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Abstract—NAND flash memories have become the most widely
used type of non-volatile memories. In a NAND flash memory,
every block of memory cells consists of numerous pages, and
rewriting a single page requires the whole block to be erased.
As block erasures significantly reduce the longevity, speed and
power efficiency of flash memories, it is critical to minimize the
number of erasures when data are reorganized. This leads to the
data movement problem, where data need to be switched in blocks,
and the objective is to minimize the number of block erasures.
It has been shown that optimal solutions can be obtained by
coding. However, coding-based algorithms with the minimum
coding complexity still remain an important topic to study.

In this paper, we present a very efficient data movement
algorithm with coding over GF(2) and with the minimum storage
requirement. We also study data movement with more auxiliary
blocks and present its corresponding solution. Furthermore, we
extend the study to the data aggregation problem, where data
can not only be moved but also aggregated. We present both
non-coding and coding-based solutions, and rigorously prove the
performance gain by using coding.

I. I NTRODUCTION

NAND flash memories have become by far the most widely
used non-volatile memories (NVMs). In a NAND flash mem-
ory, floating-gate memory cells are organized asblocks. Every
block is further partitioned intopages. The page is the basic
unit for read and write operations [1]. Typically, a page stores
2KB to 4KB of data, and a block has 64 or 128 pages [2].
Flash memories have a prominentblock erasureproperty:
once data are written into a page, to modify the data, the
whole block has to be erased and reprogrammed. A block can
endure only104 ∼ 105 erasures before it may break down, so
the longevity of flash memories is measured by erasures [1].
Block erasures also significantly reduce the writing speed
and the power efficiency of flash memories. Therefore, it is
critical to minimize the number of erasures when data are
reorganized [2]. This leads to thedata movement problem,
which has been studied in [3], [5]. Although data movement
is common in all storage systems, the unique block erasure
property of flash memories calls for special solutions.

In the data movement problem [3], [5], there aren blocks
storing data, where every block hasm pages. Thenm pages
of data need to be switched among then blocks with speci-
fied destinations. There areδ empty blocks calledauxiliary
blocks that can help store intermediate results during the
data movement process. The objective is to minimize the
number of block erasures. It was proved in [5] that optimal
solutions can be obtained by using coding. Furthermore, a
coding-based algorithm using at most2n − 1 erasures for

δ = 1 was presented [5], which is worst-case optimal. The
algorithm in [5] requires coding over a large Galois field;
to reduce the coding complexity, it was shown in [3] later
that there exist solutions with coding overGF(q) for q ≥ 3.
However, it remained an open question whether there exist
optimal solutions that use coding overGF(2). The answer
is important for obtaining optimal data movement algorithms
with the minimum coding complexity.

In this paper, we show the answer is positive by pre-
senting an efficient optimal algorithm overGF(2) when
δ = 1 (i.e., minimum number of auxiliary blocks). When
δ ≥ 2, we present a coding-based algorithm that uses at
most 2n−min{δ, bn/2c} erasures. Although it is NP hard
to minimize the number of erasures for every instance (i.e.,
per-instance optimization), the above algorithms can achieve
constant approximation ratios.

We further extend the study to thedata aggregation prob-
lem, where data can not only be moved, but also aggregated.
Specifically, data of similar attributes are required to be placed
together, although the destination may not be specified; in
other cases, the final data can be functions of the original data.
Data aggregation has many applications in flash memories.
For example, forwear leveling(i.e., balancing erasures across
blocks), it is beneficial to store frequently modified data (i.e.
hot data) together and store cold data together [2]. In flash-
based databases, the temporarily stored raw data need to
be organized as structured data [6]. The external memories
of sensors often use flash memories, where aggregation is
important for analyzing the collected data.

We present both non-coding and coding-based algorithms
for data aggregation. We present a lower bound for the number
of erasures needed by non-coding solutions, which is very
close to the upper bound obtained from our algorithm. The
lower bound also rigorously proves the performance gain by
using coding because the coding-based algorithms use only a
linear number of erasures, which is asymptotically optimal.

Due to the space limitation, we skip some details in multiple
places. Interested readers are referred to [4] for the full paper.

