, and the (recent) history of
the device. The repair policy is thus defined to be a map-
ping from the state, the signals, and the history to a re-
pair action. A diagram of the closed loop repair system
is depicted in Figure 1. A fuller description of the repair

Repair service

Cluster

Monitoring

system

Device state

transition log

 Repair Actions

Policies

Policy manager

Action efficiency

analysis Historical

data

Event ID

New state

Policies refinement

Figure 1: The closed loop system. This paper deals with the analysis
of the repair action and the refinement of the policy (the dotted box).

service is provided in Section 2.
The problem we address in this paper is that of refin-

ing the policy used by the repair service to improve the
quality of service (QoS) in a cloud computing environ-
ment, especially the availability and cost metrics. The
repair actions impact the QoS in two aspects: (1) (re-
duced) service availability, such as machine temporarily
unavailable while the repair action is being executed (or
while it takes effect), and (2) the economic cost of the
action (e.g., billing by service operators). Given these
costs, some examples of the policy refinements may be:
(1) if we infer that some repair action cannot bring the
service back to normal operating parameters, then we
should choose a different repair action, decreasing cost
due to downtime; (2) if we infer that a certain event trig-
gered by the monitoring agent implies a problem that a
Tier 1 operator cannot solve, it is better to directly esca-
late to a more expensive Tier 2 operator, to reduce the
unnecessary cost spent on Tier 1.1

We refine the policy by concentrating on each specific
repair action at a time. Our approach is in two parts. The
first part consists of evaluating the effectiveness of each

1It is expected that this will be a temporary solution. Once the
correct repair sequence is figured out by Tier 2, then it will be
“pushed down” to Tier 1.

1

Cost increase

Automatic Human intervention

QoS, Availability costs Money, QoS, Availability costs

NoOp

N1

RB

N2

NDI

N3

DI

N4

T1

N6

T2

N7

T3

Event

US

N5

Figure 2: Repair action ladder. Where: NoOp = No operation, RB =
reboot, NDI = non destructive re-imaging, DI = destructive re-imaging,
US = update software, T1, T2 and T3 = tier 1, 2, 3 human intervention.

repair action. We make the assumption that this effec-
tiveness is directly correlated to the amount of time that
the device stays “available” after the repair action.2 To
estimate availability we use techniques from statistical
survival analysis [5].

The second part consists of using the availability in-
formation to refine the policy. For this purpose we use
statistical machine learning techniques. In particular we
automatically induce a classifier-based model of the re-
lationship between (a) the history of the device before
the repair action, (b) the specific events triggered by the
agents, and (c) the probability of survival after the re-
pair action. We use the history to separate the devices
that survive more than a threshold T from those that sur-
vive less. The threshold T is computed based on the eco-
nomics of the service, such as the worth of the machine,
time to repair etc. The dotted line in Figure 1 displays
the two components that we are engineering, analyzing,
and optimizing.

There are two additional questions that we can address
with the techniques explored in this paper. The first one
is that of debugging the monitoring system itself: e.g.,
are there signals that are abnormally frequent? The sec-
ond one is finding statistically significant differences in
the behavior of different datacenters.

The data that drives the refinement process is extracted
from the logs of the service under consideration. These
logs contain the state transitions of each device, the re-
pair action being executed, and the timestamps of the
events. The logs come from a large geo-distributed cloud
storage system at Microsoft that spans four data cen-
ters, with thousands of machines with commodity hard
disks. The storage capacity is several petabytes, serving
the needs of hundreds of millions of end-users, perform-
ing billions of daily requests, amounting to hundreds of
terabytes.

2. REPAIR ACTIONS AND POLICIES
The automated repair system (RS) associates a “state”

with each device.3 The actual instance of the state is
2The time that the repair action needs to take effect is also part
of the equation. We will ignore this factor in this paper with no
consequence for the analysis presented.
3We describe the essential features of the automated repair sys-

decided by the RS using event signals sent from the set
of monitoring agents. For the purposes of this paper the
set of possible states is:

1. Healthy (H) - device is considered available for the
service and does not have any abnormal reports from
monitoring agents.

2. Failed (F) - there is some abnormal report which
has an associated event ID.

3. Probation (P) - device is recovering from failure af-
ter the application of a repair action (thus, signals
from the monitoring agents are basically ignored).

4. Dead (D) - device needs human intervention.
To this set of basic states we also add states induced by

the repair actions (see below for the description of repair
actions), such as Updated (U) and Rebooted (R).4

Several repair actions can be used to bring a device
from the failed state back to the healthy state (see Fig-
ure 2). The actions are either executed by the RS in au-
tomatic fashion, or the may require human intervention.
A subset of the available actions is: 5

1. Automated actions.

(a) Do nothing (NoOp).

(b) Reboot device (RB).

