Uncertainty Driven Multi-Scale Optimization

Pushmeet Kohli! Victor Lempitsky? Carsten Rother!

Microsoft Research Cambridge 2 University of Oxford

Abstract. This paper proposes a new multi-scale energy minimization
algorithm which can be used to efficiently solve large scale labelling prob-
lems in computer vision. The basic modus operandi of any multi-scale
method involves the construction of a smaller problem which can be
solved efficiently. The solution of this problem is used to obtain a par-
tial labelling of the original energy function, which in turn allows us to
minimize it by solving its (much smaller) projection. We propose the use
of new techniques for both the construction of the smaller problem, and
the extraction of a partial solution. Experiments on image segmentation
show that our techniques give solutions with low pixel labelling error and
in the same or less amount of computation time, compared to traditional
multi-scale techniques.

1 Introduction

Energy minimization and discrete optimization have become a cornerstone of
computer vision. This has primarily been driven by their ability to efficiently
compute the Maximum a Posteriori (MAP) solutions in models such as Markov
and Conditional random fields (MRFs and CRFs), e.g. [1,3].

In recent years, advances in image acquisition technologies have significantly
increased the size of images and 3D volumes. For instance, the latest commer-
cially available cameras can capture images with almost 20 million pixels. In fact
it is now possible to capture giga-pixel images of complete cities [7]. Similarly,
latest medical imaging systems can acquire 3D volumes with billions of voxels.
This type of data gives rise to large scale optimization problems which are very
computationally expensive to solve and require large amounts of memory.

Multi-scale processing has long been a popular approach to reduce the mem-
ory and computational requirements of optimization algorithms (see [11,4,10] for
a review). The basic structure of these methods is quite simple. In order to label
a large image (or 3D volume) they first solve the problem at low resolution, ob-
taining a coarse labelling of the original high resolution problem. This labelling
is refined by solving another optimization on a small subset of the pixels. A
classic example of such a multi-scale method is the boundary band algorithm [9]
for segmenting large images and 3D volumes. Given a solution on a coarse scale
(fig. 1c), a partial solution (narrow band around segmentation) is extracted (fig.
1d) which is optimized again on high resolution (fig.1b). This algorithm suffers
form the problem that it cannot efficiently recover from large errors present in
the coarse labelling. For instance, if a thin foreground structure is missed in the
coarse labelling, a large band of pixels will need to be analyzed at the fine scale.
This would make the size of the resulting higher resolution problem large and re-
duce the computational benefits. An interesting method to resolve this problem
was proposed by Sinop and Grady [13]. Motivated by the problem of segmenting
thin structured objects they used the information from a Laplacian pyramid to
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isolate pixels which might not have attained their correct labelling at the low
resolution image. Recently, Lempitsky and Boykov [3] presented an interesting
touch-expand algorithm that is able to minimize pseudo-boolean energy func-
tions using a narrow band, while retaining the global optimality guarantees. On
the downside, it has no bounds on the size of the band it may need to consider,
and in the worst case the band can progressively grow to encompass the whole
image. While for highly structured unary terms, concerned with the shape fitting
task considered in [8], the bands are reasonably small, they are highly likely not
to be so for the less structured unary terms in e.g. segmentation problems.

