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Abstract—Many measurement systems have been proposed in
recent years to shed light on the internal performance of the
Internet. Their common goal is to allow distributed applications
to improve end-user experience. A common hurdle they face is
the need to deploy yet another measurement infrastructure. In
this work, we demonstrate that without any new measurement
infrastructure or active probing we obtain composite perfor-
mance estimates from AS-by-AS segments and the estimates are
as good as (or even better than) those from existing estimation
methodologies that use on-demand, customized active probing.

The main contribution of this paper is an estimation algorithm
that breaks down measurement data into segments, identifies
relevant segments efficiently, and, by carefully stitching segments
together, produces delay and path estimates between any two end
points. Fittingly, we call our algorithm path stitching. Our results
show remarkably good accuracy: error in delay is below 20 ms
in 80% of end-to-end paths.

I. INTRODUCTION

Internet-wide services and applications depend on accurate
information about the internal network state to deliver good
performance to end-users. For example, content distribution
networks use delay information to direct clients to replicas that
would provide best performance. Peer-to-peer VoIP systems
(e.g., Skype) have been shown to deliver better voice quality
when AS path information is taken into account for select-
ing peers [16]. However, today’s Internet does not provide
such information explicitly and developers resort to ad-hoc
measurement tools to obtain the necessary data. This poses
an additional tax on the development cost of new services
and applications. For this reason, a number of systems have
been recently proposed and implemented to provide a shared
measurement infrastructure for distributed applications [3], [5],
[10], [19]. They follow a common plan of action: (1) define
estimation methodologies for delay, path, loss rates, etc.; (2)
carefully construct an active probing strategy and instrument
end-systems to collect measurements accordingly.

In this work we diverge from this tradition of active
measurement. We are interested in the potential of estimation
methodologies in isolation from data collection. Our goal is to
demonstrate that without any new measurement infrastructure
or active probing we obtain composite performance estimates
from AS-by-AS segments and the estimates are as good as (or
even better than) those from existing estimation methodologies
that use on-demand, customized active probing. The key idea
behind scaling measurements to the size of the Internet is
to take advantage of the known underlying structure of the
network. Existing approaches in line with ours are iPlane

[10] and Akamai’s core points [9]. They derive estimates by
composing performance measures of network segments along
the end-to-end path. Our approach differs from these two in
that we construct end-to-end information from performance
measures segmented by the AS. Let us illustrate our approach
in the following simple example. Consider a query for some
performance metric between two points x and y in the Internet.
Assuming that we have access to segmented performance
measures, we infer the AS path between the two points and
construct the end-to-end metric corresponding to those ASes
on the inferred path.

The main contribution of this paper is an estimation algo-
rithm that breaks down measurement data into segments, iden-
tifies relevant segments efficiently, and by carefully stitching
segments together, produces delay and path estimates between
any two end points. Fittingly, we call our algorithm path
stitching. In this work we use path and round-trip delay as
measures of interest for validating our structural approach.

Our approach is based on the following assumptions: (1)
AS-level path inference is accurate; (2) measurement data seg-
mented by the AS is readily available; and (3) characteristics
of end-to-end path retain temporal stability. We argue that
these assumptions are reasonable and present surmountable
challenges. AS path inference has been an active area of
research [13]–[15] and published methodologies now report
90% accuracy in AS path inference. Numerous end-to-end
measurement data sets are publicly available today [6], [10],
[17] that we can utilize. Finally, with regard to the third
assumption, routes from a single end-host to many destina-
tions are known to be fairly stable despite Internet’s inherent
dynamic nature [12].

Our results show remarkably good accuracy: error in de-
lay is below 20 ms in 80% of end-to-end paths. We also
present a comparison with iPlane [10], where measurements
are carefully designed from hundreds of vantage points to
maximize accuracy. Path stitching show an accuracy similar
or slightly better than iPlane without having to instrument any
new measurement node.

The accuracy of our path stitching algorithm defines what is
already achievable without instrumenting any additional mea-
surement node. Our work is a step towards bringing a diverse
set of measurements together to improve accuracy without
additional active measurements. Path stitching represents a
reference baseline valuable when it comes to understand the
benefits (and the costs) of deploying a new measurement
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infrastructure.
The rest of the paper is organized as follows. Section II

describes data sets that we use throughout the paper, and Sec-
tion III presents our path stitching algorithm. In the following
Sections IV and V we describe how to deal with two types of
complications: when there is no exact path and when there are
too many valid paths. We evaluate path stitching in Section VI,
and conclude the work in Section VII.

