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ABSTRACT

Specific images refer to images one has a certain episodic mem-
ory about, e.g. a picture one has ever seen before. Specific
image retrieval is a frequent daily information need and the
episodic memory is the key to find a specific image. In this
paper, we propose a novel semantic sketch-based interface to
incorporate the episodic memory for specific image retrieval.
The interface allows a user to specify the semantic category and
rough area/color of the objects in his memory. To bridge the
semantic gap between the query sketch and database images,
in the back end, a sampling method selects exemplars from a
reference dataset which contains many object instances with
user-provided tags and bounding boxes. After that, an exem-
plar matching algorithm ranks images to retrieve the target im-
age to match the user’s memory. In practice, we have observed
that query sketches are usually error prone. That is, the position
or the color of an object may not be accurate. Meanwhile, the
annotations in the reference dataset are also noisy. Thus, the
search algorithm has to handle two kinds of errors: 1) reference
dataset label noise; 2) user sketch error such as position or scale.
For the former, we propose a robust sampling method. For the
latter, we derive an efficient spatial reranking algorithm to tol-
erate inaccurate user sketches. Detailed experimental results on
the LabelMe dataset show that the proposed approach is robust
to both kinds of errors.

Keywords— specific image retrieval, query by semantic
sketch, robustness, episodic memory

1. INTRODUCTION

Specific images refer to images one has a certain episodic mem-
ory [1] about, e.g. photos taken by oneself or news pictures one
has ever seen before. Typically, the episodic memory [1] is not
exactly appearance-based; rather, it is a meaningful account of
an episode, documenting the relative positions and sizes of a
few keypersons/objects and background scenes. Specific im-
age retrieval (SIR) is a frequent information need, e.g. per-
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Fig. 1. Semantic sketch for one specific image to be searched.

sonal photo management or news image retrieval. To the best
of our knowledge, most existing image search algorithms are
either keyword-based or example-based, aiming at solving the
general image retrieval (GIR) problem. However, these algo-
rithms cannot be readily applied to SIR as the example-based
retrieval method requires an unavailable target image and the
keyword-based retrieval is ineffective when a user cannot ex-
press his query using only a few keywords.

Compared with GIR, specific image retrieval (SIR) is more
challenging because: 1) usually only one image instead of a
set of images can satisfy the user’s information need; 2) spe-
cific object instances in the target image are more difficult to
describe than general objects. Thus, as a kind of prior knowl-
edge, the episodic memory is the key to SIR. An intuitive and
natural user interface is to allow a user to draw sketches to ex-
press his query need. In a query panel, the user can simply draw
a few bounding boxes to indicate the location/size of several ob-
jects, possibly with certain background scenes (street, kitchen,
etc), and further type in some keywords as the names of the
objects in an image. Object color can also be easily added if
the user wants. Allowing users to input keywords effectively
prevents the system from the semantic gap problem. We call
such a sketch as semantic sketch to differentiate from the tradi-
tional query sketches without semantic keywords. See Fig. 1 for
an illustration. We can see that the semantic sketch is an intu-
itive and easy to use interface to incorporate the user’s episodic
memory.

Query by sketch (QBS) [2] can be traced back to the early
days of CBIR. Query sketches typically comprise blobs of
color [3] or edge [4]. Appearance based features like shape de-
scriptors [2] and user feedback [5] are also considered. As such
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bottom-up approaches force users to adapt to the system by in-
putting low-level features directly. However, users may lack the
required talent or patience to find an exact color or draw a de-
tailed shape sketch. In contrast, the top-down query by seman-
tic sketch gives users more freedom in formulating their queries
with semantic categories and their respective spatial layout.

Empirically, we have observed that user sketches are rarely
accurate account of the episodic memory. Actually, they are
error prone in nature. For example, the position/size of a spe-
cific object instance is usually inaccurate. If a user provides the
object color, it is very likely that the chosen color differs from
the actual object color. Thus it still remains challenging how to
combat with these kinds of errors efficiently. Besides, annota-
tions (tags and bounding boxes) in the reference dataset are also
quite noisy and this labeling noise significantly deteriorates the
retrieval performance.

