Data Movement and Aggregation in Flash Memories

Anxiao (Andrew) Jiang Michael Langberg Robert Mateescu Jehoshua Bruck
CSE Department Computer Science Division Microsoft Research Cambridge EE & CNS Dept.
Texas A&M University Open University of Israel 7 J J Thomson Ave. Caltech
College Station, TX 77843 Raanana 43107, Israel Cambridge CB3 OFB, UK Pasadena, CA 91125
ajiang@cse.tamu.edu mikel@openu.ac.il romatees@microsoft.com bruck@paradise.caltech.edu

Abstract—=NAND flash memories have become the most widely 6 = 1 was presented [5], which is worst-case optimal. The
used type of non-volatile memories. In a NAND flash memory, algorithm in [5] requires coding over a large Galois field;
every block of memory cells consists of numerous pages, andy, reqyce the coding complexity, it was shown in [3] later
rewriting a single page requires the whole block to be erased. that th ist soluti ith d 61 f <3
As block erasures significantly reduce the longevity, speed and at there ,ex's 39 utions with coding PV (q) org = .. .
power efficiency of flash memories, it is critical to minimize the HOwever, it remained an open question whether there exist
number of erasures when data are reorganized. This leads to the optimal solutions that use coding ovéiF(2). The answer
data movement problenwhere data need to be switched in blocks, s important for obtaining optimal data movement algorithms
and the objective is to minimize the number of block erasures. with the minimum coding complexity.

It has been shown that optimal solutions can be obtained by . . .
coding. However, coding-based algorithms with the minimum !N this paper, we show the answer is positive by pre-

coding complexity still remain an important topic to study. senting an efficient optimal algorithm oveGF(2) when

In this paper, we present a very efficient data movement 6 = 1 (i.e., minimum number of auxiliary blocks). When
algorithm with coding over GF(2) and with the minimum storage 5 > 2, we present a coding-based algorithm that uses at
requirement. We also study data movement with more auxiliary most2n — min{5, |n/2]} erasures. Although it is NP hard

blocks and present its corresponding solution. Furthermore, we t inimize th b f f inst .
extend the study to thedata aggregation problemwhere data (© Minimize the number of erasures for every instance (i.e.,

can not only be moved but also aggregated. We present both Per-instance optimization), the above algorithms can achieve
non-coding and coding-based solutions, and rigorously prove the constant approximation ratios.
performance gain by using coding. We further extend the study to thata aggregation prob-
lem, where data can not only be moved, but also aggregated.
Specifically, data of similar attributes are required to be placed
NAND flash memories have become by far the most widetggether, although the destination may not be specified; in
used non-volatile memories (NVMs). In a NAND flash memether cases, the final data can be functions of the original data.
ory, floating-gate memory cells are organizetbtcks Every Data aggregation has many applications in flash memories.
block is further partitioned intpages The page is the basic For example, fomwear leveling(i.e., balancing erasures across
unit for read and write operations [1]. Typically, a page storgsocks), it is beneficial to store frequently modified data (i.e.
2KB to 4KB of data, and a block has 64 or 128 pages [2hot datg together and store cold data together [2]. In flash-
Flash memories have a promineblock erasureproperty: based databases, the temporarily stored raw data need to
once data are written into a page, to modify the data, the organized as structured data [6]. The external memories
whole block has to be erased and reprogrammed. A block assensors often use flash memories, where aggregation is
endure onlyl0* ~ 10° erasures before it may break down, S@mportant for analyzing the collected data.
the longevity of flash memories is measured by erasures [1]we present both non-coding and coding-based algorithms
Block erasures also significantly reduce the writing speggr data aggregation. We present a lower bound for the number
and the power efficiency of flash memories. Therefore, it if erasures needed by non-coding solutions, which is very
critical to minimize the number of erasures when data aggyse to the upper bound obtained from our algorithm. The
reorganized [2]. This leads to thdata movement problem jower bound also rigorously proves the performance gain by
which has been studied in [3], [5]. Although data movemenising coding because the coding-based algorithms use only a
is common in all storage systems, the unique block erasyiifear number of erasures, which is asymptotically optimal.
property of flash memories calls for special solutions. Due to the space limitation, we skip some details in multiple

