
A Parallel Repetition Theorem for Any Interactive Argument

Iftach Haitner∗

August 10, 2009

Abstract

The question of whether or not parallel repetition reduces the soundness error is a fundamental
question in the theory of protocols. While parallel repetition reduces (at an exponential rate) the error
in interactive proofs and (at a weak exponential rate) in special cases of interactive arguments (e.g.,
3-message protocols — Bellare, Impagliazzo and Naor [FOCS ’97], and public-coin protocols — H̊astad,
Pass, Pietrzak and Wikström [Manuscript ’08]), Bellare et al. gave an example of interactive arguments
for which parallel repetition does not reduce the soundness error at all.

We show that by slightly modifying any interactive argument, in a way that preserves its completeness
and only slightly deteriorates its soundness, we get a protocol for which parallel repetition does reduce the
error at a weak exponential rate. In this modified version, the verifier flips at the beginning of each round
an (1− 1

4m
, 1

4m
) biased coin (i.e., 1 is tossed with probability 1/4m), where m is the round complexity of

the (original) protocol. If the coin is one, the verifier halts the interaction and accepts, otherwise it sends
the same message that the original verifier would. At the end of the protocol (if reached), the verifier
accepts if and only if the original verifier would.

1 Introduction

In an interactive proof, a prover P is trying to convince the verifier V in the validity of some statement.
Typically, P has some advantage over V, such as additional computational resources or some extra informa-
tion (e.g., an NP witness that validates the claim). The two basic properties we would like such protocols
to have are completeness and soundness. The completeness means that P convinces V to accept valid state-
ments, and the soundness means that no cheating prover (of a certain class) can convince V to accept invalid
statements. More generally, (P, V) has completeness β if for any valid statement x, V accepts in (P, V)(x)
with probability at least β (where P typically gets an advice w(x) as an additional input). Where V has
soundness 1− ε with respect to a given class of algorithms, if no malicious P∗ from this class can convince V
to accept an invalid statement with probability greater than ε. The bound ε is typically called the soundness
error of the protocol.

The basic distinction one may make about the soundness of a given protocol, is whether it holds uncon-
ditionally (i.e., even an all-powerful prover cannot break the soundness) or that it only holds against com-
putationally bounded (uniform, or non-uniform) provers. Protocols with unconditional soundness are called
interactive proofs, whereas protocols with the weaker type of soundness are called interactive arguments. In
this work we focus on computationally bounded provers. In particular, we consider polynomial-time provers.

A common paradigm for constructing protocols with low soundness error, is to start by constructing a
protocol with noticeable soundness error, and then manipulate the original protocol in a certain way that
decreases its soundness error while keeping its completeness high. The most natural such manipulation that
comes to mind, is to use repetition. Namely, to repeat the protocol many times (with independent random-
ness), where the verifier accepts only if the verifiers (of the original protocol) accept in all executions. The
above repetition can be done in essentially two different ways: sequentially (known as sequential repetition),

∗Microsoft Research, New England Campus. E-mail: iftach@microsoft.com.

1

where the (i + 1) execution of the protocol is only started after the i’th execution is finished, or in parallel
(known as parallel repetition), where all the executions are done simultaneously.

Sequential repetition is known to reduce the soundness error at an exponential rate in most computational
models (cf., [DP98]). Unfortunately, sequential repetition has the undesired effect of increasing the round
complexity. Parallel repetition on the other hand, does preserve the round complexity, and for the case
of interactive proofs, it also reduces the soundness error at an exponential rate [Gol99]. Unfortunately, as
shown by Bellare, Impagliazzo and Naor [BIN97], in the case of interactive arguments parallel repetition
might not reduce the soundness error at all.

Let us be more precise about the latter statement. Parallel repetition does reduce the soundness error
in the case of 3-message protocol ([BIN97, CHS, IJK06]) and in the case of public-coin verifiers ([PV07,
HPPW08]), see Section 1.3 for more details. On the negative side, for any k ∈ N [BIN97] presented an
8-message protocol with soundness error 1

2 , whose k-parallel repetition soundness remains 1
2 . Recently,

Pietrzak and Wikström [PW07] gave an example of a single protocol for which the above phenomena holds
for all polynomial k simultaneously.1 Moreover, both results extend to 4-message protocols, assuming a
rather natural limitation about the soundness proof.

1.1 Our Result

We present a simple method for transforming any efficient interactive argument whose soundness error is
bounded away from one, into an efficient interactive argument with the same number of rounds and negligible
soundness error. Given an m-round interactive protocol (P, V), we define the random-termination variant
of V, denoted by Ṽ, as follows: through the interaction with P algorithm Ṽ acts exactly as V does, but with
the following additional step: at the end of each round, Ṽ tosses an (1 − 1/4m, 1/4m) biased coin (i.e., 1
is tossed with probability 1/4m). If the outcome of the coin is 1, then Ṽ accepts the interaction and halts.
Otherwise, Ṽ proceeds as V does (where in particular, at the end of the protocol, if reached, Ṽ accepts iff
V does). Note that the completeness of (P, Ṽ) is at least as high as the completeness of (P, V), where the
soundness of Ṽ is at least (1− 1

4m)m · α ≥ 3
4 · α, given that the soundness of V is at least α.

In the following we refer to (P, Ṽ) as the random-termination variant of (P, V). Our main contribution
is stated in the following theorem.

Theorem 1.1 (informal). Parallel repetition of the random-termination variant of any interactive argument,
reduces the soundness error at a weak exponential rate.2

We note that our result holds with respect to any interactive protocol that can be cast as an interactive
argument. For instance, our result yields a round-preserving binding amplification for computationally
binding commitment schemes.3 Our result also extends to the more general threshold case, where the prover
in the k-fold repetition is only required to make t < k of the verifiers accept.

1.2 Our Technique

Let (P, V) be an interactive argument with soundness error ε and let (P(k), V(k)) be its k’th parallel repetition.
We show that if (P,V) is a random-termination variant of some protocol, then any efficient strategy P(k)∗

1Both negative results hold under common cryptographic assumptions.
2We are using a rather relaxed interpretation of weak exponential rate, meaning that the soundness error is bounded by

max{neg, exp(−poly(1−ε
m

) · k}, where m is the round complexity of the protocol and ε is the soundness error of the original
protocol. See Theorem 3.2 for the exact statement.

3Given a weakly binding commitment (S, R), consider the protocol (P, V) where P and V play the role of S and R in a
random commit stage of (S, R) respectively. Following the commit stage, P sends two strings to the V, and V outputs “1” iff
the strings are valid decommitments to different values. The weakly binding property of (S, R) yields that the soundness error
of (P, V) is noticeably far from one. Thus, Theorem 1.1 yields that the parallel repetition of the random-termination variant
of (P, V), has negligible soundness error. It follows that the parallel repetition of the random-termination variant of (S, R) is
strongly binding.