In this paper, we propose a novel semantic sketch based
search method that allows user to specify object semantic and
extent to construct a query. The proposed method first sam-
ples multiple object exemplars from an annotated (with object
bounding boxes) reference dataset (e.g. the LabelMe dataset)
to represent one missing target object in a query sketch. After
that, by using a deliberately designed low level matching algo-
rithm, it efficiently and effectively ranks the target images in
less than top 50" resulting images. More concretely, we tackle
the following two kinds of inaccuracy: 1) reference dataset la-
bel noise; 2) user sketch errors of position and size. We pro-
pose a robust sampling method to deal with reference dataset
label noise. It selects multiple object exemplars from the ref-
erence dataset to represent one missing sketched target object.
Images are then matched against possible object exemplar com-
binations with a parallel local matching algorithm. Meanwhile,
we derive an efficient spatial reranking algorithm to offset in-
accuracy from user sketches. The spatial reranking algorithm
selects the best response in a set of local bounding boxes by an
efficient branch-and-bound procedure on multiple object exem-
plars simultaneously. Finally, reranked object retrieval results
are combined to produce the final ranking.

Extensive experiments on the LabelMe [6] dataset show the
robustness and efficiency of the proposed formulation. Note
that SIR is quite challenging, as validated by the results of text-
based and example image-based approaches, the results we have
obtained are promising and show great potential of sketch-based
image retrieval.

2. QUERY BY SEMANTIC SKETCH FOR SIR

The overall search process consists of the following steps as
shown in Fig. 2. First, the user is allowed to depict the query
sketch with specific objects. Given the query sketch, we sample
multiple object exemplars from an annotated reference dataset
Dr, to represent the specific objects which user is imagining in
his mind. Ideally, in search of the best possible match, each im-
age in the target dataset D should be matched to the localized
image features derived from all possible object exemplar combi-
nations. However, it would be too computational to implement
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Fig. 2. Search process overview using the semantic sketch
query.

using this ideal approach. Therefore, for efficiency, the match-
ing process is approximately designed and is decomposed into
several independent object exemplar matching processes. Then,
for each object exemplar, reranking is performed to combat pos-
sible user sketch errors. Finally, the ranking lists for different
object exemplars are fused together to get the final retrieval re-
sults.

Semantic Sketch The sketch contains multiple specific ob-
jects {o;} which may overlap with each other, e.g. one person
riding a bicycle.! During sketching, users are asked to indicate
which object occludes other ones in their drawings (cf. Fig 1).
Let us denote an object by o = {c¢, B}, where c is the object
category and B = {x,y,w, h} is a bounding box which spec-
ifies its center (z,y), width w and height h. We use relative
position here with respect to the whole image size. Sketch is of-
ten spatially under-specified since only a few salient objects are
depicted. Additional object attributes like color composition,
orientation or shape can also be determined by either simple se-
lection or by choosing exemplars in an interactive manner.

Object Representation To enforce spatial constraints, we
adopt the local feature based object representation. More con-
cretely, the color sift (CSIFT) descriptor is chosen for its good
performance in recent object classification benchmarks [7].
Give an image I, a set of CSIFT points are extracted. The bag
of keypoints model converts the variable number of local fea-
ture points to a fixed length histogram vector H;. The CSIFT
codebook contains |V| “visual words” which are obtained by
K-means clustering and serves as the centers for the histogram
bins. We denote Hp for a localized CSIFT histogram with
bound box B.

Reference Dataset Dy contains various object exemplars.
Each exemplar e” has the spatial boundary of B = {z,y,w, h}
and its semantic category. If the original localized annotations
are not in the bound box format, conversion is performed.

Exemplar Sampling Given one specific object o, a few rep-
resentative object exemplars {e’}™ | are sampled from its cat-
egory ¢, in Dg. In automatic setting, we adopt a principled
GRASSHOPPER algorithm as detailed in Sec. 3 to select rep-
resentative exemplars and avoid noisy ones. In an interactive

ICurrently, we focus on objects and leave the scene to future work.
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Fig. 3. Partial match for one specific object exemplar.

retrieval setting, user may further manually select a few exem-
plars for each object from the sampled exemplars.