In the data movement problem [3], [5], there ardlocks places. Interested readers are referred to [4] for the full paper.
storing data, where every block haspages. Theim pages

of data need to be switched among thélocks with speci- Il. OPTIMAL DATA MOVEMENT OVER GF(2)
fied destinations. There a® empty blocks callecauxiliary) _)
blocks that can help store intermediate results during the !N this section, we present an optimal data movement

data movement process. The objective is to minimize tR&dorithm with coding oveGF(2), which has very low coding
number of block erasures. It was proved in [5] that Optimgpmplexny. First, let us define the data movement problem [5].

solutions can be obtained by using coding. Furthermore, a
coding-based algorithm using at madt — 1 erasures for Definition 1. DATA MOVEMENT PROBLEM

I. INTRODUCTION

Considern blocks storing data in a NAND flash mem- The algorithm to be presented will work the same way for
ory, where every block has: pages. They are denoted bythe m block-permutation data sets in parallel. Specifically, for
By,...,B,, and them pages in blockB; are denoted by every block and at any moment, the blockispages are used
Pits--- Pim fori =1,...,n. Letua(i, j) andB(i, j) be two by the m block-permutation data sets (one for each). So for

functions: convenience of presentation, in the following, we consider only
o one of them block-permutation data sets. So B denote the
ai, j) AL .on}p x {1, mp —{1,... ,n}; auxiliary block, and fori = 0,1,...,n, assumeB; has only

S one page. (Again, note that the block-permutation data set in
Bl)+ oyl ymp = {1 b consideration uses only one pageBn) Fori =1,...,n, let

The functionsx(i, j) andp(i, j) specify the desired data move-D: denote the data originally stored By. Fori =1,...,n,

ment. Specifically, the data initially stored in the page are We usea(i) € {1,...,n} to mean that the dat®; need to

denoted byD; ;, and need to be moved into pagg; a(i,) be moved to blockB, ;). Leta™" be the inverse function of

forall (i,j) € {1,...,n} x {1,...,m}. a. (Thatis,Vic {1,...,n}, a(a"1(i)) =1i.)

There are> empty blocks, called auxiliary blocks, that can We now introduce the data movement algorithm. In our al-
be used in the data movement process, and they need tcgpethm, every block is erased at most twice. More specifically,
erased in the end. To ensure data integrity, at any momentlg algorithm has three stages:
the data movement process, the data stored in the flash memory) Stage oneFori = 1,2,...,y + 1, we write some coded
blocks should be sufficient for recovering all the original data. ~ data (which are the XOR of the original data and will
The objective is to minimize the total number of block erasures pe defined later) intd®;_;, then erases;.

in the data movement process. 2) Stage two For i = y+2,y+3,...,n, we write

h h & h | Dy-1(j_1) into B;_q, then eraseB;. Then, we write
We assume that eac i, ..., By has at least one page Dml(n) into B, and eraseB, .

of data that needs to be moved to another block, becaus%) Stage threeFor i = y— 1,y — 2 0. we write
otherwise it can be excluded from the problem. Since a block D i) into By, then eralsda oo, 0,
a1 (i+ i+1s i

has to be erased whenever any of its pages is to be modified, i . .
the data movement needs no less thagrasures. We still need to specify what theoded dataare in the

1 pages of datdDy ;, Dy ..., Dy, ; } are called dlock- algorithm, and prove .that at all times_ the data stpr_ed in the
permutation data Se’#l {(X(’{f].1)/“(2/’]]’?2), caln)} = flash memory are sufﬁment for recovering all the original data.
{1,2,...,n}. Clearly, the data in a block-permutation datz;—he data stored during the data movement process can be
set belong ta: different blocks (i.e. B, ..., B,) both before represent_ed by a fqrest. For example, for_the problem in Ex-
and after the data movement process. It is proved in [5] t ple 2, if we con5|de_r the block-p_erm_utanon data set labelled
the nm pages of data iy, ..., B, can be partitioned exactly y ©, then the forest is as shown in Fig. 2. Here every vertex

into m block-permutation data sets represents a page of original data, and every edge (or hyper-
' edge) represents the XOR of its endpoint vertices. The forest

