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Abstract Trust is a central concept in public-key cryptography infrastruc-
ture and in security in general. We study its initial quanti�cation and its
spread patterns. There is empirical evidence that in trust-based reputation
model for virtual communities, it pays to restrict the clusters of agents to
small sets with high mutual trust. We propose and motivate a mathematical
model, where this phenomenon emerges naturally. In our model, we sepa-
rate trust values from their weights. We motivate this separation using real
examples, and show that in this model, trust converges to the extremes,
agreeing with and accentuating the observed phenomenon. Speci�cally, in
our model, cliques of agents of maximal mutual trust are formed, and the
trust between any two agents that do not maximally trust each other, con-
verges to zero.

We o¤er initial practical relaxations to the model that preserve some
of the theoretical �avor.
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1 Introduction

There is empirical evidence that in trust-based reputation model for virtual
communities, it pays to restrict the clusters of agents to small sets with high
mutual trust [6]. We propose and motivate a mathematical model, where
this phenomenon emerges naturally. In our model, we separate trust values
from their weights (used in a transitive averaging process). We motivate this
separation using real examples, and show that under plausible assumptions,
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in this model trust converges to the extremes, accentuating the empirically
observed phenomenon. Speci�cally, in our model, cliques of agents of max-
imal mutual trust are formed, and the trust between any two agents that
have no common max-trust clique converges to zero.
This work is di¤erent from authorization languages, such as DKAL-2

([7]), where the goal is to create a distributed access control, and trust
relations are given binary relations.

1.1 Trust model

Customarily, we compute the local trust between two agents independent
of the behavior of other agents. We then feed it into the computation of
transitive trust, where we compute an average of the opinions of peers.
Examples of both stages of trust computation can be found in [6] and in
[10]. The former has a very nuanced de�nition, with attention to details,
such as freshness of the data. Ignoring such important details (which should
be put back in a real implementation), we propose a bare-bones Information
Theoretic de�nition of local-trust. It is the most general de�nition, and can
be used when the necessary conditional probabilities are known (even a
very rough estimate is su¢ cient). But when they are not available, then
standard less general de�nitions can be used. Our main result about trust
is independent of the de�nition of local-trust. It is a phenomenon of the
transitive trust. Our de�nition of transitive-trust is a slight change to the
de�nition of transitive trust of e.g. [10]. But this change is su¢ cient to
expose the e¤ect.
The local trust depends on the gap between behavior and expected be-

havior of an ideal agent in that role. When we can model behavior as a
random variable, the most general way to quantify the gap between two
random variables is their conditional entropy. We later specialize this con-
cept for collaborative Web search (where we expect the gap to be a metric).
In this case, one user�s trust in another may derive from similarity of their
queries and preferred search results.
Transitive trust:
In many cases, we can clearly separate weights from trust levels. For

example, it is standard practice to ask reviewers of scienti�c papers to de-
clare their con�dence level in their own conclusions. Namely, they are highly
trusted to begin with. They are so much trusted that we leave it to them to
decide the weight of their own opinions. The same is true when interviewing
candidates for research positions. In the case of collaborative Web search,
the user may designate context-dependent weights to some persons whom
she knows personally (in addition, we may be able to do some automatic
weight allocation). When there is no weight data we assign uniform weights.
A trust matrix of n agents is a n � n matrix T = (�ijtij), where tij is

the trust of agent i in agent j, and �ij is the relative weight that i assigns
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to the opinion of j. The common-wisdom (e.g., in [10]) is to engineer T
to be stochastic. We do not know of a justi�cation to up-front impose this
restriction. In contrast we de�ne only the matrix of weights to be stochastic
(this is exactly the meaning of weighted average; a convex combination)
and allow trust to have any value in the real interval [0,1]. This change is
su¢ cient to unmask the above phenomenon.

2 Trust

2.1 Local trust

Following [18], we model an information-source as a random variable, and
use these two expressions synonymously. The amount of information ema-
nating from a source is the amount of uncertainty that existed before the
source released the information. This is the Information Theoretic entropy.
Let M denote a message space, and let x; y be random variables over that
space. We use x to denote both a r.v. and the agent associated with it. The
conditional entropy (also, equivocation) of y given x is the average uncer-
tainty of y given x, denoted Hx(y). Normalized per bit, its value is in the
[0,1] interval1 .