II. OPTIMAL DATA MOVEMENT OVER GF(2)

In this section, we present an optimal data movement
algorithm with coding overGF(2), which has very low coding
complexity. First, let us define the data movement problem [5].

Definition 1. DATA MOVEMENT PROBLEM



Consider n blocks storing data in a NAND flash mem-
ory, where every block hasm pages. They are denoted by
B1, . . . , Bn, and the m pages in blockBi are denoted by
pi,1, . . . , pi,m, for i = 1, . . . , n. Let α(i, j) andβ(i, j) be two
functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , n};

β(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , m}.

The functionsα(i, j) andβ(i, j) specify the desired data move-
ment. Specifically, the data initially stored in the pagepi, j are
denoted byDi, j, and need to be moved into pagepα(i, j),β(i, j),
for all (i, j) ∈ {1, . . . , n} × {1, . . . , m}.

There areδ empty blocks, called auxiliary blocks, that can
be used in the data movement process, and they need to be
erased in the end. To ensure data integrity, at any moment of
the data movement process, the data stored in the flash memory
blocks should be sufficient for recovering all the original data.
The objective is to minimize the total number of block erasures
in the data movement process.

We assume that each ofB1, . . . , Bn has at least one page
of data that needs to be moved to another block, because
otherwise it can be excluded from the problem. Since a block
has to be erased whenever any of its pages is to be modified,
the data movement needs no less thann erasures.

n pages of data{D1, j1 , D2, j2 , . . . , Dn, jn} are called ablock-
permutation data setif {α(1, j1),α(2, j2), . . . ,α(n, jn)} =
{1, 2, . . . , n}. Clearly, the data in a block-permutation data
set belong ton different blocks (i.e.,B1, . . . , Bn) both before
and after the data movement process. It is proved in [5] that
the nm pages of data inB1, . . . , Bn can be partitioned exactly
into m block-permutation data sets.

Example 2. Let n = 21 and m = 3. Let the nm values of
α(i, j) be shown as them× n matrix in Fig.1. (For example,
α(1, 1) = 6,α(1, 2) = 15,α(1, 3) = 7.) We can partition
thenm = 63 pages of data intom = 3 block-permutation data
sets, denoted by♥,♠ and♦ in Fig.1. In the figure,α(i, j)♥ (or
α(i, j)♠,α(i, j)♦, respectively) means that the dataDi, j belong
to the block permutation data set♥ (or♠,♦, respectively).

In this section, we considerδ = 1. Let y be the smallest
integer in {1, 2, . . . , n − 2} with this property:for any i ∈
{y + 3, y + 4, . . . , n} and j ∈ {1, . . . , m}, eitherα(i, j) ≤ y
or α(i, j) ≥ i− 1. Our algorithm will usen + y + 1 ≤ 2n− 1
erasures. This isworst-case optimal, because there are known
cases where2n− 1 erasures are necessary [5]. Note that we
can label then blocks storing data asB1, . . . , Bn in n! different
ways and get different values ofy. If we focus on per-instance
optimization (i.e., optimization for every given instance), then
it is known that there is a solution withn + z + 1 erasures
if and only if we can label then blocks asB1, . . . , Bn such
that y ≤ z [5]. Therefore, our algorithm can also be readily
utilized in per-instance optimal solutions. However, it is NP
hard to labelB1, . . . , Bn such thaty is minimized [5].

The algorithm to be presented will work the same way for
the m block-permutation data sets in parallel. Specifically, for
every block and at any moment, the block’sm pages are used
by the m block-permutation data sets (one for each). So for
convenience of presentation, in the following, we consider only
one of them block-permutation data sets. So letB0 denote the
auxiliary block, and fori = 0, 1, . . . , n, assumeBi has only
one page. (Again, note that the block-permutation data set in
consideration uses only one page inBi.) For i = 1, . . . , n, let
Di denote the data originally stored inBi. For i = 1, . . . , n,
we useα(i) ∈ {1, . . . , n} to mean that the dataDi need to
be moved to blockBα(i). Let α−1 be the inverse function of
α. (That is,∀ i ∈ {1, . . . , n}, α(α−1(i)) = i.)