E le2 Letn — 21 andm — 3. Let th i p shows all the data used by the algorithm. When the algorithm
X?mpbe .h etn _th andim ? ; Fe. 1en,;n va ues;) runs, there are always linearly independent data symbols
(i, j) be shown as ther x n mairix in Fig. 1. (For example, stored in the flash memory, which enables the recovery of all

‘t’;,(l’l) —:62’06(1’2) f:d 11‘5’_“51’3)3:[”7‘3(we cartw ?artigo? the original dataD;, ..., D,. The forest structure makes it
énm = b5 pages oraata intor = > block-permutation data .o, efficient to analyze the linear independency.

se?s,.d.e‘not?db;?, o and<} in Fig. 1. In the figures(i, j)v (or Let us show how the forest is obtained. For =
(i,)*, ai, j)°, respectlvely) means that the dﬂgj belong 1,2,...,y+1, we defineS; C {i,i+1,...,n} as a set that
to the block permutation data s&t(or &, &, respectively). is recursively constructed as follows: 1)c S;; 2) For any

In this section, we considef = 1. Let y be the smallest / € S if max{j,y +1} < a(j) <n, thena(j) +1 € S;.

integer in{1,2,...,n — 2} with this property:for any i € o 3
{y+3,y+4,...,ntandj€ {1,...,m}, eithera(i,j) <y Lemma3. They + 1 setsSy, S, ..., Sy+1 form a partition of
or a(i, j) >i—1. Our algorithm will user +y+1 < 2n—1 theset{1,2,...,n} \{ily +2 <i<n,afi) =i—1}.
erasures. This isorst-case optimalbecause there are known .

cases wher@n — 1 erasures are necessary [5]. Note that we Proof: We need to prove that: 1§; N S; = () for any
can label the: blocks storing data aBy, . .., B, in n! different i # j; 2) For anyi € {1,...,n},i ¢ Uﬁféi if and only if
ways and get different values of If we focus on per-instance i > y+2 and«(i) =i — 1.

optimization (i.e., optimization for every given instance), then For i € {1,...,y + 1}, the integers inS; form a prefix

it is known that there is a solution with + z + 1 erasures of the sequencefi, a(i) +1, a(ax(i)+1)+1, a(a(a(i) +

if and only if we can label the: blocks asBy,...,B, such 1)+1)+1, ...}. The setS; is the longest prefix that satisfies
that y < z [5]. Therefore, our algorithm can also be readilywo conditions: (1) it monotonically increases; (2) the second
utilized in per-instance optimal solutions. However, it is NRumber (if it exists) is at leasy + 2. Sincex is a bijection,
hard to labelBy, ..., B, such thaty is minimized [5]. we can see thaf; N S; = () wheni # ;.

67 4% 10V 11¢ 20 34 58 179 16Y 14Y 1290 1% 169 30 17% 210 29 17¢ 69 190 49
15% 19 9% 10% 119 19 99 11% 139 14¢ 13V 199 128 194 180 20V 5¢ 18V 20% 74 g#
70 40 89 129 28 9V 59 100 16% 14% 13# 15¢ 159V 8Y 21V 184 214 o® 7V 39V 200

Fig. 1. The matrix ofx(i, j) fori=1,...,n,j=1,...,m, and the partition of data inte: block-permutation data sets.

L I ie{l,...,y+1}\{n}, andS, = 5, U{max(S,1)}.
20, o) We defineAq, Ay, ..., Ay as follows. Ifn = y + 1, then
A =max(S;) fori=1,...,y. If n # y+1, thenA; =
max(S;) fori e {1,...,y}\ {n}, andA, = max(Sy1).

Example 5. Consider Example, wheren = 21. We can
,,,,,,,,,,, verify thaty = 8 here. Consider the block-permutation data

i 1 I } 57’/ N ! \)
1 ,‘ ; set labelled by, for which we get(«(1),...,«(21)) =
1s®04 80,80, 1,080, 80,80, ki) Y (6,1,10,12,11,9,5,17,16,14,13,19,15,8,21,20,2,18,7,3,4).

