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Abstract
SIMD (Single Instruction, Multiple Data) engines are an essential
part of the processors in various computing markets, from servers
to the embedded domain. Although SIMD-enabled architectures
have the capability of boosting the performance of many applica-
tion domains by exploiting data-level parallelism, it is very chal-
lenging for compilers and also programmers to identify and trans-
form parts of a program that will benefit from a particular SIMD
engine. The focus of this paper is on the problem of SIMDization
for the growing application domain of streaming. Streamingappli-
cations are an ideal solution for targeting multi-core architectures,
such as shared/distributed memory systems, tiled architectures, and
single-core systems. Since these architectures, in most cases, pro-
vide SIMD acceleration units as well, it is highly beneficialto gen-
erate SIMD code from streaming programs. Specifically, we intro-
duce MacroSS, which is capable of performing macro-SIMDization
on high-level streaming graphs. Macro-SIMDization uses high-
level information such as execution rates of actors and communica-
tion patterns between them to transform the graph structure, vec-
torize actors of a streaming program, and generate intermediate
code. We also propose low-overhead architectural modifications
that accelerate shuffling of data elements between the scalar and
vectorized parts of a streaming program. Our experiments show
that MacroSS is capable of generating code that, on average,out-
performs scalar code compiled with the current state-of-art auto-
vectorizing compilers by 54%. Using the low-overhead data shuf-
fling hardware, performance is improved by an additional 8% with
less than 1% area overhead.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers ; C.1.2 [Processors Architec-
tures]: Multiple Data Stream Architectures—Single-instruction-
stream, multiple-data-stream processors (SIMD)

General Terms Design, Languages, Performance

Keywords Streaming, Compiler, SIMD Architecture, Optimiza-
tion

1. Introduction
Support for parallelism in hardware has greatly evolved in the past
decade as a response to the ever-increasing demand for higher per-
formance and better power efficiency in different application do-
mains. Various companies have introduced vastly differentsolu-
tions to bridge the performance and power gap that many appli-
cations are facing. These solutions include shared-memorymul-
ticore systems (Intel Core i7 [13]), distributed-memory multicore
processors (IBM Cell [11]), tiled architectures (Tilera [30]) and in
some cases a combination of these (Intel Larrabee [27]). These ar-
chitectures not only achieve higher performance and efficiency by
combining multiple cores into one die, but they are also equipped

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

with one or more single-instruction-multiple-data (SIMD)engines
to enable more efficient data-level parallelism support forseveral
important application domains such as multimedia, graphics, and
encryption. SIMD engines are not suitable for all applications, but
if an application can be tailored to efficiently exploit them, the per-
formance and power benefits can often be superior to the gains
from other architecture solutions. Therefore, SIMD engines like
Altivec [28], Neon [4], SSE4 [12] are now an essential part ofmost
architectures on the market. With SIMD width expanding in fu-
ture architectures, such as Intel’s Larrabee, under-utilization of the
SIMD units would translate into a loss in performance and also
power consumption.

Traditional sequential programming languages are ill-suited to
exploit parallel architectures because they have a single instruction
stream and a monolithic memory. Extracting task/pipeline/data-
level parallelism from these languages needs extensive andof-
ten intractable compiler analysis. Using techniques targeted for a
certain class of architectures is also undesirable becauseit limits
the flexibility andretargetabilityof the program in thateach pro-
gram needs to be rewritten and optimized for a specific architec-
ture. Data-parallel programming languages like OpenCL [19] and
CUDA [24] that target data-parallel architectures like GPUs expose
parallelism to the compiler, but in their current form fail to provide
retargetable code. The main problem with these languages isthat
explicitly-programmed parallelism in each application has to be
tuned for different targets based on the memory size and number
of processing elements. To deal with these problems, the stream-
ing programming paradigm provides an extensive set of compiler
optimizations for mapping and scheduling applications to various
parallel architectures ([9, 10]). The retargetability of streaming lan-
guages, such as StreamIt [29], has made them a good choice for
parallel system programmers.

Streaming language retargetability and performance benefits on
multi-core systems are mainly a result of having well-encapsulated
constructs that expose the parallelism and communication with-
out depending on the topology or granularity of the underlying
architecture. Currently, streaming compilers map the abundance
of task, pipeline, and data-level parallelism that exist within an
application into task-level parallelism across multiple cores but
not into data-level parallelism on SIMD engines. Mapping paral-
lelism onto multi-core provides reasonable speedup for streaming
applications but can also experience slowdown due to inter-core
communication overhead and high memory/cache traffic. Utilizing
SIMD engines is preferred, even for applications where multi-core
speedup is close to the theoretical maximum, because SIMD en-
gines can improve performance without increasing communication
overhead and memory/cache traffic. Exploiting SIMD engines, in
some cases, can achieve greater performance than multi-core while
using less area and power.

Extending the retargetability of streaming languages for multi-
core systems by adding effective SIMD support to their compilers
is desirable because of the variation in characteristics ofSIMD
accelerators between different standards, such as number of lanes,
memory interface, and scalar/vector transfers. Implementing and
porting applications between different architectures canbe difficult
and error-prone. Therefore, efficiently vectorizing stream programs
is essential to expand their applicability as a universal programming
paradigm for current and future single/multicore architectures with
various wide or narrow SIMD units.



To exploit SIMD engines, current streaming compilers trans-
late the streaming languages down to an intermediate language,
such C++ or Java, and then apply vectorization1 techniques to
generate SIMD-enabled code. The most popular techniques are
hand-optimizing the code and traditional auto-SIMDization [1–
3, 16, 23]. Both of these solutions have proven difficult to apply
in real world scenarios. Hand-optimizing the binary or sequential
code using architecture-specific instructions or intrinsic functions is
a time-consuming and error-prone task which results in an inflexi-
ble and unportable binary. Auto-vectorization is, at this stage, still
impractical and far from being able to universally utilize the various
kinds of available SIMD facilities. Also, performing SIMDization
on streaming applications after intermediate-level code generation
may result in an inefficient schedule and mapping of the stream
graph since the schedule is already fixed and information that is
available in the high-level stream graph is lost. Extracting this in-
formation from the generated code is predicated on performing
complex compiler analysis and transformations which are impos-
sible in some cases. In summary,lack of global knowledge about
the program, inability to adjust the schedule, and alsoloss of data
flow informationare the main reasons behind inefficiency of tradi-
tional auto-vectorization techniques in dealing with streaming ap-
plications.

In this work, we introduceMacroSS; a streaming compiler
for the StreamIt language that is capable of performing macro-
SIMDization on stream graphs. Macro-SIMDization uses high-
level information such as the valid set of schedules and commu-
nication patterns between actors to transform the graph structure,
vectorize actors of a streaming program, and generate intermediate
code (C++ in this work). Then, it uses the host compiler to com-
pile the generated intermediate code to binary for a specifictarget
processor. The information that is used by MacroSS is deduced
from the high-level program structure and is not available to low-
level traditional compilers that are used to compile the intermediate
code. As a result, MacroSS has a broader understanding of thepro-
gram structure and macro-level characteristics of the streaming
application that allows the compiler to utilize SIMD engines more
efficiently.

MacroSS is capable of performing single-actor, vertical, and
horizontal SIMDization of actors. Single-actor SIMDization tar-
gets each SIMDizable actor separately and transforms consecutive
sequential executions of a SIMDizable actor to data-parallel execu-
tions on the SIMD engine. Vertical SIMDization fuses a pipeline
of vectorizable actors to build a larger vectorizable actorand re-
duces the scalar-to-vector (packing)/vector-to-scalar (unpacking)
overhead that exists between actors. Our experiments show that
vertical SIMDization is applicable in many cases and can signif-
icantly improve performance by eliminating the need for trans-
lating back and forth between scalar and vector. Finally, horizon-
tal SIMDization takes a set of isomorphic task parallel actors and
replaces them with one or more data parallel actors. The choice
of which vectorization technique to apply to a stream graph is
based on the internal target-specific cost model and the structure
of the graph. After SIMDization, MacroSS is able to generate
architecture-specific intermediate code with SIMD intrinsics. This
intermediate code uses vector types and intrinsics specificto the
target architecture and can be compiled using the host compiler.