2

that breaks the soundness of (P(k),V(k)) with “too high” probability εk, implies an efficient algorithm P∗

that breaks the soundness of (P, V) with probability higher than ε. As a warm up, we start by presenting
such strategy for the parallel repetition of public-coin protocols (with no random-termination), and then
explain how to adapt this strategy the random-termination case.

Public-coin protocols In the following we loosely follow the approach presented by [HPPW08]. In order
to interact with V, algorithm P∗ emulates a random execution of (P(k)∗,V(k)), where the “real” V plays the
role of the i∗’th V, for i∗ that is chosen at random from [k], and P∗ emulates the execution of the other
(k−1) verifiers and of P(k)∗. In the j’th round, P∗ acts as follows: upon receiving the j’th message from V, it
samples at random a value Mj = (Mj,1, . . . , Mj,k) for the j’th messages of emulated verifiers, and evaluates
their “quality” αMj

— the probability that P(k)∗ makes V(k) accept conditioned on the current transcript
and on Mj . In order to do so, P∗ samples many random continuations of the protocol, and measures the
fraction of accepting ones (i.e., where all the verifiers accept). If the estimated value of αMj

is higher than
some threshold βj (e.g., βj = (1− j

4m) · εk, where we recall that εk is the success probability of P(k)∗), then
P∗ sends M j

i∗ back to the real V. In addition, P∗ sets the state of the emulated verifiers and P(k)∗ according
to Mj . P∗ keeps sampling random values for Mj until a good value is found, or until n/εk unsuccessful
attempts, where in the latter case it aborts. We note that V accepts whenever P∗ does not abort.4

The proof that P∗ breaks the soundness of (P∗, V) with high probability, goes by showing that conditioned
on P∗ not aborting in the j’th round, the probability that P∗ abort in the j + 1 round is small. For proving
the above, it suffices to show that P(k)∗’s conditional success probability after getting the j + 1 message
from the real verifier, is not much smaller than αMj . While in the worst case the latter probability might
be arbitrarily small (and in particular, much smaller than αMj), using a result of Raz [Raz98] one can show
that for most values of i∗, this conditional probability is with high probability close to αMj .

Random-termination protocols When one tries to adopt the above strategy for non public-coin proto-
cols, he should first decide what the values of Mj and αMj stand for in this case. The first (and the more
natural) option, is to choose Mj at random from the j’th messages of the emulated verifier that are consistent
with the current transcript, and let αMj be the probability that P(k)∗ makes V(k) accept conditioned on Mj

and on the current transcript. The very same argument we used above for the public-coin case, yields that
P∗ makes V accepts with high probability also in this settings. The problem is, however, that the above
strategy is not necessarily efficient. (Indeed, the task of sampling Mj and of estimating αMj using the above
strategy, are essentially the task of finding a random preimage of an arbitrary function).5

The way we adopt the public-coin strategy for the non public-coin case is different. We assume without
loss of generality that the random (private) coins that V is using in each round are chosen uniformly at
random from {0, 1}t (for some value of t that might depend on the round). In each round, P∗ chooses Mj

uniformly random from {0, 1}t·(k−1), and estimates the value of αMj defined as the probability that P(k)∗

makes V(k) accept, conditioned on the random coins flipped by all the verifiers (emulated and real) till now,
and that the random coins of the emulated verifiers in the j’th round are set to Mj . Upon finding a good
value for Mj (i.e., the estimation of αMj is at least βj), P∗ fixes the random coins of the emulated verifiers in
the j’th round to Mj , and sends the message that P(k)∗ sends to the i∗ verifier in the j’th round to V (given
this fixing). As in the case of former approach, it follows that P∗ makes V accepts with high probability.

4[HPPW08] use a different (and somewhat less intuitive) strategy for evaluating the quality of Mj , which significantly
simplifies the analysis of P∗ success probability (see Section 2.3 for more details). The sampling method of the cheating prover
for random-termination verifiers described in Section 3, is a variant of their approach.

5We mention that the proofs of all interactive argument protocols for which parallel repetition is known to reduce soundness,
follow (implicitly or explicitly) the above strategy. Indeed, such proofs were only given for protocols for which the above
sampling strategy can be carried efficiently: public-coin protocol [HPPW08], with extensions to protocols in which the last
message of the verifier (which contains its decision bit) is not necessarily efficiently samplable: 3-message protocols [BIN97] and
“extendable and simulatable” verifiers [HPPW08].

3

On a first look, the above approach does not look very promising, as in general no strategy (even not an
unbounded one) can evaluate αMj .

6 Interestingly, we show that a close variant of the above strategy can be
implemented efficiently for any random-termination verifier.

Let V be a random-termination verifier and assume without loss of generality that it chooses all but its
decision bits (the bits uses for deciding whether or not to terminate the executions) before the interaction
starts. In order to approximate the value of αMj

, P∗ samples the future random coins of all the verifiers
conditioned that the real verifier’s decision bit in the end of the j’th round is one (i.e., it decides to halt in the
end of the j’th round). Sampling in this case is very easy, since the real verifier sends no further messages,
and the future random coins for the emulated verifiers (under any conditioning) are simply uniform random
strings. The obvious problem with the above approach is that by adding this additional conditioning we
might reduce the success probability of P∗. We prove that the latter does not happen for most choices of
i∗, by proving the following stronger statement: for a given i∗ ∈ [k], consider the distribution that a random
execution of (P∗, Ṽ) described above induces on the value of (M1 . . . , Mm) with respect to to this choice of i∗

(hereafter, the “real” distribution). For such i∗, we also consider the “ideal” version of the above distribution.
In this version, P∗ has access to the random coins of the i∗ verifier, and uses them for approximating the
values of αMj well. Our main technical contribution is showing that for most values of i∗ ∈ [k] (i.e., for
(1− (m

k)Ω(1)) fraction of them), the above distributions are statistically close.

Bounding the distance between the ideal and real distributions Let k ≥ m ·n2. For concreteness,
we consider the distribution of M1 induced by the first round of the protocol, given an arbitrary fixing of the
real verifier random coins. We say that i∗ ∈ [k] has global effect, if by conditioning that the i∗’th verifier
halts at the end of the first round, we significantly change the probability that P∗ finds a good value for M1

in a single first round iteration. We say that i∗ has local effect on some value of M1, if by conditioning
on the i∗ verifier halting at the end of the first round, we significantly change the value of αM1 (recall that
αM1 was defined as the success probability P(k)∗, conditioned that the emulated verifiers random coins in
the first round are set to M1).

We first show that the fraction of local effect indices is small for every value of M1. Assume that the
number of local effect indices on some value of M1 is larger than m · n. Further, assume for simplicity that
by conditioning on half of these indices, we reduce the value of αM1 significantly. In this case, at least one of
these local high effect verifiers halts in almost every random continuation of the protocol (recall that any of
the verifiers halts with probability 1/4m). This means that the value of αM1 should have been smaller than
what we assume it is. A similar proof also show that the number of global effect indices is small.