2) Then, we getS; = {1}, S, = {2}, S3 = {3,11,14},

Sy = {4,13,16,21}, S5 = {5,12,20}, S = {6,10,15},
Ss Sy = {7}, Ss = {8,18,19}, Sg = {9,17}. Andn = 6.

T ; Furthermore, we ge$; = S; fori € {1,...,9}\ {6},

G § and Sg = {6,10,15,17}. And we get(A;,..., Ag) =

D4 ® D13 0P Dy | (1,2,14,21,20,17,7,19). (Note how Si,...,S,1 and

Da,,-..,Da, appear in Fig2.)

Lemma6. (x(A1),x(A2),...,x(Ay)) is a permutation of
Fig. 2. Data movement with coding ov&F(2). (1, 2,...,]/)-

Proof: By the definition ofS; andS;, we can see(A;) €
Fori=1,...,y+1, sincei € §;, we havei ¢ U?’;lsy {1(r-~)-ryg for ;E {1,..., y}. Sincew is a bijection«(A;) 7
. y+la . I a(Aj) wheni # j.
SO _'f_l,¢ Uj:l 5j» theni > ny. Cor.13|derz = ny. B}’ the Let ¥ be the permutation ovefl,2,...,y) such that for
definition of the parametey, enhem(:) <y ora(i) = -1, e {1,...,y}, (i) = a(A;). Lety~! be the inverse function
or a(i) > i. Whena(i) < y or a(i) > i, by the definition v. Sincey is a permutation, it can be decomposed into
of $1,52,..., Sy41, We can see Er;atbelongs to theS, (for disjoint permutation cycles. (A permutation cycle jnis an
somex € {1,...,y+1}) thata™ (i — 1) also belongs to. ordered set of distinctive integefsy, x1, ..., x,_1), where
Whena(i) = i—1, i cannot belong to any;. B ye{12.. ,y} fori € {0,1,...,z— 1}, such that for
Let n € {1,2,...,y + 1} be the unique integer such that _ ¢ 1 —1, Y(x;) = Xit1 mod 2.)
~!(n) € S,,. For any set of number§, let max(C) denote pqrj — 1 .., y, we define the dath; as follows. Ifi is not
the greatest number i@. We have the following observation.ne greatest number in its corresponding permutation cycle in
v, thenb; = DA . Otherwise,b; = 0. (Here 0 denote a

Lemma 4. Throughout stage one and stage two of the alggage of data where all the bits are 0.)

rithm, for anyi € {1,...,y + 1}, among the[S;| pages of

data in{D;|j € S;}, at least S;| — 1 pages of data are Storechxample? We follow Example5, wherey — 8. We
in their orlgmal form in the flash memory.)

have (y(1),v(2),...,v(8)) = (6,1,8,4,3,2,5,7), and
When stage two of the algorithm ends, all {i| pages of 1) 12),. v (8) = (2.6547.1,8,3).

datq m{D j€ S”} are stored in their original form An'd for The permutation y consists of three permutation
any: € {1’ -,y +1}\ {n}, the only page of data iiDj{j €) jqs: (6,2,1), (8,7,5,3), and (4). So we have
S;} that may not be stored in its original forml@nax(8- (by,ba,...,bg) = (Da, Da,,Da.,0,Dy,0,Dy,,0) =

Proof: For anyi € {1,...,y + 1}, the integers ir5; are (D2, D17, D29,0, D7,0, D19, 0)

of the form: {i, a(i) +1, a(ae(i) +1)+1, ...}. Instage | et @ denote the bit-wise XOR operation. In the following,
one and stage two of the algorithm, aftey is written into the summation sigry also denotes thes operation. We can
Ba(i)s Da(i)+1 is erased fromBy ;)5 thenDy ;)11 IS Written now specify thecoded datawritten into B;_; in stage oneof

INt0 By (a(i)+1)» ANAD (i (i) +1)+1 1S €rased fromByq(i)11)+1: the algorithm. Fori = 1,...,v, the coded data written into
and so on. So the conclusions hold. B B s