Packing of scalar values to a vector or unpacking a vector to
scalar values typically takes between a couple of cycles to tens
of cycles depending on the architecture. Since communicating
data between vectorized and scalar actors or vice versa needs
several packing/unpacking operations, MacroSS is equipped with
two techniques to optimize this costly communication overhead.
The first technique tries to replace the packing/unpacking oper-
ations with permutation instructions in actors that, during each
execution, read or write2n elements. In the second technique,
we introduce a low-overhead dynamic shuffler called the stream-

1 In this paper, we use SIMD(ize) and Vector(ize) interchangeably.

ing address generation unit (SAGU). This unit eliminates the need
to perform complicated address translations, data alignment, and
packing/unpacking of data as data crosses vector-scalar boundaries
of the graph.

To summarize, this paper makes the following contributions:

• Introduction of macro-level SIMDization techniques for stream-
ing languages: single actor, vertical and horizontal SIMD-
ization. Based on these techniques, MacroSS compiler for the
StreamIt language is implemented.

• Hardware and permutation-based tape optimizations for reduc-
ing the overhead of scalar-to-vector and vector-to-scalardata
conversions.

• Evaluation of MacroSS on various streaming workloads from
the StreamIt benchmark suite [29] on the Intel Core i7.

The rest of the paper is organized as follows. In Section 2,
the stream programming model and the input language (StreamIt)
are discussed. Macro-SIMDization and the related optimizations
in MacroSS are explained in Section 3. Section 4 includes a
brief discussion about the differences between traditional auto-
vectorization and macro-SIMDization. Experiments are shown in
Section 5. Finally, in Section 6, we discuss related works.

2. Stream Programming Model
With the ubiquity of multi-core systems, the stream programming
paradigm has become increasingly important. Exposed communi-
cation and abundance of parallelism are the key features making
streaming a flexible and architecture-independent solution for par-
allel programming. In this paper, we focus on stream program-
ming models that are based on synchronous data flow (SDF) mod-
els [17]. In SDF, computation is performed by actors, which are
autonomous and isolated computational units. Actors communicate
through data-flow channels (i.e. tapes), often realized as FIFOs.
SDF and its many variations expose the input and output processing
rates of actors, and in turn this affords many optimization opportu-
nities that can lead to efficient schedules (e.g., allocation of actors
to cores, and tapes to local memories).

For our purpose, we assume all computation that is performed
in an actor is largely embodied in aworkmethod. Theworkmethod
runs repeatedly as long as the actor has data to consume on itsinput
port. The amount of data that the work method consumes is called
the pop rate. Similarly, the amount of data each work invocation
produces is called thepushrate. Some streaming languages (e.g.,
StreamIt [29]) provide a non-destructive read which does not alter
the state of the input channel. The amount of data that is readin this
manner is specified by thepeekrate. An actor can also have aninit
method that is executed only once for the purpose of initializing the
actor before the execution of program starts.

We distinguish between stateful and stateless actors. A stateful
actor modifies its local state and maintains a persistent history of its
execution. Unlike a stateful actor, which restricts opportunities for
parallelism, a stateless actor is data-parallel in that every invocation
of the work method does not depend on or mutate the actor’s
state. The semantics of stateless actors thus allow us to replicate
a stateless actor. This opportunity is quite fruitful in scaling the
amount of parallelism that an application can exploit, as shown
in [9, 10].

We use the StreamIt programming language to implement
streaming programs. StreamIt is an architecture-independent stream-
ing language based on SDF. The language allows a programmer to
algorithmically describe the computational graph. In StreamIt, ac-
tors are known as filters. Filters can be organized hierarchically
into pipelines(i.e., sequential composition),split-joins (i.e., par-
allel composition), andfeedback loops(i.e., cyclic composition).
StreamIt is a convenient language for describing streamingalgo-
rithms, and its accompanying static compilation technology makes
it suitable for our work.
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Figure 1: This figure shows an example stream graph and also the interme-
diate code template for executing steady state schedule.Ri is the repetition
number for actori.

A crucial consideration in StreamIt programs is to create a
steady state schedule which involves rate-matching of the stream
graph. Rate-matching guarantees that, in the steady state,the num-
ber of data elements that is produced by an actor is equal to
the number of data elements its successors will consume. Rate-
matching assigns a static repetition number to each actor. In the
implementation of a StreamIt schedule, an actor is enclosedby a
for-loop that iterates as many times as its repetition number. The
steady state schedule is a sequence of appearances of thesefor-
loops enclosed in an outer-loop whose main job is to repeat the
steady schedule. The template code in Figure 1b shows the inter-
mediate code for the steady state schedule of the streaming graph
shown in Figure 1a.

3. Macro-SIMDization
The SIMDization path in MacroSS consists of several steps to
make the streaming graph more amenable to vectorization, tune the
steady state schedule, vectorize actors, and perform target-specific
code generation.
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Figure 2: Part (a) of this figure shows the stream graph used as a running
example in this paper. Part (b) shows the same stream graph after MacroSS
has SIMDized it.

MacroSS is equipped with three main techniques:Single-Actor,
Vertical, and Horizontal SIMDization. Single actor SIMDization
targets each stateless actor separately. The goal is to convert mul-
tiple (equal to SIMD-Width) consecutive executions of a SIMDiz-
able actor into one data-parallel execution on the target SIMD en-
gine. Single-actor SIMDization leaves the input and outputtapes

of a vectorized actor as scalar and does not convert the tape ac-
cesses to vector since complicated shuffle operations must be in-
troduced in the code in case vector tape accesses are used. The
scalar tapes introduce packing/unpacking overheads in each SIMD-
ized actor. Vertical SIMDization, which is a more optimizedway
of performing single-actor SIMDization on a pipeline of vectoriz-
able actors, reduces this overhead. It enables MacroSS to imple-
ment vector communication between the actors of a SIMDizable
pipeline. Both single-actor and vertical SIMDization try to con-
vert sequential execution of a single actor or a pipeline of actors
to data-parallel execution. The third technique, horizontal SIMD-
ization, converts task parallelism into data parallelism for a group
of isomorphic actors (stateful or stateless) in a stream graph. Hori-
zontal SIMDization is mainly beneficial in cases where a group of
several isomorphic actors are placed between a splitter andjoiner
and it is not possible to fuse these actors into one coarse actor to
perform vertical SIMDization. MacroSS finds the parts of a graph
that are suitable for this kind of SIMDization and converts the eli-
gible task-parallel actors into one or more SIMD actors.

The stream graph illustrated in Figure 2a is used as a running
example to explain different actions that the compiler takes to
perform macro-SIMDization. This graph shows the structureof
a streaming application with 10 unique actors. Each box shows
one actor in the program. Each edge in this graph indicates a tape
implemented using FIFO queues. The text written inside eachbox
shows how each actor interacts with its input and output tapes.
Each shaded box represents a stateful actor. On the right side
of each node, the repetition number of that node in the steady
state is shown. Even though MacroSS is able to target processors
equipped with SIMD engines with any SIMD width, for the sake
of presentation, the target hardware platform to which MacroSS
compiles is set to a core with SIMD width of four 32-bit data types,
and main memory line width of 128-bit. Figure 2b shows how
MacroSS vectorizes the streaming graph. Thesplit-join structure
is horizontally vectorized. The task-parallel actors between the
splitter and joiner are converted to SIMD actors and the splitter
and joiner are replaced with horizontal versions. ActorsD andE
are vertically fused and SIMDized. Single-actor SIMDization is
applied to actorG.

The details of how MacroSS performs SIMDization on a
streaming graph are explained in the following three subsections.
Next, in Section 3.4, the way MacroSS deals with SIMDizationof
tapes in the presence of architectural support is explained. Finally,
Section 3.5 explains the overall structure of the macro-SIMDization
technique in MacroSS.

3.1 Single-Actor SIMDization

Let SW denote the SIMD width of the target machine. The goal
of single-actor SIMDization is to runSW consecutive executions
of an actor in data-parallel fashion using the target SIMD engine.
As mentioned before, actors in a StreamIt program execute based
on a steady state schedule in which each actor is enclosed by a
for-loop that iterates as many times as its repetition number (see
Figure 1b). Conceptually, single-actor SIMDization is similar to
vectorizing the actor’s enclosingfor-loop whose trip count is the
repetition number of the actor. Therefore, MacroSS adjuststhe
repetition numbers of all actors to make them multiples ofSW
before single-actor SIMDization.