In the following we assume for simplicity that every index has local effect only on a small portion of the
possible values for M1, and let i∗ be an index with no global effect. It is easy to verify that the following
holds in a random first round iteration of P∗ with such choice of i∗: the probability that P∗ picks a good
value for M1 (P∗ estimates that αM1 > β1) and i∗ does not have local large effect on, is much larger than the
probability that P∗ picks a good value for M1 that i∗ has local large effect on. It follows that the probability
that such choice of i∗ induces on most value of M1, is close to the probability in which each M1 is drawn
with probability αM1

EM1 [αM1] . Namely, the distribution induced by i∗ is close to the real distribution.

1.3 Related Work

Babai and Moran [BM88] showed that parallel repetition reduces the soundness error of Arthur-Merlin
protocols, whereas Goldreich [Gol99, Appendix C.1] showed that the same holds with respect to interactive
proofs. Parallel repetition is also known to reduce the error in the important case of two-prover interactive
proofs [Raz98] (in all the above cases the soundness error reduces at exponential rate).

6The random coins that the real verifier chooses in the j’th round, might only affect the transcript on a later round. Therefore,
the transcript of the protocol in the j’th round might not contain the required information for estimating αMj

(recall that the

value of αMj
is determined by the random coined that were already flipped by the verifiers, and not by the transcript).

4

Bellare, Impagliazzo and Naor [BIN97] showed that parallel repetition of 3-message interactive arguments
reduces the soundness error at weak exponential rate. For two-message protocols, Canetti et al. [CHS] gave a
proof with better parameters, and Impagliazzo et al. [IJK06] showed that the same holds with respect to the
threshold case. For public-coin protocols, Pass and Venkitasubramaniam [PV07] gave a parallel repetition
theorem for constant-round protocols, whereas recently H̊astad et al. [HPPW08] extended this result to a
polynomial number of rounds. The result of [HPPW08] generalizes to “extendable and simulatable” verifiers,
which essentially means that it is feasible to sample a random continuation of the verifier’s actions, given a
partial transcript of the protocol. All the latter protocols reduce the soundness error at a weak exponential
rate. Recently, Haitner et al. [HRVW] showed a round-preserving binding amplification of a specific (weak)
computational binding commitment. The random-termination verifier we introduce here, is inspired by their
construction. Finally, the phenomena that by changing the verifier to send less information in a single
execution (thus increasing the soundness error), we reduce the soundness error when repeating the protocol
in parallel, is a reminisce of the work (in the context of two-prover protocols) of Feige and Kilian [FK94].

1.4 Paper Organization

We present the notations and formal definitions used in this paper in Section 2, where our main result is
formally stated and proved in Section 3.

2 Preliminaries

For α, β > 0, let (α±β) := [α−β, α+β]. We use calligraphic letters to denote sets, capital letters for random
variable, and lower case letters for values. We use superscripts to denote tuples, e.g., Xn := (X1, . . . , Xn)
and xn := (x1, . . . xn). We write x

R←X to indicate that x is selected according to the uniform distribution
over X .

We let Un be the uniform distribution over {0, 1}n. Given a set S and p ∈ (0, 1], we let Up
S be the

distribution induced on 2S by independently selecting each of the elements of S with probability p. For
i ∈ S, let the distribution Up

S,i=1 [resp., Up
S,i=0] be the distribution Up

S conditioned that i is selected [resp.,
not selected]. The statistical difference of two distributions P1

X and P2
X over X , denoted by

∥∥P1
X − P2

X

∥∥, is
defined as 1

2

∑
x∈X

∣∣P1
X(x)− P2

X(x)
∣∣ = maxX ′⊆X {P1

X(X ′)−P2
X(X ′)}. Given a set X ′, we let

∥∥P1
X − P2

X

∥∥
X ′ =

1
2 ·

∑
x∈X\X ′

∣∣P1
X(x)− P2

X(x)
∣∣ and let

∥∥P1
X − P2

X

∥∥
X ′ =

∥∥P1
X − P2

X

∥∥
X\X ′ . When bounding the statistical

difference of two distributions, we often use the following proposition (whose straight forward proof is given
in the appendix).

Proposition 2.1. Let P1 and P2 be two distributions over X and let X ′ ⊆ X , then
∥∥P1 − P2

∥∥ ≤ P1(X ′) + 2 · ∥∥P1 − P2
∥∥
X ′ .

The following proposition plays an important in the proof of Theorem 3.2.7

Proposition 2.2. Let X1, . . . , Xk be independent random variables and let W be a Boolean random variable,
then for any ε > 0 it holds that

Pr
i

R←[k],x
R←Xi

[
Pr[W | Xi = x] /∈ (1± ε) · Pr[W]

]≤ 2
ε
·
√
− log Pr[W]

k
.

Proof. We assume without loss of generality that Pr[W] > 0. For i ∈ [k], let PXi be the probability
distribution induced by Xi, and let S−i = {x ∈ Supp(Xi) : Pr[W | Xi = x] < (1 − ε) · Pr[W]} and S+

i =

7In [Hai09, Lemma 2.3] we prove a variant of Proposition 2.2, which yields a slightly stronger variant of Theorem 3.2 (the
number of repetitions is proportional to m8 rather than to m10). For the sake of simplicity and self containment, however, we
have preferred to use here Proposition 2.2, whose proof is significantly simpler.

5

{x ∈ Supp(Xi) : Pr[W | Xi = x] > (1 + ε) · Pr[W]}. Since
∥∥PXi|W − PXi

∥∥ ≥ 1
2 ·

∣∣PXi|W (S−i)− PXi
(S−i)

∣∣ +
1
2 ·

∣∣PXi|W (S+
i)− PXi

(S+
i)

∣∣ ≥ ε
2 · PXi

(S−i ∪ S+
i), it follows that

Pr
i
R←[k],x

R←Xi

[
Pr[W | Xi = x] /∈ (1± ε) · Pr[W]

]≤ 1
k
·
∑

i∈[k]

PXi(S−i ∪ S+
i) ≤ 2

ε · k ·
∑

i∈[k]

∥∥PXi|W − PXi

∥∥ .

The proof is concluded by the following Lemma due to Holenstein (simplifying a lemma of [Raz98]).

Lemma 2.3. ([Hol07, Equation 8]) Let PXk := PX1 · · ·PXk
be a probability distribution over X k and let W

be an event in the same probability space, then

k∑

i=1

∥∥PXi|W − PXi

∥∥ ≤
√
−k · log Pr[W].

