Cooperative Debugging With One Million of Your Closest Friends

Ben Liblit,
University of Wisconsin–Madison
Software in its Natural Environment

- Users vastly outnumber testers
 - 1 million runs of Microsoft Word per hour
- Real-world executions are most important
 - 1% of software errors cause 50% of user crashes
- Post-deployment bug hunting
 - Collect feedback data & mine for bug causes
 - Empirical and approximate, not exhaustive or absolute
Cooperative Bug Isolation Architecture

Program Source → Sampler → Predicates → Compiler → Shipping Application

Top bugs with likely causes → Statistical Debugging → Counts &
Did you know that `fprintf()` returns a value?
Do you know what the return value means?
Do you remember to check it?
\begin{verbatim}
n = fprintf(...);
if (n < 0) ++count[0];
if (n == 0) ++count[1];
if (n > 0) ++count[2];
\end{verbatim}

- Count how often \(n \) is negative/zero/positive
- Syntax yields instrumentation site
 - Everywhere, even if programmer forgot to check
- Site yields predicates on program behavior
• Directions of branches
• `assert` statements
• Unusual floating point values
• Coverage of modules, functions, basic blocks, ...
• Reference counts: negative, zero, positive, invalid
• More ideas? Toss them all into the mix!
• Observation stream ➔ observation count
 • How *often* is each predicate observed true?
 • Removes time dimension, for good or ill

• Sparsely sampled for performance & privacy
 • Will not discuss this in detail today

• Feedback report is:
 1. Vector of sampled predicate counters
 2. Success/failure outcome label

Summarization and Reporting
Playing the Numbers Game

- Program Source
- Sampler
- Compiler
- Predicates
- Shipping Application
- Top bugs with likely causes
- Statistical Debugging
- Counts & 😊/😊
Example of Diagnostic Output

- 3 bug predictors from 156,476 initial predicates
- Compact visualization of many statistical measures
 - Big red bar ⇒ *strong* predictor of *common* bug!
- Each predicate identifies a distinct crashing bug

<table>
<thead>
<tr>
<th>Initial</th>
<th>Effective</th>
<th>Predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>❌</td>
<td>❌</td>
<td>$i < 0$</td>
</tr>
<tr>
<td>❌</td>
<td>❌</td>
<td>$\text{maxlen} > 1900$</td>
</tr>
<tr>
<td>❌</td>
<td>❌</td>
<td>$o + s > \text{buf_size is TRUE}$</td>
</tr>
</tbody>
</table>
\[p(z_k = i \mid z_{-k}, w, o) \propto \left(\frac{n_{-k,j_k}^i + \beta_{j_k}^i}{n_{-k,*}^i + \sum_{j'}^W \beta_{j'}^i} \right) \left(\frac{n_{-k,i}^{d_k} + \alpha_{i}^{o_k}}{n_{-k,*}^i + \sum_{i'}^{N_u+N_b} \alpha_{i'}^{o_k}} \right) \]

\[p(w, z) = p(w \mid z) p(z) \]

\[p(w \mid z) = \prod_{i}^{N} \int p(\phi_i \mid \beta) \prod_{j}^{W} \phi_{ij}^{n_{ij}^i} d\phi_i \]

\[p(z) = \prod_{d}^{D} \int p(\phi_d \mid \alpha) \prod_{i}^{N} \phi_{di}^{n_{di}^d} d\phi_d \]
\[p(z_k = i \mid z_{-k}, w, o) \propto \left(\frac{n^i_{-k, j_k} + \beta^i_{j_k}}{n^i_{-k,*} + \sum_{j'} \beta^i_{j'}} \right) \left(\frac{n^d_{-k, i} + \alpha^o_{i}}{n^d_{-k,*} + \sum_{i'} \alpha^o_{i'}} \right) \]

\[p(w, z) = p(w \mid z) p(z) \]

\[p(w \mid z) = \prod_i^N \int \prod_j^W p(\phi_i \mid \beta) \phi_{ij}^{n^i_j} d\phi_i \]

\[p(z) = \prod_d^D \int \prod_i^N p(\phi_d \mid \alpha) \phi_{di}^{n^d_i} d\phi_d \]

Delta Latent Dirichlet Allocation (ΔLDA)
Let’s not talk about this right now, OK?

\begin{align*}
 p(z_k = i \mid z_{-k}, w, o) &\propto \left(\frac{n^i_{-k,j_k} + \beta^i_{j_k}}{n^i_{-k,*} + \sum_j^w \beta^i_j} \right) \left(\frac{n^d_{-k,i} + \alpha^{{o}_k}_{i}}{n^i_{-k,*} + \sum_{i', r'}^{N_u+N_b} \alpha^{{o}_k}_{i'}} \right) \\
 p(w, z) &= p(w \mid z) p(z) \\
 p(w \mid z) &= \prod_{i}^{N} \int p(\phi_i \mid \beta) \phi_i^{n^i_{ij}} d\phi_i \\
 p(z) &= \prod_{d}^{D} \int p(\phi_d \mid \alpha) \prod_{i}^{N} \phi_{di}^{n^d_{i}} d\phi_d
\end{align*}
• Novel variant on text-document topic analysis
 • Program runs as "documents"
 • Program behaviors as "words," most of which are correct

• Failing runs draw upon reserved failure "topics"
 • Failure-topic "keywords" point to root causes of failures

Original:

LDA:

ΔLDA:
Limitations of Simple Predicates

• Each predicate partitions runs into 2 sets:
 • Runs where it was true
 • Runs where it was false

• Can accurately predict bugs that match this partition

• Unfortunately, some bugs are more complex
 • Complex border between good & bad
 • Requires richer language of predicates
ptr = junk

*ptr

```
if (o + s > buf_size) return;
...
n->entries[i].data = malloc(s);
```

- Crash on later use of n->entries[i].data
Too many compound pairings, even if inferred offline
 • Quadratic conjunctions & disjunctions of two predicates
 • 20 minutes for ~500 predicates, ~5,000 runs
 • Pruning optimizations needed!

