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Abstract. Mining temporal network models from discrete event streams is an impor-
tant problem with applications in computational neuroscience, physical plant diagnos-
tics, and human-computer interaction modeling. In this paper we introduce the notion
of excitatory networks which are essentially temporal models where all connections are
stimulative, rather than inhibitive. The emphasis on excitatory connections facilitates
learning of network models by creating bridges to frequent episode mining. Specifically,
we show that frequent episodes help identify nodes with high mutual information re-
lationships and that such relationships can be summarized into a dynamic Bayesian
network (DBN). This leads to an algorithm that is significantly faster than state-of-the-
art methods for inferring DBNs, while simultaneously providing theoretical guarantees
on network optimality. We demonstrate the advantages of our approach through an
application in neuroscience, where we show how strong excitatory networks can be ef-
ficiently inferred from both mathematical models of spiking neurons and several real
neuroscience datasets.

Keywords: Frequent episodes; dynamic Bayesian networks; computational neuroscience;
spike train analysis; temporal data mining.

1. Introduction

Discrete event streams are prevalent in many applications, such as neuronal
spike train analysis, physical plants, and human-computer interaction modeling.
In all these domains, we are given occurrences of events of interest over a time
course and the goal is to identify trends and behaviors that serve discriminatory
or descriptive purposes. A Multi-Electrode Array (MEA) records spiking action
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Fig. 1. Event streams in neuroscience: A multi-electrode array (MEA; left) pro-
duces a spiking event stream of action potentials (middle top). Mining repeating
firings cascades (middle bottom) in the event stream helps uncover excitatory
circuits (right) in the data.

potentials from an ensemble of neurons which after various pre-processing steps,
yields a spike train dataset providing real-time and dynamic perspectives into
brain function (see Fig. 1). Identifying sequences (e.g., cascades) of firing neurons,
determining their characteristic delays, and reconstructing the functional con-
nectivity of neuronal circuits are key problems of interest. This provides critical
insights into the cellular activity recorded in the neuronal tissue. Similar motiva-
tions arise in other domains as well. In physical plants the discrete event stream
denotes diagnostic and prognostic codes from stations in an assembly line and
the goal is to uncover temporal connections between codes emitted from differ-
ent stations. In human-computer interaction modeling, the event stream denotes
actions taken by users over a period of time and the goal is to capture aspects
such as user intent and interaction strategy by understanding causative chains
of connections between actions.

Beyond uncovering structural patterns from discrete events, we seek to go
further, and actually uncover a generative temporal process model for the data.
In particular, our aim is to infer dynamic Bayesian networks (DBNs) which
encode conditional independencies as well as temporal influences and which are
also interpretable patterns in their own right. We focus exclusively on excitatory
networks where the connections are stimulative rather than inhibitory in nature
(e.g., ‘event A stimulates the occurrence of event B 5ms later which goes on to
stimulate event C 3ms beyond.’) This constitutes a large class of networks with
relevance in multiple domains, including neuroscience.

Probabilistic modeling of temporal data is a thriving area of research. The de-
velopment of dynamic Bayesian networks as a subsuming formulation to HMMs,
Kalman filters, and other such dynamical models has promoted a succession of
research aimed at capturing probabilistic dynamical behavior in complex sys-
tems. DBNs bring to modeling temporal data the key advantage that traditional
Bayesian networks brought to modeling static data, i.e., the ability to use graph
theory to capture probabilistic notions of independence and conditional indepen-
dence. They are now widely used in bioinformatics, neuroscience, and linguistics
applications.

A contrasting line of research in modeling and mining temporal data is
the counting based literature in the KDD community (Mannila, Toivonen and
Verkamo, 1997; Laxman, Sastry and Unnikrishnan, 2005; Papapetrou et al.,
2009). Similar to frequent itemsets, the notion of frequent episodes is the object
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of interest here. Identifying frequency measures that support efficient counting
procedures (just as support does for itemsets) has been shown to be crucial.

It is natural to question whether these two threads, with divergent origins, can
be related to one another. Many researchers have explored this question. Pavlov,
et. al used frequent itemsets to place constraints on the joint distribution of item
random variables and thus aid in inference and query approximation (Pavlov,
Mannila and Smyth, 2003). In (Wang and Parthasarathy, 2006) probabilistic
models are viewed as summarized representations of databases and demonstrate
how to construct MRF (Markov random field) models from frequent itemsets.
Closer to the topic of this paper, (Laxman et al., 2005) linked frequent episodes to
learning Hidden Markov Models for the underlying data. Similar in scope to the
above works, we present a unification of the goals of dynamic Bayesian network
inference with that of frequent episode mining. Our motivations are not merely
to establish theoretical results but also to inform the computational complexity
of algorithms and spur faster algorithms targeted for specific domains.

Our main contributions are three-fold:

1. New model class of excitatory networks: Learning Bayesian networks
(dynamic or not) is a hard problem and to obtain theoretical guarantees we
typically have to place restrictions on network structure, e.g., assume the BN
has a tree structure as done in the Chow-Liu algorithm. Here, we place re-
strictions on the form of the conditional probability tables (CPT) instead of
network structure; this leads to a tractable class of DBNs for inference, referred
to here as Excitatory Dynamic Networks (EDNs).

2. New methods for learning DBNs: We demonstrate that optimal EDNs
can be learnt by creating bridges to frequent episode mining literature. In
particular, the focus on EDNs allows us to relate frequent episodes to parent
sets for nodes with high mutual information. This enables us to predominantly
apply fast algorithms for episode mining, while relating them to probabilistic
notions suitable for characterizing DBNs.

3. New applications to spike train analysis: We demonstrate a successful
application of our methodologies to analyzing neuronal spike train data, both
from mathematical models of spiking neurons and from real cortical tissue.

The paper is organized as follows. Sec. 2 gives a brief overview of DBNs.
Sec. 3 develops the formalism for learning optimal DBNs from event streams.
Sec. 4 defines excitatory networks and presents the theoretical basis for effi-
ciently learning such networks. Sec. 5 introduces fixed-delay episodes and relates
frequencies of such episodes with marginal probabilities of a DBN. Our learning
algorithm is presented in Sec. 6, experimental results in Sec. 7 and conclusions
in Sec. 8.

2. Bayesian Networks: Static and Dynamic

Formal mathematical notions are presented in the next section, but here we wish
to provide some background context to past research in Bayesian networks (BNs).
As is well known, BNs use directed acyclic graphs to encode probabilistic notions
of conditional independence, such as that a node is conditionally independent of
its non-descendants given its parents (for more details, see (Jordan, 1998)). The
joint pdf encoded by a BN can be succinctly written in product form, one term
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for each node in the network, where the term denotes the conditional probability
of the node given its parents.

The earliest known work for learning BNs is the Chow-Liu algorithm (Chow
and Liu, 1968). It showed that, if we restricted the structure of the BN to a
tree, then the optimal BN can be computed using a maximum spanning tree
algorithm. In particular, the optimal BN is the tree that maximizes the sum of
mutual information quantities between pairs of nodes. The Chow-Liu algorithm is
noteworthy because it established a class of networks (trees) for which inference
is tractable. More recent work, by Williamson (Williamson, 2000), generalizes
the Chow-Liu algorithm to show how (discrete) distributions can be approxi-
mated using the same general ingredients as the Chow-Liu approach, namely
mutual information quantities between random variables. Meila (Meila, 1999)
presents an accelerated algorithm that is targeted toward sparse datasets of high
dimensionality.

More generally, however, BN learning must be approximate and we must set-
tle for lack of optimality guarantees. Most methods provide good search heuris-
tics (Wang and Yang, 2009). There are two broad classes of algorithms for learn-
ing BNs: score-based and constraint-based. Score-based algorithms aim to search
in the space of networks guided by a score function. Friedman’s sparse candi-
date approach (Friedman, Murphy and Russell, 1998) refers to a general class of
algorithms for approximate learning of BNs. The approach is iterative: in each
iteration, a set of candidate parents are discovered for each node, and from these
parents, a network maximizing the score function is discovered. Conditioned on
this network, the algorithm then aims to add further nodes that will improve on
the score. The approach terminates when no more nodes can be added or when a
pre-determined number of iterations are met. One instantiation of this approach
uses the BIC (Bayesian Information Criterion) as the score function. The simu-
lated annealing approach from (Eldawlatly, Zhou, Jin and Oweiss, 2010) begins
with an empty network and aims to add edges that can improve the score. With
some small probability, edges that decrease the score are added as well. An un-
derlying cooling schedule controls the annealing parameters. Constraint-based
algorithms such as GSMN (Bromberg, Margaritis and Honavar, 2009) on the
other hand first aim to identify conditional independence relationships across all
the variables and then aim to fit the discovered relationships into a network,
much like fitting a jigsaw puzzle.

As a class of networks, DBNs are a relatively newer development although
specific forms of DBNs (e.g., HMMs) have a long and checkered history. Most
examples of DBNs can be found in specific state space and dynamic modeling
contexts (Wang, Zhang, Shen and Shi, 2008). In contrast to their static coun-
terparts, exact and efficient inference for general classes of DBNs has not been
studied well. While many of the above algorithms for BNs can be adapted toward
DBNs, our aim is to go further and exploit the specific modeling contexts that
DBNs were designed for.