¤

2.1 Interactive Arguments

An interactive argument for a language L ⊆ {0, 1}∗, is an interactive protocol between the prover P and the
verifier V. The parties get as common input a security parameter 1n and an element x ∈ {0, 1}∗, and the
prover might get an additional private input w(x) (e.g., witness). We assume for simplicity that V speaks
first, where each round of the protocol consists of exchange of two message, from V to P and back. We say
that V is an m(n)-round verifier, if m(n) bounds V’s number of rounds in any execution (P∗, V)(1n, x), for
any value of P∗ and x.

The protocol (P, V) has completeness β(n), if for every x ∈ L, there exits w ∈ {0, 1}∗ such that
Pr(P(w), V)(1n, x) 6= 1] ≤ β(n). The verifier V has soundness error ε(n) against uniform [resp., non-
uniform] adversaries, if for any x /∈ L and any uniform [resp., non-uniform] ppt P∗, it holds that
Pr(P∗, V)(1n, x) = 1] ≤ ε(n).

2.2 Random-termination Verifiers

Definition 2.4. [random-termination verifiers] Let V be a verifier of an m-round protocol. The random-

termination variant of V, denoted as Ṽ, acts exactly as V does, but with the following additional steps: at the
end of each round, Ṽ tosses an (1− 1/4m, 1/4m) biased coin (i.e., 1 is tossed with probability 1/4m), if the
outcome of the coin is 1, then Ṽ accepts and halts (where otherwise, it continues as V does).

2.3 Smooth Sampler

Let Xm = (X1, . . . , Xm) be a random variable and let ε > 0. We consider the following m-round game
between Challenger and Sampler. In the i’th round, Challenger sends to Sampler a description of an event
Ei, and Sampler response with xi. Sampler wins if (x1, . . . , xm) ∈ Em. In order to make the game fair, we
require that PrXm [E1] ≥ ε, and that for each i > 1 the event Ei is as good for Sampler as Ei−1 was. Namely,
PrXm|x1,...,xi−1 [Ei] ≥ PrXm|x1,...,xi−1 [Ei−1].

The above game is an abstraction of the game presented in Section 1.2 between P∗ and V, where V (the
Challenger) defines the new events by sending its random coins in every round, and the goal of P∗ (the
Sampler) is to select random coins for the emulated verifiers that (via interacting with the emulated P(k)∗)
make the real verifier accept.

A straight forward wining strategy for the Sampler, which we call here the “threshold sampler”, is to
maintain the property that at the end of each round PrXm|x1,...,xi

[Ei] ≥ (1 − i
2m) · ε. This strategy can be

implemented by sampling many candidates for xi, till one with the above property is found. The value of
PrXm|x1,...,xi

[Ei] is approximated via sampling many tuples (x′i+1, . . . , x
′
m) R← (Xi+1, . . . , Xm), and counting

6

the number of tuples (x1, . . . , xi, x
′
i+1, . . . , x

′
m) ∈ Ei. (Note that this is essentially the approach we have

taken in Section 1.2).
In the following we present a different strategy for Sampler, which we call here the “smooth sampler”,

that was used by [HPPW08] for proving their parallel repetition theorem. While the success probability
induced by this smooth sampler is not as good as that of the threshold one, its main advantage is that the
analysis of its success probability is easier, in the setting where Challenger is allowed to give Ei’s such that
PrXm|x1,...,xi−1 [Ei] is (slightly) smaller than what it should be. The reason being that in each round, the
smooth sampler selects each xi with probability that is proportional to PrXm|x1,...,xi

[Ei]. It follows a small
change in the value of PrXm|x1,...,xi

[Ei], might cause only a small change in the sampler winning probability.
This should be compared to the threshold sampler, where only xi’s whose conditional probabilities is greater
than some threshold are considered (and thus a small change in the value of PrXm|x1,...,xi−1 [Ei], might have
large effect on the sampler winning probability). In the following we define the smooth sampler, and then
prove that it wins with high probability.

Algorithm 2.5 (smooth sampler). Sampler.

Parameter: t ∈ N.

Operation:

For i = 1 to m do:

1. Get the description of Ei from Challenger.

2. Do the following for tm/ε times:

(a) Let (xi, . . . , xm) ← (Xi, . . . , Xm).

(b) If (x1, . . . , xm) ∈ Ei, break.

3. Send xi to Challenger.
. .

Claim 2.6. Sampler wins any (valid) Challenger with probability at least1− 1
t .

Proof. (implicit in [HPPW08]) Let Sampler∞ be the “infinite” version of Sampler — the loop that starts in
Line 2.(a) is done till a break occurs, and let Y1, . . . , Ym be the value of (x1, . . . , xm) as sent to Challenger
in a random execution of Sampler∞. Note that Sampler∞ wins with probability 1. For (x1, . . . , xi), let
v(x1, . . . , xi) = EXm|(X1,...,Xi)=(x1,...,xi)[Ei]. Using induction and the guarantee that PrXm|x1,...,xi−1 [Ei] ≥
PrXm|x1,...,xi−1 [Ei−1], we get that

Pr[(Y1, . . . , Yi) = (x1, . . . , xi)] ≥ Pr[(X1, . . . , Xi) = (x1, . . . , xi)] · v(x1, . . . , xi)
ε

(1)

Let Ti be the expected running time of Sampler∞ in the i’th round, it follows that

Ti = EY1,...,Yi [1/v(Y1, . . . , Yi)] ≤ 1
ε
· EX1,...,Xi [v(X1, . . . , Xi)/v(X1, . . . , Xi)] =

1
ε
.

Hence, Pr[Sampler wins] = 1− Pr[∃i ∈ [m] : Ti > tm/ε] ≥ 1− 1
t . ¤

3 Parallel Repetition Theorem for Random-termination Protocols

In this section we formalize and prove Theorem 1.1. We start by proving the following lemma relating the
soundness of the k’th parallel repetition of the random-termination variant of a verifier to that of the original
verifier.

7

Lemma 3.1. For every m-round verifier there exists an oracle-aided algorithm P∗ such that the following
holds: let x ∈ {0, 1}∗, n ∈ N, n5 · m10 ≤ k ∈ poly(n) and t ∈ [k]. Then for any strategy P(k)∗ for which

εk := Pr[at least t verifiers accept in(P(k)∗, Ṽ
(k)

)(1n, x)] > 2−n/2, it holds that

Pr[(P∗P
(k)∗

(t), V)(1n, x) = 1] >
2t− k

k
−O(m · k− 1

5). 8

The running time of P∗ is bounded by O(m2 ·k6/5 ·TP(k)∗/εk), where TP(k)∗ is an upper bound on the execution

time of (P(k)∗, Ṽ
(k)

)(1n, x).

Before proving Lemma 3.1, we first use it for proving the following restatement of Theorem 1.1.

