
SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1888–1918

QUERYING APPROXIMATE SHORTEST PATHS IN
ANISOTROPIC REGIONS∗

SIU-WING CHENG† , HYEON-SUK NA‡ , ANTOINE VIGNERON§ , AND YAJUN WANG¶

Abstract. We present a data structure for answering approximate shortest path queries in a
planar subdivision from a fixed source. Let ρ � 1 be a real number. Distances in each face of
this subdivision are measured by a possibly asymmetric convex distance function whose unit disk is
contained in a concentric unit Euclidean disk and contains a concentric Euclidean disk with radius
1/ρ. Different convex distance functions may be used for different faces, and obstacles are allowed.
Let ε be any number strictly between 0 and 1. Our data structure returns a (1+ ε) approximation of
the shortest path cost from the fixed source to a query destination in O(log ρn

ε
) time. Afterwards, a

(1 + ε)-approximate shortest path can be reported in O(logn) time plus the complexity of the path.

The data structure uses O(ρ
2n3

ε2
log ρn

ε
) space and can be built in O(ρ

2n3

ε2
(log ρn

ε
)2) time. Our time

and space bounds do not depend on any other parameter; in particular, they do not depend on any
geometric parameter of the subdivision such as the minimum angle.

Key words. shortest path, anisotropic regions, convex distance functions, approximation algo-
rithms

AMS subject classifications. 68U05, 68W25

DOI. 10.1137/080742166

1. Introduction. The problem of computing a shortest path between two points
in planar subdivisions or polyhedral surfaces arises naturally in geographic information
systems, VLSI design, logistics, and motion planning. Extensive research has been
conducted for the case of Euclidean path costs and for some cases of non-Euclidean
path costs. In this paper, we consider the problem of constructing a data structure
for a planar subdivision in order to answer approximate shortest path queries from a
fixed source. We adopt a very general cost model in which distances in the faces of
the subdivision are measured using possibly asymmetric convex distance functions.
This model covers the Euclidean case and other non-Euclidean cases studied before.

We briefly survey some algorithmic results in the literature for the Euclidean
shortest path problem. Interested readers are referred to a more detailed survey by
Mitchell [16]. Let n denote the number of vertices of the subdivision. Hershberger
and Suri [13] presented an algorithm to compute the Euclidean shortest path in the
plane in O(n log n) time and O(n log n) space. Recently, Schreiber and Sharir [19]

∗Received by the editors December 1, 2008; accepted for publication (in revised form) November 5,
2009; published electronically January 27, 2010. A preliminary version of this paper appeared in
Proceedings of the 23rd Annual Symposium on Computational Geometry, 2007, pp. 84–91.

http://www.siam.org/journals/sicomp/39-5/74216.html
†Department of Computer Science and Engineering, HKUST, Clear Water Bay, Kowloon, Hong

Kong (scheng@cse.ust.hk). This author’s research was partly supported by the Research Grant
Council, Hong Kong, China (project 612107).

‡School of Computing, Soongsil University, Seoul 156-743, Korea (hsnaa@ssu.ac.kr). This author’s
research was supported by the Soongsil University Research Fund.

§INRA, UR 341 Mathématiques et Informatique Appliquées, 78350 Jouy-en-Josas, France
(antoine.vigneron@jouy.inra.fr). This author’s research was partly supported by a Marie Curie in-
ternational reintegration grant.

¶Microsoft Research Asia, Beijing 100190, China (yajunw@microsoft.com). This author’s research
was partly supported by the Research Grant Council, Hong Kong, China (project 612107). This work
was done while this author was at the Department of Computer Science and Engineering, HKUST,
Hong Kong.

1888

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1889

extended this result to the surface of a convex polyhedron. Har-Peled [11] presented
an algorithm to compute a (1 + ε)-approximate shortest path between two points
on a convex polyhedron in O(n + (logn)/ε1.5 + 1/ε3) time. The weighted region
problem [17] is a well-studied shortest path problem in the case of non-Euclidean
path costs. In this setting, each face f of the subdivision is associated with a weight
wf . The cost of a subpath within f is the length of this subpath multiplied by wf .
Mitchell and Papadimitriou [17] presented the first approximation algorithm for the
weighted region problem in the plane. It runs in O(n8L) time, where L represents the
maximum number of bits used in representing any input number, including the weights
and the integer coordinates of the vertices of the subdivision. Later, Aleksandrov,
Maheshwari, and Sack [3] and Sun and Reif [20] gave algorithms that run in time linear
in n. However, their running times depend on the minimum angle of the subdivision
(and the weights too in the algorithm by Aleksandrov, Maheshwari, and Sack [3]).
Reif and Sun [18] generalized the weighted region problem to allow a uniform flow in
each face and gave an algorithm whose running time depends on n and some geometric
parameters of the environment.

In our previous work [6], we studied the approximate shortest path problem in
the plane with a very general non-Euclidean path cost. Within each face of the subdi-
vision, distances are measured using a possibly asymmetric convex distance function
whose unit disk is contained in a concentric Euclidean unit disk and contains a concen-
tric Euclidean disk with radius 1/ρ for some ρ � 1. This model includes the Euclidean
case, the weighted region problem, and the model’s extension with uniform flows. We
developed an algorithm to compute, for any ε ∈ (0, 1), a (1+ ε)-approximate shortest

path in O(ρ
2n3

ε2 (log ρ) log ρn
ε) time.1 Most notably, the running time does not depend

on any geometric parameter such as the minimum angle in the subdivision.
There are two settings for the query version of the problem. First, the source is

fixed and the query specifies the destination. This is usually known as the fixed source
query problem. Second, the query specifies both the source and the destination. This
is usually known as the two-point query problem.

In the case of Euclidean path costs, the single-source algorithm in the plane by
Hershberger and Suri [13] produces a shortest path map for the fixed source. So point
location can be employed to return the shortest path cost for a query destination
in O(log n) time. Chiang and Mitchell [8] developed a method to answer two-point
queries in the plane in O(log n) time using roughly O(n10) space. They also obtained
various trade-offs between preprocessing time and space. Given a real number ε ∈
(0, 1] and a fixed source on a polyhedral surface, Har-Peled [12] constructed a data
structure to return a (1+ε)-approximate shortest path cost for a query destination in
O(log n

ε) time, where the preprocessing time is O(n2 logn+ n
ε log 1

ε log
n
ε). In the case

of the weighted region problem on polyhedral surfaces, Lanthier, Maheshwari, and
Sack [14] presented a data structure that can answer a two-point query in O(log n)
time. The approximation error is additive and is Θ(WL), where W is the maximum
weight of the faces and L is the length of the longest edge in the surface. Aleksandrov
et al. [2] presented improved results for answering fixed-source and two-point queries
on weighted polyhedral surfaces of arbitrary genus. Both the preprocessing time and
the space depend on the weights and the minimum angle in the polyhedral surface.

In this paper, we present a data structure to answer approximate shortest path
queries from a fixed source in a planar subdivision. Distances in a face are mea-
sured using a possibly asymmetric convex distance function, and the convex distance

1Although the shortest path exists, it may not be polygonal and its complexity is unknown [6].

1890 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

functions can be different for different faces. Given a real number ε ∈ (0, 1), we
can construct a data structure that reports a (1 + ε)-approximate shortest path cost
for a query destination in O

(
log ρn

ε

)
time. Afterwards, a (1 + ε)-approximate short-

est path can be output in time O(log n) plus the complexity of the path, which is

O(ρ
2n3

ε2 log ρn
ε). The data structure can be constructed in O(ρ

2n3

ε2

(
log ρn

ε

)2
) time us-

ing O(ρ
2n3

ε2 log ρn
ε) space. Our time and space bounds do not depend on any geometric

parameter of the subdivision such as the minimum angle.
We use a variant of the discretization of the planar subdivision proposed in our

previous work [6]. We face two difficulties in the query setting. First, when the query
destination is very close to the fixed source, it is unclear how to efficiently obtain a
good lower bound on the shortest path cost. So it is difficult to establish the approx-
imation bound. Second, consider the circles centered at the fixed source and passing
through the other subdivision vertices. Suppose that two consecutive circles define an
annulus of huge width. The query destination may fall anywhere in the annulus, and
a straightforward discretization of this annulus will introduce a spread-like geometric
parameter into the preprocessing time and space. Our contribution is to introduce
new techniques to overcome these difficulties. We introduce a scaling transformation
and a subdivision perturbation technique. They map the query destinations in the
above difficult cases to certain canonical positions. Then we build a data structure to
answer the queries at canonical positions.

The preprocessing time and the space of our data structure are smaller than the
results in the conference version [5] by a factor n. This is achieved by a refined
analysis of the complexity of a (1 + ε)-approximate shortest path. It brings the
construction time of our query data structure to within a factor (log ρn

ε)/ log ρ from
the running time of our previous algorithm [6] for a single approximate shortest path
computation. In other words, an extra logarithmic factor in the preprocessing time
allows us to answer approximate shortest path queries in O(log ρn

ε) time.

2. Preliminaries.
Environment. We denote the input planar subdivision by T . Some regions in T

represent obstacles and are inaccessible. The other regions are known as the faces of
T . The underlying space |T | ⊂ R

2 is the union of all faces. Without loss of generality,
we assume that the faces are triangles and |T | is connected. We assume that each
vertex (resp., each edge) of T is a vertex (resp., an edge) of some face of T . We do
not allow dangling edges or isolated vertices. For any two points p, q ∈ R

2, we denote
by pq the closed, oriented line segment from p to q. We denote by ‖pq‖ the Euclidean
distance between p and q. For any two points p, q ∈ |T |, the geodesic distance between
p and q, denoted ‖pq‖T , is the Euclidean length of the shortest polyline in |T | with
endpoints p and q. We use B(x, r) to denote the closed Euclidean disk centered at x
with radius r. We use int(·) and bd(·) to denote interior and boundary, respectively,
according to the usual topology of R2.

Convex distance functions. Each face f is associated with a compact convex set
Bf that contains the origin. The convex distance function df is defined by df (x, y) =
min{λ ∈ [0,+∞) : y ∈ x + λBf}. Since df may be asymmetric, it may not be a
metric. Still, df satisfies the triangle inequality, and the shortest path from p to q in
f is the oriented line segment pq. If int(pq) ⊂ int(f) for some face f , the cost of pq
is defined as cost(pq) = df (p, q). If pq is contained in an edge e of T that is adjacent
to exactly one face f , we also define cost(pq) to be df (p, q). If e is adjacent to two
faces f1 and f2, we define cost(pq) to be min(df1(p, q), df2(p, q)). We assume that
there exists ρ � 1 such that, for any face f , Bf contains a Euclidean disk with radius

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1891

π/6

f6
c

f8

f7

f5

f12

f4 f2

f9

f3

f11
f10

x

π/5

f1

Bf1 t

s

Fig. 1. All face angles at s are π/6. Bf1 is a tilted square centered at the origin with edge

length
√
2. Bfi+1

is obtained by rotating Bfi in the counterclockwise direction by π/6.

1/ρ centered at the origin, and Bf is contained in the unit Euclidean disk centered at
the origin. It means that the speed allowed in any direction belongs to the interval
[1/ρ, 1]. Hence, ‖pq‖ � cost(pq) � ρ ‖pq‖.

Polygonal paths. We use s to denote the fixed source and t to denote the query
destination. Without loss of generality, we assume that s is a vertex of T , which can
be enforced by splitting the triangle containing s if necessary. The query point t can
be anywhere in |T |. A polygonal path is a polyline with finitely many edges in |T |. A
link is an edge of a polygonal path and a node is a vertex of a polygonal path—we use
this terminology to avoid confusion with the edges and vertices of T . If a polygonal
path P has the node sequence (p0, p1, . . . , pm), we write P = (p0, p1, . . . , pm). The
length of P is defined as length(P) =

∑m
i=1 ‖pi−1pi‖. For any integer k, a k-link path

is a polygonal path such that (i) there are at most k links, (ii) the link incident to the
destination is contained in a face, and (iii) the other links are either chords of faces or
segments on face boundaries. Our definition of k-link paths is slightly more general
than that given in [6] because we do not restrict t to be a vertex of T . Nevertheless,
the results in [6] still hold by conceptually inserting t as a vertex.

Approximation. The structure of the shortest path may be nontrivial even if the
query destination lies within the union of faces of T incident to s. In our previous
work [6], we showed that the shortest path may not be polygonal and that the shortest
path may intersect some edge incident to s an infinite number of times. Figure 1 is
an example such that the shortest path from s to t is not a polygonal path. In the
figure, traveling directly from s to x is more expensive than traveling from s to c and
then to x. Repeating this argument shows that the shortest path may intersect some
edge incident to s an infinite number of times. Even though a shortest path may not
be polygonal, we proved in [6] that such a path exists, and thus the following quantity
is well defined.

Definition 1. For any point t ∈ |T |, OPTst denotes the shortest path cost from
s to t in |T |.

A (1 + ε)-approximate shortest path is a path from s to t with cost at most
(1 + ε)OPTst . We also proved the following result.