3. Learning Optimal DBNs

Consider a finite alphabet, E = {A1, . . . , AM}, of event-types (or symbols). Let
s = 〈(E1, τ1), (E2, τ2), . . . , (En, τn)〉 denote a data stream of n events over E .
Each Ei, i = 1, . . . , n, is a symbol from E . Each τi, i = 1, . . . , n, takes values from
the set of positive integers. The events in s are ordered according to their times of
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occurrence, τi+1 ≥ τi, i = 1, . . . , (n− 1). The time of occurrence of the last event
in s, is denoted by τn = T . We model the data stream, s, as a realization of a
discrete-time random process X(t), t = 1, . . . , T ; X(t) = [X1(t)X2(t) · · ·XM (t)]′,
where Xj(t) is an indicator variable for the occurrence of event type, Aj ∈ E ,
at time t. Thus, for j = 1, . . . ,M and t = 1, . . . , T , we will have Xj(t) = 1 if
(Aj , t) ∈ s, and Xj(t) = 0 otherwise. Each Xj(t) is referred to as the event-
indicator for event-type, Aj , at time t.

Example 1. The following is an example event sequence of n = 7 events over
an alphabet, E = {A,B,C, . . . , Z}, of M = 26 event-types:

〈(A, 2), (B, 3), (D, 3), (B, 5), (C, 9), (A, 10), (D, 12)〉 (1)

The maximum time tick is given by T = 12. Each X(t), t = 1, . . . , 12, is a vector
of M = 26 indicators. Since there are no events at time t = 0 in the example
sequence (1), we have X(1) = 0. At time t = 2, we will have X(2) = [1000 · · · 0]′.
Similarly, X(3) = [01010 · · · 0]′, and so on.

A DBN (Murphy, 2002) is a DAG with nodes representing time-indexed ran-
dom variables and arcs representing conditional dependency relationships. We
model the random process X(t) (or equivalently, the event stream s), as the
output of a DBN. Each event-indicator, Xj(t), t = 1, . . . , T and j = 1, . . .M ,
corresponds to a node in the network, and is assigned a set of parents, which
is denoted as πj(t). A parent-child relationship is represented by an arc (from
parent to child) in the DAG. In a DBN, nodes are conditionally independent of
their non-descendants given their parents. The joint probability distribution of
X(t) under the DBN model, can be factorized as a product of P [Xj(t) |πj(t)] for
various j, t. In this paper we restrict the class of DBNs using the following two
constraints:

A1 [Time-bounded causality] For user-defined parameter, W > 0, the set, πj(t),
of parents for the node, Xj(t), is a subset of event-indicators out of the W -
length history at time-tick, t, i.e. πj(t) ⊆ {Xk(τ) : 1 ≤ k ≤ M, (t −W ) ≤
τ < t}.

A2 [Translation invariance] If πj(t) = {Xj1(t1), . . . , Xj`(t`)} is an `-size parent
set of Xj(t) for some t > W , then for any other Xj(t

′), t′ > W , its parent
set, πj(t

′), is simply a time-shifted version of πj(t), and is given by πj(t
′) =

{Xj1(t1 + δ), . . . , Xj`(t` + δ)}, where δ = (t′ − t).
While A1 limits the range-of-influence of a random variable, Xk(τ), to variables
within W time-ticks of τ , A2 is a structural constraint that allows parent-child
relationships to depend only on relative (rather than absolute) time-stamps of
random variables. Further, we also assume that the underlying data generation
model is stationary, so that joint-statistics can be estimated using frequency
counts of suitably defined temporal patterns in the data.

A3 [Stationarity] For every set of ` event-indicators,Xj1(t1), . . . , Xj`(t`), and for
every time-shift δ (either positive or negative) we have P [Xj1(t1), . . . , Xj`(t`)]
= P [Xj1(t1 + δ), . . . , Xj`(t` + δ)].

The joint probability distribution, Q[·], under the Dynamic Bayesian Network
model can be written as:

Q[X(1), . . . ,X(T )] = P [X(1), . . . ,X(W )]×
T∏

t=W+1

M∏
j=1

P [Xj(t) | πj(t))] (2)
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Learning network structure involves learning the map, πj(t), for each Xj(t),
j = 1, . . . ,M and t > W . Let I[Xj(t) ; πj(t)] denote the mutual information
between Xj(t) and its parents, πj(t). DBN structure learning can be posed as
a problem of approximating the data distribution, P [·], by a DBN distribution,
Q[·]. Let DKL(P ||Q) denote the KL divergence between P [·] and Q[·]. Using
A1, A2 and A3 we now show that for parent sets with sufficiently high mutual
information to Xj(t), DKL(P ||Q) will be concomitantly lower.

The Kullback-Leibler divergence between the underlying joint distribution,
P [·], of the stochastic process, and the joint distribution, Q[·], under the DBN
model is given by

DKL(P ||Q) =
∑
A

(
P [X(1), . . . ,X(T )]× log

P [X(1), . . . ,X(T )]

Q[X(1), . . . ,X(T )]

)
(3)

where A represents the set of all possible assignments for the T M -length random
vectors, {X(1), . . . ,X(T )}. Denoting the entropy of P [X(1), . . . ,X(T )] by H(P ),
the entropy of the marginal, P [X(1), . . . ,X(W )], by H(PW ), and substituting
for Q[·] from Eq. (2), we get

DKL(P ||Q) =−H(P )−H(PW )

−
∑
A

(
P [X(1), . . . ,X(T )]×

M∑
j=1

T∑
t=W+1

logP [Xj(t) | πj(t)]
)

(4)

We now expand the conditional probabilities in Eq. (4) using Bayes rule, switch
the order of summation and marginalize P [·] for each j, t. Denoting, for each
j, t, the entropy of the marginal P [Xj(t)] by H(Pj,t), the expression for KL
divergence now becomes:

DKL(P ||Q) =−H(P )−H(PW )

−
M∑
j=1

T∑
t=W+1

H(Pj,t)−
M∑
j=1

T∑
t=W+1

I[Xj(t) ; πj(t)] (5)

I[Xj(t) ; πj(t)] denotes the mutual information between Xj(t) and its parents,
πj(t), and is given by

I[Xj(t) ; πj(t)] =
∑
Aj,t

(
P [Xj(t), πj(t)]× log

P [Xj(t), πj(t)]

P [Xj(t)] P [πj(t)]

)
(6)

where Aj,t represents the set of all possible assignments for the random vari-
ables, {Xj(t), πj(t)}. Under the translation invariance constraint, A2, and the
stationarity assumption, A3, we have I[Xj(t) ; πj(t)] = I[Xj(t

′) ; πj(t
′)] for all

t > W , t′ > W . This gives us the following final expression for DKL(P ||Q):

DKL(P ||Q) =−H(P )−H(PW )

−
M∑
j=1

T∑
t=W+1

H(Pj,t)− (T −W )

M∑
j=1

I[Xj(t) ; πj(t)] (7)

where t is any time-tick satisfying (W < t ≤ T ). We note that in Eq. (7), the
entropies, H(P ), H(PW ) and H(Pj,t) are independent of the DBN structure
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(i.e. they do not depend on the πj(t) maps). Since (T − W ) > 0 and since
I[Xj(t) ; πj(t)] ≥ 0 always, the KL divergence, DKL(P ||Q), is minimized when
the sum of M mutual information terms in Eq. (7) is maximized. Further, from
A1 we know that all parent nodes of Xj(t) have time-stamps strictly less than t,
and hence, no choice of πj(t), j = 1, . . . ,M can result in a cycle in the network
(in which case, the structure will not be a DAG, and in-turn, it will not represent
a valid DBN). This ensures that, under the restriction of A1, the optimal DBN
structure (namely, one that corresponds to a Q[·] that minimizes KL divergence
with respect to the true joint probability distribution, P [·], for the data) can
be obtained by independently picking the highest mutual information parents,
πj(t), for each Xj(t) for j = 1, . . . ,M (and, because of A2 and A3, we need
to carry-out this parents’ selection step only for the M nodes in any one time
slice, t, that satisfies (W < t ≤ T )). Moreover, from Eq. (7) it is clear that if
we had a lower-bound ϑ on the mutual information terms, I[Xj(t) ; πj(t)], it
would imply an upper-bound ∆ϑ on the KL divergence DKL(P ||Q) between P [·]
and Q[·]. In other words, a good DBN-based approximation of the underlying
stochastics (i.e. one with small KL divergence) can be achieved by picking, for
each node, a parent-set whose corresponding mutual information exceeds a user-
defined threshold.

Remark 3.1. Consider a sequence X(t) : t = 1, . . . , T , of time-evolving indica-
tors for an event stream s over an alphabet of size M . Under assumptions A1 and
A2, the optimal DBN (one that minimizes KL divergence with the true data dis-
tribution) can be obtained by independently picking for each Xj(t), 1 ≤ j ≤M
(and for some fixed t > W ) a parent set πj(t) which maximizes mutual informa-
tion I[Xj(t); πj(t)]. Moreover, picking πj(t) such that I[Xj(t); πj(t)] > ϑ implies
a corresponding upper-bound ∆ϑ on the KL divergence between the DBN and
the true data distribution.

However, picking such sets with high mutual information (while yields a good
approximation) falls short of unearthing useful dependencies among the random
variables. This is because mutual information is non-decreasing as more random
variables are added to a parent-set (leading to a fully-connected network always
being optimal). For a parent-set to be interesting, it should not only exhibit suffi-
cient correlation (or mutual information) with the corresponding child-node, but
should also successfully encode the conditional independencies among random
variables in the system. This can be done by checking if, conditioned on a can-
didate parent-set, the mutual information between the corresponding child-node
and all its non-descendants is always close to zero. (We provide more details later
in Sec. 6.3).