MacroSS finds the smallest factor that the repetition number
of each vectorizable actor should be multiplied by based on the
following equation:

M = Max{
LCM(SW, Ri)

Ri

, ∀ SIMDizable actorAi} (1)

Each term of theMax function finds the smallest factor that each
repetition number (Ri) should be multiplied by to make it a mul-
tiple of SW . After finding the minimum for each SIMDizable ac-
tor, the largest factor is chosen and all of the repetition numbers
are scaled based on that. According to Equation (1), the repetition



numbers of the graph in Figure 2a must be scaled by 2 (=M ) before
SIMDization.

Suppose that, after this adjustment of the repetition numbers,
the resulting repetition number of an actorA is m × SW . Then,
MacroSS transforms them × SW sequential executions ofA into
m sequential executions ofSW data-parallelA’s. Since several ex-
ecutions of the SIMDized actor will be running at the same time,
only stateless actors are eligible for single-actor SIMDization. This
kind of SIMDization can be applied to actorsD, E, andG in the
example shown in Figure 2a. The code in Figure 3 illustrates how
single-actor SIMDization is performed for actorsD andE. Ignor-
ing the tape accesses, it can be seen that the variables in theoriginal
actors are packed into vector variables and computation functions
are calculated on vector variables instead of scalar. Vector variables
are depicted byv suffix as intmp v[],t v andcoeff v[]. Ac-
torsD andE originally had repetition number of 12 and 8 and after
SIMDization are executed 3 times and 2 times since each execution
of the vectorized actors is in fact 4 data-parallel executions of the
original actors.

0    for (i : 0 to 1) {
1      t = pop();
2     tmp[ i]  = t * coeff[i];
3    }
4    r0 = sqrt(tmp[0] + tmp[1]);
5    push(r0);
6    r1 = sqrt(tmp[0] - tmp[1]);
7   push(r1);

0   x0 = pop();
1   x1 = pop();
2   x2 = pop();
3   result[0] = x1 * cos(x0) + x2;
4   result[1] = x0 * cos(x1) + x2;
5   result[2] = x1 * sin(x0) + x2;
6   result[3] = x0 * sin(x1) + x2;
7   for (i : 0 to 3) 
8      push(result[i] );

D (12)

E (8)

(a)

0     for (i : 0 to 1) {
1       t_v.{3} = peek(6);
2       t_v.{2} = peek(4);
3       t_v.{1} = peek(2);
4       t_v.{0} = pop();
5       tmp_v[i] = t_v * coeff_v[i];
6     }
7     r0_v = sqrt(tmp_v[0] + tmp_v[1]);

8     rpush(r0_v.{3}, 6);
9     rpush(r0_v.{2}, 4);
10   rpush(r0_v.{1}, 2);
11   push(r0_v.{0}, 0);

12   r1_v = sqrt(tmp_v[0] – tmp_v[1]);

13   rpush(r1_v.{3}, 6);
14   rpush(r1_v.{2}, 4);
15   rpush(r1_v.{1}, 2);
16   push(r1_v.{0});

0   x0_v.{3} = peek(9);
1   x0_v.{2} = peek(6);
2   x0_v.{1} = peek(3);
3   x0_v.{0} = pop();

4   x1_v.{3} = peek(9);
5   x1_v.{2} = peek(6);
6   x1_v.{1} = peek(3);
7   x1_v.{0} = pop();

8   x2_v.{3} = peek(9);
9   x2_v.{2} = peek(6);
10  x2_v.{1}= peek(3);
11  x2_v.{0}= pop();

12  result_v[0]= x1_v* cos(x0_v) + x2_v;
13  result_v[1]= x0_v* cos(x1_v) + x2_v;
14  result_v[2]= x1_v* sin(x0_v) + x2_v;
15  result_v[3]= x0_v* sin(x1_v) + x2_v;

16  for (i : 0 to 3) {
17     rpush(result_v[i].{3}, 12);
18     rpush(result_v[i].{2}, 8);
19     rpush(result_v[i].{1}, 4);
20     push(result_v[i].{0});
21  }

DV (3)

EV (2)

(b)

Figure 3: This figure shows how single-actor SIMDization transforms ac-
tors D andE into DV andDE . All the vector variables are concatenated
with v at the end. Part (a) of this figure shows the code for actorsD andE

in scalar mode. Part (b) illustrates the vectorized versionof actorsD and
E.

In the single-actor vectorization, the input and output tapes
of a vectorized actor are left as scalar in two cases. First, the
producer actor that fills the input tape of the vectorized actor is not
SIMDizable. Second, the producer actor is vectorizable butits push
rate is different from the pop rate of the consumer actor. Forsimilar
reasons, applying vectorization to the tape between the vectorized
actors and its consumer is not possible in some cases. Therefore,

the input and output tapes of a vectorized actor using single-actor
SIMDization are not vectorized and remain as scalar. In order to
read or write data elements in the correct order from the scalar input
or output tapes in the vectorized actor, the pops/peeks for reading
from the input tape and pushes for writing to the output tape must
be done in a scalar fashion.

Lines 1-4 ofDV in Figure 3b show the scalar tape read ac-
cesses. After single actor vectorization, the threepeek()s and
onepop() in lines 1-4 are induced from onepop() in the orig-
inal code, line 1 ofD in Figure 3a. Thepeek()s andpop()s
are reading the scalar input tape for 4 (=SW ) consecutive execu-
tions of the original actor and packing those four read elements
into a vector by writing each element to a lane of a vector variable.
The accesses to theith lane of a vector variable are indicated by
v.{i}. After a vector is formed from the scalar input tape in this

way, the vector will be used for the computation in the rest ofthe
actor’s code. When the actor wants to write data to the outputtape,
it unpacks the data to scalar variables and pushes them to thescalar
output tape (lines 8-11 ofDV in Figure 3b). In other words, after
each read and before each write to tapes, a SIMDized actor should
perform packing and unpacking operations.

Since the tapes are left as scalar and each tape read is replaced
by SW tape reads after single-actor SIMDization, it is necessaryto
perform strided reads to receive the right data element for each of
theSW pops. The stride for each set ofSW reads in a SIMDized
actor is equal to the pop rate in the original actor. For example in
Figure 3a, since the pop rate of actorD is 2, thepop() in line
1 is converted into 4 stride-two input tape reads as shown in lines
1-4 of Figure 3b. To read the scalar input tape in a non-destructive
way, peek() is used instead ofpop() for the first 3 reads, and
thepop() is used only for the last read which also adjusts the read
pointer of the input tape. For the same set of reasons, the scalar
output tape is written with a stride equal to the push rate of the
original actor. In Figure 3b, lines 8-11 unpack vector variabler0 v
and write each element to the scalar output tape with a strideof 2,
since the push rate of the original actor,D, is 2. The first 3 writes
are done usingrandom access pushoperations that do not move
the write pointer of the tape (lines 8-10 and 13-15). Random access
push operation are indicated byrpush(data, offset) in the
code. The first argument ofrpush() is the data to write and the
second argument is the offset from the write pointer of the output
tape to which the data will be written. The last write of each set of
writes is performed using a normal push operation which updates
the write pointer of the tape.

In Figure 3, only the code for thework functions ofD andE
is shown and theinit functions are omitted. Actual vectorization of
an actor’sworkandinit method comprises of two parts: identifying
variables and constants to be vectorized in an actor and rewriting
the actor by replacing the vectorized variables with vectoraccesses
and fixing the tape accesses. Identifying variables and constants to
be vectorized can exploit the fact that the tape reads are thesource
of data for the variables used in the computation assignments inside
an actor. A variable definition (i.e.def) originating for a pop/peek
is marked to be vectorized. For other assignment statements, the
def is identified as vector if its right hand side contains all variable
uses marked as a vector. Also, a variableusethat is used with other
vector variableuses on the right hand side of a statement is marked
as a vector. Similarly, constants used with other vector variableuses
are marked to be vectorized as well. For example, in line 2 of actor
D in Figure 3a,tmp[] is identified as a vector because the right
hand side variable,t, is written to bypop in line 1. After that,
coeff[] is also detected as vector because oft on the right hand
side. After identifying the variables, the statements are rewritten
using the vector constructs. Also, the tape accesses are replaced
with strided accesses at this point.