II. DATA

We use Ark [6] traceroute outputs, and Routeviews [2] and
RIPE [1] BGP routing tables. These datasets are among the
largest data archives publicly available and hold constantly
updated information about IP and AS-level topologies. Thus
they provide a good starting point for our investigation into
the feasibility of path stitching.

Ark project collects traceroutes from 18 monitors to every
/24 routable prefix. From Ark, we use one round (cycle-
20080407) of traceroute outputs taken from April 7th to 9th,
2008 (a total of approximately 14 million traceroute outputs).
RouteViews and RIPE are two most widely used repositories
of BGP routing table snapshots. We use BGP routing table
snapshots from the same three-day-period as our Ark data.

To evaluate the accuracy of our estimation methodology, we
take direct path and delay measurements between a set of hosts
and compare them against the path stitching estimates. We ran
traceroute 50 times a day between 184 PlanetLab (PL) nodes
during the same period as the Ark data. We then split this
data set in two smaller sets: pl-easy and pl-hard. The
distinction between the two sets lies in the co-location of Ark
monitors at the source AS. 462 pairs in the pl-easy set have
the source node located in the same AS as an Ark monitor.
The latter set pl-hard contains the remaining 10, 077 pairs
whose source PL nodes are not in the same ASes as any Ark
monitor. This set is useful to evaluate our methodology for
uncharted (or partially measured) network regions1.

III. PATH STITCHING

Our goal is to estimate end-to-end path and round-trip delay
between any two hosts in the Internet without resorting to
active probes but re-using existing network measurement data.
In the design of the path stitching algorithm we are guided
by two main objectives: (i) coverage: the algorithm must be
able to answer even those queries about end systems that
are not present in the existing measurement data sets; and
(ii) accuracy: the estimate should be as close to the actual
measurement as possible.

Given two IP addresses as input, the path stitching algorithm
operates as follows:
Step 1: Map IP addresses to AS numbers.
We use the BGP routing tables to map an IP address to an AS
number. The longest prefix match on the IP address returns

1The inter-domain connectivity of Planetlab nodes relies on research
networks and may not be representative of the Internet [4]. However, the
goal of this data set is to evaluate the accuracy of our path stitching. We
leave the problem of representativeness for future work.

the prefix and corresponding AS path. The last AS number is
then taken as the origin AS for the host.
Step 2: Infer AS-level paths between ASes.
We follow KnownPath’s methodology [15] to infer AS paths
between two ASes. KnownPath exploits the AS paths already
present in BGP tables and infers AS paths by extending these
known paths.
Step 3: Stitch path segments along the inferred AS path.
Taking as input the inferred AS path from Step 2, we extract
router-level path segments from the traceroute database and
stitch them up along the inferred AS path. This step may result
in no candidate paths or may lead to too many candidate paths.
We discuss approximation methodologies for the former case
in Section IV and preference rules for the latter in Section V.
Step 4: Return the best candidate paths and delays.
When Step 3 outputs stitched paths, the final step is to
calculate round-trip delays along the paths and return them
as query result. The results contains both the most recently
measured round-trip delays as well as a distributions of all
the measured delays along the path.

Each step above makes use of the Ark and BGP data. In
order to handle potentially large data sets efficiently, we pre-
process and convert them to a more easily manageable format,
“path segments”. We split traceroute outputs into intra- and
inter-domain segments. The set of intra-domain segments of a
AS A (indicated by :A:) cover all known paths between any
ingress and egress points of the AS A (together with router-
level latency information). The set of inter-domain segments
between AS A and AS B (indicated by A::B) describe all
inter-AS connections that appear in the Ark data set. These
path segments represent the basic components that are later
stitched by our algorithm.

For example, when we resolve a simple query from a host
a to b. First, we map a to AS A and b to AS B (Step 1).
We derive the AS-level path from a to b (Step 2), AB in
this example. Then, among the intra-domain segments :A:,
we search for those that start with a. Then we resolve the
portion A::B, and find a segment that rendezvouses with the
egress point of the :A: segment. We continue to stitch up in a
similar manner (Step 3). Actual queries are more complicated
to answer than the above sample case. The following sections
address the challenges in detail.