Lemma 2.1 (see [6]). For any ε ∈ (0, 1) and for any point t ∈ |T |, the following
hold:

(i) There is a (1 + ε)-approximate shortest polygonal path from s to t that is a

1892 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

(21ρn2/ε)-link path.
(ii) If P is a (1+ε)-approximate shortest polygonal path from s to t, then cost(P) �

2ρ ‖st‖T and P ⊂ B(s, 2ρ ‖st‖T).
For any query destination t ∈ |T |, we define

V ε
st =

{
vertex v of T :

ε

8ρn
‖st‖T < ‖sv‖T < 5ρ‖st‖T

}
.

We can refine the complexity bound of the approximate path as follows.

Lemma 2.2. For any ε ∈ (0, 1) and for any point t ∈ |T |, there is a kεst -link (1+ε)-
approximate shortest path from s to t, where kεst = 3n(|V ε

st |+ 2)(40ρ/ε+ 5) + 9n.

The proof of Lemma 2.2 is given in Appendix A. Notice that Lemma 2.2 is not an
improvement of Lemma 2.1(i) because we can bound only |V ε

st | by n and get the same
bound of O(ρn2/ε). However, when we have a number of destinations t1, t2, . . . , tm,
we can show a tighter bound of

∑
i |V ε

sti | than O(mn) under certain conditions. This
allows us to improve the results in the conference version [5] by a factor of n.

Preprocessing. We need to split some edges of T to enforce a structural property.
For any edge e of T , if s projects orthogonally onto the interior of e, we insert the
projection of s as a new vertex and split e into two shorter edges. As a consequence,
for any edge of the subdivision, the nearest point from s to the edge is an endpoint.
For convenience, we still use T to denote the modified subdivision and use n to
denote the number of vertices in the modified subdivision which is within a constant
factor of the number of input vertices. The count n includes the source s, so there
are n − 1 vertices other than s. Clearly, Lemmas 2.1 and 2.2 still hold with this
larger n.

Additively weighted Voronoi diagrams. We will put weighted Steiner points on
the edges of T so that ideally, for a query point t in a face f , we can find the Steiner
point si ∈ bd(f) that minimizes df (si, t) + wi, where wi is the approximate shortest
path cost from s to si. Thus the Steiner points in bd(f) act as gateways through
which an approximate shortest path from s to t may enter f . This motivates us to
employ the additively weighted Voronoi diagram under the convex distance function
df . The difficulty is that while we assume that df (x, y) can be evaluated in O(1)
time given two points x and y, we do not know how to compute the bisector of two
points under df without further information about Bf . Therefore, for each face f , we
approximate df by computing a convex polygon approximating Bf . Then, we can use
the additively weighted Voronoi diagram under the approximation of df . Specifically,
we have the following two results, whose proofs are given in Appendix B.

Lemma 2.3. For any ε ∈ (0, 1) and for any face f of T , we can compute a convex
polygon Cε

f ⊆ Bf in O(ρ/ε) time such that the following hold:

(i) Cε
f has O(ρ/ε) vertices.

(ii) Let dεf be the convex distance function induced by Cε
f . For any two points x

and y in R
2, df (x, y) � dεf (x, y) � (1 + ε)df (x, y).

Lemma 2.4. Let dεf be the convex distance function defined in Lemma 2.3 for a
face f of T and for some ε ∈ (0, 1). Let S = {s1, s2, . . .} be a set of point sites such
that each site si is associated with a nonnegative weight wi and wi � wj for i < j.
Then the additively weighted Voronoi diagram Vor(S, dεf) of S under dεf satisfies the
following:

(i) If the Voronoi cell Vi of si is nonempty, then Vi is a star-shaped polygon and
si ∈ int(Vi).

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1893

(ii) When the sites of S lie on a line, the complexity of Vor(S, dεf) is O
(
ρ
ε |S|

)
and Vor(S, dεf) can be constructed in O

(
ρ
ε |S| log |S|

)
time.

(iii) For any point x ∈ f , we have minsi∈S{wi+dεf(si, x)} � (1+ ε)minsi∈S{wi+
df (si, x)}.

By Lemmas 2.3 and 2.4, given a set S of weighted Steiner points on the boundary
of a face f , we can compute dεf and three additively weighted Voronoi diagrams, one for

the weighted Steiner points on each edge of f , in O
(
ρ
ε |S| log |S|

)
time. Afterwards,

Lemma 2.4(iii) implies that locating the query destination t in the three Voronoi
diagrams allows us to approximate minsi∈S{wi + df (si, x)} within a factor of 1 + ε.
This is sufficient for our purposes.

3. A building block. Let r and R be two real numbers such that r � R/(2ρ).
We describe a data structure that answers approximate shortest path queries for
destinations t such that r � ‖st‖T � R/(2ρ). This data structure is a building block
for our final query data structure. We need some definitions first.

Definition 2. For any R � r > 0 and for any ε ∈ (0, 1), define

V ε
r,R =

{
vertex v of T :

εr

8ρn
< ‖sv‖T <

5

2
R

}
,

kεr,R = 3n(|V ε
r,R|+ 2)

(
40ρ

ε
+ 5

)
+ 9n.

Notice the similarity between V ε
st and V ε

r,R and the similarity between kεst and
kεr,R. Indeed, if r � ‖st‖T � R/(2ρ), then V ε

st ⊆ V ε
r,R and kεst � kεr,R. The next

lemma follows from Lemma 2.2.
Lemma 3.1. Let r and R be two parameters such that 0 < r � R/(2ρ). Let t

be a point in |T | such that r � ‖st‖T � R/(2ρ). For any ε ∈ (0, 1), there exists a
(1 + ε)-approximate shortest path from s to t that is a kεr,R-link path.

3.1. Data structure. First, we discretize the edges of T . For each edge e
of T and for 1 � i � �log(R/r)�, we insert the intersection points between e and
the boundary of B(s, 2ir), and then we place a maximal set of Steiner points on
int(e∩ (B(s, 2ir) \B(s, 2i−1r))) with uniform spacing 2iεr/(24ρkωr,R), where ω = ε/8.
We also place a maximal set of Steiner points on int(e∩B(s, r)) with uniform spacing
εr/(24ρkωr,R). Let N be the point set consisting of the Steiner points created above

and the vertices of T in B(s, 2�log(R/r)�r). There are no more than 3n edges in T .
Thus,

|N | � 144ρn

ε
· kωr,R ·

⌈
log

R

r

⌉
= O

(
ρ2n2

ε2
(
|V ω

r,R|+ 2
)
log

R

r

)
.

Second, let G be a weighted directed graph with vertex set N such that any two
points pi, pj ∈ N lying on the boundary of the same face are connected by an edge
with weight cost(pipj). Using the BUSHWHACK algorithm [20], we can compute the
shortest paths in G from s to all other vertices of G without constructing the edges
of G. For each pi ∈ N , we assign the cost of the shortest path from s to pi in G as
the weight w(pi) of pi.

Finally, for each face f of T and for each edge of f , we construct an additively
weighted Voronoi diagram of the Steiner points on this edge, with the weights assigned
above and under the distance function dεf . By Lemmas 2.3 and 2.4, this can be done

1894 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

over all faces in time O
(
ρ
ε |N | log |N |

)
= O(ρ

3n2

ε3

(
|V ω

r,R|+ 2
) (

log R
r

)
log |N |). We can

improve the complexity by a factor of ρ/ε using the observation that we do not need
the Voronoi diagram for all Steiner points on an edge. Take a face f and its edge e.
For each integer 0 � i � �log(R/r)�, we regard every kωr,R consecutive Steiner points

in e ∩ (B(s, 2ir) \B(s, 2i−1r)) as a cluster. In each cluster, the Steiner point pj with
minimum weight w(pj) is assigned as the cluster hub. In the next subsection, we will
show that the additively weighted Voronoi diagram of the cluster hubs in e already
serves our purposes. This improvement saves a factor of ρ/ε in the time and space
complexities of our data structure, since the two complexities are dominated by the
running time of BUSHWHACK and the number of Steiner points placed in T . (See
the proof of Lemma 3.3 for more detailed analysis.)

Using the data structure described above, we can answer the query for a destina-
tion t such that r � ‖st‖T � R/(2ρ) as follows. We use a point location structure for
T to find the face f containing t. Then, we perform point locations in the Voronoi
diagrams of cluster hubs associated with the edges of f . (The face f has three sides,
and each side may be split into two edges in the preprocessing. So there are at
most six Voronoi diagrams.) This gives us the cluster hub, denoted h, that achieves
min{w(pi)+dωf (pi, t) : pi ∈ bd(f) is a cluster hub }. We report w(h)+df (h, t) as the
approximate path cost and the precomputed shortest path in G from s to h followed
by ht as the approximate shortest path from s to t. Analysis of the time and space
complexities of all constructions and querying is left to Lemma 3.3.

3.2. Analysis. The following lemma shows that our data structure answers
queries correctly.

Lemma 3.2. Let r and R be two real numbers such that 0 < r � R/(2ρ). Let t
be a point in |T | such that r � ‖st‖T � R/(2ρ). Let f be the face of T containing t.
Let h ∈ bd(f) be the cluster hub that minimizes w(p) + dωf (p, t) over all cluster hubs
p in bd(f), where ω = ε/8. Then w(h) + df (h, t) � (1 + ε)OPTst .

Proof. Let Q be a kωr,R-link (1 + ω)-approximate shortest path from s to t. The
existence of Q is guaranteed by Lemma 3.1. By Lemma 2.1(ii) and the fact that
length(Q) � cost(Q), we have length(Q) � cost(Q) � 2ρ ‖st‖T . Since ‖st‖T �
R/(2ρ), we have length(Q) � R and thus Q ⊂ B(s,R) ⊆ B(s, 2�log(R/r)�r). So Q lies
inside the portion of T that has been discretized.

Let x ∈ bd(f) be the last entry point of Q into f . Note that x is a node of Q.
We snap every node w of Q except s, x, and t as follows. Assume that w ∈ e ∩
(B(s, 2ir) \ B(s, 2i−1r)) for some edge e of T and for some 1 � i � �log(R/r)�.
The case of w ∈ e ∩ B(s, r) can be handled similarly. By construction, there is a
Steiner point on e at distance at most 2iεr/(24ρkωr,R) from w. We snap w to this

Steiner point, and the path cost increases by at most 2iεr/(12kωr,R). Observe that

cost(Q) � length(Q) � ‖sw‖T � 2i−1r, and thus the additional cost caused by this
snapping is at most ε cost(Q)/(6kωr,R). Since Q has fewer than kωr,R nodes other than
s, t, and x, the total extra cost is at most ε

6 cost(Q).

We snap x to the nearest cluster hub pj on the edge of f containing x. Let i
be the integer such that x ∈ B(s, 2ir) \ B(s, 2i−1r). So ‖xpj‖ � 2iεr/(24ρ). Since
cost(Q) � length(Q) � ‖sx‖T � 2i−1r, we get ‖xpj‖ � ε

12ρ cost(Q). So the cost of

this detour is at most 2ρ ‖xpj‖ � ε
6 cost(Q).

In total, this modified path from s to t through the cluster hub pj has cost at most
cost(Q)+ ε

3 cost(Q) � (1+ ε
3)(1+ω)OPTst � (1+ ε

2)OPTst . Also, since any path from
s to pj in G has cost at least w(pj), the cost of this modified path must be at least

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1895

w(pj)+df (pj , t). Thus we get w(pj)+df (pj , t) � (1+ ε
2)OPTst . By Lemma 2.3(ii), we

have w(h)+df (h, t) � w(h)+dωf (h, t) � w(pj)+dωf (pj , t) � (1+ω)(w(pj)+df (pj , t)) �
(1 + ω)(1 + ε

2)OPTst � (1 + ε)OPTst .
The following lemma summarizes the performance of the data structure.
Lemma 3.3. For any r and R such that 0 < r � R/(2ρ) and for any ε ∈ (0, 1),

we can set ω = ε/8 and construct a data structure PathQuery(T , r, R, ε) such that the
following hold:

(i) For any point t ∈ |T | such that r � ‖st‖T � R/(2ρ),
• the cost of a (1+ε)-approximate shortest path from s to t can be reported
in O(log ρn

ε + log log R
r) time;

• afterwards, a (1 + ε)-approximate shortest polygonal path can be output
in time linear in its complexity, and the complexity of this path is at
most

144ρn

ε
· kωr,R ·

⌈
log

R

r

⌉
= O

(
ρ2n2

ε2
(
|V ω

r,R|+ 2
)
log

R

r

)
.

(ii) It uses O(ρ
2n2

ε2 (|V ω
r,R|+ 2) log R

r) space.

(iii) It can be constructed in O(ρ
2n2

ε2 (|V ω
r,R|+2)

(
log R

r

) (
log ρn

ε + log log R
r

)
) time.

Proof. The correctness of the answer for the query has been proved in Lemma 3.2.
The query algorithm involves a point location in T for the face f containing t and the
point locations in the Voronoi diagrams of the cluster hubs on bd(f). The first point
location takes O(log n) time [9]. The number of cluster hubs on an edge of bd(f)

is O
(
ρ
ε log

R
r

)
, so by Lemma 2.4, each Voronoi diagram has complexity O(ρ

2

ε2 log
R
r).