Single-actor SIMDization is not applicable to all the actors in
a stream graph. Actors with mutable state (i.e. stateful) are ex-
cluded from single-actor SIMDization because it is not possible
to run multiple executions of them in parallel. Splitters and joiners



at this point are also excluded since they consist of only tape ac-
cess operations without any substantial computation. Actors with
function calls that are not supported by the SIMD engine are not
SIMDized either. Input-tape-dependent control flow (i.e.if state-
ments with pop-dependent conditions) or memory accesses (i.e.
pop-dependent array subscripts) can also prevent MacroSS from
performing single-actor SIMDization. The way MacroSS handles
the input-tape-dependent control-flow structures or memory ac-
cesses is by switching to scalar mode (unpacking) before theinput-
tape-dependent structure and switching back to vector modeafter
the pop-dependent structure is finished (packing). MacroSSuses
an internal cost model to decide if SIMDizing an actor with input-
tape-dependentif or for-loopstructures is beneficial or not.
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(a)

0    for (work_counter0: 0 to 2) {
1      for (i : 0 to 1) {
2        t_v.{3} = peek(18);
3       t_v.{2} = peek(12);
4        t_v.{1} = peek(6);
5      t_v.{0} = pop();
6        tmp_v[i ] = t_v * coeff_v[i];
7      }
8      r0_v = sqrt(tmp_v[0] + tmp_v[1]);
9      vpush(r0_v);
10     r1_v= sqrt(tmp_v[0] – tmp_v[1]);
11     vpush(r1_v);
12   }

14   for (work_counter1: 0 to 1) {
15     x0_v= vpop();
16     x1_v= vpop();
17    x2_v= vpop();

18     result_v[0] = x1_v* cos(x0_v) + x2_v;
19    result_v[1] = x0_v* cos(x1_v) + x2_v;
20     result_v[2] = x1_v* sin(x0_v) + x2_v;
21    result_v[3] = x0_v* sin(x1_v) + x2_v;

22     for (i : 0 to 3) {
23        rpush(result_v[i].{3}, 24);
24       rpush(result_v[i].{2}, 16);  
25        rpush(result_v[i].{1}, 8);
26        push(result_v[i].{0} );
27     }
28   }

[3D 2E](1)

In
ner A

ctor D
Inner A

ctor E

(b)

Figure 4: Part (a) of this figure shows the stream graph in Figure 2a after
vertical fusion ofD andE. Part (b) illustrates the vectorized code for the
fused actor,3D 2E.

3.2 Vertical SIMDization

Each actor vectorized by single-actor SIMDization performs pack-
ing and unpacking at points where tape reads or writes are per-
formed for communicating with producer and consumer actors.
The overhead introduced by the packing and unpacking opera-
tions can negatively affect the performance gains, even resulting
in slowdowns in some cases. Vertical SIMDization is introduced in
MacroSS to overcome this problem by merging vertically aligned
vectorizable actors and reducing the number of packing and un-
packing operations. In vertical SIMDization, pipelines ofvector-
izable actors are detected and transformed into a single actor. As
long as the original actors in a pipeline are vectorizable, and no ac-
tor performs peek operations except the first and the last actor in the
pipeline, the resulting coarse actor is guaranteed to be SIMDizable
since the transformation does not introduce state or any other con-
struct that may prevent SIMDization. The original actors, which are
encapsulated in the new coarse node, are calledinner actors. Fig-
ure 4 shows the stream graph after applying vertical fusion to nodes
D andE and the resulting coarse actor3D 2E.

After vertical fusion, MacroSS adjusts the repetition numbers
of all actors to guarantee that they are all the smallest possible
multiples of SIMD width,SW . This adjustment is done in two
steps. First, the repetition numbers of inner actors and thecoarse
actor are changed. The repetition number of each inner actorwill
be its original repetition number multiplied byM

′

SW
. M ′ is found

by plugging the repetition numbers of the inner actors into Equa-
tion (1). The repetition number of the coarse actors is set toSW

M′ .

This guarantees that the repetition number of the coarse actor is set
to the largest possible multiple or divisor ofSW . After doing this
step for each vertically fused SIMDizable actor, MacroSS applies
Equation (1) to the entire graph to ensure that repetition number
of all SIMDizable actors, including the coarse actor, is multiple of
SW . In general, applying this method guarantees that the repeti-
tion vector of the graph is scaled by the smallest possible number.
Using this method, the inner actors forD andE in 3D 2E have
repetition numbers of 3 and 2, while the new node3D 2E has a
repetition number of 4. The pop rate of3D 2E is set to 6, which
equals the original pop rate of the first inner actor (D) multiplied
by the repetition number of that inner actor. Similarly, thepush rate
of 3D 2E is set to 8. Note that the total number of times thatD
andE run after the fusion is exactly equal to the number of times
before applying fusion.

The graph resulting after vertical fusion will have coarsernodes.
The communication between the inner actors of a coarse actoris
done through internal buffers (i.e. arrays) instead of global tapes.
Transferring data between the inner nodes can be completelydone
using vectors since packing and unpacking are needed only during
tape reads (pops) and writes (pushes) of the new coarse node at
the boundaries. The main reason behind this is due to the change
in the relative execution order ofD andE. This will be illustrated
shortly using an example. At this point, single-actor SIMDization
can be applied to the vertically fused actor. The code in Figure 4b
shows how the SIMDization is applied to the new actor. Since actor
3D 2E has 6 pops and 8 pushes, the strides for accessing input
and output tapes of3D 2E are set to 6 and 8. These reads and
writes from input and to output tapes are performed, as described
in Section 3.1, usingpeek, pop and rpush operations at the
beginning and end of3D 2E (lines 2-5 and 23-26).

The reads and writes between inner actors are handled differ-
ently. The previous scalar tape writes ofD in lines 8-11 and 13-
16 of DV in Figure 3b are now written using vector writes as
shown in line 9 and 11 of Figure 4b. Vector variabler0 v is writ-
ten to the internal vector buffer betweeninnerD andinnerE using
vpush(r0 v). Also, the scalar tape reads ofE in lines 0-11 ofEv

of Figure 3b are replaced with reads from the internal vectorbuffer
as in lines 15-17 in3D 2E. Compared to the code generated af-
ter SIMDizingD andE separately, the vertical SIMDization tech-
nique in MacroSS eliminates 24 unpacking ([D’s repetition num-
ber] * [ D’ push rate] * [SIMD width]) and 24 packing ([E’s repe-
tition number] * [E’s pop rate] * [SIMD width]) operations.

Figure 5 shows the details of how vertical SIMDization changes
the execution of a stream graph and eliminates the packing/unpack-
ing operations between the fused inner nodes. Part (a) of this figure
shows how actorsD andE interact with each other in scalar mode.
Since D has a push rate of 2 andE has a pop rate of 3, 12
invocations of actorD feeds 8 invocations of actorE (Di andEi

denoteith executions ofD andE, respectively). In other words,
every 3 consecutive executions ofD produce enough data forE
to consecutively execute 2 times. The 24 elements produced by D
are written to the tape in order and read byE in the same order.
After performing single-actor SIMDization, every 4 consecutive
invocations ofD is merged in actorDV . The first execution of this
new actor is similar to executingD0, D1, D2, andD3 in parallel
as shown in Figure 5b. Since every 3 consecutiveDs feeds 2Es,
MacroSS needs to convert the vectors to scalars before each set of
scalar strided writes to the output tape ofD and then form vectors
after each set of scalar strided reads inE to guarantee thatE is
receiving its data elements in the correct order. Parts (c) and (d)
of Figure 5 show the order that the pushes inDV write and pops
in EV read the data elements. If the pushes inD were replaced
by a vector push, then elements 0, 2, 4, and 6 would be written to
the first row in memory. In that caseE will receive its input in the
wrong order.

Vertical SIMDization applied toD and E replaces these 2
actors with actor3D 2E. After vectorizing this new actor, every
4 consecutive executions of3D 2E will be merged together as
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Figure 5: Part (a) shows scalar execution of actorsD andE. Part (b) shows the execution ofD andE after performing single-actor SIMDization. Part (c)
illustrates the order that data elements are written to the tape in the main memory fromD. The elements with the same colors are written in one set of push
operations. Part (d) is similar to (c) but for the reads in actor E. Part (e) shows how vertical SIMDization changes the execution order of actorsD andE.
Parts (f) and (g) illustrate the order that the elements are written to and read from the internal buffer between the inneractorsD andE.

shown in Figure 5e. Since each invocation of this actor executes
threeDs first (for-loop in line 0 of Figure 4b) and then twoEs (for-
loop in line 14 of Figure 4b), running 4 of them in parallel will
result in first running{D0, D3, D6, D9}, {D1, D4, D7, D10},
{D2, D5, D8, D11} and then{E0, E2, E4, E6} and{E1, E3,-
E5, E7}. Therefore, because theDs are generating their outputs
in the same order as theEs need them, the scalar tape between
original D and E can be changed to vector buffers and extra
packing/unpacking operations can be deleted. Figures 5f and 5g
show how the reads and writes are done between internalDs and
Es. As shown, the vertical SIMDization has eliminated the need
to perform packing and unpacking betweenD andE. In summary,
vertical fusion of vectorizable actors into a new coarse actor always
results in less packing and unpacking operations because ofthe
execution reordering of the inner actors.