We now introduce the data movement algorithm. In our al-
gorithm, every block is erased at most twice. More specifically,
the algorithm has three stages:

1) Stage one: For i = 1, 2, . . . , y + 1, we write some coded
data (which are the XOR of the original data and will
be defined later) intoBi−1, then eraseBi.

2) Stage two: For i = y + 2, y + 3, . . . , n, we write
Dα−1(i−1) into Bi−1, then eraseBi. Then, we write
Dα−1(n) into Bn and eraseBy.

3) Stage three: For i = y − 1, y − 2, . . . , 0, we write
Dα−1(i+1) into Bi+1, then eraseBi.

We still need to specify what thecoded dataare in the
algorithm, and prove that at all times the data stored in the
flash memory are sufficient for recovering all the original data.
The data stored during the data movement process can be
represented by a forest. For example, for the problem in Ex-
ample 2, if we consider the block-permutation data set labelled
by ♥, then the forest is as shown in Fig. 2. Here every vertex
represents a page of original data, and every edge (or hyper-
edge) represents the XOR of its endpoint vertices. The forest
shows all the data used by the algorithm. When the algorithm
runs, there are alwaysn linearly independent data symbols
stored in the flash memory, which enables the recovery of all
the original dataD1, . . . , Dn. The forest structure makes it
very efficient to analyze the linear independency.

Let us show how the forest is obtained. Fori =
1, 2, . . . , y + 1, we defineS̃i ⊆ {i, i + 1, . . . , n} as a set that
is recursively constructed as follows: 1)i ∈ S̃i; 2) For any
j ∈ S̃i, if max{ j, y + 1} ≤ α( j) < n, thenα( j) + 1 ∈ S̃i.

Lemma 3. The y + 1 setsS̃1, S̃2, . . . , S̃y+1 form a partition of
the set{1, 2, . . . , n} \ {i|y + 2 ≤ i ≤ n,α(i) = i− 1}.

Proof: We need to prove that: 1)̃Si ∩ S̃ j = ∅ for any

i 6= j; 2) For anyi ∈ {1, . . . , n}, i /∈ ∪y+1
i=1 S̃i if and only if

i ≥ y + 2 andα(i) = i− 1.
For i ∈ {1, . . . , y + 1}, the integers inS̃i form a prefix

of the sequence:{i, α(i) + 1, α(α(i) + 1) + 1, α(α(α(i) +
1)+ 1)+ 1, . . . }. The setS̃i is the longest prefix that satisfies
two conditions: (1) it monotonically increases; (2) the second
number (if it exists) is at leasty + 2. Sinceα is a bijection,
we can see that̃Si ∩ S̃ j = ∅ when i 6= j.



6♥ 4♠ 10♥ 11♦ 2♦ 3♠ 5♠ 17♥ 16♥ 14♥ 12♦ 1♠ 16♦ 3♦ 17♠ 21♦ 2♥ 17♦ 6♦ 19♦ 4♥
15♠ 1♥ 9♠ 10♠ 11♥ 1♦ 9♦ 11♠ 13♦ 14♦ 13♥ 19♥ 12♠ 19♠ 18♦ 20♥ 5♦ 18♥ 20♠ 7♠ 8♠
7♦ 4♦ 8♦ 12♥ 2♠ 9♥ 5♥ 10♦ 16♠ 14♠ 13♠ 15♦ 15♥ 8♥ 21♥ 18♠ 21♠ 6♠ 7♥ 3♥ 20♦

Fig. 1. The matrix ofα(i, j) for i = 1, . . . , n, j = 1, . . . , m, and the partition of data intom block-permutation data sets.
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Fig. 2. Data movement with coding overGF(2).

For i = 1, . . . , y + 1, since i ∈ S̃i, we havei ∈ ∪y+1
j=1 S̃ j.

So if i /∈ ∪y+1
j=1 S̃ j, theni ≥ y + 2. Consideri ≥ y + 2. By the

definition of the parametery, eitherα(i) ≤ y, orα(i) = i− 1,
or α(i) ≥ i. Whenα(i) ≤ y or α(i) ≥ i, by the definition
of S̃1, S̃2, . . . , S̃y+1, we can see thati belongs to theS̃x (for
somex ∈ {1, . . . , y + 1}) that α−1(i − 1) also belongs to.
Whenα(i) = i− 1, i cannot belong to anỹSx.