4. Excitatory Dynamic Networks

The structure-learning approach described in Sec. 3 is applicable to any general
DBN that satisfies A1 and A2. We now introduce a specialized class of networks,
which we call as Excitatory Dynamic Networks (or EDNs) where only certain
kinds of conditional dependencies among nodes are permitted. Each event-type
is assumed to occur with probability less than 0.5 in the data. This corresponds
to a sparse-data assumption. A collection, Π, of random variables is said to
have an excitatory influence on an event-type, A ∈ E , if occurrence of events
corresponding to the variables in Π, increases the probability of A to greater
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Table 1. CPT structure for EDNs. Π = {XB , XC , XD} denotes the set of parents
for node XA. The table lists excitatory constraints on the probability of observing
[XA = 1] conditioned on the different value-assignments for XB , XC and XD.

Π
P [XA = 1 | aj ]XB XC XD

a0 0 0 0 ε < 1
2

a1 0 0 1 ε1 ≥ ε
a2 0 1 0 ε2 ≥ ε
a3 0 1 1 ε3 ≥ ε, ε1, ε2
a4 1 0 0 ε4 ≥ ε
a5 1 0 1 ε5 ≥ ε, ε1, ε4
a6 1 1 0 ε6 ≥ ε, ε2, ε4

a7(a∗) 1 1 1 φ > ε, 1
2
, εj∀j

than 0.5. We define an Excitatory Dynamic Network as a DBN in which all
parent nodes can only exert excitatory influences on corresponding child nodes.
For example, EDNs will allow relationships like “if B, C and D occur (say)
2 time-ticks apart, the probability of A increases.” However, EDNs cannot en-
code excitations-in-absence like “when A does not occur, the probability of B
occurring 3 time-ticks later increases” or inhibitions like “when A occurs, the
probability of B occurring 3 time-ticks later decreases.” Excitatory networks are
natural in neuroscience, where one is interested in unearthing conditional de-
pendency relationships among neuron spiking patterns. Several regions in the
brain are known to exhibit predominantly excitatory relationships (Rieke, War-
land, Steveninck and Bialek, 1999) and our model is targeted towards unearthing
these.

The excitatory assumption manifests as constraints on the conditional prob-
ability tables associated with the DBN. Consider a node1 XA (an indicator vari-
able for event-type A ∈ E) and let Π denote a parent-set for XA. In excitatory
networks, the probability of A conditioned on the occurrence of all event-types in
Π, should be at least as high as the corresponding conditional probability when
only some (though not all) of the event-types of Π occur. Further, the probability
of A is less than 0.5 when none of the event-types of Π occur and greater than
0.5 when all the event-types of Π occur. For example, let Π = {XB , XC , XD}.
The conditional probability table (or CPT) for A given Π is shown in Table 1.
The different conditioning contexts come about by the occurrence or otherwise
of each of the events in Π. These are denoted by aj , j = 0, . . . , 7. So while a0

represents the all-zero assignment (i.e. none of the events B, C or D occur), a7

(or a∗) denotes the all-ones assignment (i.e. all the events B, C and D occur).
The last column of the table lists the corresponding conditional probabilities
along with the associated excitatory constraints. The baseline propensity of A
is denoted by ε and the only constraint on it is that it must be less than 1

2 .
Conditioned on the occurrence of any event of Π, the propensity of A can only
increase, and hence, εj ≥ ε ∀j and φ ≥ ε. Similarly, when both C and D occur,
the probability must be at least as high as that when either C or D occur alone
(i.e. we must have ε3 ≥ ε1 and ε3 ≥ ε2). Finally, for the all-ones case, denoted
by Π = a∗, the conditional probability must be greater than 1

2 and must also
satisfy φ ≥ εj ∀j.

1 To facilitate simple exposition, time-stamps of random-variables are dropped from the no-
tation in this discussion.
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In the context of DBN learning, an excitatory assumption on the data im-
plies that event-types will occur frequently after their respective parents (with
suitable delays). This will allow us to estimate EDN structures using frequent
pattern discovery algorithms (which have been a mainstay in data mining for
many years). We now present a simple necessary condition on the probability
(or frequency) of parent-sets in an excitatory network.

Theorem 4.1. Let XA denote a node corresponding to the event-type A ∈ E
in an Excitatory Dynamic Network (EDN). Let Π denote the parent-set for XA

in the EDN. Let ε∗ be an upper-bound on the conditional probabilities P [XA =
1|Π = a] for all a 6= a∗ (i.e. for all but the all-ones assignment in Π). If the mutual
information I[XA ; Π] exceeds ϑ(> 0), then the joint probability of an occurrence
of A along with all events of Π satisfies P [XA = 1,Π = a∗] ≥ PminΦmin, where

Pmin =
P [XA = 1]− ε∗

1− ε∗ (8)

Φmin = h−1
[
min

(
1,
h(P [XA = 1])− ϑ

Pmin

)]
(9)

and where h(·) denotes the binary entropy function h(q) = −q log q − (1 −
q) log(1− q), 0 < q < 1 and h−1[·] denotes its pre-image greater than 1

2 .

Proof: Under the excitatory model we have P [XA = 1|Π = a∗] > P [XA = 1|Π =
a] ∀a 6= a∗. First we apply ε∗ to terms in the expression for P [XA = 1]:

P [XA = 1] = P [Π = a∗]P [XA = 1 |Π = a∗]

+
∑
a6=a∗

P [Π = a]P [XA = 1 |Π = a]

≤ P [Π = a∗] + (1− P [Π = a∗])ε∗

This gives us P [Π = a∗] ≥ Pmin (see Fig. 2). Next, since we are given that
mutual information I[XA ; Π] exceeds ϑ, the corresponding conditional entropy
must satisfy:

H[XA |Π] = P [Π = a∗]h(P [XA = 1 |Π = a∗])

+
∑
a6=a∗

P [Π = a]h(P [XA = 1 |Π = a])

< H[XA]− ϑ = h(P [XA = 1])− ϑ
Every term in the expression for H[XA |Π] is non-negative, and hence, each term
(including the first one) must be less than (h(P [XA = 1]) − ϑ). Using (P [Π =
a∗] ≥ Pmin) in the above inequality and observing that P [XA = 1 |Π = a∗] must
be greater than 0.5 for an excitatory network, we now get (P [XA = 1 |Π = a∗] >
Φmin). This completes the proof. �

4.1. Utility of EDNs

In Sec. 3, we derived conditions for optimal DBN approximations based on mu-
tual information criteria. We showed that if each node was associated with a
parent set that had high mutual information with the node, then the resulting
DBN would have small KL divergence with respect to the true data distribution.
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Curve B: H[XA]- θ

Curve A: H[XA]

h(ε*)

h(φ)

ε* φ

H[XA]

P[XA=1]

H[XA] - θ

θ

1

Pmin

1-Pmin

Line B

Line A

Line C

Fig. 2. An illustration of the results obtained in Theorem 4.1. x-axis of the plot is
the range of P [XA = 1] and y-axis is the corresponding range of entropy H[XA].
For the required mutual information criteria, the conditional entropy must lie
below H[XA]−ϑ and on line A. At the boundary condition [φ = 1], Line A splits
Line B in the ratio Pmin : (1− Pmin). This gives the expression for Pmin.

The difficulty, however, is that searching for these sets with high mutual infor-
mation is a computational expensive proposition. Excitatory Dynamic Networks,
introduced in Sec. 4, alleviates this problem by focussing an a subclass of DBNs
that only encode excitatory relationships among nodes.

The main result about EDNs that we can exploit to develop efficient algo-
rithms is Theorem 4.1. The theorem essentially translates a lower-bound ϑ on
the mutual information I[XA ; Π] between a node XA and its parents Π, to
a lower-bound PminΦmin on the joint probability P [XA = 1 , Π = a∗] of the
occurrence of events corresponding to the node and its parents. Given a node
XA, identifying all sets, Π, for which the joint probabilities of the special form
P [XA = 1 , Π = a∗] exceed a threshold falls in the realm of frequent pattern
discovery in data mining. It is well-known in data mining literature that, if the
data is sparse, frequent pattern discovery algorithms constitute a very efficient
and effective class of methods for unearthing strong correlations in the data. In
this paper, we exploit these methods for efficiently learning optimal DBNs from
event streams. Specifically, we define correlations of the form [XA = 1 , Π = a∗]
as a new class of patterns called fixed-delay episodes and develop fast algorithms
for discovering all fixed-delay episodes in the data whose frequencies exceed some
threshold (See Sec. 5 for details). Theorem 4.1 shows that a minimum mutual
information constraint for a node and its parents translates to a (minimum)
frequency threshold for discovering frequent fixed-delay episodes.

The lower-bound on joint probabilities P [XA , Π = a∗]) as per Theorem 4.1 is
PminΦmin, where Pmin and Φmin depend on two user-defined quantities (cf. Eqs. 8-
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9): (i) the minimum mutual information threshold ϑ, and (ii) the upper-bound ε∗

on the conditional probabilities in all-but-the-last-row of the CPT for XA. It is
easy to see that as the ϑ increases Φmin increases and consequently, the threshold
PminΦmin also increases. Similarly, as ε∗ increases Pmin decreases, as does Φmin.
Thus, as ε∗ increases the threshold PminΦmin decreases. These relationships fa-
cilitate the use of ε∗ and ϑ as exploratory ‘knobs’ for EDN learning. In general,
using a lower threshold (i.e. a lower PminΦmin) will allow us to detect even the
weaker correlations, which results in estimation of a more complete network.
However, lower thresholds translate to higher run-times, and as is well-known in
pattern discovery literature, at some sufficiently low threshold the computation
can become infeasible. The theoretical results allow us to systematically explore
this trade-off between inferring weaker dependencies and requiring higher run-
times. In Sec. 7, we describe experiments that demonstrate the effect of ε∗ and ϑ
on the performance of our algorithms. Finally, note that PminΦmin also depends
on the marginal probability of A in the data, namely P [XA = 1]. Unlike ε∗ and ϑ
(which are user-defined parameters) P [XA = 1] is estimated from the data. The
relationship of PminΦmin with P [XA = 1], however, is a bit more complicated –
the threshold can increase or decrease with P [XA = 1] depending on the values
chosen for ε∗ and ϑ.