IV. APPROXIMATION IN PATH STITCHING

Path stitching does not always return a stitched path. It
fails when the path segment repository is missing data for
the following three reasons: (i) the source or destination IP
address maps to an AS that is not present in the repository;
(ii) the inter-domain segment is not present in the repository;
or (iii) the end of a path segment does not match any of the
beginnings of the next AS path segments.

Data Type Total AS Transit AS Stub AS
Ark 14378 4418 9960

BGP 28244 4847 23397

TABLE I
NUMBER OF ASES IN ARK AND BGP DATA
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Fig. 1. Example of clustering

The first case of missing ASes has no solution other than
collecting more measurements. Ark monitors probe every
routable /24 prefix. Yet the Ark dataset is missing 50% of ASes
present in the BGP tables (see Table I). A careful look at the
data reveals that the Ark dataset covers 93% of the transit ASes
and just 42% of the stub ASes2. The 13, 866 ASes not covered
in the Ark data set correspond to approximately 110 million,
or 5.8%, of the IP addresses that originate from all ASes in the
BGP data: an order of magnitude smaller percentage than in
the number of ASes. For those IP addresses, our path stitching
cannot generate any estimate. For future work, we consider
incorporating a second traceroute-based dataset (DIMES [17])
to increase the IP address coverage above the current 94.2%
and AS coverage from 50.9%.

For the second case of missing inter-domain segments, we
search for a reverse segment. That is, if we cannot find an inter-
domain segment A::B, we consider the reverse path segment,
B::A, instead, as a potential candidate. This is reasonable
given that inter-domain segments are typically over point-to-
point links and all links are bi-directional.

We address the third case by clustering IP addresses. Fig-
ure 1 illustrates our solution. In the example, the Ark data
set contains path segments for AS paths, XAY and ZAW.
When a query for IP addresses x and w arrives, the algorithm
infers correctly an AS path XAW, but it is not able to find
in the repository segments that can be stitched together. We
then resort to approximation by clustering: the dotted circle in
Figure 1 collapses two egress points into one. We employ
multiple levels of clustering, first by the router (called IP
aliasing), the Point-of-Presence (PoP), and the prefix length.
Clustering at the router level has been addressed in previous
work [18], and recent work by Madhyastha et al. offers router
aliases as well as PoP clusters [10]. In our evaluation we use
their router aliases and PoP clusters from March 2008. We
extend approximation one step further than in [10] and allow
clustering by the prefix when router or PoP clustering fails.

V. PREFERENCE RULES

Now we turn our attention to the cases with too many
stitched paths for a given query. Our goal in this section
is to define the rules of preference and apply them to trim
the list of candidate paths. A key insight in designing good
preference rules is to reflect the actual mechanism that route
packets through the network. We choose the following three
preference rules, but omit supporting material due to space
limitation. We refer to our technical report for detail [8].

A. Preference Rule #1: Proximity
IP addresses in the Internet far outnumbers ASes and there

is no public data set that contains all the IP addresses. Thus
2We call an AS transit if it appears in any AS path (not the first nor the

last AS) in a BGP table; otherwise, stub.

end points of a query are likely to be not found in the path
segment repository. Our first rule of preference addresses this
problem by proximity. The proximity rule dictates that the
path segments closest to the queried IP addresses are chosen
for path stitching. The proximity is measured by the common
prefix length3. The proximity rule improves accuracy in delay
estimation, for delay within an AS varies widely.

B. Preference Rule #2: Destination-Bound Path Segments
Routing decisions in the Internet are made at every hop

based on the destination. When we segment traceroute outputs
by the AS and create the path segment repository, we keep
this destination information with the segments and use it later
in path stitching. Using only those segments with the same
common destination prefix (“destination-bound segments”)
makes sense as it is consistent with how packets are routed in
the Internet.

C. Preference Rule #3: Most Recent Path Segment
Even after applying the two preference rules described

above, we may be left with more than one candidate path. We
need a final preference rule. We decide to rank the candidate
paths according to the time of the actual measurement (from
most to least recent). Indeed, end-to-end routes can change at
any moment in the network, thus the most recent segment is
likely to represent the end-to-end route most accurately.