3.3 Horizontal SIMDization

As mentioned earlier, only actors without mutable state canbe
SIMDized over using single-actor and vertical SIMDization. Since
an invocation of a stateful actor depends on the previous invocation
of the actor, different invocations cannot be parallelized. Due to the
same reason, the existence of a stateful actor within a pipeline of
actors or an actor whose peek rate is greater than pop rate prevents
MacroSS from performing vertical SIMDization because the actor
resulting after vertical fusion will be a stateful actor.

Horizontal SIMDization is an alternative approach taken by
MacroSS to vectorize a set of task-parallel isomorphic actors when
vertical and single-actor SIMDization are not applicable or result in
inefficient SIMD code. First, Horizontal SIMDization finds task-
parallel isomorphic actors by investigating eachsplit-join (i.e. a
subgraph containing a splitter and a joiner and all task-parallel ac-
tors between them). After finding the candidates, MacroSS hori-
zontally SIMDizesSW (SIMD Width) isomorphic actors by, con-
ceptually, executing them together side by side. Input (output) tapes
of SW actors in a SIMDized set are also SIMDized, making each

scalar tape a lane of aSW -wide SIMDized tape. Each actor in a
SIMDized set still works on its own tape by accessing each lane
of the SIMDized tape. Horizontal SIMDization is able to vectorize
stateful actors as well as stateless actors because the state variables
are kept in different vector lanes and updated separately similar to
the non-vectorized case. The repetition number of the actors in-
volved in this kind of SIMDization, unlike vertical and single-actor
SIMDization, is not changed and can be numbers that are not mul-
tiples ofSW .

Horizontal SIMDization mainly targets task-parallelisomorphic
actors insplit-joins. Two actors are called isomorphic if they have
identicalwork and init functions with similar or different constant
literals. A set ofSW isomorphic actors can be horizontally SIMD-
ized as long as the following conditions are true: (1) all of them
have the same repetition numbers, (2) all of them have the same
pushandpoprates, and (3) all of them are at the same level in a set
of pipelines that are children of asplit-join. ActorsB0 to B3 and
alsoC0 to C3 are considered isomorphic in Figure 2a.

Figure 6a shows asplit-join subgraph of the stream graph in
Figure 2a in more detail. Waves are used for depicting isomorphic
actors due to the lack of space. Shaded actorsC0 to C3 are stateful
and can not be vectorized using any of the previously mentioned
techniques. Although actorsB0 to B3 are stateless, fusing each
of them with theCi right after them prevents MacroSS from per-
forming vertical SIMDization on the fused actor. Horizontal SIMD-
ization can overcome this problem by forming one SIMDized actor
out of actorsB0 to B3 and another SIMDized actor out of actors
C0 to C3 as shown in Figure 6b. Note that although the constants
in line 6 of Bis are different in each actor, theBis are still consid-
ered isomorphic because the constants can be vectorized together
as shown in line 1 of actorBV in Figure 6b.

Before horizontal vectorization, each pipeline ofBi andCi ac-
tors works on a separate set of scalar tapes highlighted by different
shades in Figure 6a. Horizontal vectorization SIMDizes this set of
four scalar tapes into one vector tape (See Figure 6b).vpop() in



0 work {
1  for(i: 0 to 2){
2       a0 = pop();
3       a1 = pop();
4       a2 = pop();
5       a3= pop();
6       r = (a0*a1 + a2*a3) / 5;
7       push( r ); 
8   }
9 }

0   int state[31];
1   int place_holder= 0;

2 init{
3   for(i: 0 to 31)
4 state[place_holder] = 0;
5 }

6 work {
7 push(state[place_holder]); 
8 state[place_holder] = pop();
9 place_holder++;
10 }

B0

C0

B2 B3

Splitter (4, 4, 4, 4)

C1 C2 C3

Joiner (1, 1, 1, 1)

... ... ... ...

......

... ...

0 work {
1  for(i: 0 to 2){
2       a0 = pop();
3       a1 = pop();
4       a2 = pop();
5       a3= pop();
6       r = (a0*a1 + a2*a3) / 6;
7       push( r ); 
8   }
9 }

...

... ...

...

B1

(a)

0   vector int state_v[31];
1   int place_holder= 0;

2 init{
3     vector int tmp_v= {0,0,0,0}; 
4   for(int i:  0 to 31) 
5 state_v[place_holder] = tmp_v;
6 }

7   work {
8 vpush(state_v[place_holder]); 
9 state_v[place_holder] = vpop();
10 place_holder++;
11 }

0  work {
1 vector const_v= {5, 6, 7, 8};
2    for(i: 0 to 2){
3     a0_v= vpop();
4     a1_v= vpop();
5     a2_v= vpop();
6      a3_v= vpop();
7      r_v = (a0_v*a1_v+a2_v*a3_v) / const_v;
8      vpush(r_v);
9     }
10 }

BV

CV

HSplitter (4)

HJoiner (1)

... ... ... ...

... ... ... ...

... ... ... ...

(b)

Figure 6: Part (a) and (b) show the graph before and after horizontal SIMDization, respectively.

line 3 of BV reads 4 data items at once from the vectorized input
tape. The lanes of this vector tape correspond toB0, B1, B2 andB3

respectively. Similarly,vpush() in line 8 pushes 4 data items at
once to the vectorized output tape. Since tapes are also vectorized,
no non-unit strided accesse usingpeek() orrpush() is needed.
Horizontally vectorizing tapes can greatly improve the final perfor-
mance by replacing the scalar tape accesses with vector accesses
and, therefore, better utilizing the memory bandwidth. Actors B0

to B3, originally had 96 pops (= [pop rates: 12]× [repetition num-
bers: 2]× [SIMD with: 4]) which is reduced to 24 vector pops
(= [vector pop rates: 12]× [repetition number: 2] ) after SIMD-
ization. Similarly, the number of pushes inBis decreases to 6 vec-
tor pushes from 24 pushes, andCi’s 24 pops (pushes) drops to 6
vector pops (pushes). In general, the number of tape accesses in
the actors between a horizontally vectorizedsplit-join structure is
always reduced by factor ofSW .

During horizontal SIMDization, MacroSS replaces the original
splitter and joiner withhorizontal splitter (HSplitter)andhorizon-
tal joiner (HJoiner). In a horizontally vectorized structure, tran-
sitions between a scalar tape and vector tape occurs within the
HSplitter and HJoiner. The HSplitter reads from a scalar tape and
performs packing operations and writes them to its vectorized out-
put tape. The HJoiner reads vector data types from its input and
converts them to scalar before writing them to its scalar output
tape. For example, in Figure 6, before SIMDization, the splitter ex-
ecutes 6 times and, during each execution, it conducts 16 pops from
its scalar input tape and distributes the popped values between its
scalar output tapes in a round-robin fashion using scalar push op-
erations. After horizontal vectorization, the new HSplitter still ex-
ecutes 6 times and it performs 16 pops from its scalar input tape
each time it executes. It forms 4 vectors out of the 16 data elements
using packing operations and finally does a vector push to itsvector
output tape. The HJoiner is formed in a similar way, but instead of
packing, it performs unpacking on the vector data it reads from its
input tape.

Horizontal vectorization of an actor’swork and init method
comprises of two parts similar to single-actor SIMDization: iden-
tifying the vectors and rewriting the code for the actor. First,
MacroSS needs to identify variables and constants for vectoriza-

tion. The destination of pop and peek operations are marked as
vector variables. Also, if the value of a constant in an actoris
different from that of a matching constant in another isomorphic
actor, the constant should be raised to a vector constant that con-
tains the values of a matching constant ofSW actors. The vector
variableconst v in line 1 of BV in Figure 6b is created from 4
different constants inB0 to B3. The identified vector variables and
constants are used as the seeds for marking the other vector vari-
ables similar to single-actor SIMDization. After marking is done,
MacroSS rewrites the horizontally SIMDizable actors usingthe
marked vectors and changes their input and output tapes to vector
tapes. Finally, the splitter and joiner in the horizontallySIMDizable
split-join are replaced with horizontal splitter and joiner actors.