(c) Perform non-destructive reimaging, saving all
stored data (NDI).

(d) Perform destructive reimaging, loosing all stored
data (DI).

(e) Update the device with new software (US).

2. Actions requiring human intervention

(a) Call for Tier 1 repair person, who usually per-
form a scripted set of actions) (T1).

(b) Call for Tier 2 repair person, who has extended
knowledge about the system (T2).

(c) Call for Tier 3 repair person, an expert as-
sumed to be able to fix virtually any problem
(T3).

The actions above are listed in a specific order: first it
is assumed that each repair action can resolve all prob-
lems that can be solved by prior actions. Second, the ac-
tions increase monotonically in cost. It is also assumed
that a Tier 3 repair action (requiring human intervention)
can resolve any problem.

Some additional remarks about the repair service are

tem that are relevant to this paper. Readers interested in further
details about this system are encouraged to consult [6].
4The process modifies the basic state-machine by adding states
in the “middle” of transitions, encoding the repair events. That
there are other states in our actual state-machines, but describ-
ing them in this paper does not change the nature of the results.
5We note that the human intervention actions may generate, in
turn, other actions. We ignore this complication in the paper.

2

in order:
1. There is no one-to-one mapping between the event

signals generated by monitoring agents and the ac-
tual underlying problems.

2. A single failure could trigger more than one event
signal from the agents, but only one of these events
will trigger a repair action.

3. Some of the automated repair actions may be exe-
cuted more than once to have the appropriate effect.

In this context, a policy is a function that takes as in-
put an event from the monitoring agents, the state of the
device, and a fragment of the device history (e.g., how
many times a given repair action has been executed), and
returns the entry point in the repair action ladder (Fig-
ure 2), and the number of times that successive repair
actions will be executed.6 The “policy manager” from
Figure 1 triggers the repair action by starting the auto-
mated action on the device or filing a ticket request for
human intervention.

Establishing the entry points for each event at the ap-
propriate level on the repair ladder translates into mini-
mized costs, maximized QoS, and increased availability.
A proper policy can also eliminate false alarms from un-
correlated events caused by monitoring agents.

3. DATA AND ANALYSIS TOOL
The data in this study includes information from about

1600 devices over a period of two months. The informa-
tion contains the transitions between states for each de-
vice. Each transition is time-stamped, and it is annotated
with a numeric event identifier, which corresponds to the
signal from the monitoring agent that triggered the state
change.

We used Artemis [4] to analyze and visualize this data.
Artemis is a toolkit for evaluating the performance of dis-
tributed systems; it offers an interactive workflow com-
prising four different tools: data collection, data storage,
data visualization and data analysis. For this application
we did not use the data collection service; instead, we
used as input data the logs from the monitoring system.
Artemis itself is oblivious to the semantics of the data,
but it provides a plug-in mechanism, which allows the
implementation of domain-specific data analyses.

The state transition data can be naturally visualized as
a time-series: for each machine we can plot the current
state as a function of time. For this domain, the main
object manipulated by the Artemis plugins is the trace
fragment: a sequence of consecutive transitions (repre-
sented as a string). The complete trace of states of a ma-
chine is a particular instance of a trace fragment. We
have implemented two trace-specific Artemis plugins to
6The number of times a successive action is executed may be
zero, which effectively results in a subset of the actions being
part of the final policy.

analyze the data. The trace statistics plugin computes
basic statistics for each trace fragment: the count of oc-
currences of each state and event, the time spent in each
state, the normalized time spent in each state (as a per-
centage of the length of the trace), the average time spent
in each state. The regular expression plugin is used to de-
compose a trace into fragments; it receives as argument
a regular expression representing a string of states, writ-
ten using the C# syntax. The plugin matches this regular
expression with each trace in the data set, and produces a
trace fragment for each matching instance of the regular
expression. This plugin is also a very convenient inter-
active query engine that the analyst can use to slice and
dice the data.

We use the regular expression plugin to extract infor-
mation about the effect of repair actions. For example,
to investigate the effectiveness of manual repair of a ma-
chine we use the following regular expression:
(H[^HDUR]*)D[^DHU]*(?<rep>H).7 The sub-tra-
ces matching this expression all start in the healthy state,
then eventually reach the down state, without intervening
reboots or updates, and then move back to healthy. The
results of the plug-in execution include the monitoring
signals for each trace matching fragment, and the time
that each device spent on each sub-trace. In this exam-
ple, the first part of the regular expression in parenthesis
will cause Artemis to generate statistics about the behav-
ior of the devices prior to entering the down state.

4. EVALUATING REPAIR ACTIONS
For the purposes of this paper, we equate the effective-

ness of an automated repair action on a given device with
the time this device will remain available in the datacen-
ter. There are simplifications in this assumption, yet, it
is obvious that this factor is a prime component in the
ultimate equation determining value.