Theorem 3.2 (restatement of Theorem 1.1). Let V be an efficient m(n)-round verifier, let x ∈ {0, 1}∗,
n5 · m10 ≤ k(n) ∈ poly(n) and t(n) ∈ [k(n)]. Assume that Pr[(P∗, V)(1n, x) = 1] ≤ ε(n) for any uniform
[resp., non-uniform] ppt P∗, that δ(n) := 2t(n)−k(n)

k(n) − ε(n) > 1
p(n) for some p ∈ poly and that k(n) and

δ(n) are polynomial-time computable [resp., arbitrary] functions. Then the following holds for any uniform
[resp., non-uniform] ppt P(k)∗

Pr[at least t(n) verifiers accept in(P(k)∗, Ṽ
(k)

)(1n, x)] ≤ max{neg(n), exp(−(
δ(n)
m

)5 · k(n))}.

Proof. We give the proof for the non-uniform case, where the proof of the uniform case follows essentially
the very same lines. Assume towards a contradiction the existence of a non-uniform algorithm P(k)∗ that
violates the statement of Theorem 1.1 with respect to parameters k and t. Let C > 0 be the implicit constant
in the term O(m · k− 1

5) given in Lemma 3.1 and let k′ ∈ O(m5/δ(n)5) be the first multiple of k stratifying
C ·m · k− 1

5 < δ(n)/2. Lemma 3.2 yields that for t′ = k′
k · t and any (non uniform) ppt P(k′)∗, it holds that

εP(k′)∗

k′,t′ (n) := Pr[at least t′(n) verifiers accept in(P(k′)∗, Ṽ
(k′)

)(1n, x)] ∈ neg(n).

Consider the following implementation of P(k′)∗: this cheating prover interacts with Ṽ
(k′)

on x by invoking

k′/k copies of P(k)∗. Namely, P(k′)∗ partitions the verifiers in Ṽ
(k′)

into groups of size k and acts as P(k)∗

against each of this groups. It follows that εP(k′)∗

k′,t′ (n) ≥ exp(−(δ(n)
m)5 · k(n))k′/k(n) = exp(−(δ(n)

m)5 · k′) ∈
O(exp(−C)), deriving a contradiction. ¤

Proof. (of Lemma 3.1) We assume for simplicity that P(k)∗ is deterministic, since the only effect of handling
randomized P(k)∗ would be in complicating notations. (Alternatively, once can reduce the randomized case
to the deterministic one by finding (via sampling) “good” random coins). We omit 1n and x from our
notations whenever their values are clear from the context.

Let len ∈ N be a bound on the number of random coins used by V, in any interaction on security parameter

1n. We assume without loss of generality that the partial view of Ṽ
(k)

in an interaction with P(k)∗ is of
the form view = (rk,S1, . . . ,S`), where rk ∈ {0, 1}k·len denotes the random coins of the k embedded V’s

inside Ṽ
(k)

and Sj (for j ∈ {2, . . . , `}) denotes the indices of those verifiers that decided to halt at the end

of the (j − 1) round. (Since P(k)∗ is deterministic, we omit the messages its sends from Ṽ
(k)

’s view). We let
viewj = (rk,S1, . . . ,Sj), let Sj(view) be the value of the entry ‘Sj ’ in view, and let rk(view) be the value of
the entry ‘rk’ in view. We let S≤j(view) :=

⋃j
j′=1 Sj′(view) and S>j(view) := [k] \ S≤j(view). Finally, we

let round(view = (rk,S1, . . . ,S`)) := ` and set round(⊥) := 0.
In order to simplify notations, we start by describing an algorithm P̂ that given V’s random coins as

input, makes V accept with high probability. It will clear be from the description of P̂, however, that it can

8By considering a random termination variant of V that halts in each round with probability 1
mn

(rather than 1
4m

) and

k > m10n15, the term 2t−k
k

−O(m · k− 1
5) can be replace with t−k

k
−O(m · k− 1

15).

8

be implemented without using this knowledge of V’s coins. Algorithm P̂ follows rather closely the intuition
given in Section 1.2, where the main difference is that in order to choose the emulated verifiers random coins,
we are using a variant of the “smooth sampler” described in Section 2.3, rather than the threshold approach

we described in the introduction. In the following we say that Ṽ
(k)

accepts, if at least t of the Ṽ’s accept in
the end of the interaction, and set µ = k−1/5.

Algorithm 3.3. P̂.

Oracle: P(k)∗.

Input A string r ∈ {0, 1}len.
Operation:

1. Choose i∗ ∈ [k] uniformly at random and set view =⊥.

2. For j = 1 to m do:

(a) Get the message qj from V.

(b) Set view = GetNextViewP(k)∗
(view, i∗, r).

(c) Send aj
i∗ to V, where aj is the message that P(k)∗ sends to Ṽ in the j’th round of view.

. .

Algorithm 3.4. GetNextView.

Oracle: P(k)∗

Input: Ṽ
(k)

’s view — view, an index i∗ ∈ [k]∪ ⊥ and a string r ∈ {0, 1}len∪ ⊥.

Operation:

1. Let round = round(view) + 1, and do the following for m
µ·εk

times:

(a) Choose a random value view′ for a complete view of Ṽ
(k)

in (P(k)∗, Ṽ
(k)

), conditioned on
view′round−1 = view, on i∗ ∈ Sround+1(view′) and on one of the following conditions:

i. If view =⊥, on rk(view′)i∗ = r.
ii. Otherwise, on i∗ /∈ Sround(view′).

(b) If Ṽ
(k)

accepts in view′, return view′round.

2. Abort the execution.
. .

We assume that P̂ outputs the value of (view, i∗) at the end of the execution (we set this value to ⊥ if P̂
aborts), and let P0

View,I∗ be the output distribution of P̂ induced by an execution of (P̂(Ulen), V(Ulen)). We
say that Emb(Ṽi) accepts in view = (rk,S1, . . . ,Sm), if the embedded V inside Ṽi does. We are interested
in the probability over P0

View,I∗ that Emb(ṼI∗) accepts in View, for lower bounding this probability we
introduce the following family of experiments {Exp`}`∈[m].

Experiment 3.5. Exp`.

1. Set view =⊥.

2. For j = 1 to ` do:

set view = GetNextViewP(k)∗
(view,⊥,⊥) (where we define that if GetNextView is called with i∗ =⊥,

then it does the sampling of Line 1.(a) without the conditioning on i∗.)

9

3. Select uniformly at random i∗ ∈ S>`(view).

4. For j = ` + 1 to m do:

set view = GetNextViewP(k)∗
(view, i∗,⊥).

5. Output (view, i∗).
. .

Let P`
View,I∗ be the output distribution of Exp` (where in case Exp` aborts, we set its output to ⊥). The

proof of Theorem 3.2 follows by the next two claims.

Claim 3.6. Pm
View,I∗(Emb(ṼI∗) accepts in View) ≥ 2t−k

k −O(µ).

Claim 3.7.
∥∥P0

View,I∗ − Pm
View,I∗

∥∥ ∈ O(m · µ).