Main thesis: Local-trust depends on the information-gap between be-
havior and the expected behavior of an ideal agent in the same role. When
we can represent these behaviors as random variables, the most general mea-
sure for this information-gap is conditional-entropy (or simple derivatives
thereof).

Suppose r.v. x gets values l 2 M and y has values m 2 M: Let
p(l;m) = Pr[x = l \ y = m]; and let pl(m) = Pr[y = m j x = l]:

Then, p(l) =
P

m p(l;m) and pl(m) =
p(l;m)
p(l) . The entropy of x is de�ned

[18] as H(x) = �
P

l p(l) log p(l); and the equivocation of y given x is
Hx(y) = �

P
l;m p(l;m) log pl(m); which is the same as saying (perhaps

more intuitively) Hx(y) = H(x; y)�H(x): We normalize Hx(y) 2 [0; 1]:

De�nition 1 (Local-Trust): Let x; y; z denote 3 r.v. over M, where y rep-
resents an agent in some well de�ned role, whose trustworthiness we try
to evaluate, x correspond to an ideal agent in that role (who doesn�t lie nor
err), and z corresponds to the evaluator�s view of x. Then the absolute trust-
worthiness of y is 1�Hx(y); and the trust of z in y is tzy = 1�Hz(y).

Remark 1 The r.v. z; encompasses whatever the evaluator can e¢ ciently
compute about x. For example, if y is a consistent liar, then it is a very
reliable source of information (like in IT). But we go beyond just bit �ip-
ping (as is the case in the Capacity of a binary symmetric channel in IT).

1 The entropy function is concave, but the equivocation Hx(y) is not necessarily
concave.
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Following A.C. Yao [22] we allow any polynomial time computation . This
is also closely relates to work on Conditional Computational Entropy [14].

Example-1 : Suppose that agent y is a revocation authority, and that
there are n agents. Each instance of a revocation list is a binary n-tuple
with value 1 corresponding to a revoked agent. The message space M is the
set of all 2n such n-tuples. Each of the 3 r.v. associates some probability to
each message.

2.2 Transitive trust

2.2.1 General: We propose a slight modi�cation to existing mathematical
model [10]. In the new model (unlike the old) trust converges to the ex-
tremes, agreeing with the empirical evidence. We speculate, that this model
can further improve the results.

Trust Matrix: Consider a set f1; 2; :::ng of agents. In a n�n trust matrix
T = (�ijtij); entry (i; j) is the trust of agent i in agent j; denoted tij ;
weighted by some weight factor 0 � �ij � 1; where for all i;

Pn
i=1 �ij = 1:

�ij can be interpreted as the relative relevance of the opinion of a peer
(for example, a peer may be fully trusted but claim little con�dence about
some speci�c evaluation; the condition

Pn
i=1 �ij = 1 is the usual meaning

of weighted average). Occasionally we use the uniform weight 1=n as an
example, but our claims hold for any convex combination. When the discrete
time � = 1; 2; ::: is necessary for the explanation we write tik(�) instead
of tik: We assume that for all i and � ; tii(�) = 1: 2 It is natural to
normalize the trust values to the interval 0 � tij � 1; since we expect
0 � tij(�)tjk(�) � 1: This is similar to EigenTrust [10], but with important
di¤erence. We do not engineer T so that for all i;

Pn
j=1 �ijtij = 1 (in fact,

we do not know of any justi�cation for such constraint).

De�nition 2 A maximal trust matrix is a trust matrix where every agent
has trust=1 in every agent (i.e. for uniform weight, the matrix T is all
1=n).

Interpretation of right eigenvector of T :
Consider the n�n trust matrix, T of agents 1; 2; ::n. Assume a candidate

0 to this set. The agents 1; 2; :::n are existing set members. Each of them
interviews the candidate to determine a local trust value. Interviewer i
has local trust value ti0 in candidate 0: Let t = (t10; t20; :::tn0)

t: Right
multiplying Tt yields the transitive trust values after one iteration. The
right eigenvector, corresponding to eigenvalue 1, is the stable transitive trust
values of the existing set members in the candidate.