It follows that the point locations in the Voronoi diagrams take O(log ρ
ε + log log R

r)
time [9]. The returned (1 + ε)-approximate shortest path has complexity at most

|N | = O(ρ
2n2

ε2 (|V ω
r,R|+ 2) log R

r).
We now analyze the space and time complexities of PathQuery(T , r, R, ε). Com-

puting the shortest path tree in G rooted at s by the BUSHWHACK algorithm [20]

requires O(|N | log |N |) = O(ρ
2n2

ε2 (|V ω
r,R| + 2)(log R

r)(log
ρn
ε + log log R

r)) time and

O(|N |) = O(ρ
2n2

ε2 (|V ω
r,R|+ 2) log R

r) space.
The point location structure for T takes O(n) space and can be built in O(n log n)

time [9]. By Lemma 2.4, the construction of the Voronoi diagrams for a face requires
O(ρεH) space and O(ρεH logH) time, where H is the number of cluster hubs in a

face. Since H = O
(
ρ
ε log

R
r

)
and there are O(n) faces, we need O(ρ

2n
ε2 log R

r) space

and O(ρ
2n
ε2 (log R

r)(log
ρ
ε + log log R

r)) time. The construction of the point location
structures for these Voronoi diagrams requires the same time and space, so we are
done.

4. Close range queries. The data structure in Lemma 3.3 cannot handle a
destination t that is arbitrarily close to s because our time and space bounds go to
infinity when r goes to 0. Let �s be the distance from s to the nearest vertex in T .
We propose a method to handle query destinations that fall inside B(s, �s/(5ρ)). The
idea is to map such a destination t to a point t′ further away from s at which the data
structure in Lemma 3.3 can be applied. The map should guarantee that the query
results for t′ can be transformed back to query results for t. Because we assume that
t ∈ B(s, �s/(5ρ)), any (1 + ε)-approximate shortest polygonal path from s to t lies
inside B(s, �s) (Lemma 2.1(ii)). By our preprocessing of T in section 2, the closest
point to s from any edge of T is an edge endpoint, so B(s, �s) lies inside the union

1896 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

�s/(5ρ)

φt(P)

�s

s

t′

tP

Fig. 2. Scaling transformation.

of faces incident to s. Hence, any (1 + ε)-approximate shortest path lies within the
union of the faces incident to s. The geometry of this environment is very simple and
allows us to define a scaling transformation φt : R

2 → R
2. Let t′ be the intersection

point between the boundary of B(s, �s/(5ρ)) and the ray from s through t.

Definition 3. For any point p ∈ R
2, define φt(p) = s+ ‖st′‖

‖st‖ (p− s).

Under our assumptions, a path P is a (1 + ε)-approximate shortest path from s
to t if and only if φt(P) is a (1 + ε)-approximate shortest path from s to t′. Figure 2
shows an example of the scaling transformation. Since ‖st′‖ = ‖st′‖T = �s/(5ρ), we
can answer the query for t′ using the data structure PathQuery(T , �s/(5ρ), 2�s/5, ε).
Afterwards, we can report the approximate shortest path from s to t by applying φ−1

t

to the approximate shortest path from s to t′ in time linear in its complexity. Notice
that the set V ω

r,R in Lemma 3.3 is empty for r = �s/(5ρ) and R = 2�s/5, and thus
kωr,R = 6n(320ρ/ε+5)+9n � 6n(320ρ/ε+7). Summarizing this, we get the following
lemma.

Lemma 4.1. For any ε ∈ (0, 1), we can construct a data structure CloseRange(T , ε)
such that the following hold:

(i) For any point t ∈ B(s, �s/(5ρ)) ∩ |T |,
• the cost of a (1+ε)-approximate shortest path from s to t can be reported
in O

(
log ρn

ε

)
time;

• afterwards, a (1 + ε)-approximate shortest polygonal path can be output
in time linear in its complexity, and the complexity of this path is at most

864ρn2

ε

(
320ρ

ε
+ 7

)
�log(2ρ)� = O

(
ρ2n2

ε2
log ρ

)
.

(ii) It uses O(ρ
2n2

ε2 log ρ) space.

(iii) It can be constructed in O(ρ
2n2

ε2 log ρ log ρn
ε) time.

The performance of the data structure above is independent of the value of �s
because it is cancelled in the ratio R/r. So there is no impact even if s is close to an
edge of T , and thus �s is very small.

5. Gap query structure. Lemma 4.1 enables us to handle query destinations
at distance at most �s/(5ρ) from s. To handle query destinations further away from s,
a natural strategy is to divide the plane into geodesic annuli and construct the data
structure in Lemma 3.3 for each geodesic annulus. (We use the term geodesic annulus
because the “distance” of a point x from s is measured by its geodesic distance ‖sx‖T
from s.)

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1897

The difficulty is that the construction time of this data structure for a geodesic
annulus goes to infinity when the ratio between the two radii goes to infinity. So
we may need an arbitrarily large number of such geodesic annuli in order to cover
a triangulation T with large spread. In order to control the complexity, we do not
require the geodesic annuli to cover the entire plane. This leaves some uncovered gaps
(which are geodesic annuli too). In this section, we propose a data structure to handle
query destinations that fall into such gaps.

Let s = v0, v1, v2, v3, . . . , vn−1 be the vertices of T sorted in order of nondecreasing
geodesic distances from s. For each vertex vi of T , we define

ri =
1

6ρ2
· ‖svi‖T ,

Ri = CR · ρ
4n2

ε3
· log(2ρ) · ‖svi‖T ,

where CR is a sufficiently large constant to be specified later. In particular, we will
have CR > 1, so that 0 < ri < Ri/(2ρ). Therefore, if a query destination t satisfies
ri � ‖st‖T � Ri/(2ρ), this query can be handled by PathQuery(T , ri, Ri, ε). Since
r1 = ‖sv1‖T /(6ρ2) = �s/(6ρ

2) < �s/(5ρ), CloseRange(T , ε) and PathQuery(T , r1, R1, ε)
together handle all query destinations that are within a geodesic distance of R1/(2ρ)
from s. So the nearest gap from s is at a geodesic distance greater than R1/(2ρ)
from s. The definition of a gap is given below.

Definition 4. For any integer a ∈ [2, n− 1] such that Ra−1/(2ρ) < ra, define

Gap(a) = {point x ∈ |T | : Ra−1/(2ρ) < ‖sx‖T < ra} .

5.1. Structural properties. We first prove some structural properties of Gap(a);
the following definitions are needed.

Definition 5. For any r > 0, B̂(s, r) is the connected component of B(s, r)∩|T |
containing s.

Definition 6. For any integer a ∈ [2, n− 1], define

A(s, 3ρra) = B(s, 3ρra) \B(s, 6ρ2ra−1),

Â(s, 3ρra) = B̂(s, 3ρra) \B(s, 6ρ2ra−1).

Note that 3ρra = ‖sva‖T /(2ρ) and 6ρ2ra−1 = ‖sva−1‖T . Although B̂(s, 3ρra) is

connected, Â(s, 3ρra) may be disconnected. Figure 3 shows an example. We first show

that Gap(a) ⊆ Â(s, 3ρra). The following technical lemma will be useful in proving
this statement.

Lemma 5.1. If Ra−1/(2ρ) < ra for some integer a ∈ [2, n − 1], then any vertex

vi of T in B̂(s, 3ρra) satisfies ‖svi‖T � ‖sva−1‖T and thus vi ∈ B(s, ‖sva−1‖T) =
B(s, 6ρ2ra−1).

Proof. Since vi ∈ B̂(s, 3ρra), there exists a polygonal path P ⊂ B̂(s, 3ρra) from
s to vi such that all nodes of P are vertices in T . For example, take P to be the
geodesic path from s to vi in B̂(s, 3ρra). We prove by induction along P from s that
‖svk‖T � ‖sva−1‖T for every node vk of P . The base case is trivial, as s is the first
node of P . Assume that ‖svj‖T � ‖sva−1‖T for some node vj of P . Let vk be the

next node along P . Since P ⊂ B̂(s, 3ρra), we have ‖svk‖ � 3ρra = ‖sva‖T /(2ρ).

1898 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

d

s

a

c

b

h

e

f

g

Fig. 3. The white polygons are obstacles. The larger disk is B(s, 3ρra) and the smaller disk is

B(s, 6ρ2ra−1). The union of the smaller disk and the shaded regions abcd and efgh is ̂B(s, 3ρra).

The shaded regions abcd and efgh form ̂A(s, 3ρra), which is disconnected.

Therefore,

‖svk‖T � ‖svj‖T + ‖vjvk‖
� ‖svj‖T + ‖svj‖+ ‖svk‖
� 2‖svj‖T + ‖sva‖T /(2ρ).

Because ‖svj‖T � ‖sva−1‖T , by the inductive assumption, we obtain

‖svk‖T � 2‖sva−1‖T + ‖sva‖T /(2ρ).

The definition of Ra−1 implies that 2‖sva−1‖T � Ra−1. Since we assume that Ra−1 <
2ρra, we get 2‖sva−1‖T < 2ρra = ‖sva‖T /(3ρ). Hence, ‖svk‖T < 1

ρ‖sva‖T � ‖sva‖T .
Since we assign indices to the vertices of T in nondecreasing order of their geodesic
distances from s, we conclude that ‖svk‖T � ‖sva−1‖T .

As a consequence, there is no vertex of T in Â(s, 3ρra) for any integer a ∈ [2, n−1].

Corollary 1. If Ra−1/(2ρ) < ra for some integer a ∈ [2, n− 1], no vertex of T
lies inside Â(s, 3ρra).

The next result shows that Gap(a) ⊆ Â(s, 3ρra).

Lemma 5.2. If Ra−1/(2ρ) < ra for some integer a ∈ [2, n − 1], then Gap(a) ⊆
Â(s, 3ρra).

Proof. Take a point x ∈ Gap(a). Since ‖sx‖T < ra, a geodesic path P from s

to x in |T | must lie inside B̂(s, ra), which implies that x ∈ B̂(s, ra) ⊂ B̂(s, 3ρra). It
remains to show that x �∈ B(s, 6ρ2ra−1) = B(s, ‖sva−1‖T).

Let vi be the node preceding x in P . Since P is a geodesic path, vi is a vertex
of T . It could be the case that vi = s. Since vi ∈ B̂(s, ra), by Lemma 5.1,

‖svi‖T � ‖sva−1‖T .

We complete the proof by contradiction. So we assume that x ∈ B(s, 6ρ2ra−1) =

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1899

B(s, ‖sva−1‖T). Then

‖sx‖T � ‖svi‖T + ‖vix‖
� ‖svi‖T + ‖svi‖+ ‖sx‖
� 2‖svi‖T + ‖sx‖
� 3‖sva−1‖T .

By the definition of Ra−1, 3‖sva−1‖T < Ra−1/(2ρ) and thus ‖sx‖T < Ra−1/(2ρ),
which contradicts the assumption that x ∈ Gap(a).

5.2. Perturbation. We need to handle query destinations that fall into Gap(a)

for some integers a ∈ [2, n−1]. By Lemma 5.2, we can broaden our focus to Â(s, 3ρra)

whose geometric characterization is easier to work with. Recall that Â(s, 3ρra) =

B̂(s, 3ρra)\B(s, 6ρ2ra−1). So s is relatively far away from the inner circular boundary

of Â(s, 3ρra). Also, by Corollary 1, no vertex of T lies inside Â(s, 3ρra).
Let a be any integer in the range [2, n− 1] such that Ra−1/(2ρ) < ra. Take any

edge e of T that intersects Â(s, 3ρra). By Corollary 1, Â(s, 3ρra) does not contain
any endpoint of e. Moreover, no ball centered at s makes a tangential contact with
an interior point of e. (This is the reason for inserting new vertices in the interior
of input edges in the preprocessing of section 2.) So one endpoint of e lies inside
B(s, 6ρ2ra−1) and the other endpoint of e lies outside B(s, 3ρra). See Figure 4 for
an illustration of two such edges. This property allows us to order all the edges of
T intersecting Â(s, 3ρra) in clockwise order. Let Ea = {e1, e2, . . .} be a sorted list of
such edges of T .

If we ignore the portion of |T | inside B(s, 6ρ2ra−1), the situation is similar to the
case of close range queries in section 4. Still, there is one notable difference to be
handled differently: the edges of T that intersect Â(s, 3ρra) are not incident to s. To
remedy this situation, we perturb these edges so that their support lines pass through s
and thus the data structure CloseRange(T , ε) can be used. This perturbation and our
neglecting the portion of |T | in B(s, 6ρ2ra−1) incur some error. However, we will
show that this error does not harm our approximation too much. We explain the
perturbation and prove a technical lemma in the rest of this subsection. We describe
and analyze the data structures that use this perturbation in the next subsection.

Cx

�i
ei

yi
yi+1

x
zi zi+1

ei+1

�i+1

Fig. 4. The inner circle denotes B(s, 6ρ2ra−1). The outer circle denotes B(s, 3ρra). The
middle circle is Cx. The perturbation defines a linear transformation from the arc Cx[yi, yi+1] to
the arc Cx[zi, zi+1].

Now we perturb the edges in Ea so that their support lines pass through s. (See
Figure 4.) Let ui be the intersection point between ei and the boundary of B(s, 3ρra).

1900 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

wi

Cx

β
zi

yi

h

α

�i
ei

s

B(s, 3ρra)

Fig. 5. Because one endpoint wi of ei is inside B(s, 6ρ2ra−1), the distance h from s to ei is
at most 6ρ2ra−1. The arc length between yi and zi is hβ/ sinα.