5. Fixed-delay episodes

In Secs. 3-4 we developed the theoretical framework for estimating optimal Exci-
tatory Dynamic Networks from time-stamped event streams. We pointed out that
we can reduce the search space for the parent sets of a node by constructing can-
didate parent sets out of frequent fixed-delay episodes in the data (cf. Sec. 4.1).
In this section, we formally define fixed-delay episodes and show how to use the
frequencies of fixed-delay episodes to compute corresponding joint probabilities
and mutual information quantities.

In the framework of frequent episode discovery (Mannila et al., 1997) the
data is a single long stream of events over a finite alphabet (cf. Sec. 3 and
Example 1). An `-node (serial) episode, α, is defined as a tuple, (Vα, <α, gα),
where Vα = {v1, . . . , v`} denotes a collection of nodes, <α denotes a total order2

such that vi <α vi+1, i = 1, . . . , (` − 1). If gα(vj) = Aij , Aij ∈ E , j = 1, . . . , `,
we use the graphical notation (Ai1 → · · · → Ai`) to represent α. An occurrence
of α in event stream, s = 〈(E1, τ1), (E2, τ2), . . . , (En, τn)〉, is a map h : Vα →
{1, . . . , n} such that (i) Eh(vj) = g(vj) ∀vj ∈ Vα, and (ii) for all vi <α vj in

Vα, the times of occurrence of the ith and jth events in the occurrence satisfy
τh(vi) ≤ τh(vj) in s.

Example 2. Consider a 3-node episode α = (Vα, <α, gα), such that, Vα =
{v1, v2, v3}, v1 <α v2, v2 <α v3 and v1 <α v3, and gα(v1) = A, gα(v2) = B and
gα(v3) = C. The graphical representation for this episode is α = (A→ B → C),
indicating that in every occurrence of α, an event of type A must appear before
an event of type B, and the B must appear before an event of type C. For
example, in sequence (1), the subsequence 〈(A, 1), (B, 3), (C, 9)〉 constitutes an

2 In general, <α can be any partial order over Vα. We focus on only total orders here and
show how multiple total orders can be used to model DBNs of arbitrary -arity. In (Mannila
et al., 1997), such total orders are referred to as serial episodes.
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occurrence of (A → B → C). For this occurrence, the corresponding h-map is
given by, h(v1) = 1, h(v2) = 2 and h(v3) = 5.

There are many ways to incorporate explicit time constraints in episode oc-
currences like the windows-width constraint of (Mannila et al., 1997). Episodes
with inter-event gap constraints were introduced in (Patnaik, Sastry and Unnikr-
ishnan, 2007). For example, the framework of (Patnaik et al., 2007) can express
the temporal pattern “B must follow A within 5 time-ticks and C must fol-
low B within 10 time-ticks.” Such a pattern is represented using the graphical

notation, (A
[0–5]−→ B

[0–10]−→ C). In this paper, we use a simple sub-case of the
inter-event gap constraints, in the form of fixed inter-event time-delays. For ex-

ample, (A
5→ B

10→ C) represents a fixed-delay episode, every occurrence of which
must comprise an A, followed by a B exactly 5 time-ticks later, which in-turn is
followed by a C exactly 10 time-ticks later.

Definition 5.1. An `-node fixed-delay episode is defined as a pair, (α,D), where
α = (Vα, <α, gα) is the usual (serial) episode of (Mannila et al., 1997), and
D = (δ1, . . . , δ`−1) is a sequence of (`−1) non-negative delays. Every occurrence,
h, of the fixed-delay episode in an event sequence s must satisfy the inter-event

constraints, δj = (τh(vj+1)−τh(vj)), j = 1, . . . , (`−1). (Ai1
δ1−→ · · · δ`−1−→ Ai`) is our

graphical notation for the inter-event episode, (α,D), where Aij = gα(vj), j =
1, . . . , `.

Definition 5.2. Two occurrences, h1 and h2, of a fixed-delay episode, (α,D),
are said to be distinct, if they do not share any events in the data stream, s.
Given a user-defined, W > 0, frequency of (α,D) in s, denoted fs(α,D,W ), is
defined as the total number of distinct occurrences of (α,D) in s that terminate
strictly after W .

In general, counting distinct occurrences of episodes suffers from computational
inefficiencies (Laxman, 2006). Each occurrence of an episode (A → B → C) is
a substring that looks like A ∗ B ∗ C, where ∗ denotes a variable-length don’t-
care, and hence, counting all distinct occurrences in the data stream can require
memory of the same order as the data sequence which typically runs very long.
However, in case of fixed-delay episodes, it is easy to track distinct occurrences

efficiently. For example, when counting frequency of (A
3−→ B

5−→ C), if we
encounter an A at time t, to recognize an occurrence involving this A we only
need to check for a B at time (t + 3) and for a C at time (t + 8). In addition
to being attractive from an efficiency point-of-view, we show next in Sec. 5.1
that the distinct occurrences-based frequency count for fixed-delay episodes will
allow us to interpret relative frequencies as appropriate DBN marginals. (Note
that the W in Definition 5.2 is same as the length of the history window used
in the constraint A1. Skipping occurrences terminating in the first W time-ticks
makes it easy to normalize the frequency count into a probability measure).

5.1. Marginals from episode frequencies

In this section, we describe how to compute mutual information from the fre-
quency counts of fixed-delay episodes. For this, every subset of event-indicators
in the network is associated with a fixed-delay episode.
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Definition 5.3. Let {Xj(t) : j = 1, . . . ,M ; t = 1, . . . , T} denote the collection
of event-indicators used to model event stream, s = 〈(E1, τ1), . . . (En, τn)〉, over
alphabet, E = {A1, . . . , AM}. Consider an `-size subset, X = {Xi1(t1), . . . ,
Xi`(t`)}, of these indicators, and without loss of generality, assume t1 ≤ · · · ≤ t`.
Define the (` − 1) inter-event delays in X as follows: δj = (tj+1 − tj), j =
1, . . . , (`−1). The fixed-delay episode, (α(X ),D(X )), that is associated with the
subset, X , of event-indicators is defined by α(X ) = (Ai1 → · · · → Ai`), and
D(X ) = {δ1, . . . , δ`−1}. In graphical notation, the fixed-delay episode associated
with X can be represented as follows:

(α(X ),D(X )) = (Ai1
δ1→ · · · δ`−1→ Ai`) (10)

For computing mutual information we need the marginals of various subsets of
event-indicators in the network. Given a subset like X = {Xi1(t1), . . . , Xi`(t`)},
we need estimates for probabilities of the form, P [Xi1(t1) = a1, . . . , Xi`(t`) = a`],
where aj ∈ {0, 1}, j = 1, . . . , `. The fixed-delay episode, (α(X ),D(X )), that is
associated with X is given by Definition 5.3 and its frequency in the data stream,
s, is denoted by fs(α(X ),D(X ),W ) (as per Definition 5.2) where W denotes
the length of history window as per A1. Since an occurrence of the fixed-delay
episode, (α(X ),D(X )), can terminate in each of the (T −W ) time-ticks in s, the
probability of an all-ones assignment for the random variables in X is given by:

P [Xi1(t1) = 1, . . . , Xi`(t`) = 1] =
fs(α(X ),D(X ),W )

T −W (11)

For all other assignments (i.e. for assignments that are not all-ones) we use
inclusion-exclusion to obtain corresponding probabilities. Inclusion-exclusion has
been used before in data mining, e.g., in (Seppanen, 2006), to obtain exact or
approximate frequency counts for arbitrary boolean queries using only counts of
frequent itemsets in the data. In our case, counting distinct occurrences of fixed-
delay episodes facilitates use of the inclusion-exclusion formula for obtaining the
probabilities needed for computing mutual information of different candidate
parent-sets. Consider the set, X = {Xi1(t1), . . . , Xi`(t`)}, of ` event-indicators,
and let A = (a1, . . . , a`), aj ∈ {0, 1}, j = 1, . . . , `, be an assignment for the
event-indicators in X . Let U ⊂ X denote the subset of indicators out of X for
which corresponding assignments (in A) are 1’s, i. e. U = {Xij (tj) ∈ X : j s.t.
aj = 1 in A, 1 ≤ j ≤ `}. Inclusion-exclusion is used to compute the probabilities
as follows:

P [Xi1(t1) = a1, . . . , Xi`(t`) = a`]

=
∑
Y s.t.

U ⊆ Y ⊆ X

(−1)|Y\U|
(
fs(Y)

T −W

)
(12)

where fs(Y) is short-hand for fs(α(Y),D(Y),W ), the frequency (cf. Defini-
tion 5.2) of the fixed-delay episode, (α(Y),D(Y)).