Our Contributions. The goal of this paper is to develop a multi-scale algorithm
which can be used to minimize energy functions with a large number of variables.
To do this, we need to answer the following questions: (1) How to construct the
energy for the small scale problem? (2) After minimizing this energy, how do we
then isolate variables which need to be solved at the finer resolution? As we will
explain later in the paper, the answers to these two important questions are not
independent. We will now provide a brief overview of our strategy. For ease of
explanation, we will use the two-label interactive image segmentation problem
as an example. However, our method is general and can be used for any labelling
problem such as 3D reconstruction, stereo, object segmentation and optical flow.
Constructing the Low Resolution Energy. Ideally, we would want to construct
the energy function in such a manner that its optimal solution, when projected
to the full grid, matches the optimal solution of the original energy as closely
as possible. Recent band-based methods for image segmentation such as [9] and
[13] construct the small scale energy from a low-resolution version of the image
to be segmented. In contrast, our approach constructs the small scale energy
directly from the energy of the full resolution image. Experiments show that
this strategy results in substantial improvements in running time and accuracy.
Uncertainty Driven Bands. The band-based multi-scale segmentation methods
use the MAP solution of the small scale problem to isolate which pixels need to
be solved at the fine scale. They ignore the confidence or uncertainty associated
with the MAP solution. Intuitively, if a variable has low confidence in the MAP
label assignment, the labels for its corresponding variables at the fine grid should
be inferred by minimizing the original energy. Our method computes uncertainty
estimates (fig. le) and uses them to choose which regions (fig. 1f) of the image
should be included in the optimization at the finer level. Experimental results
show that this technique enables us to identify thin structures of the object
which had been misclassified in the solution of the coarse energy.

2 Multi-scale Energy Minimization
Most of the our ideas can be applied to any pairwise MRF and CRF. Since we

use interactive image segmentation as the example application, we introduce the
energy model only for this application. The energy E : L™ — R can be written
as a sum of unary and pairwise functions:

B(x) =Y di(x:)+ Y oij(zi,z5). (1)

i€V (1,7)€€
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Fig.1. Uncertainty driven multi-scale image segmentation. (a) Image with
user marked brush strokes for different segments. (b) Segmentation obtained by min-
imizing a conventional segmentation energy (1) defined over the image grid. (c) Seg-
mentation obtained by minimizing an energy defined over a coarse level gird which is
constructed using our method (see section 3). Observe that many pixels take labels
different from the MAP labels shown in (b). To correct such errors we need to mark
such pixels as unlabelled, and find their labels at the fine scale. (d) Partial segmenta-
tion obtained by marking pixels in the band around the segmentation boundary of (c)
as unlabelled (marked gray). The size of the band is chosen to include all incorrectly
labelled pixels. (¢) Min-marginal based confidence values for pixels taking the MAP
label (bright pixels are more confident) — see section 4 for more details. (f) Partial
labelling obtained by marking pixels below a confidence score as unlabelled. As for
(d) the confidence threshold is chosen to include all incorrect pixels. For this example,
with the uncertainty based scheme 3 times less number of pixels need to be marked as
unlabelled compared to the number marked with the boundary band. As less number
of variable need to be solved at the fine resolution, we get a larger speed-up.

The set V corresponds to the set of all image pixels, £ is set of all edges between
pixels in a 4 or 8 neighborhood. The random variable X; denotes the labelling of
pixel i of the image. The label set £ consists of two labels: foreground (fg) and
background (bg). Every possible assignment of the random variables x defines
a segmentation. The unary potential is given as ¢(z; = S) = —log Pr(l;|z; =
S) where S € {fg,bg}, and initialized using a standard GMM model [12]. The
pairwise terms ¢;; of the CRF take the form of a contrast sensitive Ising model, i.e.
o(zi,zj) = g(i, §)[x; # x;], where [arg] is 1 if “arg” is true and 0 otherwise. The
function ¢(, j) is an edge feature based on the difference in colors of neighboring
pixels [1]. It is typically defined as:

9(i, j) = 0y + 8, exp(=p[|1; — L|[*), (2)
where I; and I; are the colour vectors of pixel ¢ and j respectively. The energy

(1) is submodular, hence the global optimum can be computed efficiently with
min-cut/maxflow, also known as graph cut, [1].