Let �i denote the ray from s through ui, which can be viewed as a perturbation of the
support line of ei. The rays partition R

2 into cones. We associate a convex distance
function with each cone as follows. If ei and ei+1 bound a face f of T , then the
cone bounded by �i and �i+1 inherits the distance function df . Otherwise, the cone
bounded by �i and �i+1 is an obstacle cone. As a result, the cones associated with
convex distance functions form a new subdivision having only one vertex s. We denote
this subdivision by Sa. The cones in Sa are unbounded and incident to s.

The perturbation applies to the edges in Ea so far. We extend it to every point in
Â(s, 3ρra) as follows. For any point x in Â(s, 3ρra), let Cx be the circle that is centered
at s and passes through x. Refer to Figure 4. Let yi = Cx ∩ ei and yi+1 = Cx ∩ ei+1.
Let zi = Cx ∩ �i and zi+1 = Cx ∩ �i+1. Given two points p and q on the arc of Cx

traversed in clockwise order from yi to yi+1, denote by C′
x[p, q] the subarc between

p and q. Similarly, given two points p and q on the arc of Cx traversed in clockwise
order from zi to zi+1, denote by C′′

x [p, q] the subarc between p and q. We can now

define the perturbation ϕa from Â(s, 3ρra) to Sa.

Definition 7. For any point x ∈ Â(s, 3ρra) on C′
x[yi, yi+1], define ϕa(x) to be

the point on C′′
x [zi, zi+1] such that

arclength(C′′
x [zi, ϕa(x)])

arclength(C′′
x [zi, zi+1])

=
arclength(C′

x[yi, x])

arclength(C′
x[yi, yi+1])

.

Note that ϕa(yi) = zi, ϕa(yi+1) = zi+1, and ϕa is a bijection between Â(s, 3ρra)

and ϕa(Â(s, 3ρra)). The next lemma provides an upper bound on the Euclidean
distance between x and ϕa(x).

Lemma 5.3. For any point x ∈ Â(s, 3ρra), ‖ϕa(x)x‖ � π‖sva−1‖T /2.
Proof. For any two points p and q on Cx, we use Cx[p, q] to denote the shorter

arc between p and q on Cx. It suffices to show that arclength(Cx[x, ϕa(x)]) �
π‖sva−1‖T /2. For any point x on the arc C′

x[yi, yi+1], arclength(Cx[x, ϕa(x)]) is the
absolute value of an affine function of arclength(C′

x[yi, x]). arclength(Cx[x, ϕa(x)])
hence achieves its maximum at the boundary of its domain, which means that x = yi
and ϕa(x) = zi, or x = yi+1 and ϕa(x) = zi+1. So it suffices to prove that
arclength(Cx[yi, zi]) and arclength(Cx[yi+1, zi+1]) are at most π‖sva−1‖T /2.

Recall that ei has an endpoint inside B(s, 6ρ2ra−1) and that s is an endpoint
of �i. Let wi denote the endpoint of ei inside B(s, 6ρ2ra−1). Let h be the Euclidean
distance from s to the supporting line of ei. Refer to Figure 5. Both ‖wis‖ and h are
at most 6ρ2ra−1.

We bound arclength(Cx[yi, zi]) first. Let α = ∠syiwi and β = ∠yiszi. We can
assume that yi �= zi; otherwise, there is nothing to prove. So α and β belong to the

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1901

range (0, π/2] and α > β. We have

arclength(Cx[yi, zi]) = ‖syi‖β = hβ/ sinα < hβ/ sinβ.

The function β/ sinβ is maximized at β = π/2. So

arclength(Cx[yi, zi]) < hπ/2 � 3πρ2ra−1 = π‖sva−1‖T /2.

We can similarly bound arclength(Cx[yi+1, zi+1]) by π‖sva−1‖T /2.

5.3. Data structures. Let a be an integer in the range [2, n − 1] such that
Ra−1/(2ρ) < ra. To handle query destinations that fall inside Gap(a), we build the
data structure CloseRange(Sa, ε/6) defined in Lemma 4.1. Given a query destina-
tion t ∈ Gap(a), we query CloseRange(Sa, ε/6) with ϕa(t) and transform the query
results for ϕa(t) back to the query results for t. All we have to do is describe the
transformation and prove its validity.

There are two technical issues in using CloseRange(Sa, ε/6). First, some face in Sa

may have an angle larger than or equal to π. In this case, we split the face by inserting
the angle bisector. Second, s is the only vertex in Sa, and so �s, the distance from
s to the nearest vertex, is not defined in Sa. Recall that in section 4 the motivation
for using �s is to ensure that, whenever a query destination t is at distance at most
�s/(5ρ) from s, any (1+ε)-approximate shortest path from s to t lies within the union
of faces in T incident to s. In the case of Sa, this is guaranteed since all faces are
incident to s. Therefore, we can choose any value for r and an appropriate value for
R correspondingly.

Specifically, we construct the data structure PathQuery(Sa, 6ρ
2ra−1, 12ρ

3ra−1, ε/6).
Given a query destination t ∈ Gap(a), we map t to ϕa(t) and then proceed as
in section 4. We first compute the intersection point t′′ between the boundary of
B(s, 6ρ2ra−1) and the ray from s through ϕa(t). Since t

′′ is at distance 6ρ2ra−1 from s,
the (1 + ε/6)-approximate shortest path from s to t′′ in Sa lies inside B(s, 12ρ3ra−1)
(by Lemma 2.1(ii)). Thus, the data structure PathQuery(Sa, 6ρ

2ra−1, 12ρ
3ra−1, ε/6)

reports a (1 + ε/6)-approximate shortest path from s to t′′ in Sa. Then the approx-
imate shortest path from s to t′′ is scaled to a (1 + ε/6)-approximate shortest path
from s to ϕa(t) in Sa. It remains to transform the query results for ϕa(t) back to the
query results for t. Denote by costSa(P) the cost of a path P in Sa. The next lemma
relates the costs of the approximate shortest paths for t and ϕa(t).

Lemma 5.4. Assume that Ra−1/(2ρ) < ‖st‖T < ra; in other words, t ∈
Gap(a). Let P be a (1 + ε/6)-approximate shortest path from s to ϕa(t) in Sa. Then
costSa(P) � (1 + ε/2)OPTst .

Proof. Let k = 21ρn2/(ε/6). By Lemma 2.1(i), there is a k-link path Q0 which is
a (1 + ε/6)-approximate shortest path from s to t in |T |. Since ‖st‖T < ra, the path

Q0 lies inside B̂(s, 2ρra) by Lemma 2.1(ii).

Because t ∈ Gap(a) and Gap(a) ⊆ Â(s, 3ρra) by Lemma 5.2, the path Q0 must

enter Â(s, 3ρra) at least once. We cut Q0 at its last entry point q into Â(s, 3ρra)

to obtain a subpath Q1 inside Â(s, 3ρra). As Q0 lies inside B̂(s, 2ρra), we know
that q cannot be on the boundary of B(s, 3ρra), so it must lie on the boundary of
B(s, 6ρ2ra−1).

We make q a node of Q1 if necessary. We apply the perturbation ϕa to the nodes
of Q1. For convenience, denote the path connecting the perturbed nodes by ϕa(Q1).
We augment ϕa(Q1) by the segment s ϕa(q). This gives us a path from s to ϕa(t)

1902 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

in Sa. We now compare the cost of P with the cost of this new path. Since P is a
(1 + ε/6)-approximate shortest path, we get

(1) costSa(P) � (1 + ε/6)(costSa(ϕa(Q1)) + ρ‖s ϕa(q)‖).

The number of nodes in Q1 is at most k + 1 (due to the possible insertion of q
as a node). By the triangle inequality and Lemma 5.3, we get costSa(ϕa(Q1)) �
cost(Q0) + (k + 1)πρ‖sva−1‖T . Also, ρ‖s ϕ(q)‖ = 6ρ3ra−1 = ρ‖sva−1‖T . Plugging
these into (1), we get

(2) costSa(P) � (1 + ε/6)(cost(Q0) + (πk + π + 1)ρ‖sva−1‖T).

Choosing the parameter CR in the definition of Ra−1 to be at least π× 24× 128,
we have (πk + π + 1)ρ‖sva−1‖T � εRa−1/(24ρ). Since we assume that Ra−1/(2ρ) <
‖st‖T , we obtain (πk + π + 1)ρ‖sva−1‖T < ε

12‖st‖T � ε
12OPTst . We also have

cost(Q0) �
(
1 + ε

6

)
OPTst by the definition of Q0. Plugging these two inequalities

into (2), we have costSa(P) �
(
1 + ε

6

) (
1 + ε

6 + ε
12

)
OPTst �

(
1 + ε

2

)
OPTst , complet-

ing the proof.
By Lemma 5.4, the cost of a (1 + ε/6)-approximate shortest path P from s to

ϕa(t) in Sa is within the desired approximation bound. A natural postprocessing is

to deform the path by applying ϕ−1
a to the nodes of P in Â(s, 3ρra). Since ϕ is not

defined inside B(s, 6ρ2ra−1), we have to handle the portion of P inside B(s, 6ρ2ra−1)
separately.

We describe our conversion of P from s to ϕa(t) in Sa to a path P̃ from s to t

in |T |. Since t ∈ Gap(a) ⊆ Â(s, 3ρra), we have ‖st‖ > 6ρ2ra−1. Because t and ϕa(t)
are at the same Euclidean distance from s, the point ϕa(t) lies outside B(s, 6ρ2ra−1).
Thus, P must leave B(s, 6ρ2ra−1) at some point. Let b be the point at which P leaves
B(s, 6ρ2ra−1) ∩ |T | for the last time. We insert b as a new node into P . Denote the
resulting sequence of nodes in P by (s = p0, p1, . . . , pl = b, . . . , pm = ϕa(t)). Let X ′

be the geodesic path from s to ϕ−1
a (b) in B(s, 6ρ2ra−1)∩ |T |. We define another path

X ′′ = (ϕ−1
a (b) = ϕ−1

a (pl), ϕ
−1
a (pl+1), . . . , ϕ

−1
a (pm) = t). Let P̃ be the polygonal path

obtained by concatenating X ′ and X ′′ in this order. Summarizing this, we convert P
to P̃ in three steps. (See Figure 6 for an illustration.)

1. Traverse P in O(ρ
2n2

ε2 log ρ) time to find the point b at which P leaves
B(s, 6ρ2ra−1) ∩ |T | for the last time. The complexity of P follows from
Lemma 4.1.

2. Construct the geodesic path X ′ from s to ϕ−1(b) in time O(log n) plus the
complexity of X ′ by using the method of Hershberger and Suri [13]. The
complexity of X ′ is O(n), and the method of Hershberger and Suri requires
O(n log n) preprocessing time and O(n logn) storage.

3. Concatenate X ′ and X ′′ to form P̃ .
In the following lemma, we show that cost(P̃) � costSa(P)+(2n+mπ)ρ‖sva−1‖T

and costSa(P)+(2n+mπ)ρ‖sva−1‖T � (1+ε)OPTst , where m is the number of nodes
in P . It is easy to extend the data structure CloseRange(Sa, ε/6) so that it reports the
number m of nodes in P in O(1) time after reporting costSa(P). So, by Lemma 4.1,
a (1 + ε)-approximation of OPTst can be reported in O(log ρn

ε) time.
Lemma 5.5. Assume that Ra−1/(2ρ) < ‖st‖T < ra. Let P be a (1 + ε/6)-

approximate shortest polygonal path from s to ϕa(t) in Sa. Let m be the number of
nodes in P . Then cost(P̃) � costSa(P) + (2n+mπ)ρ ‖sva−1‖T � (1 + ε)OPTst .

Proof. Since X ′ is a geodesic path in |T | from s to ϕ−1
a (b), it consists of at

most n segments lying in B(s, 6ρ2ra−1). Thus each segment of X ′ has length at most

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1903

ϕ−1
a (b)

ss

b
pl+1

ϕa(t)

P

ϕ−1
a (pl+1)

X ′′

t

X ′

Sa T

Fig. 6. P is an approximate shortest polygonal path from s to ϕa(t) in Sa. We identify the
point b at which P leaves B(s, 6ρ2ra−1) ∩ |T | for the last time. X′ is the geodesic path from s to
ϕ−1
a (b), and X′′ is obtained by applying ϕ−1

a to the nodes of the subpath of P from b to ϕa(t). The
path we want is P̃ , the concatenation of X′ and X′′.

12ρ2ra−1, implying that cost(X ′) � nρ · 12ρ2ra−1 = 2nρ‖sva−1‖T . Using the triangle
inequality and Lemma 5.3, we get

cost(X ′′) � costSa(P) +

m∑
i=l

2ρ ‖ϕa(pi) pi‖ � costSa(P) +mπρ ‖sva−1‖T .

Hence cost(P̃) � costSa(P) + (2n+mπ)ρ ‖sva−1‖T .
Lemma 4.1 implies that m � 864ρn2

ε/6 (320ρε/6 + 7)�log(2ρ)�. By setting the param-

eter CR in the definition of Ra−1 to be a large enough multiple of π, we obtain
(2n + mπ)ρ ‖sva−1‖T < ε

4ρRa−1. As we assume that Ra−1/(2ρ) < ‖st‖T , we get

(2n + mπ)ρ‖sva−1‖T < ε
2‖st‖T � ε

2OPTst . Combining this result with Lemma 5.4
completes the proof.