We defineSy, Sy, ..., Sy41 as follows. Ifn =y + 1, then b; ® z Dj;
Si=S;fori=1,...,y+1.1f n#y+1,thenS; = §; for €3,

and the coded data written inf, is Zjesyﬂ Dj. PerZ'""P(Amm+n(Amm))m are the parity-check symbols.
We can use the generalized Reed-Solomon cod€.aghe
Example 8. We follow Example5. When we use our algorithm algorithm has three steps:(1) For i = 1,2,..., Ay
to move data, the data stored in thet- 5 = 22 blocks at we write the data P;_q1y,q1, P 1ymi2 - Plict)ymem
different times are shown in Fi@. Fori = 0,1,...,21, the into the block B,.;; (2) For i = 1,2,...,y, we erase
data in the column labelled byare the data stored in blodk. the block B;, and write the data P . i (i—1)m+1:

Py i N N i into the blockB;.
The algorithm is proved correct by the following theorem(gf)mi%g”;“fl:l)};"fl y+2A_”'"‘”"ZF%n3"t1ﬁé"n fori — 1.2 yl

) we erase the blocB;, then write intoB; the m pages of data
Theorem 9. When the data-movement algorithm runs, there afga+ the data movement problem requires to move Bo

alwaysn linearly independent pages of data stored in the flagian erases 1,Bns2,+-,Bpsn . . The correctness of the
memory, which can be used to recover all the original data. algori’thm i Srov,edn o '[4]_ P S

Proof: We present a sketch of the proof here. We first 1here aren! ways to label ther blocks originally storing
show how to build a forest as the one in Fig. 2, which contaif@@ asBi, ..., Bx, and every labelling can give a different
all the data stored during the data movement process. T4U€ Of Epiy. If we use 7 to denote the labelling, then
forest hasn vertices, representing the dai, ..., D,. (S0 the minimum number of erasures the algorithm can achieve
we will let D; also denote its corresponding vertex.) For evefy Minz Enin. We present the proof in [4] that this is also
edge in the forest (which can be a hyper-edge), the dataStkictly optimalfor the given instance. However, it is NP hard

represents are the XOR of the edge’s incident vertices. Lef& Coose the best. Nevertheless, we can always obtain a
explain how the edges are built: 2-approximation by selecting parameters as specified in the

« First, fori — 1,...,y+1, if |Si| > 1 (which means theorem below. (For the detailed analysis, please refer to [4].)

{i} C S;), then the vertices iI{D;|j € S;} are incident
to the same edge.
« Second, for every permutation cycleg, x1,...,%,_1)

Theorem 10 For any labelling of the block§B;, . .., B, }, we
can choose to us& = min{¢, |n/2]} auxiliary blocks and

in v, for i = O01,...,z—1, if x % y = n — 2A blocks among{By, ..., B,} to store the'parlty-.
L check symbols of2. Then the data movement algorithm will

max{xg, x1,...,X,_1}, then vertexD, . is incident - . .
P useA+y+n = 2n—min{4, |n/2]} erasures in total, which

to the edge with vertices ifD;|j € S;} as endpoints.
(If S; = {i}, then connect verteiDArl(i) to vertexD;.)

During stages one and two of the algorithm, by Lemma 4, IV. DATA AGGREGATION
for the data in{D;|j € S;} (fori =1,...,y+1), at most We now generalize our study tdata aggregation It in-
one page of data may not be stored in its original form, anddludes the data movement problem as a special case. We first
is compensated for by the stored data that contains the fostady thebasic data aggregation problgmvhere data of the
> jes, Dj- During stage three, the only data not stored in thesame type need to be stored together, but their order is not
original form areD 4, ..., DAy, which correspond tge. And specified. It will be extended later to the case where the final
they can be recovered by decoding data using the permutattizna can be functions of the original data.
cycles iny. For the detailed proof, please see [4]. |

is a 2-approximation.