Exemplar Matching Given a set of objects S = {o,},
a matching score f(I,{o;}) needs to be assigned to image
I € Dr. We now represent each object o; with a set of ex-
emplars E; = {eé’?} from the same category because o; is
not available. Thus, s(I,{o;}) should reflect possible simi-
larity between image [ and exemplar combinations of differ-
ent objects. The maximum matching score over all exemplar
combinations is a good candidate for s. Although the aver-
age matching score is another alternative, it requires exponen-
tial computation time. By carefully choosing the histogram in-
tersection (HI) matching function where the bounded property
of s(Hy, Zj H,)) < Z s(Hy, H;) holds, we approximate the
maximum matching score by taklng the maximum for each ob-
ject independently. Fig. 3 illustrates the process of generating
exemplar and image histograms. We first warp the exemplar
keypoints into the object boundary given by user’s sketch, then
divide the image into a r X ¢ grid, and finally generate sift his-
togram for each cell. By using HI matching function, it ensures
that only keypoints in the object boundary are matched.

With this, it is necessary to compute local histograms on all
images from Dy at query time since object o; can occupy any-
where in the query sketch. However, the sparsity of the his-
togram feature could provide further speedup. By partitioning
images in D into fine grids (4 x 4 grids perform best) and com-
puting local histogram for each grid cell as inverted lists on disk,
we further approximate and accelerate the local match process
from sublinear to |Dr|. The reasoning is that the inverted lists
are sorted and many images are never accessed.

Therefore, we can approximate the maximum score over all
possible object exemplar combinations by calculating the H T
matching process for each exemplar independently from sub-
linear to |Dr|. To reduce the possible influence of noisy exem-
plars, practically we can take average of matching scores of top
M (M = 10 in this study) exemplars for image I € Dr.

Fusion Given one image, the local matching scores for dif-
ferent objects in the query sketch are combined together to pro-
duce the final ranking with a simple linear score fusion. The
weights for different objects are simply set to their respective

area occupied. Similarly, the reranked scores are also fused in
the same way.

Exemplar Reranking As [8] had found, sketches drawn by
users are often imprecise. Thus real target object located nearby
may be lost if searching only within the box provided by the
user. Although it would be ideal if we can search in all possible
images for all object exemplars, for efficiency considerations we
only rerank top 2000 images from the fusion step. Reranking is
done in a per object style like in the matching step.

3. ROBUST EXEMPLAR SAMPLING

The proposed algorithm is motivated by the random walk on
graph (RWoG) model. Given a normalized adjacency graph
G = [gi;]}";=1 which is a valid transition probability matrix,
or equivalently a Markov chain model with m states, it can be
considered as the similarity matrix for exemplars. An input ini-
tial probability distribution 7 can be assigned as the similarity
to exemplar and object 0. A parameter « of restart probability
controls the balance between these two kinds of similarities. As
stated by Zhou et al. [9], the stable distribution 2* for the RWoG
model minimizes the following cost function with respect to
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It is clear that «* balances the similarity between exemplars
and that between exemplar and object 0. We have z* =
(1—a)(I —aG)~1r as a closed form solution. An efficient iter-
ative solution is given by x,,11 = Pz, + (1 — «)r, which con-
verges exponentially. Although x* provides a good start point
for sampling exemplars. it is still influenced by strongly concen-
trated groups of exemplars in G as exemplars at group centers
have higher probabilities, and tighter groups have overall higher
probabilities in z*.

To further correct the group concentration effect and to gen-
erate more diverse exemplars, we introduce an absorbing RWoG
algorithm [10] for sampling. This algorithm reduces the prob-
ability of choosing nearby exemplars after sampling exemplar
e’ to allow for diversity. Nicked as GRASSHOPPER, it iter-
atively selects the exemplar with the largest expected number
of visits to other states in the Markov chain defined by G, and
sets the corresponding state to absorbing state subsequently. Al-
though the computation of expected number of visits requires
matrix inversion each time, it can be done iteratively with the
Sherman-Morrison-Woodbury matrix inversion lemma (cf. [10]
for details). Then we only need to invert the matrix once in the
first iteration which brings a significant speedup.

The edge weights of the adjacency graph are computed by
. .2
gij = exp(— d;f:;j ) , where dist is the Euclid distance on 64-
dim color histogram in HSV space and o is set as the average
distance among exemplar pairs. We set & = 0.25 in this work.