The following lemma summarizes our results in this section.
Lemma 5.6. For any integer a ∈ [2, n− 1] such that Ra−1/(2ρ) < ra and for any

ε ∈ (0, 1), we can construct a data structure GapQuery(T , a, ε) such that the following
hold:

(i) For any point t ∈ |T | such that Ra−1/(2ρ) < ‖st‖T < ra,
• a (1 + ε)-approximation of the shortest path cost from s to t can be
reported in O

(
log ρn

ε

)
time;

• afterwards, a (1 + ε)-approximate shortest path can be output in time

O(log n) plus its complexity, and the complexity of this path is O(ρ
2n2

ε2 log ρ).

(ii) It uses O(ρ
2n2

ε2 log ρ) space.

(iii) It can be constructed in O(ρ
2n2

ε2 log ρ log ρn
ε) time.

6. Combining the data structures. We combine the data structures discussed
in previous sections to produce a complete data structure to answer approximate
shortest path queries in T . We first build a Euclidean shortest path tree with the
root s using the method of Hershberger and Suri [13] in O(n log n) time and O(n log n)
space. It also gives us the geodesic distances from s to all the vertices of T . Let s =
v0, v1, v2, v3, . . . , vn−1 be the vertices of T sorted in order of nondecreasing geodesic
distances from s.

1904 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

Simple combination. We motivate our strategy by first describing a simple com-
bination of the data structures that does not give the best performance.

1. Construct CloseRange(T , ε) to handle query points t ∈ |T | such that ‖st‖T �
�s/(5ρ) = ‖sv1‖T /(5ρ).

2. For each integer a ∈ [1, n − 1], construct PathQuery(T , ra, Ra, ε) to handle
query points t ∈ |T | such that ra � ‖st‖T � 1

2ρRa.

3. For each integer a ∈ [2, n− 1] with 1
2ρRa−1 < ra, construct GapQuery(T , a, ε)

to handle query points t ∈ |T | such that 1
2ρRa−1 < ‖st‖T < ra.

By Lemma 4.1, the data structure in 1 takes O(ρ
2n2

ε2 log ρ) space and can be con-

structed in O(ρ
2n2

ε2 log ρ log ρn
ε) time. By Lemma 3.3, if we bound |V ω

ra,Ra
| by n,

the data structure in 2, which consists of n − 1 PathQuery data structures, takes

O(ρ
2n4

ε2 log ρn
ε) space and can be built in O(ρ

2n4

ε2 (log ρn
ε)2) time. By Lemma 5.6, the

data structure in 3 takes O(ρ
2n3

ε2 log ρ) space and can be built with time complexity

O(ρ
2n3

ε2 log ρ log ρn
ε).

The data structure in 2 dominates the space and preprocessing time complexities.
Its space and preprocessing time complexities are larger than those in 1 and 3 by
roughly a factor of n. This is because we compute PathQuery(T , ra, Ra, ε) for all
integers a ∈ [1, n− 1] and bound |V ω

ra,Ra
| by n for each integer a ∈ [1, n− 1]. In what

follows, we improve the data structure in 2 by a factor of n in space requirement and
preprocessing time by computing a different set of values r̃a and R̃a.

Modified structure. As shorthand, we use poly(ε) to denote the term CR ·
ρ4n2

ε3 log(2ρ), and thus we have Ra = poly(ε) · ‖sva‖T by the definition of Ra. We first

inductively extract a subset U of the vertices of T . Later, we define only r̃i and R̃i

for each vertex ui in the subset U . (In contrast, the ra and Ra are defined for every
vertex va of T .)

Initially, we set u1 = v1 and initialize U = {u1}. For i � 2, we find two adjacent
vertices vj−1 and vj in T in the sorted order of geodesic distances from s such that

‖svj−1‖T � poly(ε)‖sui−1‖T < ‖svj‖T ,

set ui = vj , and add ui to U . We stop expanding U at the ith iteration when we cannot
find a pair of vertices vj−1 and vj in T such that ‖svj−1‖T � poly(ε)‖sui−1‖T <
‖svj‖T . Afterwards, for each ui ∈ U , we define

r̃i =
1

6ρ2
· ‖sui‖T ,

R̃i = (poly(ε))2 · ‖sui‖T .

For each vertex ui ∈ U , we construct the data structure PathQuery(T , r̃i, R̃i, ε)
to handle query points t ∈ |T | such that r̃i � ‖st‖T � 1

2ρ R̃i. The idea is that we use
the set of structures

{PathQuery(T , rn−1, Rn−1, ε)} ∪ {PathQuery(T , r̃i, R̃i, ε) : ui ∈ U}

to replace the structures {PathQuery(T , ra, Ra, ε) : integer a ∈ [1, n− 1]}.
The next lemma shows that if a query point t is not handled by the structures

{PathQuery(T , r̃i, R̃i, ε) : ui ∈ U}, then t is handled by either CloseRange(T , ε), or
GapQuery(T , ra, Ra, ε) for some integer a ∈ [2, n−1], or {PathQuery(T , rn−1, Rn−1, ε)}.

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1905

Lemma 6.1. Let t be a point in |T |. If r̃i � ‖st‖T � 1
2ρ R̃i does not hold for any

ui ∈ U , then either ‖st‖T < 1
5ρ‖sv1‖T , or

1
2ρRa−1 < ‖st‖T < ra for some integer

a ∈ [2, n− 1], or rn−1 � ‖st‖T � 1
2ρRn−1.

Proof. If ‖st‖T < r̃1 = 1
6ρ2 ‖su1‖T = 1

6ρ2 ‖sv1‖T , then ‖st‖T � 1
5ρ‖sv1‖T .

Otherwise, there are two cases:
• Case 1. 1

2ρ R̃i−1 < ‖st‖T < r̃i for some ui ∈ U and i � 2.

• Case 2. 1
2ρ R̃b < ‖st‖T , where b is the largest vertex index in U .

Consider Case 1. By definition, ui = va for some 2 � a � n. Our induc-
tive definition of ui implies that ‖sva−1‖T � poly(ε)‖sui−1‖T < ‖sva‖T . Thus,
Ra−1 = poly(ε)‖sva−1‖T < (poly(ε))2‖sui−1‖T = R̃i−1 and ra = 1

6ρ2 ‖sui‖T =
1

6ρ2 ‖sva‖T = r̃i. It follows that
1
2ρRa−1 < ‖st‖T < ra.

Consider Case 2. Since b is the largest vertex index in U , it must be the case
that poly(ε)‖sub‖T � ‖svn−1‖T . Thus, ‖st‖T > 1

2ρ R̃b = 1
2ρ(poly(ε))

2‖sub‖T �
1
2ρpoly(ε)‖svn−1‖T > 3‖svn−1‖T . On the other hand, t is in a triangle in |T |. Since
the vertex furthest away from s is vn−1, by triangle inequality, any line segment
inside the triangle containing t has length at most 2‖svn−1‖T . But then, letting v be
a vertex of the triangle containing t, we have ‖st‖T � ‖sv‖T + ‖vt‖ � 3‖svn−1‖T , a
contradiction.

We are left only with the task of analyzing the space and preprocessing complexi-
ties of the data structure {PathQuery(T , r̃i, R̃i, ε) : ui ∈ U}. By Lemma 3.3, it reduces
to bounding the sum

∑
ui∈U |V ω

r̃i,R̃i
|, where ω = ε/8. Recall that, by Definition 2, we

have

V ω
r̃i,R̃i

=

{
vertex v of T :

ω

8ρn
r̃i < ‖sv‖T <

5

2
R̃i

}
.

The next lemma shows that V ω
r̃i,R̃i

and V ω
r̃j ,R̃j

are disjoint if i and j differ by more

than 2.
Lemma 6.2. For any ui, uj ∈ U , if j > i + 2, then V ω

r̃i,R̃i
∩ V ω

r̃j ,R̃j
is empty.

Proof. By the construction of U , we have

‖suj‖T > poly(ε)‖suj−1‖T > · · · > (poly(ε))j−i‖sui‖T � (poly(ε))3‖sui‖T .

It follows that

ω

8ρn
r̃j =

ω

48ρ3n
‖suj‖T >

ω

48ρ3n
(poly(ε))3‖sui‖T =

ω

48ρ3n
poly(ε)R̃i.

Substituting poly(ε) = CR · ρ4n2

ε3 log(2ρ) and ω = ε/8, and choosing CR to be at least
48× 20, we get

ω

8ρn
r̃j >

CR

48
· ω
ε3

ρn · log(2ρ) · R̃i �
5

2

ρn

ε2
R̃i �

5

2
R̃i.

Hence, V ω
r̃i,R̃i

∩ V ω
r̃j ,R̃j

is empty.

By Lemma 6.2, each vertex in T can appear in at most three consecutive V ω
r̃i,R̃i

,

V ω
r̃i+1,R̃i+1

, and V ω
r̃i+2,R̃i+2

. This implies the following result.

Corollary 2. Any vertex v of T belongs to at most three sets in the collection
{V ω

r̃i,R̃i
: ui ∈ U}. Thus

∑
ui∈U |V ω

r̃i,R̃i
| � 3n.

1906 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

The set of structures {PathQuery(T , rn−1, Rn−1, ε)} ∪ {PathQuery(T , r̃i, R̃i, ε) :

ui ∈ U} thus requires O(ρ
2n3

ε2 log ρn
ε) space and can be built in O(ρ

2n3

ε2 (log ρn
ε)2) time.

Combining this set with the structures CloseRange(T , ε) and GapQuery(T , a, ε) for
every integer a ∈ [2, n − 1] such that 1

2ρRa−1 < ra, we obtain the main theorem of
this paper.

Theorem 1. Let T be a planar subdivision such that each face is associated with
a convex distance function. Let s be a fixed vertex in T . For any ε ∈ (0, 1), we can
construct a data structure such that the following hold:

(i) For any point t ∈ |T |,
• a (1 + ε)-approximation of the shortest path cost from s to t can be
reported in O

(
log ρn

ε

)
time;

• afterwards, a (1 + ε)-approximate shortest path can be output in time
O(log n) plus its complexity, and the complexity of this path is at most

O(ρ
2n3

ε2 log ρn
ε).

(ii) It uses O(ρ
2n3

ε2 log ρn
ε) space.

(iii) It can be built in O(ρ
2n3

ε2

(
log ρn

ε

)2
) time.

7. Conclusion. We developed a data structure to answer approximate shortest
path queries from a fixed source in a planar subdivision. Our cost model generalizes
previous non-Euclidean cost models. Most notably, the performance of our data
structure is independent of the geometric parameters of the environment such as the
minimum angle in the subdivision. When specializing to the weighted region model,
ρ is the ratio of the maximum weight to the minimum weight, and our dependence
on ρ is worse than the logarithmic dependence on ρ of Mitchell and Papadimitriou’s
algorithm [17]. There are two natural directions for future research. First, can the
dependence on ρ and n be lowered? This is related to the problem of designing a faster
single-source approximate shortest path algorithm. Second, can two-point queries be
supported? The scaling transformation and the perturbation technique introduced in
this paper are not powerful enough to handle an arbitrary source vertex.

Appendix A. Refined analysis. In our previous paper [6], we proved that
there exists a (1+ ε)-approximate shortest polygonal path from s to t with O(ρn2/ε)
links. We will refine this bound. The analysis in [6] takes any polygonal path P from
s to t and shows how to convert it to another path with O(ρn2/ε) links such that
the path cost increases by no more than O(ε cost(P)). The conversion first makes P
simple and removes redundant turns, and then it snaps the path to nearby vertices
of T .

Our idea is to revise the final snapping step. Specifically, we snap only path
nodes in the vicinity of s or in the vicinity of vertices of T that are within a range
of geodesic distances from s. This allows us to control the path complexity while
keeping the increase in path cost tolerable.

We need some notation about polygonal paths from [6]. A T -respecting path is
a polygonal path P such that each link is contained in a face of T . For example, a
k-link path from s to t is T -respecting. On the other hand, a T -respecting path may
have a node in the interior of a face but a k-link path cannot. Given a polygonal path
P = (p0, p1, p2, . . .), we use P [i, j] to denote the subpath (pi, pi+1, . . . , pj). Given two
polygonal paths P and Q, we use P ·Q to denote their concatenation in this order.

A technical issue is that the analysis in [6] assumes that t is a vertex of T . We
enforce this by inserting t and splitting the triangular face containing t into three
smaller triangles. For convenience, we still use T to denote the modified subdivision,

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1907

ss

Fig. 7. In each figure, the circle denotes B(s, r), and the shaded regions are obstacles. The
faces f in Tv,r are shown on the left, and the faces fv,r with the outside vertices and outside edges
deleted are shown on the right. White dots and dashed edges indicate outside vertices and outside
edges, respectively.

s

Fig. 8. The larger circle and smaller circle denote B(s, δ) and B(s, r), respectively. The (δ, r)-
zone of s consists of the points in the unshaded triangles inside the larger circle, except those points
that lie at the white dots or on the dashed edges.

but the number of vertices increases to n + 1. We use the “original T ” when we
need to refer to the subdivision before adding t. We will discuss how to revert to the
original T at the end of this section.