Let η ∈ {1, 2, . . . , y + 1} be the unique integer such that
α−1(n) ∈ S̃η. For any set of numbersC, let max(C) denote
the greatest number inC. We have the following observation.

Lemma 4. Throughout stage one and stage two of the algo-
rithm, for any i ∈ {1, . . . , y + 1}, among the

∣∣S̃i
∣∣ pages of

data in{D j| j ∈ S̃i}, at least
∣∣S̃i

∣∣− 1 pages of data are stored
in their original form in the flash memory.

When stage two of the algorithm ends, all the
∣∣S̃η

∣∣ pages of
data in{D j| j ∈ S̃η} are stored in their original form. And for
anyi ∈ {1, . . . , y + 1} \ {η}, the only page of data in{D j| j ∈
S̃i} that may not be stored in its original form isDmax(S̃i)

.

Proof: For anyi ∈ {1, . . . , y + 1}, the integers inS̃i are
of the form: {i, α(i) + 1, α(α(i) + 1) + 1, . . . }. In stage
one and stage two of the algorithm, afterDi is written into
Bα(i), Dα(i)+1 is erased fromBα(i)+1; thenDα(i)+1 is written
into Bα(α(i)+1), andDα(α(i)+1)+1 is erased fromBα(α(i)+1)+1;
and so on. So the conclusions hold.

We defineS1, S2, . . . , Sy+1 as follows. If η = y + 1, then
Si = S̃i for i = 1, . . . , y + 1. If η 6= y + 1, then Si = S̃i for

i ∈ {1, . . . , y + 1} \ {η}, and Sη = S̃η ∪ {max(Sy+1)}.
We defineA1, A2, . . . , Ay as follows. If η = y + 1, then

Ai = max(Si) for i = 1, . . . , y. If η 6= y + 1, then Ai =
max(Si) for i ∈ {1, . . . , y} \ {η}, and Aη = max(Sy+1).

Example 5. Consider Example2, where n = 21. We can
verify that y = 8 here. Consider the block-permutation data
set labelled by♥, for which we get(α(1), . . . ,α(21)) =
(6, 1, 10, 12, 11, 9, 5, 17, 16, 14, 13, 19, 15, 8, 21, 20, 2, 18, 7, 3, 4).

Then, we getS̃1 = {1}, S̃2 = {2}, S̃3 = {3, 11, 14},
S̃4 = {4, 13, 16, 21}, S̃5 = {5, 12, 20}, S̃6 = {6, 10, 15},
S̃7 = {7}, S̃8 = {8, 18, 19}, S̃9 = {9, 17}. And η = 6.

Furthermore, we getSi = S̃i for i ∈ {1, . . . , 9} \ {6},
and S6 = {6, 10, 15, 17}. And we get (A1, . . . , A8) =
(1, 2, 14, 21, 20, 17, 7, 19). (Note how S1, . . . , Sy+1 and
DA1 , . . . , DAy appear in Fig.2.)

Lemma 6. (α(A1),α(A2), . . . ,α(Ay)) is a permutation of
(1, 2, . . . , y).

Proof: By the definition ofS̃i andSi, we can seeα(Ai) ∈
{1, . . . , y} for i ∈ {1, . . . , y}. Sinceα is a bijection,α(Ai) 6=
α(A j) when i 6= j.

Let γ be the permutation over(1, 2, . . . , y) such that for
i ∈ {1, . . . , y}, γ(i) = α(Ai). Letγ−1 be the inverse function
of γ. Sinceγ is a permutation, it can be decomposed into
disjoint permutation cycles. (A permutation cycle inγ is an
ordered set of distinctive integers(x0, x1, . . . , xz−1), where
xi ∈ {1, 2, . . . , y} for i ∈ {0, 1, . . . , z − 1}, such that for
i = 0, 1, . . . , z− 1, γ(xi) = xi+1 mod z.)