The path stitching algorithm first applies the proximity rule
to reduce the initial path segments in the source AS. Then, it
selects the most recent inter- and intra-domain path segments
towards the same destination prefix as the query. Finally, it
applies the proximity rule at the destination AS.

VI. EVALUATION

In this section we demonstrate step-by-step how estimates
from our path stitching fare in comparison to on-the-spot
actual measurements. First, we evaluate the overall quality of
AS path inference in Step 2 of path stitching. Then we show
how much value the approximation methods in Section IV and
preference rules in Section V bring to Step 3. As a final part
in evaluation, we compare our results against iPlane [10].

A. AS Path Accuracy
For every pair of hosts in pl-easy and pl-hard, we

execute Steps 1 and 2 of our algorithm and obtain inferred AS
paths. For all pairs in pl-easy and pl-hard we also have
the actual measured AS paths. Due to space constraints, we
only summarize the result in this section; in pl-easy pairs,
we see that 72% of inferred AS paths are exact matches of
the measured AS paths, while in pl-hard pairs, only 26% of
inferred AS paths are exact matches. For more detailed results,
refer to our technical report [8].

B. Evaluation of Approximation Methods
The goal of the approximation methods in Section IV is to

produce approximate stitched paths in the face of no stitched
path. For both sets of pl-easy and pl-hard we stitch

3The size of the network prefix (e.g., /22) as a distance metric is an effective
means of discriminating paths, as it allows strict ranking.
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path segments along the measured AS paths and inferred AS
paths. We compute the fraction of pairs that find stitched paths
without any approximation. Then we apply approximation
methods one by one. As predicted, we show incremental
improvement in the fraction of pairs with stitched paths.
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Fig. 2. Fraction of pairs with stitched paths

The fraction of pairs with stitched paths does not differ
much between the measured and inferred AS path cases of
pl-easy, because the Ark monitors are co-located with the
source hosts of pl-easy. Yet for 13.6% or 63 pairs, there
exists no stitched path. We have two explanations. For 59 or
12.8% of pairs, their AS paths include ASes or inter-AS links
that are not present in the Ark data set. For the remaining 4 or
0.9% of pairs, the path segments cannot be stitched no matter
what clustering we use.

The case of pl-hard is more complicated. When no
approximation is used, only 6% of pairs find stitched paths
with measured AS paths and even less with inferred AS
paths. Considering the fact that no Ark monitor resides in the
same AS as the source hosts in pl-hard, even those small
numbers are surprising. Those originating ASes have appeared
on some routes in the Ark data set. The largest increment in the
fraction of pairs comes when we use reverse segments. Further
relaxation on clustering constraints show definite incremental
improvement. The Ark data set covers about half of the ASes
observed in BGP. In order to bring the fraction of pairs with
stitched paths from 70% with measured AS paths and 68%
with inferred AS paths to the level of pl-easy, we conclude
data sets with wider coverage of ASes are needed.

Additionally, we repeat the evaluation without router and
PoP-level approximations. Resolving router aliases and clus-
tering at the PoP-level require a large number of additional
probes. Our interest here is to evaluate our algorithm when
those datasets are not available. Indeed, the additional dataset
bring limited benefit: clustering with /28 and /24 prefix and
without router and PoP, we miss only 5 (0.04%) pairs for the
pl-hard with measured AS paths case, and 165 (1.6%) pairs
for the pl-hard with inferred AS paths case. For pl-easy
cases, there are no missing pairs.

C. Evaluation of Preference Rules
In this section we demonstrate how each preference rule

reduces the number of candidate path segments, as well as
deviation in delay estimates from real measurements. If an
inferred AS path includes a transit AS with a large number
of intra-domain segments, it is not practical to consider all
possible combinations of path segments4. To isolate the effect

4In our path segment repository, the median number of segments of transit
ASes is 25, but the maximum number reaches 124, 317.

of preference rules from other factors in our evaluation, we
only consider those host pairs in pl-easy and pl-hard
that find stitched paths without any approximation method. We
are left with 393 pl-easy pairs and 572 pl-hard pairs.
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In Figure 3 we draw the CDF of the number of stitched paths
per host pair. The dotted red line marked ‘raw’ represents the
total number of stitched paths before we apply any preference
rule. We see that almost 60% of host pairs have 500 or more
stitched paths. Now we apply the preference rules of proximity
and destination-bound path segments and see the number of
stitched paths decrease greatly. Still, about 30% of host pairs
have about 100 or more stitched paths. Only when we use the
segments of most recent measurement, we see the number of
stitched paths drop to 1 for almost all pairs.
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Fig. 4. Improvement in delay estimation