Before proving the above claims, let us first use them for proving Theorem 3.2. By Claim 3.7
and Claim 3.6, we have that P̂ makes V accept with probability 2t−k

k − O(mµ). Note that P̂ calls
GetNextView(view, i∗, r) only after receiving the first round(view) + 1 messages from V, where knowing
these messages suffices for the computation of GetNextView(view, i∗, r). Hence, the proof of Theorem 3.2
follows by letting P∗ act as P̂ while using the messages it gets from V rather than the knowledge of r. ¤

Proof. (of Claim 3.6) Note that algorithm P̂ acts in Expm exactly as Sampler from Algorithm 2.5, with respect

to Xm = (X1, . . . , Xm+1) taken as the value of (rk,S2, . . . ,Sm+1) in a random execution of (P(k)∗, Ṽ
(k)

), and

E1 = E2 = . . . , Em+1 defined as the event that Ṽ
(k)

accepts in view = (X1, . . . , Xm+1). Hence, Claim 2.6
yields that

Pm
View,I∗(⊥) ≤ µ · m + 1

m
∈ O(µ) (2)

For view = (rk,S1, . . . ,Sm), let Acc(view) = {i ∈ S>m(view): Emb(ṼI∗) accepts in view} and let W be the
event that P̂ does not aborts in Expm and |Acc(View)|

|S>m(View)| < 2t−k
k . We complete the proof by showing that the

probability of W is bounded by O(µ). Let Viewm+1 be the value of the first accepting view′ sampled in the
m + 1 call to GetNextView done in the execution of Expm (where we set it to ⊥ if no such called occurred).
We note that if the output of Expm is (View, I∗) 6=⊥, then Acc(View) + S≤m+1(Viewm+1) ≥ t. Hoeffding’s
inequality yields that Pm

View,I∗(Viewm+1 6=⊥ ∧ S≤m+1(Viewm+1) > k/2) ∈ O(µ), and we conclude that

Pm
View,I∗

(|Acc(View)|
|S>m(View)| <

t− (k/2)
k/2

)

≤ Pm
View,I∗

(t− |S≤m+1(Viewm+1)|
k − |S≤m(View)| <

t− (k/2)
k/2

)

≤ Pm
View,I∗

(t− |S≤m+1(Viewm+1)|
k − |S≤m+1(Viewm+1)| <

t− (k/2)
k/2

)

∈ O(µ).

¤

Proof. (of Claim 3.7) Given a view = (rk,S1, . . . ,Sj), let k(view) = |S>j(view)| and identify the indices in
S>j(view) with the set [k(view)]. Using induction and Hoeffding’s inequality, we have that

Pm
View,I∗(k(View) < k/2 ∧View 6=⊥) ∈ O(2−n/2) (3)

10

Let α(view) = Pm
View,I∗(⊥ | Viewj = view). Since Expm makes at most m2

µ·k random samplings, it follows
that

Pm
View,I∗(∃j ∈ [m] : α(Viewj) < 2−n ∧View 6=⊥) ∈ O(2−n/4) (4)

Finally, let Typical = {(view, i) ∈ Supp(Pm
View,I∗) \ {⊥} : k(view) ≥ k/2∧ ∀j ∈ [m] α(viewj) ≥ 2−n}.

Equations (2), (3) and (4) yield that

Pm
View,I∗(Typical) ≤ O(2−n/2) + O(2−n/4) + O(µ) ∈ O(µ) (5)

and we conclude the proof of Claim 3.7 using the following claim:

Claim 3.8. For every ` ∈ {0, . . . , m− 1} it holds that
∥∥∥P`+1

View,I∗ − P`
View,I∗

∥∥∥
Typical

∈ O(µ).

Hence,
∥∥Pm

View,I∗ − P0
View,I∗

∥∥

≤ Pm
View,I∗(Typical) + 2 ·

m−1∑

`=0

∥∥∥P`+1
View,I∗ − P`

View,I∗

∥∥∥
Typical

∈ O(µ) + O(m · µ) ∈ O(m · µ).

where the first inequality follows by Proposition 2.1, and second inequality follows by (5) and Claim 3.8. ¤

Proof. (of Claim 3.8) We prove the case of ` ∈ [m−1] and describe later how to adjust the proof for the case
of ` = 0. Since the only difference between P`+1

View,I∗ and P`
View,I∗ is in the `+1 call to GetNextView and in the

method applied for choosing I∗, it suffices to bound the statistical distance between the following distributions
for every non aborting view = (rk,S1, . . . ,S`), for which k` = k(view) ≥ k/2 and α` = α(view) ≥ 2−n.

• D0
I∗,S :=

(
I∗ R←S>`(view), S = S`+1(GetNextView(view, I∗,⊥)

)

• D1
I∗,S :=

(
S = S`+1(GetNextView(view,⊥,⊥)), I∗ R← S

)

where the above distributions take the value ⊥ in case that GetNextView aborts. In the following we prove
the existence of a set T ⊆ [k`]× 2[k`] such that the following hold:

1. D1
I∗,S(T) ∈ O(µ), and

2. for every (i,S) ∈ T , it holds that D1
I∗,S(i,S) ∈ (1±O(µ)) · D0

I∗,S(i,S).

The existence of T concludes the proof of Claim 3.8, since Proposition 2.1 yields that
∥∥D1

I∗,S − D0
I∗,S

∥∥ ≤ D1
I∗,S(T) + 2 ·

∥∥D1
I∗,S − D0

I∗,S

∥∥
T
∈ O(µ).

Let p = 1/4m. For S ⊆ [k`], let δ(S) be the probability that Ṽ
(k)

accepts in a random continuation of

(P(k)∗, Ṽ
(k)

), conditioned on view and on S`+1 = S (i.e., δ(S) = α(view,S)). Similarly, for Y ⊆ [k`] \ S let
δ(S,Y) be the above probability where we also condition on S`+2 = Y. The distribution D1

I∗,S can be now
described as the output of the following process: repeat till success for at most m

µ·k times — select S
R←Up

[k`]

and I∗ R← [k`] \ S, and output (I∗, S) with probability δ(S). Similarly, the following process describes D0
I∗,S :

select I∗ R← [k`] and repeat till success for at most m
µ·k times — select S

R←Up
[k`],i=0 and Y

R←Up
[k`]\S,i=1, and

output (I∗, S) with probability δ(S, Y).
Let TypicalSets := {S ⊆ [k`] : δ(S) ≥ 2−2n ∧ |S| ∈ (1 ± µ) · k`}. Let GlobalEffect := {i ∈ [k`] : δ(S =

Up
[k`],i=0, U

p
[k`]\S,i=1) /∈ (1± µ) · α`} (i.e., i ∈ GlobalEffect if by conditioning that i ∈ S`+2, one significantly

11

effects the probability that Ṽ
(k)

accepts in a random continuation of (P(k)∗, Ṽ
(k)