For i = 1, . . . , y, we define the databi as follows. If i is not
the greatest number in its corresponding permutation cycle in
γ, then bi = DA

γ−1(i)
. Otherwise,bi = 0. (Here 0 denote a

page of data where all the bits are 0.)

Example 7. We follow Example 5, where y = 8. We
have (γ(1), γ(2), . . . , γ(8)) = (6, 1, 8, 4, 3, 2, 5, 7), and
(γ−1(1), γ−1(2), . . . , γ−1(8)) = (2, 6, 5, 4, 7, 1, 8, 3).
The permutation γ consists of three permutation
cycles: (6, 2, 1), (8, 7, 5, 3), and (4). So we have
(b1, b2, . . . , b8) = (DA2 , DA6 , DA5 , 0, DA7 , 0, DA8 , 0) =
(D2, D17, D20, 0, D7, 0, D19, 0).

Let ⊕ denote the bit-wise XOR operation. In the following,
the summation sign∑ also denotes the⊕ operation. We can
now specify thecoded datawritten into Bi−1 in stage oneof
the algorithm. Fori = 1, . . . , y, the coded data written into
Bi−1 is

bi ⊕ ∑
j∈Si

D j;



and the coded data written intoBy is ∑ j∈Sy+1
D j.

Example 8. We follow Example5. When we use our algorithm
to move data, the data stored in then + δ = 22 blocks at
different times are shown in Fig.3. For i = 0, 1, . . . , 21, the
data in the column labelled byi are the data stored in blockBi.

The algorithm is proved correct by the following theorem.

Theorem 9. When the data-movement algorithm runs, there are
alwaysn linearly independent pages of data stored in the flash
memory, which can be used to recover all the original data.

Proof: We present a sketch of the proof here. We first
show how to build a forest as the one in Fig. 2, which contains
all the data stored during the data movement process. The
forest hasn vertices, representing the dataD1, . . . , Dn. (So
we will let Di also denote its corresponding vertex.) For every
edge in the forest (which can be a hyper-edge), the data it
represents are the XOR of the edge’s incident vertices. Let’s
explain how the edges are built:

• First, for i = 1, . . . , y + 1, if |Si| > 1 (which means
{i} ⊂ Si), then the vertices in{D j| j ∈ Si} are incident
to the same edge.

• Second, for every permutation cycle(x0, x1, . . . , xz−1)
in γ, for i = 0, 1, . . . , z − 1, if xi 6=
max{x0, x1, . . . , xz−1}, then vertexDA

γ−1(i)
is incident

to the edge with vertices in{D j| j ∈ Si} as endpoints.
(If Si = {i}, then connect vertexDA

γ−1(i)
to vertexDi.)

During stages one and two of the algorithm, by Lemma 4,
for the data in{D j| j ∈ S̃i} (for i = 1, . . . , y + 1), at most
one page of data may not be stored in its original form, and it
is compensated for by the stored data that contains the form
∑ j∈S̃i

D j. During stage three, the only data not stored in their
original form areDA1 , . . . , DAy , which correspond toγ. And
they can be recovered by decoding data using the permutation
cycles inγ. For the detailed proof, please see [4].

III. D ATA MOVEMENT WITH δ ≥ 1
We now study the data movement problem withδ ≥ 1

auxiliary blocks, which we denote byBn+1, Bn+2, . . . , Bn+δ.
For y = 1, 2, . . . , n− 2 andk = y + 1, y + 2, . . . , n, define

R(y, k) = {(i, j)|k < i ≤ n, 1 ≤ j ≤ m, y < α(i, j) < k}.
That is,{Di, j|(i, j) ∈ R(y, k)} are those data that need to be
moved fromBk+1, . . . , Bn to By+1, . . . , Bk−1. Definer(y) =
maxk∈{y+1,y+2,...,n} |R(y, k)|. For ∆ = 1, 2, . . . , δ, define
η(∆) = min{y ∈ {1, 2, . . . , n− 2} | r(y) ≤ (∆− 1)m}.
We defineEmin as Emin = min∆∈{1,2,...,δ} ∆ + η(∆) + n.