4 Pushmeet Kohli! Victor Lempitsky? Carsten Rother®

We now provide an overview of multi-scale methods for energy minimization.
These algorithms have the following basic steps:
Construction the smaller problem. A new energy function E' : £ — R
is constructed over a smaller grid (V!, &) where V! denotes the set of lattice
points, and &' denotes the corresponding edge set. This grid has |V!| = nw;
variables (original energy E had n variables), where w; is the scaling parameter
(0 < wg <1). Let X! ={X!},i € V'} denote the vector of variables defined on V'.
We will denote their labelling by x' = {a}, 2}, ..., 2!, }.
Computation of a partial labelling. The coarse energy E'! is minimized to
extract a partial labelling x* for the original random variables X. Formally,
each variable X is assigned one label from the extended label set £ U {e}. The
assignment =} = € indicates that variable X; has not been assigned any label.
Solving the Partial Labelling induced Projection. The final solution of the
original problem is obtained by minimizing a projection of the original energy
function E. This energy projection E’ : L™ — R is constructed from E(-) by
fixing the values of the labelled variables as: E'(x) = E(x,) where n. is the
number of unlabelled variables i.e. those assigned label e.

2.1 Partial Labelling Quality

We will now discuss the question of what is a good partial labelling? If all variables
in the partial solution x* are labelled, then the projection E’ of the energy
will take no variables as argument (a constant function) and would be trivially
minimized. On the other hand, if all variables are unlabelled, the projection
of the energy will be the same as the original energy (E’ = F) and we would
not obtain any speed-up. While constructing the partial labelling x*, we also
want to make sure that all labelled variable are assigned the MAP label i.e.
xf#e=>x = x?pt. This will ensure that min E’(x) = min E(x).

We will measure the quality of a partial labelling using two measures: (1)
Percentage of unlabelled variables (P,) (lower the better), and (2) Percentage
of correct label assignments (P,). Formally, these are defined as:

1003, yla? = 2P

i

Dievlrl A7

P, = % Z[zf #¢|, and P. =

i€V

where [arg] is as defined above.

Computation Complexity. Let us denote the complexity of the algorithm we
are using to minimize the original energy E by O(7 (n)), where 7T (n) is any
function of n. For instance, the complexity of max-flow based algorithms for
minimizing submodular functions of the form (1) is O(n?), so T(n) = n3. The
computation time for the multi-scale algorithm can be divided into two parts.
(1) The time taken for computing the partial solution by minimizing the coarse
energy E'. More specifically, 7 (nw) for minimizing the energy over nw variables
and a linear term (n) for extracting the partial solution, thus resulting in the
complexity O(T (nw) +n). (2) Time taken for minimizing the projection of the
energy which is O(7(P,)). The final complexity is: O(T (nw) +n + T (FPy)).
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Fig. 2. Constructing the coarse energy. The figure shows the results of using

different methods for constructing the coarse energy function. (a) The original image
with user marked brush strokes for the different segments (here ws = 0.04; 0, = 5). (b)
The solution I obtained by constructing the energy using a low resolution version of the
original image. (c) Solution I¢ of the energy with the scale-corrected parameter values
for the pairwise potentials. (d) Solution E obtained by using the energy constructed
from the original energy. (e) Solution E€ obtained by using the pairwise potential
definition in eqn. (4). (f) The solution obtained by minimizing the energy function (1)
defined over the full-resolution image grid.

3 Constructing the Low Resolution Problem

We now explain how a smaller energy minimization problem over the coarse grid
V! is constructed from the original large scale problem, defined over V.

There is a many-one mapping between points in V and V!. We denote the set
of indices of nodes in ¥ which map to the node i € V! by V(i) which we will call
the child set of i. We also define the function & : V — V! which given a node 7 in
the original grid, returns the index of its parent node in the reduced grid V. For
image labelling problems, the traditional approach is to map a square 65 x 6,
grid of nodes in V to a single node in the small scale grid V!, where 62 = wi We
also use this, however, we can extend to other mappings using e.g. super—psixels.