) conditioned on view).
Finally, let LocalEffect := {(i, S) : δ(S, Up

[k`]\S,i=1) /∈ (1 ± µ) · δ(S)} (i.e., (i, S) ∈ LocalEffect if by condi-

tioning that i ∈ S`+2, one significantly effects the probability that Ṽ
(k)

accepts in a random continuation

of (P(k)∗, Ṽ
(k)

) conditioned on view and S`+1 = S). We define the set T as {(i, S) ∈ [k`] × 2[k`] : S ∈
TypicalSets∧ i /∈ GlobalEffect∧ (i, S) /∈ LocalEffect}. Note that for every S ∈ TypicalSets and i ∈ ([k`]\S)
it holds that

D1
I∗,S(i,S) = D1

I∗,S(S = S) · D1
I∗,S(i,S | S = S)

= D1
I∗,S(S = S |6⊥) · (1− D1

I∗,S(⊥)) · 1
|S|

=
PrUp

[k`]
[S] · δ(S)

α`
· (1− 2−Ω(n)) · 1

|S|

∈
PrUp

[k`]
[S] · δ(S)

α`
· (1±O(µ)) · 1

(1− p) · k`
,

where the last equality follows since D1
I∗,S(⊥) ≤ (1 − α`)

m
µ·εk ∈ 2−Ω(n). On the other hand, the following

holds for every (i,S) /∈ LocalEffect where i /∈ GlobalEffect,

D0
I∗,S(i,S) = D0

I∗,S(I∗ = i) · D0
I∗,S(i,S | I∗ = i)

=
1
n
· D0

I∗,S(i,S | I∗ = i |6⊥) · (1− D0
I∗,S(⊥| I∗ = i))

=
1
n
·
PrUp

[k`],i=0
[S] · δ(S, Up

[k`]\S,i=1)

δ(S = Up
[k`],i=0, U

p
[k`]\S,i=1)

· (1− 2−Ω(n))

∈ (1±O(µ)) · 1
n
·
PrUp

[k`],i=0
[S] · δ(S)

α`

∈ (1±O(µ)) · 1
n
· 1
(1− p) · k`

·
PrUp

[k`]
[S] · δ(S)

α`
,

where the second equation holds since D0
I∗,S(⊥| I∗ = i) < (1− α`

2)
m

µ·εk ∈ 2−Ω(n) for every i /∈ GlobalEffect,
and the first ‘ ∈′ is immediate by the definitions of GlobalEffect and LocalEffect. Since for i ∈ S it holds
that D0

I∗,S(i,S) = D1
I∗,S(i,S) = 0, it follows that D0

I∗,S(i,S) ∈ 1 ± O(µ)) · D1
I∗,S(i,S) for every (i,S) ∈ T .

In the following we prove that D0
I∗,S(i,S)(T) is small.

By Hoeffding’s inequality (recall that k` > k/2 ∈ O(n5 ·m10)) we have that PrUp
[k`]

(S) < 2−n for every

S ∈ [k`] with |S| /∈ (1± µ) · k`. Hence, for every set S ∈ (2[k`] \TypicalSets) it holds that PrUp
[k`]

(S) · δ(S) ∈
O(2−n/2), and therefore

D1
I∗,S(S /∈ TypicalSets) = D1

I∗,S(⊥) + D1
I∗,S(S ∈ (2[k`] \ TypicalSets)) (6)

∈ O(2−n/2)
α`

+ 2−Ω(n) ∈ O(µ)

Consider the random variables S
R←Up

[k`]
, Y

R←Up
[k`]\S and X1 = (B1,1, B1,2), . . . , Xk`

= (Bk`,1, Bk`,2), where

Bi,1 = 1 iif i ∈ S, and Bi,2 = 1 iif i ∈ Y . Let W be the random variable that takes the value 1 iff Ṽ
(k)

accepts

in a random continuation of (P(k)∗, Ṽ
(k)

) conditioned on view, S`+1 = S and S`+2 = Y , Proposition 2.2

12

yields that

Pr
i
R←[k`]

[
Pr[W | Xi = (0, 1)] /∈ (1± µ) · Pr[W]

]
(7)

≤ 1
(1− p) · p · Pr

i
R←[k`],x

R←Xi

[
Pr[W | Xi = x]

/∈ (2± µ) · Pr[W]
]

≤ 1
(1− p)· ·

2
µ
·
√
− log Pr[W]

k`

It follows that |GlobalEffect| ∈ O(k` · µ) and therefore

D1
I∗,S(I∗ ∈ GlobalEffect∧ S ∈ TypicalSets) ≤ |GlobalEffect|

|S| ∈ O(µ) (8)

Consider now the following random variables defined with respect to a fixed set S ⊆ [k`]: Y
R← Up

[k`]\S and
X1, . . . , Xk`−|S|, where Xi = 1 iif the i’th element of [k`] \ S is in Y . Let W be the random variable that

takes the value 1 iff Ṽ
(k)

accepts in a random continuation of (P(k)∗, Ṽ
(k)

) conditioned on view, S`+1 = S
and S`+2 = Y , Proposition 2.2 yields that

Pr
i
R←[k`−|S|]

[
Pr[W | Xi = 1] /∈ (1± µ) · Pr[W]

]

≤ 1
p
· Pr

i
R←[k`−|S|],x R←Xi

[
Pr[W | Xi = x] /∈ (1± µ) · Pr[W]

]

≤ 2
p · µ ·

√
− log Pr[W]

k` − |S| .

It follows that for every S with δ(S) > 2−n, it holds that |{i ∈ S : (i,S) ∈ LocalEffect}| ∈ O(µ) · (k` − |S|).
Hence,

D1
I∗,S((I∗, S) ∈ LocalEffect∧ S ∈ TypicalSets) ∈

∑

S∈TypicalSets

D1
I∗,S(S = S) ·O(µ) ∈ O(µ) (9)

We conclude that D1
I∗,S(T) = D1

I∗,S(TypicalSets) + D1
I∗,S((I∗, S) ∈ GlobalEffect∧ S ∈ TypicalSets) +

D1
I∗,S((I∗, S) ∈ LocalEffect∧ S ∈ TypicalSets) ∈ O(µ).

The case ` = 0 The proof of this case follows very closely the proof for ` > 0 given above. In the following
we only describe the differences between these proofs. As in the case of ` > 0, it suffices to prove that the
following distributions are statistically close.

• D0
I∗,Rk := (I∗ R← [k], Rk = rk(GetNextView(⊥, I∗,⊥))

• D1
I∗,Rk :=

(
Rk = rk(GetNextView(⊥,⊥,⊥)), I∗ R← [k]

)

For rk ∈ {0, 1}k·len, let δ(rk) be the probability that Ṽ
(k)

accepts in a random execution of (P(k)∗, Ṽ
(k)

),

conditioned that the Ṽ
(k)

random coins are equal to rk. For Y ⊆ [k], let δ(rk,Y) be the above probability
where we also condition on S2 = Y.