2 When trust is based on similarity, as is the case with trust-based collaborative
Web search, we do not have to assume tii = 1: It follows from the de�nitions.
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Interpretation of left eigenvector of T : Row i represents the
trust of agent i in each of the set members, and column j represents the
trust of each set member in agent j: Let tt(�) denote a row vector whose
entry j = 1; 2; :::n; is the aggregate trust of existing set members in existing
agent j at discrete time � : Then tt(� + 1) = tt(�) � T (�): Therefore a
left eigenvector that corresponds to eigenvalue 1, is a stable trust vector
representing the overall trust of the set in each of its existing members3 .

2.2.2 Modes of clique build-up Along the time axis, the process is dynamic;

cliques may grow, then split (when facing new data).

De�nition 3We use the term gradual clique build-up when referring to
a dynamic process, using right multiplication, t(� + 1) = T (�)t(�); where
current data applies to current candidates to a clique, t(�); but existing
clique members, that were accepted under older data, are not judged again
under the newer data. If all the agents represented by T (�) are evaluated
using the data available at time � ; then we call it instantaneous clique
build-up.

So, T (�) has di¤erent interpretation, depending on the mode of clique
build-up. In the instantaneous clique build-up, the data at time � is used
in all the entries of the matrix, and in the gradual mode of clique build-up,
entries are added gradually, and once added they are not re-evaluated under
newer data. the left (right) eigenvector corresponding to eigenvalue 1 is the
stable solution in the instantaneous (gradual) clique build up.

2.2.3 The Perron-Frobenius Theory The part of the theory that we ac-
tually use here appears e.g. in [17], Theorem 1.1, part (e). For a concise
summary of the theory see also Th. 1.3.1 in Andries Brouwer�s notes4 . Let
T be any matrix over R (a vector is a special case). T > 0 means that
every entry of T is positive (the notation T � 0 should also be interpreted
likewise). A matrix T 2 Rn�n is primitive if (9k)[T k > 0]: It is irreducible
if (8i; j)(9k)[(T k)ij > 0] (the corresponding digraph is strongly connected,
i.e. 9 path from any node i to any node j): We present here only the part
of the theory that we need now.

Theorem 1 (Perron-Frobenius): Let T 2 Rn�n be irreducible. There
exists �0 2 R such that �0 = �(T ) is the spectral radius of T; and if
0 � S � T and � is any eigenvalue of S then j�j � �0: Furthermore,
j�j = �0 if and only if S = T:

3 If T is a maximal trust matrix, then after one iteration t(�) is necessarily a
consensus. Since T 2 = T; T is also a projection. It projects onto U along V;
where U is all the consensus vectors, and V is all the vectors whose components
add up to zero. The minimal polynomial of T is x2 � x; whose 2 roots are
the eigenvalues �0 = 0 and �1 = 1: Every consensus vector is an eigenvector
corresponding to �1.
4 http://www.win.tue.nl/~aeb/srgbk/node4.html
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Remark 2 Let T represent a max-trust clique. As such T is stochastic,
hence its spectral radius is �(T ) = 1: For any S < T; �(S) < 1 (by the
above clause of the Perron-Frobenius Theorem). So, limk!1 �(S

k) = 0:
This is true not only when using uniform weights 1/n, but for any convex
combination.

Remark 3 A trust matrix which is not max-trust has only the zero vector
as eigenvector.

Remark 4 Cliques of maximal trust are formed (they may overlap). The
trust between two agents that do not maximally trust each other converges
to zero (because any matrix S that includes both, is S < T ):

3 Practical considerations

In the theoretical part of the paper we used the term �clique,�while in the
practical part, where we allow tolerances, we switch to the murkier term
�cluster.� Classic clustering distinguish agglomerative (bottom-up) from
divisive (top-down) clustering. Both methods are useful even when data is
static. In our processes data is dynamic. At each point in time, we can freeze
the data and use either one or the other clustering methods, and achieve
the same eventual structure.
The theoretical process is all-or-nothing. It forms max-trust cliques, and

the trust between any two agents that do not maximally trust each other
vanishes. This is useful as a general guideline, but in practice we have to
do useful things with less than perfect trust. Allowing tolerance � means
accepting a candidate with less than perfect score t 2 [1� �; 1]: We hence
switch from the clique terminology to the murkier but more realistic clus-
ter. In this case (if at least one entry tij < 1) the only eigenvector of the
trust matrix of the cluster is the all zero vector (from the Perron-Frobenius
Theory). So, we can no longer use eigenvectors. Instead we want to try a
related process, which coincides with the theory for zero-tolerance (� = 0):