In this section, we assume that n � 7(|V ε
st |+ 2). Otherwise, Lemma 2.2 is directly

implied by Lemma 2.1(i).

A.1. Zone. We define the “vicinity” of a vertex in T . Let r be a real number
such that r � 0. For any vertex v of T , denote by B̂(v, r) the connected component

of B(v, r) ∩ |T | that contains v. Let Tv,r be the set of faces with a vertex in B̂(v, r).
For each face f ∈ Tv,r, we call a vertex w of f an outside vertex if w lies outside

B̂(v, r) and an edge of f an outside edge if it connects two outside vertices. For each
face f ∈ Tv,r, remove its outside vertices and outside edges from f and denote the
resulting face by fv,r. Either fv,r is equal to f , or fv,r is a semiopen set. Figure 7
gives an illustration.

Definition 8. For any real numbers δ and r such that δ > r � 0, and for any
vertex v of T , the (δ, r)-zone of v is B(v, δ) ∩

⋃
f∈Tv,r

fv,r.

Figure 8 gives an example of a (δ, r)-zone. Making the faces possibly semiopen
provides the following nice property.

Lemma A.1. Let P = (p0, p1, p2, . . .) be a T -respecting path. Let u be a vertex
of T . If a node pi of P is in the (δ, r)-zone of u for some δ > r � 0, then there exist
a face in Tu,r that contains pipi+1 and a face in Tu,r that contains pi−1pi.

1908 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

pi−1

P

pj

v
pi

pj+1

Fig. 9. The (δ, 0)-zone of v consists of the portions of the triangles inside the circle other than
the white dots and the dashed edges. The bold polylines are portions of the path P , and the dashed
polyline is the shortcut via v.

Proof. We prove the lemma for pipi+1. The same proof works for pi−1pi. Suppose
that pi does not lie on any edge of T . The node pi is in the (δ, r)-zone of u, so there
is a unique face f ∈ Tu,r such that pi ∈ int(f). As P is T -respecting, pi+1 must lie
inside f or on its boundary; i.e., f contains pipi+1.

Suppose that pi belongs to the interior of an edge e of T . Then e is not an outside
edge, implying that at least one endpoint of e lies in B̂(u, r). This means that every
face incident to e belongs to Tu,r. If pi+1 lies on e, then e contains pipi+1 and so does
each face incident to e. If pi+1 does not lie on e, then pi+1 must belong to a face
incident to e, as P is T -respecting. So this face contains pipi+1.

Suppose that pi is a vertex of T . The vertex pi must belong to B̂(u, r) in order
to be in the (δ, r)-zone of u. So all faces incident to pi belong to Tu,r. The same
argument shows that one of these faces contains pipi+1.

A.2. Shortcut and Bypass. We use two procedures, Shortcut and Bypass, to
snap path nodes. Shortcut was introduced in [6], and we use it to snap path nodes
near some vertices of T other than the source s. We introduce a new procedure Bypass
to snap path nodes near s.

Given a T -respecting path P = (p0, p1, . . .) and a vertex v of T , the procedure
Shortcut(P, δ, v) finds the first node pi and the last node pj of P inside the (δ, 0)-zone
of v.2 (Notice that we have set r to be zero.) Then, Shortcut replaces P [i− 1, j + 1]
with the subpath (pi−1, v, pj+1). The following is the pseudocode of Shortcut. (Recall
that s is a vertex of T and t has also been inserted as a vertex.) The output path
of Shortcut may be self-intersecting, but it is still T -respecting. Figure 9 shows an
example.

Shortcut(polygonal path P , δ > 0, vertex v)
1. If no node of P is in the (δ, 0)-zone of v, return P .
2. Let pi and pj be the first and last nodes along P , respectively,

that lie in the (δ, 0)-zone of v. Let p0 and pm be the first and
last nodes of P .

3. If v = p0, return (v) · P [j + 1,m].
4. If v = pm, return P [0, i− 1] · (v).
5. Return P [0, i− 1] · (v) · P [j + 1,m].

The following result about Shortcut was proved in [6]. It follows from the observa-
tion that the shortcut (pi−1, v, pj+1) incurs an extra cost of cost(pi−1v)− cost(pi−1pi)+
cost(vpj+1)−cost(pjpj+1) � df1 (pi, v) +df2(v, pj) � ρ(‖piv‖+‖vpj‖) < 2ρδ, where f1

2The (δ, 0)-zone of v is called the δ-neighborhood of v in [6].

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1909

and f2 are the faces in Tv,0 that contain pi−1pi and pjpj+1, respectively (Lemma A.1).

Lemma A.2 (see [6]). Let P be a T -respecting path. Let v be a vertex of T . The
path returned by Shortcut(P, δ, v) has cost less than cost(P) + 2ρδ.

Given a T -respecting path P = (s = p0, p1, . . . , pm = t), Bypass(P, δ, r) identifies
the last node pj of P inside the (δ, r)-zone of s. In general, by Lemma A.1, there is

a vertex v inside B̂(s, r) lying in the same face as pj and pj+1. Bypass computes the

geodesic path Q in B̂(s, r) from s to v and splits Q at its intersections with the edges
of T to make it T -respecting. Denote the split path by Split(Q). Bypass then replaces
P [0, j] with Split(Q) · (v). In the special case of pj = pm, we replace P [0, j − 1] in
a similar way instead. The output of Bypass may be self-intersecting, but it remains
T -respecting. The following is the pseudocode of Bypass. Figure 10 shows an example.

Bypass(T -respecting path P from s to t, real numbers δ and r such
that δ > r � 0)
1. Let pj be the last node along P that lies in the (δ, r)-zone of s.

Let pm be the last node of P .
2. If pj = pm, let � = j − 1; otherwise, let � = j.
3. Let f ∈ Ts,r be a face containing p�p�+1. Let v be a vertex of f

in B̂(s, r).
4. If v = s, return (s) · P [�+ 1,m].

5. Compute the geodesic path Q in B̂(s, r) from s to v.
6. Return Split(Q) · P [�+ 1,m].

svpj+1

pj

Fig. 10. This is the (δ, r)-zone of s from Figure 8. The bold polyline denotes the prefix of the
path P . The dashed polyline denotes the bypass from s to pj+1.

The next result gives some properties of the output path of Bypass.

Lemma A.3. Let P be a T -respecting path from s to t. Let R be the path returned
by Bypass(P, δ, r) for some δ > r � 0. Let v be the vertex picked by Bypass in step 3.

(i) The subpath of R from s to v lies in B̂(s, r) and has at most 4n− 2 nodes.
(ii) cost(R) � cost(P) + 2ρnr + 2ρδ.

Proof. The subpath of R from s to v is obtained by splitting a geodesic path in
B̂(s, r) from s to v at the intersections with the edges of T . So this subpath lies in

B̂(s, r). The geodesic path has at most n + 1 nodes because each node including s
and v must be a distinct vertex of T . (Recall that T has n + 1 vertices after the
addition of t.) Since a geodesic path cannot cross the same edge of T twice, splitting
this geodesic path at the edges of T produces at most 3(n + 1) − 6 = 3n − 3 extra
nodes. Thus, the subpath of R from s to v has at most 4n− 2 nodes. This proves (i).

The cost of R is at most the cost of the subpath of R from s to v plus cost(P) +

1910 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

cost(vp�+1) − cost(p�p�+1) � cost(P) + cost(vp�). The link vp� lies inside B(s, δ), so
its length is at most 2δ. The subpath from s to v comes from a geodesic path with at
most n segments, each with length at most 2r. Thus, the total extra cost is at most
2ρnr + 2ρδ. This proves (ii).

A.3. Modify. In this subsection, we describe the conversion of a T -respecting
2-approximate shortest path P into a path with few links such that the increase in
cost is relatively small. We show that this conversion guarantees some structural
properties and a bound on the cost of the output path. In turn, these results allow us
to prove Lemma 2.2 in section A.4. We first need some definitions and a background
result.

Definition 9. For any point t ∈ |T |, define

γε
st =

ε

8ρn
‖st‖T ,

δεst =
ε

8ρ(|V ε
st |+ 2)

OPTst .

Notice that γε
st � δεst/7 for any ε ∈ (0, 1) based on our assumption that n �

7(|V ε
st |+ 2). Using γε

st , we can rewrite the definition of V ε
st as

V ε
st = {vertex v of the original T : γε

st < ‖sv‖T < 5ρ ‖st‖T }.

A node on a T -respecting path is called critical if (i) it is different from any vertex of
T (including s and t), (ii) it is incident to two links, and (iii) exactly one of these two
links is contained in an edge of T . A node on a T -respecting path is called transversal
if (i) it lies in the interior of an edge e of T , (ii) it is incident to two links, and (iii) the
interior of the two links is in the interior of the two faces incident to e, respectively.
The following result is from [6].

Lemma A.4 (see [6]). Let P be a T -respecting path from s to t. There is a
procedure Simplify(P) that outputs a path Q with the following properties:

(i) Q is simple and T -respecting. Each node of Q is a vertex of T , a critical
node, or a transversal node.

(ii) Q has no more links than P .
(iii) cost(Q) � cost(P).
(iv) Let u and v be two nodes of Q such that they are vertices of T and the nodes

of Q between u and v are critical or transversal. There are at most two critical
nodes of Q between u and v. Hence, Q has at most 2n critical nodes.

Our conversion procedure Modify uses procedures Simplify, Shortcut, and Bypass.
Its pseudocode is given below.

Modify(T -respecting path P from s to t, ε ∈ (0, 1))
1. Q0 := Simplify(P).
2. Q1 := Bypass(Q0, δ

ε
st , γ

ε
st).

3. Let V ε
st ∪ {t} = {v1, v2, v3, . . .}. For i := 1 to |V ε

st |+ 1, Qi+1 :=
Shortcut(Qi, δ

ε
st , vi).

4. Return Q|V ε
st |+2.

The next three lemmas give some structural properties and a bound on the cost
of the output path of Modify.

Lemma A.5. Let P be a T -respecting 2-approximate shortest path from s to t.
Let R = (r1, r2, . . . , r�) be the path returned by Modify(P, ε).

(i) R is a T -respecting path with distinct nodes. Each node of R lies on the
boundary of a face of T .

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1911

(ii) cost(R) � cost(P) + ε
2OPTst .

(iii) For any node ri, if ri is a vertex of T and ri �∈ B̂(s, γε
st), then ri ∈ V ε

st ∪ {t}.
(iv) If ri and ri+1 are outside B̂(s, γε

st) and neither of them is a vertex of T , then
riri+1 is a link of Q0.

(v) Let v be a vertex of T . Let ri be a node in the interior of an edge incident

to v. If v lies inside B̂(s, γε
st) and ri is outside B̂(s, γε

st), then ‖ris‖ � δεst . If
v ∈ V ε

st ∪ {t}, then ‖riv‖ � δεst .

(vi) Among the set of nodes of R outside B̂(s, γε
st), at most |V ε

st |+ 1 of them are
vertices of T and at most 4|V ε

st |+ 5 of them are critical nodes.
Proof. By Lemma A.4(i), Q0 is a T -respecting path that satisfies the properties

in (i). The calls to Bypass and Shortcut preserve these properties; thus (i) is proved.
By Lemma A.3, Bypass incurs an extra cost of at most

2ρnγε
st + 2ρδεst � ε‖st‖T

4
+

εOPTst

4|V ε
st |+ 8

� εOPTst

4
+

εOPTst

4|V ε
st |+ 8

.

By Lemma A.2, the calls to Shortcut increase the path cost by at most

2 (|V ε
st |+ 1) ρδεst =

ε (|V ε
st |+ 1)OPTst

4|V ε
st |+ 8

.

Hence, the total increase in path cost is at most εOPTst/2, which proves (ii).
By (ii) and the assumption that cost(P) � 2OPTst , we get cost(R) < 3OPTst <

5ρ‖st‖T , which implies that ‖sri‖T < 5ρ‖st‖T for any node ri of R. Thus, if ri is a

vertex of T and ri �∈ B̂(s, γε
st), then ri ∈ V ε

st ∪ {t}. This proves (iii).
Property (iv) follows directly from the working of Shortcut.

Consider (v). Suppose that v is a vertex of T in B̂(s, γε
st). Take an edge e of T

incident to v and a node ri of R in int(e) outside B̂(s, γε
st). Bypass creates only nodes

inside B̂(s, γε
st). Therefore, ri is a node from Q0. It survives the call of Bypass only if

ri lies outside B(s, δεst). That is, ‖ris‖ � δεst . Similarly, for any v ∈ V ε
st ∪ {t} and for

any ri in the interior of an edge incident to v, the node ri survives the call of Shortcut
only if ‖riv‖T � δεst .