Finally, a note on mutual information computation. Consider a node Xi`(t`)
and its candidate parent set Π = {Xi1(t1), . . . , Xi`−1

(t`−1)}. Construct the set
X = {Xi`(t`)}

⋃
Π. After computing all the necessary joint probabilities involv-

ing Xi`(t`) and Π based on Eqs. (11)-(12) we can compute the mutual informa-
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Procedure 1 Overall Procedure
Input: Alphabet E , event stream s = 〈(E1, τ1), . . . , (En, τn = T )〉, length W of

history window, conditional probability upper-bound ε∗, mutual information
threshold, ϑ

Output: DBN structure (parent-set for each node in the network)
1: for all A ∈ E do
2: XA := event-indicator of A at any time t > W
3: Set fmin = (T −W )PminΦmin, using Eqs. (8)-(9)
4: Obtain set, C, of fixed-delay episodes ending in A, with frequencies greater

than fmin (cf. Sec. 6.2, Procedure 2)
5: for all fixed-delay episodes (α,D) ∈ C do
6: X(α,D) := event-indicators corresponding to (α,D)
7: Compute mutual information I[XA ; X(α,D)]
8: Remove (α,D) from C if I[XA ; X(α,D)] < ϑ
9: Prune C using conditional mutual information criteria to distinguish direct

from indirect influences (cf. Sec. 6.3)
10: Return (as parent-set for XA) event-indicators corresponding to episodes

in C

tion I[Xi` ; Π] using the following expression:

I[Xi`(t`) ; Π] =
∑

P [Xi`(t`) = a`, Xi1(t1) = a1, . . . , Xi`−1
(t`−1) = a`−1]

× log2

[
P [Xi` = a`, Xi1(t1) = a1, . . . , Xi`−1

(t`−1) = a`−1]

P [Xi`(t`) = a`]P [Xi1(t1) = a1, . . . , Xi`−1
(t`−1) = a`−1]

]
(13)

where (a1, . . . , a`) ∈ {0, 1}` and the summation is over all possible values for
(a1, . . . , a`). This way, all mutual information quantities that are needed for EDN
learning can be computed using just the frequencies of appropriate fixed-delay
episodes in the data.

6. Algorithms

6.1. Overall approach

In Secs. 3-5, we developed the formalism for learning an optimal DBN struc-
ture from event streams by using distinct occurrences-based counts of fixed-delay
episodes to compute the DBN marginal probabilities. The top-level algorithm
(cf. Sec. 3) for discovering the network is to fix any time t > W , to consider each
Xj(t), j = 1, . . . ,M , in-turn, and to find its set of parents in the network. Due
to the translation invariance assumption A2, we need to do this only once for
each event-type in the alphabet.

The algorithm is outlined in Procedure 1. For each A ∈ E , we first compute
the minimum frequency for episodes ending in A based on the relationship be-
tween mutual information and joint probabilities as per Theorem 4.1 (line 3,
Procedure 1). Then we use a pattern-growth approach (see Procedure 2) to dis-
cover all patterns terminating in A (line 4, Procedure 1). Each frequent pattern
corresponds to a set of event-indicators (line 6, Procedure 1). The mutual in-
formation between this set of indicators and the node XA is computed using
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Procedure 2 pattern grow(α,D,L(α,D))

Input: `-node episode (α,D) = (Aj1
δ1→ · · · δ`−1→ Aj`) and event sequence

s = 〈(E1, τ1), . . . , (En, τn = T )〉, Length of history window W , Frequency
threshold fmin.

1: ∆ = W − span(α,D)
2: for all A ∈ E do
3: for δ = 0 to ∆ do
4: if δ = 0 and (Aj1 > A or ` = 1) then
5: continue

6: (α′,D′) = A
δ→ α; L(α′,D′) = {}; fs(α′,D′) = 0

7: for all τi ∈ L(α,D) do
8: if ∃(Ej , τj) such that Ej = A and τi − τj = δ then
9: Increment fs(α

′,D′)
10: L(α′,D′) = L(α′,D′) ∪ {τj}
11: if fs(α

′,D′) ≥ fmin then
12: Add (α′,D′) to output set C
13: if span(α′,D′) ≤W then
14: pattern grow(α′,D′,L(α′,D′))

1 2 3 4 5 6 7 8 9 10

A

B

C

Fig. 3. An event sequence showing 3 distinct occurrences of the episode A
1→

B
2→ C.

inclusion-exclusion formula and only sets for which this mutual information ex-
ceeds ϑ are retained as candidate parent-sets (lines 5-8, Procedure 1). Finally,
we prune out candidate parent-sets which have only indirect influences on A
and return the final parent-sets for nodes corresponding to event-type A (lines
9-10, Procedure 1). This pruning step is based on conditional mutual information
criteria (to be described later in Sec. 6.3).

6.2. Discovering fixed-delay episodes

We employ a pattern-growth algorithm (Procedure 2) for mining frequent fixed-
delay episodes because, unlike Apriori-style algorithms, pattern-growth proce-
dures allow use of different frequency thresholds for episodes ending in different
alphabets. This is needed in our case, since, in general, Theorem 4.1 prescribes
different frequency thresholds for nodes in the network corresponding to dif-
ferent alphabets. The recursive procedure is invoked with (α,D) = (A, φ) and
frequency threshold fmin = (T −W )Pminφmin (Recall that in the main loop of
Procedure 1, we look for parents of nodes corresponding to event-type A ∈ E).

The pattern-growth algorithm listed in Procedure 2 takes as input, an episode
(α,D), a set of start times L(α,D), and the event sequence s. L(α,D) is a set of
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time stamps τi such that there is an occurrence of (α,D) starting at τi in s. For
example, if at level 1 we have (α,D) = (C, φ), then L(C,φ) = {1, 4, 5, 8, 9} in the
event sequence s shown in Fig 3. The algorithm obtains counts for all episodes

like (α′,D′) generated by extending (α,D) e.g. B
1→ C, . . ., A

5→ C etc. For an

episode say (α′,D′) = B
2→ C, the count is obtained by looking for occurrences

of event B at times τj = τi − 2 where τi ∈ L(C,φ). In the example such B’s at
τj ∈ LB 2→C

= {2, 3, 6}. The number of such occurrences (= 3) gives the count

of B
2→ C. At every step the algorithm tries to grow an episode with count

fs > fmin otherwise stops.

6.3. Conditional MI criteria

The final step in determining the parents of a node XA involves testing of con-
ditional mutual information criteria (cf. line 10, Procedure 1). The input to this
step is a set, CA, of candidate parent sets for each node XA in the network, such
that each candidate set Y has high mutual information with XA i.e. we have
I[XA ; Y] > ϑ ∀Y ∈ CA. Consider two such sets Y and Z, each having sufficient
mutual information with XA. Our conditional mutual information criterion is:
remove Y from the set of candidate parents (of XA), if I[XA ; Y | Z] = 03. We
repeat this test for every pair of episodes in C.

To understand the utility of this criterion, there are two cases to consider:
(i) either Y ⊂ Z or Z ⊂ Y, and (ii) both Y 6⊂ Z and Z 6⊂ Y. In the first case, our
conditional mutual criterion will ensure that we pick the larger set as a parent
only if it brings more information about XA than the smaller set. In the second
case, we are interested in eliminating sets which have a high mutual information
with XA because of indirect influences. For example, if the network were such
that C excites B and B excites A, then XC can have high mutual information
with XA, but we do not want to report XC as a parent of XA, since C influences
A only through B. Our conditional mutual information criterion will detect this
and eliminate XC from the set of candidate parents (of XA) because it will detect
I[XA ; XC |XB ] = 0.

We now summarize the conditional mutual information step in our algorithm.
We pick candidates out of CA in decreasing order of their respective mutual
informations with XA. A candidate set, say Y, is declared to belong to the final
parent set Π only if I[XA ; Y |Z] = 0 for all Z ∈ CA, Z 6= Y. Note that the time
needed for pruning, which is quadratic in the size of CA, is typically small since
the number of frequent fixed-delay episodes ending in A is typically small.

7. Results

In this section, we present results both on data gathered from mathematical
models of spiking neurons and real neuroscience experiments.

3 We use a small threshold parameter to ascertain this equality.
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7.1. Spiking Neuronal Network Models

Several mathematical models of spiking neurons have been proposed and studied
in neuroscience (Sprekeler, Michaelis and Wiskott, 2007; Czanner, Eden, Wirth,
Yanike, Suzuki and Brown, 2008; Eldawlatly et al., 2010; Patnaik et al., 2007;
Sastry and Unnikrishnan, 2010; Raajay, 2009). For example, (Sprekeler et al.,
2007) employ a linear Poisson model where spike train signals are generated using
an inhomogeneous Poisson process, while (Czanner et al., 2008) study a point
process observation model of neural spiking activity. In (Eldawlatly et al., 2010)
the spike train of a neuron is expressed as a conditionally Poisson point process.
A network of interacting neurons, each modeled as an inhomogeneous Poisson
process was introduced in (Patnaik et al., 2007) and this model was extended to
incorporate higher-order interactions in (Raajay, 2009). These models based on
inter-dependent inhomogeneous Poisson processes can incorporate sophisticated
relationships between neurons in the network and constitute a rich source of data
for testing our DBN learning models. We briefly introduce the spiking neuronal
model of (Raajay, 2009) which we use in our experimental work.