In summary, horizontal SIMDization is different from vertical
and single-actor SIMDization in several ways. First, horizontal
SIMDization can be applied only to isomorphic actors. Second,
unlike other techniques used by MacroSS, it can handle stateful
actors. Third, horizontal SIMDization does not affect the latency of
the graph because there is no need to scale the repetition numbers
of the actors. Finally, using horizontal vectorization, MacroSS can
transform the existing task-level parallelism among the isomorphic
actors to data-level parallelism.

3.4 Architecture Support for Tape SIMDization

In both single-actor and vertical SIMDization techniques,tape ac-
cesses are left as scalar. Converting these accesses to SIMDac-
cesses results in reading or writing the data elements in an order
which is different from the scalar execution. Vertical SIMDization
reduces this overhead by replacing the scalar tape accessesbetween
a pipeline of SIMDizable actors that are fuse-able with vector ac-
cesses to an internal buffer. In this section, two techniques that
MacroSS uses to optimize the scalar tape accesses are discussed.
The first technique uses a permutation based approach to target the
overhead of performing packing/unpacking whenever data iscom-
municated between scalar and vector parts of the stream graph. The
second technique shows how MacroSS can simplify the read and
write accesses of data that moves between scalar and vector actors
in the presence of a unit called the streaming address generation
unit (SAGU).
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Figure 7: This graph shows how 16 stride-4 tape reads in an actor are
replaced with 4 vector pops and 8 permutation instructions

Permutation-based Tape Accesses: The packing/unpacking
overhead exists between scalar and vector actors, such asF and
G, in the SIMDized graph in Figure 2b. MacroSS optimizes these
data conversions for actors whose push or pop counts are pow-
ers of 2 using two general architecture independent permutation
operation:extract even(V1, V2, R), extractodd(V1, V2, R). Theex-
tract even( extractodd) operation takes two input vectors,V 1 and
V 2, and constructs a third vector,R, using even (odd) positions
of the inputs. This kind of permutation is supported by almost all
SIMD standards (SSE, Altivec, Cell SPU, Neon).

Assume an actor(A) hasXr pop accesses without any peeks.
Each pop access is a load operation followed by an add to adjust the
position of the read pointer. After single-actor vectorization onA,
the stride for scalar pop accesses will beXr. For example, actorD
in Figure 2a originally hadXr = 2 pops and after SIMDization the
stride is 2 as well. This stride guarantees that each set of scalar pops
reads the right elements from the input tape. If a load instruction
takesCr cycles, ignoring the add operations, popping the elements
from the input tape in actorAv, actorA after SIMDization, takes
Cr × Xr × SW cycles. The other way that MacroSS can perform
the same pop operations is to doXr vector loads, and then perform
a set of permutations to form vectors identical to the case that the
pops were in strided scalar format. MacroSS finds the minimum
number ofextract odd and extractevenoperations to shuffle the
elements in the vectors after the vector pops. An example of this
is shown in Figure 7. Assume that MacroSS is trying to SIMDize
an actor with 4 pop operations. Instead of performing 16 strided
pop/peek operations, MacroSS can generate 4 vector pops andthen
use 8 permutation operations (4extract evenand 4extract odd) to
form the strided pattern. This reduces the 16 scalar load operations
to 4 vector load operations and 8 permutations. We ignore the
savings due to removal of address generation operations.

In general, shuffling the elements ofXr vectors to get to the
same number of vectors each with elements strided at distance
of Xr from the original vector needsXrlg2Xr extractodd and
extract evenoperations [22]. The same formula can be used to find
the number of permutations that are needed to replace scalarpush
or peek operations with their vector equivalent. MacroSS compares
the overhead of performing scalar tape accesses and vector tape
accesses to identify the cheaper solution. After finding thecheaper
solution, MacroSS transforms the tape accesses. The best solution
can be different based on the SIMD width, tape access strides,
permutation cost, and also read/write access latencies.

Streaming Address Generation Unit: Exploiting permutation-
based tape accesses becomes harder when the push and pop rates
are not powers of two or the underlying architecture does not
support the needed permutation instructions. In these scenarios,
replacing the strided scalar push or pop operations with vector
versions in a vectorized actor forces subsequent scalar consumer or
producer actors to perform complex address calculations toaccess
the tape in the correct order. Although replacing the scalaraccesses
with vector accesses reduces the number of memory accesses and
address generation operations in the vector actor, the overhead
introduced due to additional address calculation operation in the
direct consumer or producer is non-trivial. The code in Figure 8
shows how the address calculation should be performed in scalar
actors that are connected to vectorized actors in which all the
pushes are replaced with vector pushes. ThePushCntis set to the
push rate of the vectorized actor. The overhead introduced by this

code on the Intel Core i7 is at best 6 cycles on top of the memory
access overhead assuming multiple back-to-back pop operations.

0   if (PushCnt - (BaseCntr-1) == 0 ) { 

1      BaseCntr = 0;

2      if (StrideCntr - (SIMD_SIZE-1) == 0) {

3         StrideCntr = 0;

4         OffsetAddr = OffsetAddr + (PushCnt << LOG2_SIMD));

5      } else { StrideCntr++; }

6   } else { BaseCntr++; }

7   OffsetValue = BaseCntr << LOG2_SIMD;

8   OffsetValue += StrideCntr;

9   OffsetValue += OffsetAddr;

10  ResultAddr = OffsetValue + BaseAddr; 

Figure 8: This code shows the address calculation in a scalar actor which
is the consumer of a vectorized actor with vector pushes.

To deal with this problem, we developed the Streaming Address
Generation Unit (SAGU). The SAGU is able to reduce the over-
head cost of address calculation in a scalar actor that is connected
to a vectorized actor, in which all the scalar strided tape accesses
are replaced with vector version, through a special functional unit
that loads configuration data (push or pop count) and holds inter-
nal state allowing for quick generation of the required addresses.
Figure 9 shows the hardware of the SAGU. Conceptually, when
vector pushes (pops) occur the writes (reads) are row based but the
reads (writes) have to access tape in a column-wise order to ac-
cess the data elements in correct order. TheStride Counterpoints
to the column that needs to be accessed. TheBaseCounterregister
points to the row location in the current column that contains the
data element needed by the actor. TheOffsetAddressregister off-
sets theBaseAddressto the next set of vector data elements. Each
scalar pop increments theBaseCounter. After the number of pops
equals to thePushCount, theStride Counterincrements in order
to access the next column and theBaseCounteris reset. When the
StrideCounterequals theSW, the Stride Counter resets and the
OffsetAddressincrements. The same operation occurs when scalar
pushes are used. When designing the SAGU, we found that the
largest push/pop count for SIMD to scalar conversion acrossall the
kernels was 16K. With a SIMD width of 4, this allows us to use
only 16-bit calculations throughout the unit except when weadd
the results to the base address register to generate the effective ad-
dress. Most of the operations occur in parallel making the critical
path two 16-bit operations and the 64-bit base address calculation.
When optimized, we find that this unit will not be on the critical
path allowing the address calculation to take the same amount of
time as other address calculation instructions.
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Figure 9: This figure shows the hardware for the SAGU.

To use the SAGU, only minor modification to the ISA or
hardware needs to be done. Many ISAs like Intel x86 [13] and
ARM [26] support multiple addressing modes which can perform
operations on multiple address registers. There are available ad-
dressing mode configurations in these ISAs that we can modifyto



support the SAGU addressing mode. Effectively, this would be like
performing a post-increment on an address register which would
be transparent to the programmer and architecture. The alternative
to this technique, if the ISA cannot support the addressing mode,
would be to add another opcode to setup the SAGU and to in-
crement it. Before starting each scalar actor, we would perform a
SAGU setup and write the pop or push count. This would reset the
internal counters to 0. After performing a pop or push operation, on
the address register we would execute a SAGU increment to update
the value to the next memory location. This would only require 2
additional instructions to the ISA and introduce 1 extra instruction
for each memory operation in the program which would be far less
than directly calculating the address. Because of the low cost2 of
the SAGU and the speed of the calculation, multiple units canbe
implemented if needed with little to no overhead.