The energy E' defined over V' has the same form as the original energy

(1), with new unary ¢} and pairwise ¢}; potentials, as defined next.
Scale Dependent Parameter Selection. Traditional band-based multi-scale
methods for image segmentation (e.g. [9,13]) define the energy potentials using a
low-resolution version Z! of the original image Z. These methods typically over-
look the fact the energy should be adjusted and simple use the original energy,
i.e. oL = ¢; and pairwise qﬁﬁj = ¢;;. Figure 2b shows a result, and we refer to the
solution with the symbol I'.

Using the work of Boykov and Kolmogorov [2] it is clear that the strength
of the pairwise potentials has to be adjusted when changing resolution. This is
due to the fact that the length of the segmentation boundary, in pixel terms, is

! It indicates that the coarse scale energy was constructed from the low-res image.



6 Pushmeet Kohli' Victor Lempitsky? Carsten Rother!

reduced when we move from the original image Z to the low-resolution image Z'.
This reduction is inversely proportional to 6, = %S Thus, we need to reduce
the strength of the pairwise potentials by the same amount, hence the terms in
eqn. (2) are chosen as {02,6‘5},%} = {/Wsbp, \/wsb,,05}>. Figure 2¢ shows an
example, which we denote by the symbol I°.

Construction from the Original Energy. A simple method to compute the
unary potential for a variable X! is to sum the unary potentials of all the variables
in its child set V(7). Similarly, the pairwise potential for an edge (u,v) € &' is
computed by summing the pairwise potentials defined between their children.
The segmentation result is shown in fig. 2(d), and denoted solution E

At first glance this strategy seems reasonable, however, it ignores the defini-
tion of the pairwise potentials defined on variables X; and X; (7,5 € V) which
have the same parent i.e. k(i) = k(j). In fact, it can be verified that this approx-
imation is correct only if we assume that Ising model pairwise potentials with
infinite cost are defined over every pair of variables X; and X; (¢,j € V) which
share the same parent.

This situation can be more easily understood by considering the maxflow
problem corresponding to the original energy minimization problem. As an ex-
ample, consider a multi-scale decomposition where variables in a 2 x 2 square
on the original grid share the same parent. The pairwise potential definition
would translate into a capacity in the max-flow graph that would allow flow
coming into any child node to pass through to any other child node and flow
out from it. Obviously, this is a very bad assumption since in reality the child
nodes in the graph corresponding to the original energy may be disconnected
from each other®. This added phantom capacity would make the pairwise po-
tentials very strong and result in over-smooth segmentations (as seen in fig. 2d).
We resolve the problem of excess flow capacity by computing a lower bound on
the flow that can be passed between child nodes constituting any two sides of
the child-set square of a coarse variable X! (i € V!). This capacity is used as the
upper bound on the capacity of the edges which connect a particular parent node
to other parent nodes. We estimate the lower bound by finding the minimum
capacity edge in the child set.

Coming back to the energy formulation, instead of eqn. (2) we use

9e(i,4) = R(ij) _ min 6+ 0y exp(~0p||Lu — L||*), (4)
kefi,j},(u,v)e€
weV(k),veV
where R(4,j) is the number of edges between child-sets of the two coarse level
variables X; and X; (i,j € V'), i.e. R(3,5) = > (uw)eguev(i)vev(y) 1- A result
is shown in fig. 2e, marked with the symbol E°.

4 Computing Partial Labellings
Conventional multi-scale methods use the lowest cost solution x* of the coarse
energy E'! for defining the partial labelling. For instance, the method proposed

2 Note that the parameter values depend on the topology of the graph, and this
equation would be different for the 3D voxel segmentation problem.
3 This is true if the Ising model penalty for taking different labels is zero.
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Fig. 3. Computiﬁhg the partial lag)elling. The ﬁguréﬂshows the results of
using different techniques for computing the partial labelling. For this experi-
ment, we used the image shown in figure (2a). We constructed an energy on a
coarse level grid with scaling parameter ws, = 0.04 (s = 5) using the method
explained in sec. 3, with the result in fig. (2e). Images (a), (b) and (c) depict
the response of a boundary distance function, confidence score p(-), and hybrid
score H(-) respectively. These functions were used to obtain the partial solutions
shown in images (d), (e) and (f) is the same order. The thresholds for marking
pixels as unlabelled was chosen to ensure all marked pixels took the MAP label of
the original energy. It can be seen that the hybrid approach requires less number
of unlabelled pixels compared to the confidence function which in turn requires
less pixels compared to the boundary band approach.