The data generation model4 takes as input an inter-connected set of neurons.
The spike train of each neuron is modeled as an inhomogeneous Poisson process
and interactions with other neurons are introduced by controlling the firing rate
of the neuron as a function of the input it receives from others. This rate is
updated every ∆T time units (We can think of ∆T as the resolution of each
time-tick). The firing rate λi(t) of the ith neuron at time instant t∆T (or tth

time-tick) is given by

λi(t) =
λ̂1

1 + exp(−Ii(t) + d)
(14)

where Ii(t) denotes the input received by the ith neuron at time t∆T , λ̂1 deter-
mines the (high) firing rate of the neuron in the excited state (when sufficient
potential accumulates at its input) and d denotes an offset parameter that is fixed

based on the user-defined rest (or quiescent) firing rate λ̂0 of the neuron (when

the input is zero). The simulator determines the high firing rate λ̂1 based on the
desired conditional probability ρ of firing of the neuron when it receives its full
expected input (ρ is a user-defined parameter). The network inter-connect model
gives it the sophistication needed for simulating higher-order interactions. The
model allows for variable delays which mimic the delays in conduction pathways
of real neurons. The total input Ii(t) received by the ith neuron at time-tick t is
given by

Ii(t) =
∑
j

βijYj(t−τij) + . . .+
∑
j...`

βij...lYj(t−τij) . . . Y`(t−τi`) (15)

where Yj(t−τij) is the indicator of a spike on jth neuron τij time-ticks before t
and β(.)’s are the weights of the corresponding synaptic interactions. The first
summation in Eq. (15) models first-order interactions, while the subsequent sum-
mations model progressively higher-order interactions. For example, to model a
strong first-order connection from neuron j to neuron i with appropriate synaptic

4 Simulator courtesy Raajay Viswanathan, Electrical Engineering, Indian Institute of Science,
Bangalore.
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delays (i.e. to obtain a high conditional probability for the firing of i given that
j has fired at an appropriate time in the past) the simulator would set a high
value for the weight βij . Similarly, to model a higher-order interaction such as
one that sets a high conditional probability of firing for neuron i given that neu-
rons j, k and ` fired (at times determined by the corresponding synaptic delays)
the simulator assigns a high value for the weight βijkl. Finally, the simulator
also incorporates a short refractory period for the neurons (which is the time for
which a neuron does not respond to any stimulus after it has just spiked).

7.1.1. Types of Networks

We generate spike train data from a wide range of networks by embedding several
different kinds of neuronal interactions and by varying the different user-defined
parameters in the simulator.

1. Causative chains and higher-order structures: A higher-order chain is
one where parent sets are not restricted to be of cardinality one. In the example
network of Fig. 4(a), there are four disconnected components with two of
them having cycles. (Recall this would be ‘illegal’ in a static Bayesian network
formulation). Also the component consisting of nodes {18, 19, 20, 21} exhibits
higher-order interactions. The node 20 fires with high probability when node
18 has fired 4 ms before and node 19 has fired 2 ms before. Similarly node 21
is activated by nodes {18, 20} firing at respective delays.

2. Overlapping causative chains: The graph shown in Fig. 4(b) has two
chains {25, 26, 27, 28} and {37, 26, 38, 39, 40}. Node 26 is common to both
chains and can be independently excited by 25 or 37. Also 27 is activated
by {25, 26} together and 38 is activated by {26, 37}. Thus a firing event on 25
excites one chain while a firing event on 37 excites the other chain. This shows
one possible way in which neurons can participate in multiple circuits at the
same time (e.g. polychronous circuits (Izhikevich, 2006)). Depending on the
stimulus sequence, the same neurons can participate in different cascades of
firing events (encoding completely different pieces of information).

3. Syn-fire chains: Another important class of patterns studied in neuron spike
trains is called synfire chains. This consists of groups of synchronously firing
neurons strung together repeating over time. An example of a syn-fire chain is
given in Fig. 4(c). In (Patnaik et al., 2007), it was noted that discovering such
patterns required a combination of serial and parallel episode mining. But the
DBN approach applies more naturally to mining such network structures.

4. Polychronous circuits: Groups of neurons that fire in a time-locked manner
with respect to each other are referred to as polychronous groups. This notion
was introduced in (Izhikevich, 2006) and gives rise to an important class of
patterns. Once again, our DBN formulation is a natural fit for discovering such
groups from spike train data. A polychronous circuit is shown in Fig 4(d).

7.1.2. Data sets

The data sets we used for our experiments are listed in Table 2. The name of the
data set is listed in Column 1, the length of the data set (or number of time-slices
in the data sequence) in Column 2, the size of the alphabet (or total number

of neurons in the network) in Column 3, the rest firing rate λ̂0 in Column 4
and the conditional probability ρ (that a neuron will fire when it receives its
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Fig. 4. Four classes of DBNs investigated in our experiments.
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Table 2. Data sets
Dataset Data Alphabet Rest Firing Conditional

Name length Size Rate λ̂0 Probability ρ
A1 60000 100 0.02 0.9
A2 60000 125 0.02 0.9
A3 60000 150 0.02 0.9
A4 60000 175 0.02 0.9
B5 60000 100 0.01 0.9
B6 60000 100 0.015 0.9
B7 60000 100 0.02 0.9
B8 60000 100 0.025 0.9
C9 60000 100 0.02 0.8
C10 60000 100 0.02 0.85
C11 60000 100 0.02 0.9
C12 60000 100 0.02 0.95
D13 60000 100 0.02 0.9
D14 90000 100 0.02 0.9
D15 120000 100 0.02 0.9

full expected input) in Column 5. All the substructures listed in Figs. 4(a)-4(d)
were inserted into all the data sets. The data sets are arranged into 4 groups. In

the A-group (A1-A4) the data length is 60000 events, the rest firing rate λ̂0 is
0.02, the conditional probability ρ is 0.9 and the size of alphabet is varied from

100 to 175. In the B-group (B5-B8) the rest firing rate λ̂0 is varied from 0.01
to 0.025 keeping everything else constant. Similarly, in the C-group (C9-C12)
the conditional probability ρ is varied from 0.8 to 0.95. Finally, in the D-group
(D13-D15) the data lengths are varied from 60000-120000 events.

7.2. Competing methods

Most of the existing DBN literature on structure learning is focused on networks
with first order Markov assumption and use hidden variables to circumvent this
limitation (Friedman et al., 1998; Murphy, 2002). In contrast, our formulation
allows variable order structure learning controlled by the parameters k and w
in our algorithm. This makes baseline comparison with existing methods diffi-
cult. There is also a limit on the number of variables in the data for such algo-
rithms (Chickering, 2003; Cooper and Herskovits, 1992). In this paper we found
it most natural to compare our method with an implementation of Sparse Can-
didate algorithm (Friedman, Nachman and Pe’er, 1999) extended for learning
DBN structures and the Simulated Annealing-based DBN learning proposed in
(Eldawlatly et al., 2010). (We use the shorthands SC and SA to denote the Sparse
Candidate algorithm and the Simulated Annealing-based DBN respectively). SC
was originally proposed for structure learning of regular Bayesian Networks. We
use a natural extension of SC for DBNs based on our assumptions in Section 3.
In the Dynamic Probabilistic Networks formulation (Friedman et al., 1998), two
scoring functions were proposed, namely BIC (cf. Eq. (16)) and BDe (cf. Eq. (17))
(The latter assumes Dirichlet priors).

BIC =
∑
i,ji,ki

Ni,ji,ki log
Ni,ji,ki∑
ki
Ni,ji,ki

− logN

2
#G (16)
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Table 3. Summary of results of SA with BDe score over the data sets of Table 2.
Parameters Precision (%) Recall (%) Run-time (in secs.)
k=5,w=5 17.1± 6.2 42.5± 6.9 9197.0
k=5,w=10 8.7± 3.3 23.9± 4.8 9760.9
k=10,w=5 12.2± 3.7 39.0± 8.5 9522.7
k=10,w=10 7.5± 3.6 25.9± 10.0 9816.1

where Ni,ji,ki is number of times Xi(t) takes the value ki and its parent-set Πi

takes the value ji, #G is the dimension of the bayesian network G (which in this
case is the number of parameters in the conditional probability tables) and N is
the number of time slices in the data sequence.

BDe =
∏
i,ji

Γ
(∑

ki
N ′i,ji,ki

)
Γ
(∑

ki
N ′i,ji,ki +Ni,ji,ki

) ∏
ki

Γ
(
N ′i,ji,ki +Ni,ji,ki

)
Γ
(
N ′i,ji,ki

) (17)

where Ni,ji,ki is same as before, and the hyper-parameters N ′i,ji,ki are selected

by assuming an empty prior network: N ′i,ji,ki = N̂ × P (Xi(t) = ki) where N̂ is

called the effective data length of the prior and we set it at 10% of the actual
data length. We experimented with both these scoring functions and the results
were comparable in terms of quality as well as run-times. Hence, in this paper we
quote SC results only for BIC. However we use BDe score for SA (as suggested
by (Eldawlatly et al., 2010)). The SA method simply uses the BDe score along
with simulated annealing for searching through the space of candidates. The main
tunable parameter in simulated annealing is the temperature or cooling schedule.
We experimented with many schedules in our implementation: T = T0(0.99)k

for T0 = 102, 104, 106 and T = T0

1+logC.k for T0 = 104, 106 and C = 1, 10, 100.

Further, at each iteration of SA we remembered the best state so far, and used
the best state after around 2.5 hours as the final answer.