Given rk ∈ {0, 1}k·len, we sometimes view rk as composed of k blocks of length len and denote its
i’th block by rk

B(i). Similarly, we let the random variable Uk·len,B(i)=r be uniformly distributed over

13

{0, 1}k·len conditioned that the i’th block is equal to r. We continue by letting TypicalCoins := {rk ∈
{0, 1}k·len : δ(rk) ≥ 2−n}, GlobalEffect := {(i, r) ∈ [k]×{0, 1}len : δ(Uk·len,B(i)=r, U

p
[k],i=1) /∈ (1±µ) · εk}, and

LocalEffect := {(i, rk) : δ(rk, Up
[k],i=1) /∈ (1± µ) · δ(rk)}. Finally, we let T := {(i, rk) ∈ [k]× {0, 1}k·len : rk ∈

TypicalCoins∧ (i, rk
B(i)) /∈ GlobalEffect∧ (i, rk) /∈ LocalEffect}.

It is easy to verify that D0
I∗,Rk(i, rk) ∈ (1±O(µ))·D1

I∗,Rk(i, rk) for every (i, rk) ∈ T , and that D1
I∗,Rk(Rk /∈

TypicalCoins) ∈ O(µ). Moreover, a very similar argument to the one used in the case ` > 0, yields that
D1

I∗,Rk(LocalEffect) ∈ O(µ). Hence, it is left to prove that D1
I∗,Rk((I∗, Rk

B(I∗)) ∈ GlobalEffect) ∈ O(µ). a
very similar argument to that used in the proof of (7) yields that

Pr
i
R←[k],r

R←{0,1}len
[
δ(Uk·len,B(i)=r, U

p
[k],i=1)] /∈ (1± µ) · εk

]∈ O(µ) (10)

Namely, Pr
i
R←[k],r

R←{0,1}len [(i, r) ∈ GlobalEffect] ∈ O(µ), where the same lines also yield that

Pr
i
R←[k],r

R←{0,1}len
[
δ(Uk·len,B(i)=r, U

p
[k])] /∈ (1± µ) · εk

]∈ O(µ) (11)

The above equation yields that Pr
i
R←[k],r

R←{0,1}len [(i, r) ∈ GlobalEffect′] ∈ O(µ), where GlobalEffect′ :=

{(i, r) ∈ [k]×{0, 1}len : δ(Uk·len,B(i)=r, U
p
[k]) /∈ (1± µ) · εk} (i.e., the difference comparing to GlobalEffect′, is

that we do not condition on i ∈ S2). Hence,

E
i
R←[k],rk R←{0,1}k·len

[
((i, rk

B(i)) /∈ GlobalEffect∪GlobalEffect′) · δ(rk)
]

≥ (1−O(µ)) · (1− µ) · εk > (1−O(µ)) · εk.

We conclude that

D1
I∗,Rk((I∗, Rk

B(I∗)) ∈ GlobalEffect)

≤ D1
I∗,Rk((I∗, Rk

B(I∗)) ∈ GlobalEffect∪GlobalEffect′) ∈ O(µ).

¤

Acknowledgment

I am very thankful to Oded Goldreich, Thomas Holenstein, Tal Moran, Rafael Pass, Omer Reingold,, Alex
Samorodnitsky and Salil Vadhan for very useful discussions.

References

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the error in
computationally sound protocols? In Proceedings of the 37th Annual Symposium on Foundations
of Computer Science (FOCS), 1997.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254–276, 1988.

[CHS] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly verifiable
puzzles. In Theory of Cryptography, Second Theory of Cryptography Conference (TCC).

[DP98] Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential iteration arguments and an efficient zero-
knowledge argument for NP. In ICALP: Annual International Colloquium on Automata, Lan-
guages and Programming, 1998.

14

[FK94] Uriel Feige and Joe Kilian. Two prover protocols: low error at affordable rates. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing (STOC), 1994.

[Gol99] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer-
Verlag, 1999.

[Hai09] Iftach Haitner. A parallel repetition theorem for any interactive argument. Technical report,
2009. ECCC, TR09-027, Revision 1.

[Hol07] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case. In Proceedings
of the 39th Annual ACM Symposium on Theory of Computing (STOC). ACM Press, 2007.

[HPPW08] Johan H̊astad, Rafael Pass, Krzysztof Pietrzak, and Douglas Wikström. An efficient parallel
repetition theorem. Unpublished manuscript, 2008.

[HRVW] Iftach Haitner, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Inaccessible entropy. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC).

[IJK06] Russell Impagliazzo, Ragesh Jaiswal, and Ragesh Kabanets. Approximately list-decoding direct
product codes and uniform hardness amplification. In Proceedings of the 46th Annual Symposium
on Foundations of Computer Science (FOCS), 2006.

[PV07] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. An efficient parallel repetition the-
orem for arthur-merlin games. In Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), 2007.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally sound proto-
cols revisited. In Theory of Cryptography, Fourth Theory of Cryptography Conference (TCC),
2007.

[Raz98] Ran Raz. A parallel repetition theorem. Journal of the ACM, 27(3):763–803, 1998. Preliminary
version in STOC’95.

A Omitted Proofs

Proof. (of Proposition 2.1) Note that
∥∥P1 − P2

∥∥
X ′

=
1
2
· (

∑

x∈X ′:P1(x)≥P2(x)

(P1(x)− P2(x))

+
∑

x∈X ′:P1(x)<P2(x)

(P2(x)− P1(x))
)

≥ 1
2
· (

∑

x∈X ′:P1(x)≥P2(x)

(P1(x)− P2(x))

+
∑

x∈X ′:P1(x)<P2(x)

(P1(x)− P2(x))
)

=
1
2
(P1(X ′)− P2(X ′)) =

1
2
(P2(X ′)− P1(X ′)).

15

It follows that P2(X ′) ≤ 2 · ∥∥P1 − P2
∥∥
X ′ + P1(X ′), and therefore

∥∥P1 − P2
∥∥

=
1
2
· (

∑

x∈X ′

∣∣P1(x)− P2(x)
∣∣ +

∑

x∈X

∣∣P1(x)− P2(x)
∣∣)

≤ 1
2
· (P1(X ′) + P2(X ′)) +

∥∥P1 − P2
∥∥
X ′

≤ 1
2
· (P1(X ′) + P1(X ′)

+ 2 ·
∥∥P1 − P2

∥∥
X ′) +

∥∥P1 − P2
∥∥
X ′

≤ P1(X ′) + 2 ·
∥∥P1 − P2

∥∥
X ′ .

¤

16

	Introduction
	Our Result
	Our Technique
	Related Work
	Paper Organization

	Preliminaries
	Interactive Arguments
	Random-termination Verifiers
	Smooth Sampler

	Parallel Repetition Theorem for Random-termination Protocols
	Omitted Proofs