Discard if too far apart in program
 • Limit: 5% of program dependence graph

Compute score upper bound and discard if too low
 • “Too low” = lower than constituent simple predicates
 • Reduces $O(\text{runs})$ to $O(1)$ per complex predicate
Evaluation: Kinds of Top Predicates

Percentage of Variants

- Simple
- Disjunction
- Conjunction

Applications: print_tokens, print_tokens2, replace, schedule, schedule2, tcas, tot_info, Overall

The chart shows the percentage of variants for each application, with the categories Simple, Disjunction, and Conjunction. The overall percentage is indicated by the entire bar.
Evaluation: Effectiveness of Pruning

Analysis time: from ~20 mins down to ~1 min
Putting Predictors in Context

Program Source ➔ Sampler ➔ Predicates ➔ Compiler ➔ Shipping Application

Top bugs with likely causes ➔ Statistical Debugging ➔ Counts & 😛/噌

Counts & J/L
Visual Studio Integration

- Holmes: automated statistical debugging for .NET
 - Free download from Microsoft Research
- Run test suite & analyze results
- Visualize and explore buggy paths
return false;

if (_reader.TokenType == JsonToken.Comment)
 return true;

// first time Read has been called. build model
if (_model == null)
{
 JsonSchemaModelBuilder builder = new JsonSchemaModelBuilder();
 _model = builder.Build(_schema);
}

switch (_reader.TokenType)
{
 case JsonToken.StartObject:
 ProcessValue();
 JsonSchemaModel objectSchema = (ValidateObject(CurrentMemberSchema)
 ? CurrentMemberSchema
 : null;
 Push(new SchemaScope(JTokenType.Object, objectSchema));
 break;
 case JsonToken.StartArray:
 ProcessValue();
 JsonSchemaModel arraySchema = (ValidateArray(CurrentMemberSchema)
 ? CurrentMemberSchema
 : null;
 //Push(new SchemaScope(JTokenType.Array, arraySchema));
 break;
 case JsonToken.StartConstructor:
 Build();
 break;
}

• Vast majority of code is correct
 • One experiment: 0.004% of predicates capture bugs
 • Saps performance, wastes user & developer resources

• Massive, static instrumentation is too blunt
 • Bug hunting with a shotgun

• Can we be bug snipers instead?
 • Highly selective instrumentation, guided by feedback
 • Binary rewriter to steer instrumentation through code
 • Iteratively follow trail of bugs back to root causes
Blocks 2, 3, 4 and 5 dominated by faulty edge
But only 2, 3 immediately dominated
Impact on Selectivity and Performance

- Explore ~ 9% of large programs on average
 - bash, bc, ccrypt, exif, gcc
- Tens to hundreds of adaptation rounds

<table>
<thead>
<tr>
<th>Program</th>
<th>Sparsest Possible Static Sampling</th>
<th>Binary Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>bc</td>
<td>13%</td>
<td>31%</td>
</tr>
<tr>
<td>gcc</td>
<td>66%</td>
<td>629%</td>
</tr>
<tr>
<td>gzip</td>
<td>57%</td>
<td>246%</td>
</tr>
<tr>
<td>Overall</td>
<td>45%</td>
<td>302%</td>
</tr>
</tbody>
</table>
Detect unusual thread interactions:
 - Function reentrance
 - Non-atomic access or update

Deployable overhead via sparse sampling

Rich statistical debugging data source
 - Catch races, atomicity violations, other bugs
 - Statistical methods not fooled by benign races
Lessons Learned

- Can learn a lot from actual executions
 - Users are running buggy code anyway
 - We should capture some of that information

- Great potential in hybrid approaches
 - Dynamic: reality-driven debugging
 - Statistical: best-effort with uncertainty
 - Static: use program analysis to fill in the gaps
• Bug triage that directly reflects reality
 • Learn the most, most quickly, about the bugs that happen most often

• Variability is a benefit rather than a problem
 • Results grow stronger over time

• Find bugs while you sleep!
Join the Cause!

The Cooperative Bug Isolation Project

http://www.cs.wisc.edu/cbi/
Abstract

The resources available for testing and verifying software are always limited, and through sheer numbers an application’s user community will uncover many flaws not caught during development. The Cooperative Bug Isolation Project (CBI) marshals large user communities into a massive distributed debugging army to help programmers find and fix problems that appear after deployment. Dynamic instrumentation based on sparse random sampling provides our raw data; statistical machine learning techniques mine this data for critical bug predictors; static program analysis places bug predictors back in context of the program under study. We discuss CBI’s dynamic, statistical, and static views of post-deployment debugging and show how these different approaches join together to help improve software quality in an imperfect world.
Ben Liblit is an Assistant Professor in the Computer Sciences Department of the University of Wisconsin–Madison. Professor Liblit’s research interests include programming languages and software engineering generally, with particular emphasis on combining machine learning with static and dynamic analysis for program understanding and debugging.

Professor Liblit worked as a professional software engineer for four years before beginning graduate study. His experience has inspired a research style that emphasizes practical, best-effort techniques that cope with the ugly complexities of real-world software development. Professor Liblit completed his Ph.D. in 2004 at UC Berkeley with advisor Alex Aiken, and received the 2005 ACM Doctoral Dissertation Award for his work on post-deployment statistical debugging.