7.3. Performance

First we summarize the performance of SA on the data sets of Table 2. The
table quotes the average precision and recall values obtained across all 15 data
sets along with the corresponding average run-times. The results are reported in
(mean±std. dev.) format. These are the best results we could achieve with SA in
reasonable time (about 2.5 hours). For this we used the exponentially decreasing
cooling schedule with parameter T0 = 106. We were unable to extract any mean-
ingful performance on these data sets using SA (despite trying a wide range of
parameter tuning schedules). The precision and recall almost never exceeded 20%
and 50% respectively even after letting each optimization run for more than 2.5
hours. These run-times were typically 5-10 times longer than the corresponding
run-times for SC and EDN (which also delivered substantially better precision
and recall performance). Based on our experiments, we concluded that SA was
unsuitable for learning structure from our inter-dependent inhomogeneous pois-
son model of spiking neuronal networks. For these reasons, in this section, we
provide full experimental results and comparisons only for SC and EDN based
methods and omit the detailed results of SA to avoid clutter.
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Fig. 5. Precision and recall comparison of Excitatory Dynamic Network discovery
algorithm and Sparse Candidate algorithm for different window sizes, w and max.
no. of parents, k.

7.3.1. Quality of inferred networks

Fig. 5 shows a comparison of the performance of EDN and SC on the 15 data sets
of Table 2 for different choices of k (maximum number of parents) and w (size
of history window). The precision and recall for a given data set are represented
as bars along the same horizontal line (the light color bar represents SC and the
dark color bar represents EDN). For example, for the k = 5 w = 5 case, both
precision and recall of EDN were 100% for 10 (out of the 15) data sets. In case of
SC, although precision was 100% in 11 data sets, the recall was between 95% and
98% for all the data sets. From the results reported for different k and w values,
we can see that (on most data sets) EDN consistently outperformed SC in terms
of precision and recall. This is not surprising because the network structures
injected into these data sets were predominantly excitatory. The results also
highlight the bias of EDN towards high precision performance (sometimes, at
the cost of some loss in recall). This is primarily due to the conditional mutual
information checks (which, in case of EDNs, is feasible because of the typically
small number of frequent episodes ending in the same event-type).

Table 4 presents a comparison of SC and EDN for the different groups of
networks defined in Sec. 7.1.1. We consider each of the network groups described
in Figs. 4(a)-4(d) separately and report the average precision and recall values
obtained by SC and EDN across all the 15 data sets of Table 2 (for k = 5, w = 5).
The results show that the few edges that EDN missed were from the more com-
plex network structures, namely, overlapping causative chains and polychronous
circuits (while causative chains, higher-order structures and syn-fire chains were
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Table 4. Comparison of quality of subnetworks recovered by Excitatory Dynamic
Network algorithm and Sparse Candidate algorithm. (k=5,w=5)

Excitatory Dynamic Network Sparse Candidate
Network group Precision(%) Recall(%) Precision(%) Recall(%)
Causative chains &
Higher order structures

100.0 100.0 100.0 99.39

Overlapping causative
chains

100.0 99.26 98.42 92.59

Syn-fire chains 100.0 100.0 100.0 99.39
Polychronous circuits 100.0 98.22 99.06 93.77
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Fig. 6. Run-time comparison of Excitatory Dynamic Network discovery algo-
rithm and Sparse Candidate algorithm for different window sizes, w and max.
no. of parents, k.

detected with 100% precision and recall by EDN). The same trends can be ob-
served for SC also, although the deterioration for overlapping causative chains
and polychronous circuits is more severe here than in EDN. Similar trends were
observed for the other choices of k and w as well.

7.3.2. Run-times

Fig. 6 shows the run-time comparisons for EDN and SC on the 15 data sets of
Table 2. The run-time bars for (k = 5, w = 5) and for (k = 10, w = 5) show
a substantial run-time advantage for EDN over SC (by a factor of at least two
or more) in all the data sets. For (k = 5, w = 10) and (k = 10, w = 10) also,
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Fig. 7. Effect of ε∗ and ϑ on precision and recall of EDN method applied to
dataset A1.

we observe that EDN is consistently faster than SC (although the improvement
is much less). This shows that if we use a w value that is near the true size
of history window in the network generating the data, EDN has a considerable
computational advantage over SC (and this advantage reduces for larger values
of w).

7.3.3. Effect of parameters

In Sec. 4.1, we discussed the role of ϑ and ε∗ in fixing the frequency threshold
(PminΦmin) for frequent episode discovery. We argued that while the threshold
decreases as ε∗ increases, it increases as ϑ increases. In Fig. 7 we plot the effect of
changing ε∗ and ϑ on the performance of our EDN learning algorithms. The figure
show results obtained on the A1 data set. Here again, we see the bias of EDN
toward high precision – the plots show the precision staying at 100% even as ε∗

and ϑ are varied. The recall however is more sensitive to the choice of parameters,
showing an increasing trend with ε∗ and a decreasing trend with ϑ. These results
are consistent with our theoretical understanding of how frequency threshold
changes with ε∗ and ϑ. Eventually, for sufficiently high ε∗ and for sufficiently
low ϑ the recall starts to approach 100%. (Similar trends were observed in other
data sets as well).

Finally, we describe our choice of EDN parameters that were used to generate
the results reported in Figs. 5-6 and in Table 4. For A-group and D-group data
sets we used ε∗ = 0.03 and ϑ = 0.03. The conditional probability ρ varies in
the C-group data sets, and hence, for these data sets, we used a lower mutual
information threshold ϑ = 0.02 and kept ε∗ = 0.03 (as before). The B-group
data sets were the more tricky cases for our EDN algorithm since the base firing
rates vary in this group. For B5-B6 (which have lower base firing rates) we
used ε∗ = 0.02 and for B7-B8 (which have higher base firing rates) we used
ε∗ = 0.03. The mutual information threshold for all the B-group data sets was
set at ϑ = 0.03.

7.4. Results on MEA data

Multi-electrode arrays provide high throughput recordings of the spiking activity
in neuronal tissue and are hence rich sources of event data where events corre-
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Fig. 8. DBN structure discovered from first 10 min of spike train recording on
day 35 of culture 2-1 (Wagenaar et al., 2006).

Table 5. Comparison of networks discovered by EDN algorithm and SC algorithm
on 4 slices of spike train recording (each 10 min long) taken from datasets 2-1-32
to 2-1-35 (Wagenaar et al., 2006). Parameters k = 2 and w = 2 used for both
EDN and SC.

No. of No. of unique No. of unique
common edges EDN edges SC edges

Data Slice 1 25 59 (70.24%) 30 (54.55%)
Data Slice 2 24 53 (68.83%) 31 (56.36%)
Data Slice 3 30 45 (60.00%) 26 (46.43%)
Data Slice 4 29 41 (58.57%) 27 (48.21%)

spond to specific neurons being activated. We used data from dissociated cortical
cultures gathered by Steve Potter’s laboratory at Georgia Tech (Wagenaar, Pine
and Potter, 2006) over several days.

In our first experiment, we estimated EDNs from 10 minute-chunks of record-
ings using parameters k = 2, w = 2, ϑ = 0.001 and ε∗ = 0.02. By way of example,
we visualize one such network that we estimated in Fig. 8. This network obtained
from the first 10 minutes of the spike train recording on day 35 of culture 2-1
reflects the sustained bursts observed in this culture by (Wagenaar et al., 2006).
In order to establish the significance of the networks discovered we ran our algo-
rithm on several surrogate spike trains generated by replacing the neuron labels
of spikes in the real data with randomly chosen labels. These surrogates break
the temporal correlations in the data while still preserving the overall summary
statistics. No network structures were found in such surrogate sequences. We are
currently in the process of characterizing and interpreting the usefulness of such
networks found in real data.

In our second experiment using recordings from real cortical cultures, we
compared the networks estimated using SC and EDN on different slices of data.
The results obtained on 4 such slices are reported in Table 5. For each data
slice, Column 1 of the table reports the number of edges that were common in
the outputs of EDN and SC. The number of unique edges found by each of the
methods is listed in columns 3 and 4. The figures in brackets describe the cor-
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Fig. 9. Comparison of networks discovered by EDN algorithm and SC algorithm
in 4 slices of spike train recording (each 10 min long) taken from datasets 2-
1-32 to 2-1-35 (Wagenaar et al., 2006). Parameters used: Mutual information
threshold for EDN = 0.01 and for both EDN and SC, k = 2 and w = 2 were
used.

responding number of unique edges computed as a percentage of the total edges
found by EDN and SC respectively. The results show that considerable portions
of the networks discovered (30% or more of edges found by either method) were
actually common under EDN and SC. However, about 50-70% of the edges re-
ported by EDN were unique, and similarly, 45-55% of the edges reported by
SC were unique. This suggests that EDN and SC discover different kinds of
networks from the same data sets (which is not surprising since EDN and SC
restrict the network topologies in different ways and optimize for different crite-
ria). The common edges correspond to strong excitatory connections, the unique
edges in EDN represent relatively weaker excitatory connections and the unique
edges in SC correspond to other non-excitatory connections (such as inhibitions
or excitation-in-absence). Thus, EDN and SC infer complemntary relationships
from time-stamped event sequences.

Next, we assess the quality of excitatory networks discovered by EDN and
SC in the MEA data. Toward this end, we use a standard scoring function (such
as BIC) to compare the parent sets returned by EDN and SC. For each data set,
we compute the aggregate BIC score over all nodes for which the EDN returned
non-empty parent sets and compare it with the corresponding BIC score for the
same nodes but with parents as per the SC network. The comparison is reported
in Fig. 9. In Fig. 9(b) observe that the run-times of SC are roughly 2-6 times
worse than for EDN, while the strengths of the excitatory connections discovered
(in terms of aggregate BIC scores) are within 10% of the corresponding scores in
SC (see Fig. 9(a)). Recall that our theoretical results guarantee that the EDN
algorithm finds the optimal network, over the class of all excitatory networks. Our
results here show that, these excitatory networks discovered are also comparable
in terms of connections strengths with the output of SC (which searches over
non-excitatory networks as well).