We present a data-movement algorithm that usesEmin
erasures. Let∆min ∈ {1, . . . , δ} be an integer such that
∆min + η(∆min) + n = Emin. Let C be an ((∆min +
η(∆min) + n)m, nm) MDS code, whose codeword is

(I1 I2 . . . Inm P1 P2 . . . P(∆min+η(∆min))m).

Here the codeword symbolsI1, I2, . . . , Inm are the
nm pages of original data D1,1, D1,2, . . . , Dn,m, and

P1, P2, . . . , P(∆min+η(∆min))m are the parity-check symbols.
We can use the generalized Reed-Solomon code asC. The
algorithm has three steps:(1) For i = 1, 2, . . . , ∆min,
we write the data P(i−1)m+1, P(i−1)m+2, . . . , P(i−1)m+m
into the block Bn+i; (2) For i = 1, 2, . . . , y, we erase
the block Bi, and write the data P∆minm+(i−1)m+1,
P∆minm+(i−1)m+2, . . . , P∆minm+(i−1)m+m into the block Bi.
(3) For i = y + 1, y + 2, . . . , n and then fori = 1, 2, . . . , y,
we erase the blockBi, then write intoBi the m pages of data
that the data movement problem requires to move intoBi.
Then, eraseBn+1, Bn+2, . . . , Bn+∆min . The correctness of the
algorithm is proved in [4].

There aren! ways to label then blocks originally storing
data asB1, . . . , Bn, and every labelling can give a different
value of Emin. If we use π to denote the labelling, then
the minimum number of erasures the algorithm can achieve
is minπ Emin. We present the proof in [4] that this is also
strictly optimal for the given instance. However, it is NP hard
to choose the bestπ . Nevertheless, we can always obtain a
2-approximation by selecting parameters as specified in the
theorem below. (For the detailed analysis, please refer to [4].)

Theorem 10. For any labelling of the blocks{B1, . . . , Bn}, we
can choose to use∆ = min{δ, bn/2c} auxiliary blocks and
y = n − 2∆ blocks among{B1, . . . , Bn} to store the parity-
check symbols ofC. Then the data movement algorithm will
use∆ + y + n = 2n−min{δ, bn/2c} erasures in total, which
is a 2-approximation.

IV. DATA AGGREGATION

We now generalize our study todata aggregation. It in-
cludes the data movement problem as a special case. We first
study thebasic data aggregation problem, where data of the
same type need to be stored together, but their order is not
specified. It will be extended later to the case where the final
data can be functions of the original data.

Definition 11. BASIC DATA AGGREGATIONPROBLEM

Consider n blocks storing data in a NAND flash mem-
ory, where every block hasm pages. They are denoted by
B1, . . . , Bn. There are alsoδ empty blocksBn+1, . . . , Bn+δ.
Them pages in blockBi are denoted bypi,1, . . . , pi,m, and the
data initially stored inpi, j are denoted byDi, j. Let k ≤ n be a
positive integer. Letα(i, j) andC(i) be two functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , k};

C(i) : {1, . . . , n + δ} → {1, . . . , k} ∪ {⊥}.

We say that the dataDi, j are of the colorα(i, j), and that the
block Bi is of the colorC(i) if C(i) ∈ {1, . . . , k}. If C(i) = ⊥,
then we sayBi is colorless.

The functionsα(i, j) andC(i) specify the desired data ag-
gregation. Specifically, fori = 1, . . . , n and j = 1, . . . , m, the
dataDi, j need to be moved into a block of the matching color
α(i, j). The colorless blocks need to be erased in the end. The
objective is to minimize the total number of block erasures.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Originally D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21

After D1 D2 D3⊕ D4⊕ D5⊕ D6⊕ D7 D8⊕ D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21
stage ⊕ ⊕ D11⊕ D13⊕ D12⊕ D10⊕ ⊕ D18⊕ ⊕
one D2 D17 D14⊕ D16⊕ D20⊕ D15⊕ D19 D19 D17

D20 D21 D7 D17
After D1 D2 D3⊕ D4⊕ D5⊕ D6⊕ D7 D8⊕ D6 D3 D5 D4 D11 D10 D13 D9 D8 D18 D12 D16 D15
stage ⊕ ⊕ D11⊕ D13⊕ D12⊕ D10⊕ ⊕ D18⊕
two D2 D17 D14⊕ D16⊕ D20⊕ D15⊕ D19 D19

D20 D21 D7 D17
After D2 D17 D20 D21 D7 D1 D19 D14 D6 D3 D5 D4 D11 D10 D13 D9 D8 D18 D12 D16 D15
stage
three

Fig. 3. The data in then + δ = 22 blocks at different times, using the data-movement algorithm with coding overGF(2).