Definition 11. BASIC DATA AGGREGATIONPROBLEM
Considern blocks storing data in a NAND flash mem-
We now study the data movement problem wih> 1 4, where every block has: pages. They are denoted by

auxiliary blocks, which we denote b@n+1,Bn+2,...,Bn+_5. By,...,By. There are alsé empty blocksB,.1,...,By.s.
Fory=12,....n—2andk=y+1,y+2,...,n define the, pages in blockB; are denoted by; 1, . .., p; . and the

Ry, k) = {(i,)k <i<n1<j<my<alj) <k} gata initially stored irp; ; are denoted bp; ;. Letk < n be a

Thatis, {D; j|(i, j) € R(y, k)} are those data that need to bg,ositive integer. Let(i, 1) andC (i) be two functions:

moved fromBy_q,..., By 10 Byy1,..., By_1. Definer(y) =

nl(ax)ke{y-&-l,y-i-Z{..,n} |?(yl k)|. For A} |: (1,)2, . (, 9, d)efi?e ali,j) : {1,...,n} x{1,...,m} = {1,...,k};
n(A) = min{y € {1,2,...,n =2} | r(y) < (A—1)m}. N
We defineE iy a5 Epiy — minac(1n. g A+n(A) + 1. C() : {1,...,n+6} —{1,... k}U{L}.
We present a data-movement algorithm that usigs, We say that the dath); ; are of the coloex(i, j), and that the
erasures. LetA,;,, € {1,...,8} be an integer such thatblockB; is of the colorC (i) if C(i) € {1,...,k}. IfC(i) = L,
Apin + N(Apin) +n = Epiy. Let C be an ((Awin + then we saB; is colorless.
1(Apin) +n)m,nm) MDS code, whose codeword is The functionsx(i, j) andC (i) specify the desired data ag-
gregation. Specifically, far=1,...,n andj =1,...,m, the
dataD; ; need to be moved into a block of the matching color
Here the codeword symbolsly, I,..., I, are the «(i,j). The colorless blocks need to be erased in the end. The
nm pages of original dataDi,Di2,...,Dnm, and objective is to minimize the total number of block erasures.

IIl. DATA MOVEMENT WITH 6 > 1

(Il 12 Inm Pl PZ P(Amin‘i‘TI(Amin))M)'

Originally D D, D; D, Ds Ds Dy Ds | Dy | Dig | Dy | D12 | D1z | Dia | Dis | Dig | D1y | Dig | D19 | D2 | Do
After Dy | D2 | Ds® | Da® | Ds® | D¢ | D7 | Ds® | Do Dy | D11 | D12 | Dig | Duia | Dis | D | D17 | Dis | Do | Dao | Dz
stage ® D D11® | Di3® | D126 | Do ® Dis® ®
one Dy | D17 | Dua® | D16 | Do® | Dis® | D9 | D9 | D1z
Dy Dy Dy Dyy
After Dy | Dy | Ds® | Ds® | Ds@ | De® | D7 | Ds® Ds¢ | D3y | Ds | Dy | D11 | Dio | Diz | D9 | Dg | Dig | Dia | Dis | D1s
stage ® @© | Du® | D13® | D12® | Dio® | © | D1sD
two Dy | D17 | D1a® | D1® | Dao® | D15® | Do | Dao
Dao D Dy Dyy
After Dy D1y Dao D D7 Dy D19 Dy | Do | D3 | Ds | Da | Din | Dio | Dis | Dy | Ds | Dig | D12 | D1s | Di1s
stage
three

Fig. 3. The data in the 4+ 6 = 22 blocks at different times, using the data-movement algorithm with coding G¥€2).

We present a coding-based solution using at 208t + and use Algorithml2 to move the data, so that in every non-
1 = O(n) erasures in [4]. We shall prove the benefit of codingmpty block, all the data are of the same “super color.” Then,
by rigorously proving that when coding is not used, it is necefor everyi € [§], divide S; into 5 subsetsS;1,S;»,...,Sis as
sary for all algorithms to us€)(nlog, k/logj n) erasures in evenly as possible, and use Algoritti@ to move the data of
the worst casé.We first present an algorithm without codingsuper coloiS; so that in the end, in every non-empty block, all
that uses at most[logsk] + 3 = O(nlogszk) erasures, the data have their colors belong to the séne Repeat this
which is very close to the proved lower bound. To see how irocesglog; k| times, so that in the end, the data in every non-

works, let us first consider the special case whete 6. empty block have the same color. As the last step, we move the
data to their target blocks (that is, blocks of the same color as
Algorithm 12. DATA AGGREGATION FORk = § the data) by copying the data from block to block.