Discovering Excitatory Relationships using Dynamic Bayesian Networks 27

Table 6. Comparison of networks discovered by EDN algorithm and SC algo-
rithm in calcium imaging spike train data (Source: (Takahashi et al., 2007)).
Parameters: Mutual information threshold used for EDN = 0.0005 and for both
EDN and SC, k=5 and w=5 were used.

No. of No. of unique No. of unique
common edges EDN edges SC edges

DATA 000 12 24 (66.67%) 1 (7.69%)
DATA 001 8 11 (57.89%) 10 (55.56%)
DATA 002 30 14 (31.82%) 43 (58.90%)
DATA 003 8 20 (71.43%) 5 (38.46%)
DATA 004 - - -
DATA 005 12 24 (66.67%) 1 (7.69%)
DATA 006 1 3 (75.00%) 1 (50.00%)
DATA 007 50 32 (39.02%) 57 (53.27%)
DATA 008 50 8 (13.79%) 49 (49.49%)
DATA 009 1 1 (50.00%) 0 (0.00%)
DATA 010 5 9 (64.29%) 3 (37.50%)
DATA 011 15 21 (58.33%) 9 (37.50%)
DATA 012 3 5 (62.50%) 1 (25.00%)
DATA 013 8 2 (20.00%) 1 (11.11%)
DATA 014 19 24 (55.81%) 13 (40.62%)
DATA 015 3 6 (66.67%) 0 (0.00%)
DATA 016 3 3 (50.00%) 0 (0.00%)
DATA 017 26 29 (52.73%) 9 (25.71%)
DATA 018 48 42 (46.67%) 46 (48.94%)
DATA 019 43 32 (42.67%) 34 (44.16%)
DATA 020 18 12 (40.00%) 7 (28.00%)
DATA 021 9 3 (25.00%) 1 (10.00%)
DATA 022 6 15 (71.43%) 2 (25.00%)
DATA 023 49 48 (49.48%) 53 (51.96%)
DATA 024 11 21 (65.62%) 1 (8.33%)
DATA 025 46 51 (52.58%) 23 (33.33%)
DATA 026 62 86 (58.11%) 82 (56.94%)
DATA 027 41 40 (49.38%) 45 (52.33%)
DATA 028 - - -
DATA 029 13 24 (64.86%) 4 (23.53%)
DATA 030 32 13 (28.89%) 25 (43.86%)

7.5. Results on fMCI data

Another relatively new technique of recording activity of multiple neurons simul-
taneously is functional Multi-neuron Calcium Imaging (fMCI). fMCI is an imag-
ing technique where the neurons are loaded with calcium fluorophores. Their elec-
trical activity causes fluorescence which is recorded using confocal microscopy.
In the second set of experiments we analyze the recordings from rat hippocampal
slices made publicly available by Yuji Ikegaya’s group (Takahashi et al., 2007).

In Table 6, we present a comparison of the networks discovered by EDN and
SC. Like the MEA results presented earlier (in Table 5), Table 6 has 4 columns
– the first column describes the name of the data slice, the second column shows
the number of edges commonly discovered by SC and EDN, the third column
lists the number of unique EDN edges and the fourth column lists the number
of unique SC edges. In columns 3 and 4, the numbers in brackets describe the
corresponding quantities as percentages of total number of EDN and SC edges.
There is no clear pattern in the result – in some data sets, like in DATA 007 and
DATA 026, the proportion of common edges is reasonably high, while in some



28 D. Patnaik et al.

0 5 10 15 20 25 30
Datasets

101

102

103

104

105

-B
IC

 s
co

re

Sparse Candidate

Excitatory Dynamic Network

(a) BIC score comparison

0 5 10 15 20 25 30
Datasets

10-1

100

101

102

103

104

R
u
n
-t

im
e
 (

se
c)

Sparse Candidate

Excitatory Dynamic Network

(b) Run-time comparison

0 5 10 15 20 25 30
Number of datasets

0

2

4

6

8

10

12

14

%
 D

if
f 

in
 -

B
IC

 s
co

re

(c) % Diff. in BIC score

Fig. 10. Comparison of networks discovered by EDN algorithm and SC algorithm
in calcium imaging spike train data [Source: (Takahashi et al., 2007)]. Parameters
used: Mutual information threshold for EDN = 0.0005 and for both EDN and
SC, k=5 and w=5 were used.

others, like in DATA 001, this proportion is small (Results are not reported for
DATA 004 and DATA 028 since, for these data sets, neither algorithm converged
even after running for over three hours). These results again show that EDN and
SC often yield different Bayesian networks. While SC discovers strong connec-
tions between nodes over an unconstrained class of networks, EDN focusses at-
tention only on excitatory networks (a restriction that is natural in applications
like neuroscience).

Finally, we compare strengths of the connections discovered as we have done
in case of MEA data. For this, we compare aggregate BIC scores (and run-times)
for the excitatory networks (under EDN) with the scores (and run-times) for cor-
responding subnetworks under SC. The results are shown in Fig. 10 for an MI
threshold of 0.0005 (for EDN). Fig. 10(a) shows a bar graph for the correspond-
ing BIC scores under both methods, while Fig. 10(c) shows the corresponding
cumulative average plot. The graphs show that the BIC scores achieved under
EDN and SC are consistently very close for all data sets. For example, in atleast
25 (out of 29) data sets the BIC scores differ by less than 5%. This shows that
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Fig. 11. Comparison of networks discovered by EDN algorithm and SC algorithm
in calcium imaging spike train data [Source: (Takahashi et al., 2007)]. Parameters
used: Mutual information threshold for EDN = 0.001 and for both EDN and SC,
k=5 and w=5 were used.

the excitatory networks discovered by EDN, although different from the net-
works obtained through SC, consist of connections that are of roughly the same
strength (in terms of BIC scores). Moreover, these strong excitatory circuits are
discovered very fast through EDN (compared to the run-times in SC shown in
Fig. 10(b)). On the average, EDN runs more than 70 times faster than SC (with
the minimum and maximum run-time advantages being 6 times and 270 times
respectively).

To illustrate the effect of MI threshold on the EDN algorithm, we repeated
our experiment for two higher thresholds of 0.001 and 0.002. The corresponding
results are shown in Figs. 11 and 12. First, as can be expected, with increas-
ing MI threshold, excitatory networks are discovered in fewer data sets. EDN
found excitatory networks in 27 data sets at a threshold of 0.001 and in 13
data sets at a threshold of 0.002 (compared to finding excitatory networks in 29
datasets at a threshold of 0.0005). Second, the aggregate BIC scores for EDN
became marginally poorer at higher thresholds. For example, the number of data
sets on which BIC scores for EDN and SC differed by less than 5% fell to 22
at a threshold of 0.001 (see Fig. 11(c)) and to 6 at a threshold of 0.002 (see
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Fig. 12. Comparison of networks discovered by EDN algorithm and SC algorithm
in calcium imaging spike train data [Source: (Takahashi et al., 2007)]. Parameters
used: Mutual information threshold for EDN = 0.002 and for both EDN and SC,
k=5 and w=5 were used.

Fig. 12(c)). However, the corresponding run-time advantage of EDN became
more exaggerated (with EDN being close to 90 times faster, on average, for both
thresholds 0.001 and 0.002). All these results demonstrate that learning opti-
mal excitatory networks is considerably more efficient than learning unrestricted
DBNs of comparable connection-strengths. Thus, either when the application
itself motivates use of excitatory networks (as is the case in neuroscience), or
when learning unrestricted DBNs requires more computation than is acceptable
(or both), excitatory networks (or EDNs) become relevant for learning optimal
temporal networks from time-stamped event sequences.

In all of our experiments above, although we have diligently compared our
approach to the Sparse Candidate algorithm, the latter is by no means the ground
truth for the underlying network. On the contrary, it is interesting that we achieve
comparable values for BIC (as the Sparse Candidate algorithm) without directly
optimizing for it. These results lead to the radical suggestion that perhaps our
approach can supplant SC as a good starting point to find DBNs in general,
inspite of its seemingly narrow focus on EDNs, and with significant gains in
runtime. Further work is necessary to explore this possibility, especially into the
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sufficiency of the model class of EDNs for practical application problems and the
constraints imposed by the CPTs.

8. Discussion

Our work marries frequent pattern mining with probabilistic modeling for analyz-
ing discrete event stream datasets. DBNs provide a formal probabilistic basis to
model relationships between time-indexed random variables but are intractable
to learn in the general case. Conversely, frequent episode mining is scalable to
large datasets but does not exhibit the rigorous probabilistic interpretations that
are the mainstay of the graphical models literature. We have presented the be-
ginnings of research to relate these two diverse threads and demonstrated its
potential to mine excitatory networks with applications in spike train analysis.

Two key directions of future work are being explored. The excitatory as-
sumption as modeled here posits an order over the entries of the conditional
probability table but does not impose strict distinctions of magnitude over these
entries. This suggests that, besides the conditional independencies inferred by
our approach, there could potentially be additional ‘structural’ constraints mas-
querading inside the conditional probability tables. We seek to tease out these
relationships further. A second, more open, question is whether there are other
useful classes of DBNs that have both practical relevance (like excitatory cir-
cuits) and which also can be tractably inferred using sufficient statistics of the
form studied here.
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