We present a coding-based solution using at most2.5n +
1 = O(n) erasures in [4]. We shall prove the benefit of coding
by rigorously proving that when coding is not used, it is neces-
sary for all algorithms to useΩ(n logδ k/ log∗δ n) erasures in
the worst case.1 We first present an algorithm without coding
that uses at mostndlogδ ke + 3n

2 = O(n logδ k) erasures,
which is very close to the proved lower bound. To see how it
works, let us first consider the special case wherek = δ.

Algorithm 12 . DATA AGGREGATION FORk = δ

We label the empty blocksBn+1, Bn+2, . . . , Bn+δ with the
integers1, 2, . . . , δ. Then, we perform the iteration described
below. During the following iteration, whenever a block la-
belled by an integeri ∈ {1, . . . , δ} becomes full (namely, when
m pages of data have been written into it), we find a block that
is empty at this moment, and give the labeli to the empty block.
The full block will no longer be labelled.

Let Q ⊆ {B1, B2, . . . , Bn} denote the set of blocks
whose data have at least two different colors. That
is, for i ∈ {1, . . . , n}, Bi ∈ Q if and only if
|{α(i, 1),α(i, 2), . . . ,α(i, m)}| ≥ 2. The iteration is:

• While Q 6= ∅, do:

– Choose a blockBi ∈ Q.
– For j = 1 to m, do: Write the dataDi, j to a block

labelled byα(i, j).
– Erase blockBi, and removeBi from Q.

The above algorithm uses at mostn erasures, and when it
ends, for each of then non-empty blocks, its data have the
same color. (But the color of a block is not necessarily the
same color of its data.) The correctness of the algorithm is
proved in [4]. We now use Algorithm 12 as a building block
to solve the data aggregation problem in Definition 11.

Algorithm 13 . DATA AGGREGATION WITHOUTCODING

First, divide the set ofk colors,{1, 2, . . . , k}, into δ subsets
S1, S2, . . . , Sδ as evenly as possible. (That is, eachSi contains
eitherdk/δe or bk/δc colors.) See everySi as a “super color”

1log∗δ n is the iterated logrithmof n, which is defined as the number of
times the logrithm function must be iteratively applied before the result is less
than or equal to 1. Namely,log∗δ n = 1 + log∗δ (logδ n) for n > δ. Notice
that log∗δ n growsveryslowly with n. Sincelog∗δ n is practically a very small
number, this lower bound is very close toΩ(n logδ k).

and use Algorithm12 to move the data, so that in every non-
empty block, all the data are of the same “super color.” Then,
for everyi ∈ [δ], divide Si into δ subsetsSi,1, Si,2, . . . , Si,δ as
evenly as possible, and use Algorithm12 to move the data of
super colorSi so that in the end, in every non-empty block, all
the data have their colors belong to the sameSi, j. Repeat this
processdlogδ ke times, so that in the end, the data in every non-
empty block have the same color. As the last step, we move the
data to their target blocks (that is, blocks of the same color as
the data) by copying the data from block to block.

In the above algorithm, each of thedlogδ ke rounds using
Algorithm 12 as a subroutine takes at mostn erasures, and
the last step takes at most3n/2 erasures. So Algorithm 13
uses at mostndlogδ ke+ 3n

2 erasures. The following theorem
shows that this is nearly optimal. (For its detailed proof, please
see [4].) The theorem rigorously proves the benefit of coding.

Theorem 14. For m ≥ logδ n/ log∗δ n, when coding is
not used, no data-aggregation algorithm can use less than
Ω(n logδ k/ log∗δ n) erasures in the worst case.

The data aggregation problem can be extended to the case
where the final data can be functions of the original data. Due
to the space limitation, we leave the detailed analysis in [4].
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