We label the empty blockB,, 1, B, 12, ..., B, s with the . .
integersl, 2, ...,6. Then, we perform the iteration describe%lln t?he aki(;ve algorltgm, tgacht (I)<f tﬁé(;gé k] éounds using q
below. During the following iteration, whenever a block la- gorthm as a subroutiné takes al maserasures, an

belled by an integere {1, ..., 5} becomes full (namely, when the last step takes at ”}23*1/ 2 erasures. S0 AI_gonthm 13
m pages of data have been written into it), we find a block thgzes at mosm.ﬂ(_)gé Kl +7 erasures. The follpwmg theorem
is empty at this moment, and give the labte the empty block. shows that this is nearly optimal. (For its detailed proof, plegse
The full block will no longer be labelled. see [4].) The theorem rigorously proves the benefit of coding.

Let Q C {Bi,B,,...,B,} denote the set of blocks
whose data have at least two different colors. Th
is, for i € {1,...,n}, B, € Q if and only if
{a(i, 1), «(i,2),...,a(i,m)}| > 2. The iteration is:

Jheorem14 For m > logsn/logsn, when coding is
not used, no data-aggregation algorithm can use less than
Q(nlogsk/logs n) erasures in the worst case.

« WhileQ # 0, do: The data aggregation problem can be extended to the case
— Choose a blocB; € Q. where the final data can be functions of the original data. Due
— Forj = 1 tom, do: Write the datdD; ; to a block to the space limitation, we leave the detailed analysis in [4].
labelled by(i, j). ACKNOWLEDGMENT

— Erase blociB;, and removeB; from Q. . .
This work was supported in part by the NSF CAREER

The above algorithm uses at mosterasures, and when it Award CCF-0747415, NSF grant ECCS-0802107, ISF grant
ends, for each of the non-empty blocks, its data have thet80/08, and Caltech Lee Center for Advanced Networking.
same color. (But the color of a block is not necessarily the

same color of its data.) The correctness of the algorithm is ' ' ' _
proved in [4] We now use Algorithm 12 as a building blockll P Cappe_llettl, C Golla, P. Olivo, and E. Zandrliash memories Kluwer
Academic Publishers, 1999.

to solve the data aggregation prObIem in Definition 11. [2] E. Galand S. Toledo, “Algorithms and data structures for flash memories,”
in ACM Computing Surveysol. 37, no. 2, pp. 138-163, June 2005.
; [3] A. Jiang, M. Langberg, R. Mateescu and J. Bruck, “Data movement in
Algqr|thm'1'3 - DATA AGGREGATION WITHOUT,CODING flash memories,” ifProc. 47th Allerton Conferen¢009, pp. 1031-1038.
First, divide the set df colors,{1,2,...,k}, into 5 subsets [4] A.Jiang, M. Langberg, R. Mateescu and J. Bruck, “Data movement and

S1,55,...,Ss as evenly as possible. (That is, edgltontains aggregation in flash memories,” Caltech Technical Report, Jan. 2010.
;) “ ” Online: http : / /www.paradise.caltech.edu /etr.html.

e’ther[k/‘ﬂ or Lk/éJ COIOI’S.) See everg; as a "super color [5] A. Jiang, R. Mateescu, E. Yaakobi, J. Bruck, P. Siegel, A. Vardy and

J. Wolf, “Storage coding for wear leveling in flash memories,Piroc.

Hog; n is theiterated logrithmof n, which is defined as the number of IEEE ISIT, Seoul, Korea, June 28 - July 3, 2009, pp. 1229-1233.

times the logrithm function must be iteratively applied before the resultis leps] S. Lee and B. Moon, “Design of flash-based DBMS: An in-page logging

than or equal to 1. Namelypg; n = 1+ log;(log, n) for n > 6. Notice approach,” inProc. ACM SIGMOD 2007, pp. 55-66.

thatlogj n growsvery slowly with 1. Sincelog; n is practically a very small

number, this lower bound is very close &(n log; k).

REFERENCES