in [9] first defined a full labelling of the original variables x© as: z¢ = xéﬂ*(i), where
recall k(i) returns the parent of any variable X;,i € V. From the solution x¢, a
new set Pp(0p) is derived, which comprise of pixels that are a maximum distance
g away from the boundary. The original problem is then solved only for pixels
in Pg(dp). This band has to be large enough, so that no thin structures are lost,
example in fig. 1d. This band-based approach for extracting partial labellings
does not take into account the confidence or uncertainty associated with the
label assignment for any variable z!, i € V!, which we will do next.
Partial Labelling from Min-marginals. Given an energy function, the min-
marginal encodes the confidence associated with a variable being assigned the
MAP label. More concretely, the min-marginal 1);., returns the energy value ob-
tained by fixing the value of variable X; to label a (x; = a) and minimizing
over all remaining variables. Formally, ;.. = ming z,—=, F(x). Min-marginals
naturally encode the uncertainty of a labelling and have been successfully used
for solving a number of vision and learning problems, e.g. [5]. The exact min-
marginals associated with graph cut solutions can be efficiently computed using
dynamic graph cuts in roughly 3-4 times the time taken for minimizing the
energy itself [0].

We use the absolute difference between the min-marginals corresponding to
the fg and bg labels as our confidence score function p : ¥V — R. Formally,
p(3) = |9i g — Visngl|- If the difference between min-marginals of any variable
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Fig. 4. Results of different multi-scale energy constructions. The graphs show how the
accuracy P, of a partial solution changes as we increase the percentage of unlabelled
variables (P,). Graphs (a) and (b) show the results of using the band based approach
on the solutions generated from different energy construction methods. Key: Is :
result of energy constructed from the low resolution image, If : same energy with scale
dependent parameters, Eg : smaller problem constructed from the original energy,
Eg : smaller problem constructed using the lower bound on pairwise potentials.

X, corresponding to taking the MAP label and any other label is large, then the
variable is assigned a high confidence score. The set of variables assigned the label
€ in the partial solution is now computed by finding the set of nodes Py () whose
confidence scores are less than some constant J, i.e. 2 =€, Vi € V, u(i) < 4,.
Formally, the set is defined as Pas(6,) = { i : ¢ € V,u(i) < 6,}. Similar to the
boundary band-width parameter dg, the value of the confidence threshold d,
can be used to the change the number of unlabelled variables (see fig. 3e).
Although, the min-marginals based confidence function is able to obtain good
partial labellings, we observed that it sometimes selects variables which are spa-
tially distant from the main foreground segment. This motivated us to test a new
hybrid measure which combines the boundary and uncertainty based techniques
described above. We construct the new function H : ¥V — R which is defined
as:H (i) = p(i)D(i), where D is the boundary distance function. As before, the
set of variables assigned the label € is now computed by finding the set of nodes
Pu(d) ={i:i€ V,H(i) < dng}. Formally, the partial solution is defined as:
xf =€,V € V,H(i) < 0p. (see fig. 3f)
5 Experiments
Relating Speed with Accuracy. The speed and accuracy of a multi-scale
method are inversely proportional to each other. The correctness of the par-
tial labellings can be easily changed by changing the threshold parameters dg,
du, and & .* The key matter we want to investigate is, how the percentage of
variables (P, ) unlabelled in the partial solutions produced by the different multi-
scale minimization techniques affect correctness P, of the solution. We divide our
experiments into two parts to investigate how the performance is affected by the
use of different: (1) Methods for constructing the smaller energy minimization
* For instance, setting 65 = /12, + I,nght will make sure that all variables in the
partial solution are unlabelled. Here Iiqtn and Ineign: are the width and height of
the image I to be segmented respectively.
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Fig. 5. Computation time and accuracy of different multi-scale methods. Graph (a)
shows how the accuracies P. of partial solutions extracted using different methods
change as we increase the percentage of unlabelled variables (P,). It depicts the results
of using different partial solution extraction methods. They key is the same as the one
used in graph 4. Subscripts B, M and H denote that the partial solutions were extracted
using boundary distance, min-marginal based uncertainty, and the hybrid uncertainty
boundary bands respectively. Graph (b) shows the fraction of computation required to
achieve a particular pixel labelling accuracy in the final segmentation solution.