Consider (vi). Let ri be a node of R outside B̂(s, γε
st). It follows from (iii) that if

ri is a vertex T , then ri ∈ V ε
st ∪{t}. This proves the first part of (vi). Suppose that ri

is not a vertex of T . Let Q′
1 be the suffix of Q1 whose nodes are outside B̂(s, γε

st). So
ri is a node of Q′

1. By Lemmas A.3(ii) and A.4(iii) and our assumption on cost(P),
we have cost(Q1) � cost(P) + 2ρnγε

st + 2ρδεst � 2OPTst + 2ρnγε
st + 2ρδεst . Then, as

in proving (iii), we can show that any vertex of T in Q′
1 belongs to V ε

st ∪ {t}. Since
the nodes of Q′

1 are all inherited from Q0, by Lemma A.4(iv), there are at most two
critical nodes between any two successive nodes in Q′

1 that are vertices of T . So the
number of critical nodes in Q′

1 is at most 2(|V ε
st |+ 2)− 2 = 2|V ε

st |+ 2. (We add two
to |V ε

st | to account for t and the vertex in Q0 preceding Q′
1.) Each call of Shortcut

may introduce at most two new critical nodes, i.e., the endpoints of the subpath that
it replaces. So the calls to Shortcut add at most 2|V ε

st |+2 critical nodes. Bypass may

add at most one critical node outside B̂(s, γε
st). Therefore, in total, R has at most

4|V ε
st |+ 5 critical nodes outside B̂(s, γε

st).
The next lemma gives a lower bound on the cost of a subpath of the output path

of Modify under certain conditions.
Lemma A.6. Let P be a T -respecting 2-approximate shortest path from s to t.

Let R be the path returned by Modify(P, ε). Consider an edge e of T and a node ri of
R in int(e). Suppose that the following conditions hold:

1912 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

• There exists a node rj of R in int(e) with j > i+ 1. If there are several such
nodes, we choose j to be the minimum.

• All nodes in int(R[i, j]) are transversal nodes outside B̂(s, γε
st).

Then cost(R[i, j]) > δεst/2.
Proof. The subpath R[i, j] and the segment rirj bound a closed region. We first

prove that there is an edge e′ of T that has an endpoint v′ inside this closed region.
Let E denote the set of edges of T that contain a node in the interior of R[i, j]. Pick
an edge e′′ of E. If this edge has an endpoint inside the closed region, we are done.
Otherwise, this edge crosses int(R[i, j]) transversally, and so it separates a portion of
the closed region from e. By recursively applying the argument on this portion of the
closed region, we must find an edge e′ of T that has an endpoint v′ inside the closed
region.

Let rk be the node in int(R[i, j]) that e′ passes through. If v′ ∈ V ε
st ∪ {t},

Lemma A.5(v) implies that ‖rkv′‖ � δεst . It follows that cost(R[i, j]) � length(R[i, j])
� ‖rkv′‖ � δεst .

Suppose that v′ �∈ V ε
st ∪ {t}. We first claim that v′ ∈ B̂(s, γε

st). Since ‖rkv′‖ �
length(R[i, j]), we have

‖sv′‖T � length(R[1, k]) + ‖rkv′‖ � length(R[1, k]) + length(R[i, j]) � 2 length(R).

Since cost(R) � cost(P) + εOPTst/2 by Lemma A.5(ii) and cost(P) � 2OPTst by
assumption, we have cost(R) < 5

2OPTst . Thus,

‖sv′‖T � 2 length(R) � 2 cost(R) < 5ρ‖st‖T .

It follows that ‖sv′‖T satisfies the upper bound in the definition of V ε
st . In order that

v′ �∈ V ε
st ∪ {t}, we have ‖sv′‖T < γε

st and so v′ ∈ B̂(s, γε
st). This proves our claim.

By our claim and Lemma A.5(v), ‖rks‖ � δεst . So ‖rkv′‖ � δεst − γε
st > δεst/2. It

follows that cost(R[i, j]) � length(R[i, j]) > ‖rkv′‖ > δεst/2.
The next result bounds the complexity of the subpath of R consisting of the nodes

outside B̂(s, γε
st).

Lemma A.7. Let P be a T -respecting 2-approximate shortest path from s to t. Let
R be the path returned by Modify(P, ε). Let R′ be the longest suffix of R whose nodes

are outside B̂(s, γε
st). The subpath R′ has at most 3n(|V ε

st |+2) (40ρ/ε+ 5)+4n nodes.
Proof. Let Q0 = Simplify(P). For an edge e ∈ T , we denote by Ne the set of

nodes ri of R′ other than its two endpoints that lie in the interior of e. We bound
the cardinality of Ne by a charging argument. Let ri and rj , i < j, be two nodes in
Ne that are consecutive in the order along R′.

Case 1. ri−1 is a vertex of T . Because ri ∈ int(e), ri−1 must be a vertex of the
faces incident to e. There are four vertices in the two faces incident to e. It follows
that Case 1 happens at most four times.

Case 2. There is a vertex v of T in R′[i, j]. We charge ri to v; thus there are at
most |V ε

st |+ 1 such ri’s by Lemma A.5(vi).
Case 3. j = i + 1. As ri, ri+1 ∈ int(e), the nodes ri and ri+1 are not vertices of

T . Since the case that ri−1 is a vertex was already covered in Case 1, we may assume
that ri−1 is not a vertex of T . By Lemma A.5(iv), (ri−1, ri, ri+1) is a subpath of Q0.
We have riri+1 ⊂ int(e) as ri, ri+1 ∈ int(e). Then, ri−1ri cannot be contained in e by
Lemma A.4(i). So ri is a critical node.

Case 4. There is no vertex of T in R′([i, j]), but there is a critical node rk in
int(R′[i, j]). We charge ri to rk.

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1913

Case 5. j > i + 1, and there is no vertex of T in R′[i, j] and no critical node in
int(R′[i, j]). Lemma A.5(iv) implies that R′[i, j] is a subpath of Q0. By Lemma A.4(i),
all of the nodes in int(R′[i, j]) are transversal nodes. By Lemma A.6, we have
cost(R′[i, j]) > δεst/2. Because cost(R′) � cost(P) + εOPTst/2 � (2 + ε/2)OPTst

(by Lemma A.5(ii) and our assumption on cost(P)) and δεst = εOPTst/(8ρ(|V ε
st |+2)),

we get

cost(R′[i, j]) >
ε

8ρ(|V ε
st |+ 2)(4 + ε)

cost(R′) � ε

40ρ(|V ε
st |+ 2)

cost(R′).

So there are at most 40ρ(|V ε
st |+ 2)/ε such ri’s in Ne.

Cases 1, 2, and 5 contribute at most 40ρ(|V ε
st | + 2)/ε + |V ε

st | + 5 nodes to Ne.

The nodes in Cases 3 and 4 are critical nodes outside B̂(s, γε
st). So there are at most

4|V ε
st | + 5 of them by Lemma A.5(vi). Including the last node outside B̂(s, γε

st) in
int(e), we have |Ne| � 40ρ(|V ε

st |+ 2)/ε+ 5|V ε
st |+ 11. The number of edges in T is at

most 3(n+ 1)− 6 = 3n− 3. Summing over all edges of T and including the vertices
of T and the two endpoints of R′, the number of nodes in R′ is at most

n+ 3+ (3n− 3)(40ρ(|V ε
st |+ 2)/ε+ 5|V ε

st |+ 11) < 3n(|V ε
st |+ 2)(40ρ/ε+ 5)+ 4n.

A.4. Proof of Lemma 2.2. Finally, we make use of Lemmas A.5 and A.7 to
prove Lemma 2.2. First, by a result in [6], there exists a polygonal path P that is a
(1 + ε/2)-approximate shortest path. The complexity of P could be extremely high
though. We do the conversion by setting R := Modify(P, ε). By Lemma A.5(ii),

cost(R) � cost(P) + εOPTst/2 � (1 + ε)OPTst .

This shows that R is a (1 + ε)-approximate shortest path from s to t.
To bound the number of links in R, let R1 be the longest suffix of R whose nodes

are outside B̂(s, γε
st). By Lemma A.7, R1 has at most 3n(|V ε

st | + 2)(40ρ/ε+ 5) + 4n
nodes. Let R2 be the prefix of R that concatenates with R1 to yield R. So the first
node of R2 is s and the last node of R2 is in B̂(s, γε

st).
Consider the output path Q1 of the call Bypass(Q0, δ

ε
st , γ

ε
st) in step 2 of Modify.

Let Q′
1 be the longest prefix of Q1 whose nodes lie inside B̂(s, γε

st). Then Q′
1 is the

geodesic path in B̂(s, γε
st) from s to some vertex v of T .

Let rk ∈ B̂(s, γε
st) be the node prior to R1 on R. Since Shortcut in step 3 of Modify

does not introduce any new nodes inside B̂(s, γε
st), we have rk ∈ Q′

1. For any other
node rl in R that is not a vertex of T , Shortcut does not change the order of rk and
rl along the path. Therefore, Q′

1 contains all nodes on the subpath from s to rk in R
that are not vertices of T . Recall that Q′

1 has at most 4n−2 nodes by Lemma A.3(i).
There are at most n+1 nodes of R that are vertices of T . Hence the number of nodes
in the subpath from s to rk in R is at most 5n− 1. In total, the number of nodes in
R is fewer than 3n(|V ε

st |+ 2)(40ρ/ε+ 5) + 9n.
Recall that we added t as a vertex to T by splitting the triangular face f containing

t into three smaller triangles. The path R may not be a kεst -link path in the original
T , where kεst = 3n(|V ε

st |+ 2) (40ρ/ε+ 5) + 9n, because R may contain node(s) in the
interior of f other than t. If ri is such a node in int(f), we modify R by replacing the
subpath (ri−1, ri, ri+1) by (ri−1, ri+1). Clearly, the number of nodes decreases. Also,
ri−1 and ri+1 lie in f as ri ∈ int(f). So cost((ri−1, ri, ri+1)) � cost(ri−1ri+1), which
means that the path cost does not increase. We repeat the above until we obtain a
kεst -link path in the original T .

1914 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

Appendix B. Additively weighted Voronoi diagram. This section contains
the proofs of Lemmas 2.3 and 2.4. It may be possible to improve the bound on the
number of vertices in Lemma 2.3, but it does not seem straightforward. Dudley’s
construction [1, 10], for instance, gives an approximation with respect to the Haus-
dorff distance, but we need an approximation with respect to scaling. This type
of approximation is more demanding: Dudley’s construction gives a polygon with
O(1/

√
ε) vertices, while the size of an approximation with respect to scaling cannot

be bounded as a function of ε only. (See the appendix of Arya and Vigneron’s re-
search report on approximate Voronoi cells [4].) It may be possible to improve the
bound in Lemma 2.3 from O(ρ/ε) to O(ρ/

√
ε) using ideas from Dudley’s construction.

It would not improve the overall complexity bounds, though, because we compute only
Voronoi diagrams for cluster hubs, which are a small subset of our Steiner points, and
so improving the Voronoi diagram computation does not affect the overall complexity
bounds. The proof of Lemma 3.3 reveals that the space requirement and construction
time of our data structures are dominated by the number of Steiner points placed
in T and the running time of BUSHWHACK.

B.1. Proof of Lemma 2.3. Let f be a face of T . Let o denote the origin at
which the “unit disk” Bf of the convex distance function df is centered. By our
assumption Bf is contained in a concentric unit Euclidean disk and Bf contains a
concentric Euclidean disk with radius 1/ρ.

We shoot rays from the origin o to bd(Bf) at angles ε/(4ρ) apart. Given a point
t such that ‖ot‖ = 1, the point t′ on the ray from o to t that lies on bd(Bf) is given
by ot′ = 1

df (o,t)
· ot. Thus, we can compute the intersections between the rays and

bd(Bf) using the black-box model in which the distance between two given points
under df can be returned in constant time.

Given a point t such that ‖ot‖ = 1, the point t′ on the ray from o to t that lies
on bd(Bf) is given by ot′ = 1

df (o,t)
· ot.

Let {x1, x2, . . .} denote the intersection points between these rays and bd(Bf) in
counterclockwise order. We claim that the convex hull of {x1, x2, . . .} is the desired
convex polygon Cε

f . Clearly, C
ε
f lies inside Bf and Cε

f has O(ρ/ε) vertices. It remains

to show that for any points x, y ∈ R
2, we have df (x, y) � dεf (x, y) � (1 + ε)df (x, y),

where dεf is the distance function induced by Cε
f .

As Cε
f ⊂ Bf , the inequality df (x, y) � dεf (x, y) follows directly from the definition

of convex distance functions. To prove that dεf (x, y) � (1 + ε)df (x, y), it suffices to
show that dεf (o, y) � (1 + ε)df (o, y) for any point y ∈ bd(Bf). Without loss of
generality, assume that y lies in the cone bounded by rays from o through xi and
xi+1. Let z be the intersection point oy ∩ xixi+1. Refer to Figure 11.

Let α = ∠xioy and β = ∠xiyo. Since ∠xioxi+1 � ε
4ρ � ε

4 , at least one of the
perpendicular projections of xi and xi+1, say xi, onto oy lies on the segment oz.
Denote this projection by z′. Then we have

(3)
‖yz‖
‖oz‖ � ‖yz′‖

‖oz′‖ =
‖oxi‖ sinα/ tanβ

‖oxi‖ cosα
=

tanα

tanβ
.