3.5 Implementation

Algorithm 1 Macro SIMDization Steps
Input: Stream GraphG, Architecture DescriptionA

{Apply prepass classic and streaming optimizations and alsoperform
scheduling on the graph.}

1: Prepass-Optimizations (G);
2: Prepass-Scheduling (G);

{Find the segments suitable for vertical/horizontal SIMDization.}
3: (GV , GH ) := Find-Vectorizable-Segments(G, A.CostModel);

{Adjust the repetition numbers and perform vertical SIMDization on
the specified segments.}

4: Adjust-Repetition-Numbers (G);
5: Vertically-SIMDize (GV , A.CostModel);

{Perform horizontal SIMDization after vertical is finished.}
6: Horizontally-SIMDize (GH , A.CostModel);

{Apply Permutation-based optimizations and exploit SAGU.}
7: Optimize-Tapes (G, A.CostModel);

{Generate intermediate code for the specified target.}
8: Emit-Intermediate-Code (G, A);

MacroSS’s SIMDization algorithm can be divided into sev-
eral distinct phases. In this section, a high-level overview of these
steps are given. Algorithms 1 illustrates the overall ordering of
the macro-SIMDization phases in MacroSS for vertical, horizontal
SIMDization, and tape SIMDization. The remainder of this section
explains each of the phases and their relationship to one another.

Prepass Optimizations and Scheduling: MacroSS applies
a set of classic and streaming optimizations and also performs
scheduling before starting the macro-SIMDization. The classic and
streaming optimizations mainly improve the overall performance
of the graph. The streaming optimization in some cases result in
more efficient macro-SIMDization. For example, static parameter
propagation, which propagates the values of the static read-only
variables of an actor to all of its instances, helps detection of iso-
morphic actors. The steady state scheduling of the stream graph is
also performed as a prepass.

Identify Vectorizable Segments: In this phase, MacroSS ex-
amines the stream graph and finds the segments of the graph that
are suitable for vertical and horizontal SIMDization. For vertical
SIMDization, MacroSS starts from a single vectorizable actor. This
actor is added to an empty pipeline of vectorizable actors. Then
MacroSS examines the consumer of that actor. If the consumeris
also vectorizable and can be fused with the original actor with-
out introducing state, it is added to the pipeline. This is repeated

2 Area overhead is less than 1% of the area of the Core i7. This was
measured by synthesizing the hardware model.

until the pipeline can not be extended anymore. At this point, all
the actors in the pipeline are marked for vertical vectorization and
added toGV . Identifying horizontally vectorizablesplit-joins starts
by testing the eligibility of a givensplit-join based on the definition
given in Section 3.3. If asplit-join passes the eligibility test it will
be added oGH .

One actor may be a member of bothGV and GH . Since
MacroSS applies one form of SIMDization to any actor, it uses
its cost model to choose what type of SIMDization (vertical or hor-
izontal) is more effective for the actors that are in bothGV and
GH . At the end, MacroSS guarantees that the intersection of the
setsGV andGH is empty.

Vertical SIMDization and Repetition Number Adjustment:
After finding the segments suitable for horizontal and vertical
SIMDization, MacroSS adjusts the repetition numbers of theac-
tors as described in Section 3.2. Then, the actual vertical vector-
ization is performed. This parts fuses the pipelines of vectorizable
actors (GV ) found in the previous steps and changes them to vec-
torizable actors. Single-actor SIMDization is done as a special case
of vertical SIMDization when a pipeline of vectorizable actor con-
tains only one actor.

Horizontal SIMDization: After vertical SIMDization, the
steady state repetition numbers are finalized.Split-joins eligible
for horizontal SIMDization are passed to this phase and MacroSS
changes the splitter and joiner actors to their horizontal versions.
The statements in the task-parallel actors between the splitter and
joiner are also merged to form vector instructions.

Tape Optimization: After vertical and horizontal vectorization,
MacroSS searches for opportunities to perform tape optimization
that are discussed in Section 3.4. This phase basically findseligible
set of reads or writes. Then, if it is cheaper, MacroSS replaces
them with vector read or writes plus permutation instructions. If
the target architecture is equipped with SAGU, MacroSS looks for
cases where it can be exploited.

Code Generation: The final phase of macro-SIMDization deals
with intermediate code generation. In this phase, MacroSS maps
the internal stream representation to the target specific code (C++
in this case) and uses available architecture-dependent intrinsics to
better utilize the target SIMD engines.

4. Comparison To Traditional SIMDization
Since MacroSS generates the intermediate code in a conventional
imperative language, such as C or C++, traditional vectorization
techniques can also be a viable approach to perform SIMDization
on streaming applications. Traditional vectorization techniques
mainly consist of inner-most loop, outer loop, and superword level
parallelism extraction [1–3, 16, 23]. In this section, we try to com-
pare MacroSS’s graph-level SIMDization to traditional techniques
and highlight the differences.

As streaming code gets converted to imperative intermedi-
ate code, it gets harder to extract the high-level information that
is available at the graph-level. As a result, performing effective
SIMDization becomes very difficult for some actors. Second,in
some cases, traditional SIMDization is predicated on having com-
plicated, carefully phase-ordered compiler analysis thatneeds the
code in a certain templated form.

One of the points that makes MacroSS’s SIMDization more
powerful than any other vectorization technique on intermediate
codes is the ability to identify isomorphic actors and perform hor-
izontal SIMDization. At the graph level, MacroSS knows the rela-
tion between the actors and can detect the task-parallel isomorphic
actors by doing a graph traversal. Performing the same task on the
intermediate code is complicated. To find the isomorphic actors, the
auto-vectorizer needs to extract the task graph and then compare the
source code for the actors. Both of extracting the task graphand
matching source code can be obfuscated by other optimizations.

The other issue that may disable auto-vectorization of the inter-
mediate code is inability to adjust the schedule of the task graph.
One of the main parts of the schedule is the repetition numbers.



4

GCC + Auto Vectorize GCC + Macro SIMD GCC + Macro SIMD + Autovectorize

3

3.5

2

2.5

u
p

 (
x

)

1.5

2

S
p

e
e

d

0.5

1

0

(a)

3.5

ICC + Auto Vectorize ICC + Macro SIMD ICC + Macro SIMD + Autovectorize

2 5

3

2

2.5

u
p

 (
x

)

1

1.5

S
p

e
e

d

0.5

1

0

(b)

Figure 10: In this graph the performance benefits of applying traditional auto-vectorization, macro-SIMDization, and both of them together are compared.
Part (a) shows the speedups when GCC is used as the intermediate compiler. Applications in part (b) are compiled with Intel Compiler (ICC).

MacroSS can intelligently scale the repetition numbers as needed
by the SIMDization. Since the repetition numbers affect many parts
of the generated code such as buffer (i.e. tape) allocation,and for-
loop boundaries, they are not easily possible to adjust after genera-
tion of intermediate code.

Vertical SIMDization is another technique that MacroSS uses to
perform vectorization. Even though performing vertical fusion on
selected actors is in theory possible on intermediate code,it needs
complex transformations and compiler analysis such as memory
aliasing analysis, loop distribution, and loop relation analysis.
MacroSS does not need these complex transformations and analy-
ses since, at the graph-level, aliasing information and therelation
between across is already embedded.

Although we are not proposing any universal partitioning ap-
proach that can handle both SIMDization and multi-core partition-
ing, performing vectorization on the high-level graph makes it pos-
sible for the partitioner and mapper parts of the streaming compiler
to be able to make SIMD-aware decisions. This can lead to finding
more efficient graph partitioning and mapping decisions. Since the
intermediate code is already partitioned without considering possi-
bility of SIMDization, it under-performs the macro-SIMDized code
even after auto-vectorization.

In summary, MacroSS’s SIMDization techniques are more effi-
cient than auto-vectorization approaches because MacroSShas the
ability to decide which actors are suitable for what kind of vector-
ization at the graph-level, transform the graph, adjust theschedule
accordingly and generate permutation instructions based on actors
read and write characteristics. Performing the same tasks during
auto-vectorization after generation of intermediate codeis difficult.