De�nition 4 The cohesion of a cluster of agents is the smallest trust be-
tween a pair of agents in the cluster.

It is convenient now to consider right-multiplying the trust matrix T of
a cluster, by a column vector t(�); representing the trust of each of the
existing cluster members in a new candidate, at discrete time � : So,

t(� + 1) = Tt(�):

Based on empirical evidence of [6] and in agreement with our mathe-
matical model, we opt to try relatively high cohesion clusters of agents.
In the theoretical case, when T is max-trust, then one iteration of t(� +

1) = Tt(�) yields a stable solution (an eigenvector corresponding to eigen-
value one). Therefore in the practical approximation we also consider only



Quantifying Trust 7

one iteration. If all the entries of T and of t(�) are in [1 � �; 1]; then,
as we show in the full paper, all the entries of t(� + 1) = Tt(�) are in
[1� 2�; 1]: The fact that we can decide this outcome through a simple in-
spection, rather than through a more involved computation does not change
this error-uncertainty analysis5 .
The algorithm tries to create near max-trust clusters within these toler-

ances, by accepting or rejecting candidates to existing clusters, with known
tolerances, or by splitting existing clusters and accepting to sub-clusters. For
� = 0 this algorithm is consistent with the theoretical model; it gradually
creates strict max trust cliques.
Example-2: Usually credit card companies defer to a few credit bureaus

to decide the trustworthiness of clients. This corresponds to transitive av-
eraging in which the credit card companies, and merchants concentrate all
the weights on the credit bureaus, and assign zero weight to the opinions of
users (even when maximally trusted).
Example-3: Trust relations among pieces of code (in the cloud and on

a single machine). Software modules establish trust relations based on their
vendor�s attestation, trust relations between vendors, and trust relations
between users and vendors. Near max-trust clusters of modules are allowed
to work together. Lower trust vanishes. Clusters are separated from each
other, so they cannot interfere.
Example-4: Auction sites such as eBay support a ranking system with

which buyers and sellers evaluate one another. Participants score transac-
tions based on aspects such as product quality, shipping duration, timely
communication, and overall satisfaction. Long-time, successful buyers and
sellers tend to migrate into a pool where everyone has perfect or near-perfect
rankings, while others generally fall away and never return. If we equate
trust with average ranking, this example shows convergence into max- and
min-trust cliques.
Example-5: There is empirical evidence [6] that in trust-based reputation

model for virtual communities, it pays to restrict the clusters of agents to
small sets with high mutual trust.
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4 Appendix:

4.1 The curious incident of metrics �passing through� transitive averaging
functions

Metrics that �pass through�transitive-averaging functions cease to be met-
rics, but if we iterate su¢ ciently many times (until they converge to the
extremes) they again become metrics.
Let D(ui; uj) = gij be the local distance between agent i and agent

j: Suppose that gij is a metric, i.e. (i) gij � 0; (ii) gij = 0 , i = j;
(iii) gij = gji; (iv) gij � gik + gkj : The gaps resulting from a convex
combination of trust values based on such direct gaps is not necessarily a
metric. For example, plug these numbers into a uniformly weighted consen-
sus function:

1�Gik =
1

2
[(1� gik) + (1� gijgjk)];

In general, Gik is not a metric. For example, Gii = 1
2gijgji is not

necessarily zero. However, when trust converges to the extremes, it is a
metric. Trust of i in j is tij = 1�Gij=1, and as a special case, Gii = 0.
The trust between two agents that are not in the same clique is zero. In this
case, (Gij ; Gjk; Gki) 2 f(0; 0; 0); (1; 1; 1); (0; 1; 1)g. This is a metric.