4. ROBUST EXEMPLAR MATCHING BY RERANK

With spatial constraint in mind, we could run a localized spatial
pyramid matching (SPM) on B between both the query and each
image in the returned top N list. However, SPM simply ignores
the keypoints outside the given box and might introduces addi-
tional errors. A better alternative is the recent proposed Efficient
Subimage Retrieval (ESR) [11] algorithm. ESR works with a
quality bound for a set of box regions and a branch-and-bound
procedure to efficiently prune low quality box sets. We adapt
ESR to our scenario to find a box with maximum score within a
certain set B of boxes to tolerate position errors, e.g. size change
+6%. The image level branch-and-bound is removed since we
aim at finding a box for each image in the short list. Instead,
we extend the branch-and-bound heuristic to support multiple
query sliding search. In this step, we use the normalized his-
togram intersection (NHI) as the sparse quality function.

More concretely, for the bounding step, we construct a qual-
ity bounding function f for a set B = { B} of possible boxes B
that fulfills the conditions

F(B) < max f(B), and f({B}) = £(B)

where [ is the quality function. The quality bound for NHI is

f(B) =%, min(HII{{—‘jH, ﬁ{—i"‘), where Hp is the histogram of
the union of all boxes in B, Hp is the histogram of the intersect
of all boxes in B, and H, is the histogram of an exemplar.
Different from the original ESR formulation, our objective
is to find the best matched exemplar and best matched posi-
tion, since we have multiple query exemplars for each object.
To further reduce the time of reranking, we modify the branch-
and-bound process to handle multiple exemplars, i.e. all the
exemplars are put in the same priority queue. The upper bound

remains the same when taking into account multiple object ex-
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emplars: f(B;) =5, mm(m, @) By sharing the pri-

ority queue, computations of low-match exemplars are saved.
Still, multiple objects can be searched in parallel.

5. EXPERIMENTS

5.1. Experimental setup

We evaluate our algorithm on the LabelMe dataset since it
contains a lot of personal photos which are specific in nature.
Sequential video frames are removed to prevent the bias of
near-duplicate images. We randomly split the left 43391 non-
sequential images in two halves denoted as Dy and Dr. The
original polygon annotations provided by labelers are converted
to a maximal bounding box. 200 query sketches are automati-
cally generated in D by using the full set of converted object
bounding boxes with corresponding semantic category directly.
This provides a large query pool beyond human hand-generated
query sketches and may allow us to better understand how dif-
ferent factors affect the search result. Besides, we manually se-
lect 14 diverse images from the 200 queries and draw sketches
by hand for comparison.

Table 1. DCG for different retrieval approaches.

QBK
0.011

QBE
0.011

semantic sketch
0.178

DCG

Table 2. DCG for different sampling methods and sample size.

DCG Random | Heuristic | Grasshopper
20 samples 0.121 0.126 0.125
50 samples 0.117 0.120 0.128

We adopt the Discounted Cumulative Gain (DCG) like met-

ric? for a query pool as the performance measurement to highly
QI 1

q=1 logy(14ry)°
where |Q] is the number of the queries and 7, the rank of the

only target image of query ¢ in the search results.

We set the CSIFT code book size V' = 512 and partition
the image to 4 x 4 grids to obtain the localized histograms for
CSIFT points. 20% size/position error in user sketch is allowed
by setting § = 10. N = 2000 image results are returned for
each sketch query.

reward early returned results. DCG = fél >

5.2. Comparison across methods

We compare the proposed approach with representative GIR al-
gorithms like QBK and QBE for SIR first. QBK is performed by
running a tf-idf based search with the object/scene name in the
query sketch as keywords. And QBE is performed by search-
ing top images from QBK results. Searching with the relevant
image is unfair but we lack alternative image examples. Thus
a round-about is designed which reranks the QBK results by
sorting images with respect to their distances to a feature point.
This feature point is chosen as the mean of features for top
100 images in the QBK result. For query by semantic sketch,
GRASSHOPPER with location rerank is performed (Detailed
parameter are explained later on). Results in Table 1 illustrate
the significant superiority of semantic sketch over both QBK
and QBE.

Someone may advocate for a tag based retrieval and visual
rerank approach. However, this is not always possible for SIR
problem since the user-provided labels are too sparse and impor-
tant objects may lack the necessary label for tag based retrieval.
Currently only a small number of tags co-occurs often with an-
other small number of tags. For example, there are many image
containing both building and person, but most of them are an-
notated only by building. This can also explain why QBK and
subsequently QBE performs inferior.

’It is a little different from standard DCG, since we only care about the
specific image ranking. It is actually equivalent to DCGQ inf.



Table 3. DCG for automatic/manual sampling with respective
reranked results.