We estimate P (ta|A): the probability that the device
will remain available for a time at least ta, given that
the repair actionA was performed on the device. To esti-
mate this probability we borrow techniques from the field
of survival analysis. We used the Kaplan-Meier estima-
tor [7], defined as follows: given data with N samples
with availability times t1 ≤ t2 ≤ . . . ≤ tn

P̂ (ta|A) = Πti<t
ni − fi

ni
(1)

where ni is the number of devices available just prior to
time ti, and fi is the number of devices failing prior to ti.
External factors may truncate the device availability pe-
riod by early termination (censoring in statistical terms).
In this case, ni is the number of machines available less
7The ?<rep> annotation in the last part indicates that the last
healthy state can be reused as the start of a new sub-trace; in
other words, trace fragments can overlap. The parentheses des-
ignate trace fragments that are of particular interest.

3

Figure 3: Graph showing the probability that a machine will stay
healthy at least to time t. The x axis is intentionally obscured. The
survival line represents the actual estimated value, and the upper and
lower lines depict the 95% confidence interval for the estimated value.

the number of machines unavailable due to early termi-
nation. For example, in our case censoring is due to soft-
ware updates or to problems in logging the data.

Figure 3 presents the graph of this probability function
for one of the repair actions requiring human interven-
tion (let’s call this repair action HRA). The data ti was
extracted from the logs using the Artemis regular expres-
sion plugin (see Section 3). ti are the lengths of the traces
matching the regular expressions from the point the de-
vice reaches the healthy state until it reaches a fail state
(after a HRA action). The curves above and below rep-
resent the 95% confidence interval for the estimate; we
use the Greenwood formula to estimate the variance V̂
and rely on the usual approximations for normality and
standard deviations:

V̂ (P̂ (ta|A)) = P̂ (ta|A)2
∑
ta<t

fi

ni(ni − fi)
(2)

Let us use T to denote the particular “availability time”
of interest after HRA, as displayed in Figure 3. Namely,
performing HRA is effective only if the device remains
available for a time t ≥ T . Otherwise it makes sense to
escalate to the next human intervention tier directly.

Let’s assume hypothetically that only 40% of the de-
vices survive longer than T . If we can use a predictor
to distinguish these from the 60% that fail to meet the T
time, we can improve the policy by bypassing the repair
action to the next tier. The methodology for doing this is
described in the next section.

5. REFINING THE POLICY
As explained at the end of the last section, given T as a

reference, we intend to separate the class of devices that
after the repair action HRA will fail to meet this “dead-
line” from those that will do. In order to influence the
repair policy, we need to make this distinction when the
policy intends to invoke HRA. Let us denote by D0 the
devices that survive less than T after HRA, and by D1

those that survive more. For devices belonging to D0

we will bypass HRA, since for all practical purposes this

repair action is ineffective.
One way to accomplish this is to automatically build

a model from the information about the device history;
the model is used to determine whether the device is in
D0 or in D1. A pattern classifier is one such model, as
employed by statistical machine learning. In our case the
information about the history of the device is comprised
from the events emitted by the monitoring agents, and
from the duration that the device spends in the healthy
or probation state prior to the current failure. In our case
this information is extracted using Artemis, and it cor-
responds to subtrace matching the first part of the regu-
lar expression (H[^HDUR]*)D (see Section 3), namely,
the path from H to D.8

The classifier we experimented with in this work is
based on logistic regression withL1 regularization. There
are two main reasons for this choice. First, it is known
that this approach is very effective at picking the most
relevant signals when automatically building its model,
even in cases when the number of possible signals is big-
ger than the number of samples [8]. Second, we have had
very good experience with this classifier model in do-
mains related to automated diagnosis of datacenter ma-
chines [2].

In our case, the first aspect is very relevant, since the
number of events from the monitoring agents grows fast
with the number of devices and trace length. Also, the
number of devices requiring costly actions may be small,
especially as the system becomes more and more reli-
able. In our particular case, we had on the order of 30
to 40 cases with interesting repair actions, and over 60
signals to select. As will be seen below, in the particular
model we inferred, only 2 of these signals are good pre-
dictors, in addition to the time spent by the machine in
the healthy or probation states.

The output of this classifier is a linear model of the
form:

D =
∑

i

βi × Si + β0 (3)

where the device belongs toD1 if and only ifD > 0. The
parameters of the model, namely βi, are fitted from data,
while Si are the features used by the model. To estimate
the quality of the model, we follow standard practices
from statistics and estimate the accuracy of the model
when identifying whether a device is in D1 or in D0 us-
ing ten-fold cross-validation.

