KINECT FOR XBOX 360
QUICK INTRODUCTION

• Creative Director on Kinect
• 15 years in gaming industry
• < 3 years at Microsoft
“The purpose of Kinect is to make Xbox more accessible to a broader audience”
Key Pillars:

1. Unique to Kinect
2. Approachable
3. Social
4. As fun to watch as it is to play
5. Play any way you want to
6. Redefine Microsoft approach to broadening
Key Features:

1. Avateering
2. Voice Rec and Party Chat
3. Recognizing People and Objects
4. Stuff Works!!!!
TRULY BROADENING!!!!!
DEMOS
Making a natural experience is UN-NATURAL
FINAL THOUGHTS...

MSR is pretty darn AWESOME!!!!
We are all learning about Kinect together.
Love to hear more from people at MSR: Kudot@microsoft.com
Microsoft Research
Faculty Summit 2010

Kinect for Xbox 360
The Innovation Journey

Kudo Tsunoda
Creative Director – Kinect
Microsoft Game Studios

Andrew Fitzgibbon
Principal Researcher
Microsoft Research Cambridge
“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother* Vladimir Kolmogorov† Andrew Blake‡
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Abstract

The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the

free of colour bleeding from the source background. In general, degrees of interactive effort range from editing individual pixels, at the labour-intensive extreme, to merely touching foreground and/or background in a few locations.

1.1 Previous approaches to interactive matting

In the following we describe briefly and compare several state of the art interactive tools for segmentation: Magic Wand, Intelligent Scissors, GrabCut, Local Similarity for Interactive Foreground Matting, Smart Move, IGS for OIl, and EdgeGuided Segmentation.
F#: Functional Programming goes Mainstream
Human body tracking: Method 1 – search

Andrew Blake, Kentaro Toyama,
Probabilistic tracking in a metric space
Best Paper, IEEE International Conference on Computer Vision, 2001

“Search”-based: look up matching exemplar
Human body tracking: Method 2 – regression

\[\theta = f(z) \]

\[f: \mathbb{R}^{100} \rightarrow \mathbb{R}^{27} \]

Image \(z \)

Pose \(\theta \)

Agarwal & Triggs, CVPR ‘04; Urtasun et al., ICCV ‘05
1. Obtain training data \((z_1, \theta_1) \ldots (z_n, \theta_n)\)
2. Training: Fit function $\theta = f(z)$
3. Given new image z^{new}, compute $\theta^{new} = f(z^{new})$
3. Given new image z^{new}, compute $\theta^{new} = f(z^{new})$
3. Or, more usefully, compute $p(\theta_{\text{new}} | z_{\text{new}})$
Can it ever work?

- f is multivalued
- z and θ high dimensional
Multivalued f:

or

or

?
Multivalued f:

$p(\theta^{\text{new}} | z^{\text{new}})$
Instead of this:
We have this:
We have this:
We have this:

\[p(\theta|\text{new}) \]
Joint, not conditional: fit $p(\theta, z)$, not $p(\theta | z)$
Given z^{new}, compute $p(\theta^{new}, z^{new})$
Given z^{new}, compute $p(\theta^{\text{new}}, z^{\text{new}})$
Given z^{new}, compute $p(\theta^{new}, z^{new})$
And filter over time...
And filter over time...

but...
We don’t have this:
We have this:

![Graph showing relationship between Image, z and Pose, θ.]
Of which a not unreasonable model is:
We have too few labelled \((z, \theta)\) pairs
But we have too few labelled \((z, \theta)\) pairs.

But we can easily capture more *unlabelled* images, i.e. \((z,\ast)\) pairs.
We have too few labelled \((z, \theta)\) pairs.

And we can easily obtain more motion capture data i.e. more \((*, \theta)\) pairs.
Marginal statistics

$p(\theta) = \int p(z, \theta) d\theta$

Image marginal, $p(z) = \int p(z, \theta) d\theta$
Marginal statistics which contradict our earlier guess
Requiring consistent marginals gives this:
Research: Human body tracking

- Wide range of motion
- But limited agility
- And not realtime

R Navaratnam, A Fitzgibbon, R Cipolla
The Joint Manifold Model for
Semi-supervised Multi-valued Regression
IEEE Intl Conf on Computer Vision, 2007
“We need a body tracker with
☑ All motions...
☑ All agilities...
☑ 10x Realtime...
☑ For multiple players...
“We need a body tracker with
☑ All motions...
☑ All agilities...
☑ 10x Realtime...
☑ For multiple players...

... but you have got 3D 😊”
Step 1: Collect training data

- Teams visit households across the globe, filming real users
- Hollywood motion capture studio generates billions of CG images
- Researchers and devs think...
Aside: Object Recognition

Aside: Object Recognition

Real-Time Semantic Segmentation

Jamie Shotton
Matthew Johnson
Roberto Cipolla
Step 1: Collect training data

- Teams visit households across the globe, filming real users
- Hollywood motion capture studio generates billions of CG images
- Researchers and devs think... if only I had a hammer.
Training data
1. Classify each pixel’s probability of being each of 32 body parts

2. Determine probabilistic cluster of body configurations consistent with those parts

3. Present the most probable to the user
1. Classify each pixel’s probability of being each of 32 body parts

2. Determine probabilistic cluster of body configurations consistent with those parts

3. Present the most probable to the user
Under the bonnet
Millions of training images -> millions of classifier parameters

- Very far from “embarrassingly parallel”
- New algorithm for distributed decision-tree training
- Major use of DryadLINQ [available for download]

Distributed Data-Parallel Computing Using a High-Level Programming Language
M Isard, Y Yu
International Conference on Management of Data (SIGMOD), July 2009
Conclusions

Machine learning loves hard problems

Games programmers are amazing

Blue skies research can be quickest to market
Infer.NET is a framework for running Bayesian inference in graphical models. You can use it to solve many different kinds of machine learning problems, from standard problems like classification or clustering through to customised solutions to domain-specific problems. Infer.NET has been used in a wide variety of domains including information retrieval, bioinformatics, epidemiology, vision, and many others.

Infer.NET 2.3 beta 4 is now available for download [12th November 2009]. This release is a minor update which includes some bug fixes for beta 3. See the release change history for details. This new release supports recent versions of F# (1.9.7.8 and above).

Please use the forum to provide feedback, to ask questions, and to share the ways in which you are using Infer.NET (or send e-mail to infersup@microsoft.com). Please subscribe to the the announcement forum to receive announcements about new releases etc. If you use Infer.NET as part of your research, please cite Infer.NET as detailed in the FAQ.
Q&A

Some questions can't be answered by Google.
Sun Worship 9 AM.