DCG Random | Grasshopper | Manual | Color
Original 0.118 0.128 0.130 | 0.138
Reranked 0.133 0.178 0.193 | 0.192

5.3. Tolerance to label/sketch error

We have observed that significant label noise exists in the La-
belMe dataset. For example, a bird may often be annotated as
“bird mid front forest”. When forest is searched for, we may
falsely select bird exemplars for ranking if the sampling method
is not robust.

Here we compare three sampling methods for their robust-
ness to label noise: 1) a Random method which simply selects
|E;| exemplars at random; 2) a Heuristic method which selects
the top ranked results in the random walk; 3) the Grasshopper
method introduced in Sec. 3. The exemplar size can also impact
the ranking results and thus is evaluated at the same time. The
results are shown in Table 2. Though Grasshopper performs
only 9% better than Random, as shown in Table 3, the reranked
results are significantly better. One possible reason for this is
that Grasshopper provides more diverse exemplars and are bet-
ter at tolerating object location errors. Grasshopper can select
more diverse exemplars than Heuristic as the exemplar number
increases from 20 to 50. This is reasonable since Heuristic is
the input vector to run Grasshopper for diversity. Table 2 also
shows that Grasshopper with 50 exemplars is slightly better than
that with 20. Thus 50 exemplars are used subsequently.

It is also interesting to see how Grasshopper behaves com-
pared with manual methods. To this end, we manually assign
10 exemplars for each object (Manual) for comparison. We also
cluster the exemplars based on 64-dim color histogram in HSV
space and then manually select 10 representative exemplars in
the produced clusters (Color). It is excessive to manually as-
signing 10 exemplars for each object since it is too tedious for
common users. The results in Table 3 show that the fully au-
tomatic Grasshopper method is on par with the Manual method
and additional color cue with extra user interaction does not im-
prove the result significantly.

The results for reranked results of both automatic and man-
ual sampling methods are also summarized in Table 3. It is
evident that the reranked result is significantly better than the
original one. For example, after reranked, DCG for Grasshop-
per and Manual increase 40% and 48% respectively. Thus loca-
tion based reranking is necessary for combating the user sketch
ITOrS.

Hand vs. Automatic Sketch So far we are testing on 14
hand generated semantic sketches only. It is desirable to see
how the proposed framework works when using all large query
pool. To this end, we compare the retrieval results of 14 hand
generated semantic sketches (Hand 14) with 200 additional au-
tomatically generated semantic sketches (Automatic 200) in Ta-

Table 4. DCG for hand and automatic sketch queries.

DCG Hand 14 | Automatic 200
Original 0.128 0.147
Reranked 0.178 0.204

ble 4. The reranked performance of Automatic 200 significantly
outperforms that of Hand 14. One possible reason may be that
the maximal boxes generated from the user provided polygon
annotations lead to the oversize of automatic bounding boxes,
which results in its priority over Hand 14. Therefore, reranking
is helpful even with automatically generated query.

Result Visualization We also show the reranked object
retrieval result for two representative hand generated query
sketches in Fig. 4. The target image may occur in the first page.
But if there exists similar images to the target image in the tar-
get dataset, as shown in the second query in Fig. 4, the results
are still unsatisfactory. This is surely one situation the current
exemplar based search approach can not handle.

6. CONCLUSIONS

This paper identifies the specific image retrieval problem and
proposes an initial attempt towards solving it. The key find-
ing is that one’s episodic memory is very helpful in retrieving
the target specific image, at least for a medium sized dataset.
Secondly, it is viable to represent specific objects by general
exemplars under strong spatial constraints. With the semantic
query sketch interface, the sampling algorithm effectively gen-
erates concrete object exemplars from a well annotated refer-
ence dataset. Thirdly, the proposed formulation is robust to both
annotation and sketch errors. It can run efficiently and is also
easy to implement. Generally, we can rank the target image to
the 50" position currently, a usable result for a medium-sized
dataset such as personal photo corpus.

Possible extensions to the current study can be divided into
two parts: for the user interface, we will incorporate more se-
mantics by incorporating visual query suggestion and adding lo-
cal shape support with an interactive interface; for the retrieval
system, we will increase the scale of the dataset, explore larger
and more realistic datasets like Flickr, and incorporate different
kinds of models for specific objects, e.g. faces or city land-
marks.
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