problem (section 3), (2) Methods for extracting the partial labelling from the
smaller energy (section 4).

Comparing Energy Construction Methods. We compared the quality of
partial labellings generated from different coarse energy constructions using the
boundary band method. The results for the images shown in fig. 1(a) and 2(a)
are shown in graphs in fig. 4(a) and (b). It can be seen from the results that using
scale dependent parameters is better than the traditional approach. Further, the
method for constructing coarse energy directly from the original energy function
outperforms other methods. It is able to achieve a correctness of P, = 99.5%
with less than 10% of unlabelled variables.

Comparing Methods for Partial Solution Extraction. The relative perfor-
mance of different techniques for extracting the partial solution is now analyzed.
Consider the problem of segmenting the image in fig. 2(a). Figure 3 shows the
different partial labellings extracted from the coarse energy. The size of the sets
Ps, Pu, and Py was chosen to ensure that the partial labelling were fully cor-
rect (P, = 100%), i.e. this gives the optimal solution of the original problem.
The percentage of unlabelled variables required for the boundary band, uncer-
tainty, and hybrid approaches were 35.29%, 17.36%, and 9.03% respectively. The
results on the image shown in fig. 1(a) are shown in fig. 5(a). Due to space, we
only show the better performing methods for constructing the energy, i.e. I¢ and
E€. It can be seen that the hybrid partial labelling technique results in a much
smaller problem to be solved while still obtaining the exact global minimum.
Relating Computational Speedup and Accuracy. We now discuss the
speed-up obtained by our multi-scale methods. As explained in section 2, the
total computation time T of a multi-scale method has two primary components:
time for partial solution computation ¢s, and that for solving the resulting pro-
jection (t,). The size of the projection (and thus ¢,) is dependent on the level of
accuracy required by the user, while ¢, is independent.
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For the boundary band method, ¢ is equal to the time needed to minimize
the coarse energy. For the min-marginal based confidence and hybrid extraction
methods, ¢, is the time needed to find the min-marginals, which is a much more
expensive operation. For instance, for the image shown in figure 1(a), it takes
only 1 msec to minimize the coarse energy, while it takes 10 msec to compute all
the min-marginals. However, for any given solution accuracy, the min-marginal
based methods produce a smaller partial solution compared to the boundary
band method. For high levels of accuracy, the size of the projection is large and
thus t, is the dominant time. Thus, min-marginals based methods are able to
out-perform band based methods. However, for low levels of accuracy, the size
of the projection is very small, which makes t; to dominate. In such cases, the
boundary band based approach outperforms the min-marginals based approach.
The performance of all the methods can be seen in the graph shown in fig. 5(b).
6 Discussion and Conclusions
In this paper, we presented a uncertainty driven approach for multi-scale energy
minimization. We showed that this strategy allows us to compute solutions close
to the globally optimal in a fraction of the time required by a conventional
energy minimization algorithm. The method proposed in this paper is general
and can be applied to any labelling problem. In future work we would like to
investigate how general energies defined over variables with large label sets can
be minimized in a multi-scale fashion.
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