In Figure 4 we plot the minimum and maximum delay
estimates of all stitched paths per query against actual mea-
surements. For the ease of illustration, we peg the minimum of
measured delays to 0 ms in Figure 4. We draw the difference
between the maximum and minimum measured delay as a
dashed line. It represents variability in actual measurements.
Values that fall between the dashed line and the horizontal
line of 0 ms delay are basically indistinguishable from real
measurements.

We evaluate the following two combinations of prefer-
ence rules: (i) only with the proximity and destination-bound
prefixes and (ii) with the first two plus the most recently
updated segments. The colors in the bar graph lightens as
more preference rules apply. The lightening trend in colors
indicates that our preference rules not only reduce the number
of stitched paths, but also bring the estimates close to the
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actual measurements.

D. Comparison with iPlane
Most latency prediction systems based on network co-

ordinates require full-mesh type of measurements between
participating nodes and are not amenable to take the Ark data
set as input [3], [5]. In this section, we choose to compare our
algorithm to iPlane [10] that uses a similar structural approach
to latency prediction and is shown to provide more accurate
results than other solutions [5], [12].

We obtained the binary code of the iPlane and router- and
PoP-level clustering and IP-to-AS mapping collected during
the same period as the Ark data set. We then fed our Ark
data to the iPlane along with the additional information. By
doing so, we effectively turn the Ark monitors to iPlane
vantage points. We use pl-easy and pl-hard sets for
the evaluation.

First, we examine the number of successful answers. Our
numbers are 367 with /24 clustering and inferred AS paths in
pl-easy and 6,103 with the same combination in pl-hard.
With measured AS paths, we got 399 and 7,048, respectively
(see Figure 2), while iPlane returns 325 in pl-easy and
5,109 in pl-hard. We find the numbers comparable and for
the rest of the evaluation, we use only those pairs that both
iPlane and our path stitching return answers.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

Absolute errors (ms)

C
D

F

 

 

path stitching /w measured AS path
path stitching /w inferred AS path
iPlane

(a) pl-easy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

 

 

Absolute errors (ms)

C
D

F path stitching w/ measured AS path + router/PoP
path stitching w/ measured AS path + prefix/24
path stitching w/ inferred AS path + router/PoP
path stitching w/ inferred AS path + prefix/24
iPlane

(b) pl-hard
Fig. 5. Absolute errors

In Figure 5 we plot the CDF of absolute errors. In the
case of pl-easy (top graph), we only show results with
/24 clustering because other approximation methods return
almost the same results. Path stitching reports consistently
smaller absolute errors. We note that the iPlane performance
observed in Figure 5 is comparable to the best case reported in
Figure 4 of [11]. As we have seen in Figure 2, a relatively large
fraction of pairs are stitched with approximation methods in
the case of pl-hard. Therefore, we draw separate graphs for
pairs with different approximation methods. We draw a graph
for the results with the router and PoP clustering and with
the /24 prefix-level clustering. Overall, path stitching shows
consistently better performance with very small absolute errors
(below 5 ms.) Path stitching with router and PoP clustering
performs very close to iPlane below 35 ms, and gradually
shows better performance afterwards. Path stitching with in-
ferred AS path and /24 clustering shows better performance
than iPlane only after 50 ms. In both plots, the performance

of iPlane does not improve much beyond 50 ms. As we
do not have access to the source code, we cannot provide
further explanation. One conjecture we have is iPlane does
not incorporate any data filtering mechanisms as suggested in
[7] or in [8], and anomalously large delays have an impact on
the tail of the distribution.

VII. CONCLUSIONS

In this work, we have presented and evaluated path stitching,
a new approach to end-to-end Internet performance estimation.
Existing measurement systems are naturally limited by the
number of available vantage points. Instead of deploying yet
another measurement system, we have described how multiple
data sets from existing infrastructures can be used together
to provide relatively accurate performance measurements of
uncharted portions of the Internet. We show that our path-
stitching approach performs comparably to existing systems
that require extensive new data collection campaigns.
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