By the assumption on Bf and Cε
f , the distance ‖oy‖ is at most 1 and the distance

from o to xiy is at least 1
ρ cos(α/2). So we get sinβ � cos(α/2)

ρ , which implies that
1

tan β � 1
sin β � ρ

cos(α/2) . Since α � ε
4ρ < π/3, we have cos(α/2) � cosα > 1/2 and

thus that 1
tan β � 2ρ. Substituting the inequalities 1

tan β � 2ρ and cosα > 1/2 into

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1915

β

o

xi+1 xi

y

z

z′ α

Fig. 11. Illustration for the proof of dεf (o, y) � (1 + ε)df (o, y) for y ∈ bd(Bf).

(3), we get

‖yz‖
‖oz‖ � 2ρ tanα � 4ρ sinα � 4ρα � ε.

Hence

dεf (o, y)

df (o, y)
=

‖oy‖
‖oz‖ = 1 +

‖yz‖
‖oz‖ � 1 + ε.

B.2. Proof of Lemma 2.4. Voronoi diagrams under convex distance functions
have been studied before [7, 15]. Ma [15] proved several geometric properties of such a
Voronoi diagram in the unweighted case, including the connectedness of each Voronoi
cell and the complexity of the bisectors. On the other hand, we are not aware of any
published version of Lemma 2.4 in the literature.

We prove more general versions of Lemma 2.4(i) and (ii) for a convex distance
function induced by a convex polygon. We first give a formal definition of the addi-
tively weighted Voronoi diagram. Notice that there is a tie-breaking rule based on
the indices assigned to the sites.

Definition 10. Let K be a positive integer. Let d be the convex distance function
induced by a convex polygon C with K sides. Let S be a set of point sites {s1, s2, . . .}
in R

2. Each site si ∈ S is associated with a weight wi � 0 such that wi � wj for any
i < j.

• For any i < j, define Rij = {x ∈ R
2 : d(si, x) + wi � d(sj , x) + wj} and

Rji = R
2 \Rij .

• For each site si, define the Voronoi cell of si to be Vi = ∩j 	=iRij . Notice that
bd(Vi) may not be a subset of Vi, as Vi may not be a closed set.

• The additively weighted Voronoi diagram Vor(S, d) is the collection of the
Voronoi cells and their boundary edges and vertices.

The following result implies Lemma 2.4(i).
Lemma B.1. For any Voronoi cell Vi in Vor(S, d), si ∈ int(Vi) and Vi is star-

shaped.
Proof. We first show that si ∈ Vi. If not, there must exist j �= i such that

wj + d(sj , si) � wi, where the inequality is strict when j > i. Take a point x ∈ Vi.
We have wi +d(si, x) � wj +d(sj , si) + d(si, x) � wj +d(sj , x), where the inequality
is strict when j > i. But then x cannot belong to Vi by the tie-breaking rule, a
contradiction.

1916 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

Assume to the contrary that si ∈ bd(Vi). There must exist j �= i such that
wi = wj +d(sj , si), which is greater than wj . If i < j, we get a contradiction because
wi � wj by definition. If i > j, then for any point x ∈ Vi, we have wi + d(si, x) =
wj + d(sj , si) + d(si, x) � wj + d(sj , x), which implies that x cannot belong to Vi, a
contradiction. This shows that si ∈ int(Vi).

The cell Vi is star-shaped if Vi contains six for any point x ∈ Vi. Assume to
the contrary that there exists a point y ∈ six such that y ∈ Vj for some j �= i.
It follows from the definition of x ∈ Vi that wi + d(si, x) � wj + d(sj , x), where
the inequality is strict when j < i. We have wi + d(si, y) = wi + d(si, x)− d(y, x)
� wj + d(sj , x)− d(y, x), which is at most wj + d(sj , y) by the triangle inequality.
So wi + d(si, y) � wj + d(sj , y) and the inequality is strict when j < i. But then y
cannot belong to Vj by the tie-breaking rule, a contradiction.

It follows from Lemma B.1 that there are at most |S| Voronoi cells in Vor(S, d)
and each Voronoi cell is connected. So the dual graph of Vor(S, d) is a planar graph
with at most |S| graph vertices. By Euler’s relation, there are O(|S|) faces in any
planar embedding of this graph, which implies that there are O(|S|) Voronoi vertices
in Vor(S, d). It remains to analyze the complexity of the Voronoi edges in Vor(S, d)
to fully determine the complexity of Vor(S, d).

Lemma B.2. Let si and sj be two points in S such that i < j. The additively
weighted bisector bd(Rij) of si and sj under the distance function d is a polygonal
chain with at most 2K vertices.

Proof. We go to R
3 and apply a lifting argument. Let the plane containing S be

the horizontal plane H through the origin. Let Ei be the vertical convex cone with
apex si above the plane of S such that for any point x ∈ H the vertical distance from
x to Ei is equal to d(si, x). This implies that any horizontal cross-section of Ei is a
homothetic copy of the convex polygon C. So Ei has exactly K unbounded triangular
faces.

We translate Ei vertically upward by a distance wi. Denote the translated cone
by Fi. Now, for any point x ∈ H , the vertical distance from x to Fi is equal to
wi + d(si, x). We similarly define Fj for sj . Any point x in bd(Rij) has the same
vertical distance from Fi and Fj . It follows that x lifts vertically to an intersection
point z between a face σi of Fi and a face τj of Fj .

Conversely, take a face σi of Fi. If σi avoids Fj , then the lifting of any point x ∈ H
below σi hits σi before Fj . So x ∈ int(Rij). In other words, σi does not contribute
any point to bd(Rij). If σi intersects a face τj and σi is coplanar with τj , then σi does
not contribute any point to bd(Rij) due to the tie-breaking rule. The remaining case
is that σi intersects Fj and σi is not coplanar with any face of Fj that it intersects.
In this case, σi ∩Fj is a polygonal chain in R

3 and the projection of this chain is part
of bd(Rij). So a vertex of σi ∩ Fj corresponds to a vertex of bd(Rij). Therefore, to
bound the complexity of bd(Rij), it suffices to bound the total complexity of σi ∩ Fj

over all faces σi of Fi.

Each vertex of σi ∩ Fj is the isolated intersection point between an edge ej of Fj

and σi. Since Fi is convex, the edge ej can produce at most two isolated intersection
points with the faces of Fi. This implies that bd(Rij) has at most 2K vertices.

Lemma B.2 allows us to conclude that Vor(S, d) has linear complexity, which
proves the Voronoi diagram complexity in Lemma 2.4(ii).

Corollary 3. The complexity of Vor(S, d) is O(K|S|).
It remains to show how to construct Vor(S, d) efficiently. Chew and Drysdale [7]

proposed a divide-and-conquer algorithm for constructing additively weighted Voronoi

QUERYING SHORTEST PATHS IN ANISOTROPIC REGIONS 1917

diagrams. The running time of this algorithm is O(K|S| log |S|), which is exactly what
we needed. However, the conquer step of this divide-and-conquer algorithm requires
an assumption, which we explain below.

Divide S into two equal subsets SL and SR using the median x-coordinate. Let
B(SL, SR, d) denote the set of Voronoi edges of Vor(S, d) such that, among the two
cells incident on each edge in B(SL, SR, d), one is owned by some point in SL and
the other is owned by some point in SR. The divide step is to recursively compute
Vor(SL, d) and Vor(SR, d) and then merge them by tracing B(SL, SR, d). For the trac-
ing to work properly, it is essential that B(SL, SR, d) does not contain any loop. This
is the assumption needed for the algorithm of Chew and Drysdale to work correctly.

If the point sites in S are in arbitrary positions, it is possible that B(SL, SR, d)
contains loops. However, we show below that if the sites in S are collinear, B(SL, SR, d)
is loop-free.

Lemma B.3. Assume that the sites in S are collinear. Let (SL, SR) be a partition
of S such that the points in SL and SR are contiguous. Then, B(SL, SR, d) does not
contain any loop.

Proof. Assume that S lies on a horizontal line � and that SL is to the left of SR

along �. Assume to the contrary that there is a loop in B(SL, SR, d). Without loss of
generality, we can pick a loop in B(SL, SR, d) that is innermost in the sense that this
loop does not enclose any portion of B(SL, SR, d).

This loop encloses a portion of the Voronoi diagram of SL or SR, and the Voronoi
diagram of the other subset is outside the loop. Without loss of generality, assume
that the loop encloses a portion of Vor(SL, d) and Vor(SR, d) lies outside the loop.

Pick a Voronoi cell Vl of Vor(S, d) inside the loop. So sl belongs to SL. Pick an
intersection point x between the loop and the ray shooting from sl to the left. Let sr
be the site in SR whose additively weighted distance to x is minimum. Since x does
not belong to int(Vl), we get

wr + d(sr, x) � wl + d(sl, x).

Observe that x lies to the left of sl by our choice, sl lies to the left of sr by assumption,
and the three points are collinear. Thus, d(sr, x) = d(sr, sl) + d(sl, x). Substituting
this into the inequality above, we get wr + d(sr, sl) + d(sl, x) � wl + d(sl, x), which
implies that wr + d(sr, sl) � wl. Thus, sl cannot lie in the interior of Rlr. But then
sl cannot lie in the interior of Vl ⊆ Rlr, contradicting Lemma B.1.

Lemma B.3 allows us to apply the algorithm of Chew and Drysdale to construct
Vor(S, d) in O(K|S| log |S|) time when the sites in S are collinear. This completes
the proof of Lemma 2.4(ii).

The proof of Lemma 2.4(iii) is simple. By Lemma 2.3(ii), for any sj , we have

wj + df (sj , x) � wj +
dεf (sj , x)

1 + ε

�
wj + dεf (sj , x)

1 + ε

�
minsi∈S{wi + dεf (si, x)}

1 + ε
.

Since the above inequality holds for any sj, we conclude that minsi∈S{wi+dεf(si, x)} �
(1 + ε)minsi∈S{wi + df (si, x)}. This proves Lemma 2.4(iii).

1918 S.-W. CHENG, H.-S. NA, A. VIGNERON, AND Y. WANG

Acknowledgment. We thank the referees for their helpful suggestions.

REFERENCES

[1] H.-K. Ahn, P. Brass, O. Cheong, H.-S. Na, C.-S. Shin, and A. Vigneron, Inscribing an
axially symmetric polygon and other approximation algorithms for planar convex sets,
Comput. Geom., 33 (2006), pp. 152–164.

[2] L. Aleksandrov, H. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and J.-R. Sack,
Approximate shortest path queries on weighted polyhedral surfaces, in Proceedings of the
31st International Symposium on Mathematical Foundations of Computer Science, 2006,
pp. 98–109.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, Determining approximate shortest paths
on weighted polyhedral surfaces, J. ACM, 52 (2005), pp. 25–53.

[4] S. Arya and A. Vigneron, Approximating a Voronoi Cell, Technical report HKUST-TCSC-
2003-10, Department of Computer Science and Engineering, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 2003.

[5] S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang, Querying approximate shortest paths
in anisotropic regions, in Proceedings of the 23rd Annual Symposium on Computational
Geometry, 2007, pp. 84–91.

[6] S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang, Approximate shortest paths in
anisotropic regions, SIAM J. Comput., 38 (2008), pp. 802–824.

[7] L. P. Chew and R. Drysdale, Voronoi diagrams based on convex distance functions, in
Proceedings of the 1st Annual Symposium on Computational Geometry, 1985, pp. 235–
244.

[8] Y.-J. Chiang and J. S. B. Mitchell, Two-point Euclidean shortest path queries in the plane,
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, SIAM, Philadelphia, 1999, pp. 215–224.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry:
Algorithms and Applications, Springer-Verlag, Berlin, 2008.

[10] R. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J. Approxi-
mation Theory, 10 (1974), pp. 227–236.

[11] S. Har-Peled, Approximate shortest paths and geodesic diameter on a convex polytope in three
dimensions, Discrete Comput. Geom., 21 (1999), pp. 217–231.

[12] S. Har-Peled, Constructing approximate shortest path maps in three dimensions, SIAM J.
Comput., 28 (1999), pp. 1182–1197.

[13] J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths in the plane,
SIAM J. Comput., 28 (1999), pp. 2215–2256.

[14] M. Lanthier, A. Maheshwari, and J.-R. Sack, Approximating shortest paths on weighted
polyhedral surfaces, Algorithmica, 30 (2001), pp. 527–562.

[15] L. Ma, Bisectors and Voronoi Diagrams for Convex Distance Functions, Ph.D. thesis,
FernUniversität Hagen, Hagen, Germany, 2000.

[16] J. Mitchell, Geometric shortest paths and network optimization, in Handbook of Computa-
tional Geometry, J.-R. Sack and J. Urrutia, eds., Elsevier, Amsterdam, 2000, pp. 633–701.

[17] J. Mitchell and C. Papadimitriou, The weighted region problem: Finding shortest paths
through a weighted planar subdivision, J. ACM, 38 (1991), pp. 18–73.

[18] J. Reif and Z. Sun, Movement planning in the presence of flows, Algorithmica, 39 (2004), pp.
127–153.

[19] Y. Schreiber and M. Sharir, An optimal-time algorithm for shortest paths on a convex poly-
tope in three dimensions, in Proceedings of the 22nd Annual Symposium on Computational
Geometry, 2006, pp. 30–39.

[20] Z. Sun and J. Reif, On finding approximate optimal paths in weighted regions, J. Algorithms,
58 (2006), pp. 1–32.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