Once the threshold T is determined, the model is auto-
matically built and evaluated using the information in the
logs. To close the loop, updating the policy, equation 3 is

8What constitutes relevant prior history, namely how much of
the prior trace should be considered, is a parameter that can be
altered. As we show below, in our case this choice of history
contains enough information to almost perfectly separate D0

from D1.

4

evaluated on line. The updates and roll-out to the policies
can be done offline, following a suitable schedule.

6. RESULTS
The initial application of the classifier to the HRA, us-

ing threshold T , yielded a very accurate model: the accu-
racy of the prediction of D1 is perfect, and the accuracy
of D0 is 96%. What drew our attention was that two sig-
nals (amongst the 60 possible) were enough to achieve
that accuracy. Looking closely at the cases where those
signals were involved, we saw that in fact these signals
were robust predictors of failures. Very shortly after the
HRA, these signals would reappear and cause the state
of the machine to change to F or D. This was diagnosed
further in the field and two things where determined: the
specific sensor triggering one of these signals was not
properly calibrated. After calibration, we collected data
for the past three months and induced a new model. The
new model’s general accuracy is around 88%, but this
time the model requires over 6 signals for its prediction.
escalate. We are currently further investigating these sig-
nals and collecting more data. We expect to use these
models online as part of the signal to to be evaluated in
Figure 2, and changing the counts Ni in the repair action
ladder depicted in the figure.

Another changed caused by our initial models, was
that we noticed that one signal that should indicate a re-
pairable fault was consistently correlated with machines
that were not brought to the healthy state after interven-
tion. After further investigation it was determined that
the actual repair procedure was incorrect. This was also
changed, and the new models don’t show a particular
strong correlation between this signal and machines that
do not reach the healthy state after HRA.

Finally, we have used the estimator to determine whether
there is a quality difference between the 4 datacenters
hosting the devices. We noticed significant differences,
and we are currently trying to find the root cause, dif-
ferences in hardware being the prime suspect. The main
technique used for this study was the comparison of sur-
vival functions using contingency tables [5].

7. DISCUSSION AND FUTURE WORK
There are many immediate paths that we intend to fol-

low. The first one is to test the limits of the models as
we collect more data. The second one is to consider the
many ways to improve the models in Sections 4 and 5.
These include more sophisticated models for survival (and
further partitioning the cases by particular events), look-
ing at the order in which the sequence of signals is re-
ceived, including event signals as part of the information,
increase the past history window, and looking beyond
classifiers as models. The third one is to continue to eval-
uate the implementation of our model’s recommendation
and then verify that indeed the availability is increased

(and cost is decreased) in a continuously running pro-
duction setting. The fourth one is to implement a more
general approach that includes preventative maintenance
and repair schedules in the optimization loop.

The repair system under investigation has been man-
ually optimized since its inception for a period of over
six months, prior to our optimization efforts. It is a tes-
timony to the power of the framework and techniques
we are proposing in this paper that we managed to help
in finding false alarms, and mistakes in the repair pro-
cedures. We further remark that there is nothing in this
approach that depends on the particulars of the Artemis
tool, or that is particular to the Azure platform and ser-
vices. Artemis was used as a convenient tool for visu-
alization and manipulation of the data, and the statistic
techniques of pattern classification and survival analysis
are clearly applicable to other cloud computing platforms
running different services.

8. REFERENCES
[1] L. A. Barroso and U. Holzle. The Datacenter as a

Computer - an introduction to the design of
warehouse-scale machines. Morgan and Claypool,
2009.

[2] P. Bodík, M. Goldszmidt, and A. Fox. Hilighter:
Automatically building robust signatures of
performance behavior for small- and large-scale
systems. In SysML, 2008.

[3] G. Candea, , A. Fox, and J. Cutler. Improving
availability with recursive micro-reboots: A
soft-state system case study, 2003.

[4] G. F. Creţu-Ciocârlie, M. Budiu, and
M. Goldszmidt. Hunting for problems with Artemis.
In USENIX Workshop on the Analysis of System
Logs (WASL), San Diego, CA, December 7 2008.

[5] D. Diez. Survival analysis in R.
http://www.stat.ucla.edu/d̃avid/teac/surv/R_survival.pdf.

[6] M. Isard. Autopilot: Automatic data center
management. Operating Systems Review, 41:60–67,
2007.

[7] E. L. Kaplan and P. Meier. Nonparametric
estimation from incomplete observations. Journal of
the American Statistical Association, 53:457–481,
1958.

[8] K. Koh, S.-J. Kim, and S. Boyd. An interior-point
method for large-scale L1-regularized logistic
regression. Journal of Machine Learning Research,
8:1519–1555, 2007.

[9] D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry,
W. Tetzlaff, J. Traupamn, and N. Treuhaft. Recovery
oriented computing (roc): Motivation, definition,
techniques, and case studies. Technical report, UC
Berkeley, March 2002.

5