5. Methodology and Experiments
In this section, macro-SIMDization techniques in MacroSS are
evaluated and compared against traditional techniques to perform
auto-vectorization on languages. Also, the effectivenessof vertical
and horizontal SIMDization is shown. The performance benefits of
the streaming address generation unit is measured and presented in
this section. Finally, the interaction between macro-SIMDization
and multi-core scheduling is discussed.

Methodology: A set of benchmarks from the StreamIt bench-
mark suite [29] are used to evaluate MacroSS. The benchmarksare
compiled and evaluated on a 3.26 GHz Intel Core i7 processor.The
Intel Core i7 is used because it is equipped with the latest version
of the SIMD engine from Intel, SSE 4.2.

MacroSS implementation is based on the StreamIt compiler.
The macro-SIMDization steps are implemented as a separate com-
piler backend. The output of MacroSS is C++ code. To convert the
generated C++ to x86 binary, GCC 4.3 [8] and Intel Compiler (ICC)
11.1 [14] are used. Both of these compilers are capable of per-
forming aggressive optimizations and also auto-vectorization on
C++ code. ICC is considered one of the best for its capabilities in

performing inner-most, outer-most loop and superword-level paral-
lelism vectorization. GCC also supports auto-vectorization for x86
processors and is widely used to compile C/C++ for Intel proces-
sors. In order to isolate the benefits of macro-SIMDization,all the
experiments are performed using only one core of the processor
except in the last experiment where we show performance benefits
compared to multiple cores.

The original StreamIt backend in MacroSS is used to generate
the baseline scalar intermediate C++ code. The baseline interme-
diate code is compiled to x86 binary using GCC or ICC with ag-
gressive optimization flags enabled. The auto-vectorization pass in
these compilers is used to perform traditional auto-vectorization
on the generated C++ code. To macro-SIMDize streaming appli-
cations, the new backend in MacroSS is used to generate macro-
SIMDized intermediate C++ code using target specific vectortypes
and intrinsics. For measuring the performance of the generated bi-
nary the performance counters on the Intel Core i7 are exploited.

Overall Performance: The set of StreamIt benchmarks are
compiled using macro-SIMDization and compared against ICC’s
and GCC’s auto-vectorization. ICC and GCC are the leading auto-
vectorizer compilers for Intel architectures capable of applying
complex vectorization techniques proposed in the literature. Fig-
ure 10 illustrates how MacroSS’s techniques perform compared to
traditional auto-vectorization techniques. Figure 10a shows per-
formance comparison between GCC’s auto-vectorized, macro-
SIMDized and auto-vectorized macro-SIMDized code. Figure10b
contains the same comparison for ICC. In both cases, macro-
SIMDization achieves higher performance gains compared toauto-
vectorization. On average, macro-SIMDization improves the final
performance by an additional 54% and 26% compared to GCC
and ICC auto-vectorizations. Applying both macro-SIMDization
and auto-SIMDization can improve the performance by another
1.5% and 2.2% in benchmarks compiled using GCC and ICC. The
only case that traditional auto-vectorization outperforms macro-
SIMDization is FMRadio on ICC. In this special case, ICC per-
forms inner-loop vectorization on the main for-loop in the code
which results to aligned memory accesses but MacroSS’s macro
SIMDization results in unaligned memory accesses. It is possi-
ble to make MacroSS leave this for-loop for inner-loop vectorizer
since, during macro-SIMDization, it knows inner loop vectoriza-
tion will be more efficient in this special case.BeamFormerand
FilterBankmainly consists of several pipelines ofsplit-join struc-
tures with isomorphic task-parallel actors. It is not possible to col-
lapse these pipelines into one pipeline because they have state-
ful actors. Therefore, the speedups in these two benchmarksare
mainly due to horizontal vectorization. In summary, GCC shows
unimpressive gains using auto-vectorization. Although, ICC shows
fairly large gains (1.34x on average), MacroSS’s techniques result
in even larger gains (2.07x on average). Having access to global
information enables MacroSS to achieve significant speedup.



Effect of Vertical SIMDization: Vertical SIMDization is one
of the main techniques that MacroSS uses to perform vectoriza-
tion on streaming graphs. Figure 11 illustrates, the effectiveness
of this type of SIMDization. In this experiment, the baseline is a
streaming graph macro-SIMDized with only single-actor SIMD-
ization and compiled with GCC. As shown in the figure, vertical
SIMDization, on average, improves the performance of the base-
line by 40%.Matrix Multiply Block benefits the most because the
vertical fusion of SIMDizable actors eliminates a large number
of packing/unpacking operations. Without vertical fusion, macro-
SIMDization in this benchmark would result in significantlyless
speedup then that shown in Figure 10a. The benefits inFilterBank
andBeamFormerare very negligible because these benchmarks are
vectorized mostly using horizontal vectorization. InFMRadioand
AudioBeamthe opportunity for performing vertical SIMDization is
very small because most of the vectorizable actors in these bench-
marks are isolated from each other and do not form a pipeline.
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Figure 11: This graph shows percent speedup due to vertical SIMDization
compared to single-actor SIMDization.

Streaming Address Generation Unit: MacroSS utilizes the
SAGU to eliminate the packing/unpacking overhead and also im-
prove memory bandwidth utilization when data is crossing scalar
and vector boundaries in a stream graph. To evaluate the benefits of
the SAGU, we use the performance counters on the Intel Core i7to
find the overheads introduced by packing and unpacking operations
and also scalar memory accesses. Figure 12 illustrates the effect
of utilizing SAGU. The baseline in this graph is macro-SIMDized
code. On average, this unit can improve the final performanceof the
macro-SIMDized benchmarks by 8.1%. The performance ofMatrix
Multiply andDCT are improved 22% and 17% respectively because
they perform a large number of packing/unpacking operations and
scalar memory reads and writes.BeamFormershows the least im-
provement because almost all the speedup in this benchmark is due
to horizontal SIMDization.MP3 Decoderis also not affected by
the SAGU because its computation to communication ratio is very
high and the packing/unpacking operations do not cause a substan-
tial performance overhead.

Multicore and Macro-SIMDization: Implementing a sched-
uler to decide how to partition a stream graph between multiple
cores and also use the SIMD engines is a non-trivial task. Partition-
ing and mapping decisions taken by a naive multi-core scheduler
may reduce the SIMD opportunities. In this section, we show con-
servatively estimated numbers on how a simple SIMD-aware multi-
core scheduler/partitioner performs. The scheduler we usein this
experiment first performs multi-core partitioning and thenperforms
macro-SIMDization. This approach reduces the opportunities for
performing vertical fusion and also horizontal SIMDization. If
multi-core partitioning removes most of the benefits of the SIMD-
ization and the scheduler has to choose between SIMDizationand
multi-core execution, it always chooses SIMDization because it
reduces memory/cache traffic and communication overhead be-
tween the cores. Since the multi-core scheduler does not consider
the possible benefits of vertical fusion and horizontal SIMDization
in several benchmarks, the performance benefits of SIMDization
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Figure 12: This graph shows how SAGU can improve the performance of a
macro-SIMDized graph.
is reduced compared to Figure 10. Therefore, these numbers are
conservative estimates of the performance of a SIMD-aware multi-
core scheduler. As shown in Figure 13, the performance benefits
of 4-core execution is within 5% of macro-SIMDized 2-core exe-
cution. Exploiting the SIMD engines increases the speedup from
1.28x to 2.03x in 2-core schedule and from 1.85x to 3.17x in 4-
core schedule. ForMatrix Multiply andMatrix Multiply Block, the
scheduler prefers to only use the SIMD engines because multi-core
partitioning, in this case, leads to high inter-core communication
overhead.
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6. Related Work
There is a large body of literature that deals with exploiting par-
allelism in streaming languages for better performance [5,6, 29].
The most relevant works include stream graph refinements to ex-
tract coarse-grain task-level, data-level and pipeline parallelism and
map them onto multi-core architectures [9, 10]. Authors in [15] ap-
plied modulo scheduling to task graphs for maximizing pipeline
parallelism also on multi-core architectures. Our work is distinc-
tively different from and complementary to these previous works in
its ability to exploit SIMD parallelism and generate SIMD enabled
codes for various architectures. Vertical SIMDization focuses on
fine-grain SIMD parallelism, while horizontal SIMDizationtrans-
forms task-level parallelism to SIMD parallelism.

Auto-vectorization and SIMD code generation were studied ex-
tensively in the literature. The seminal work of Allen and Kennedy
on the Parallel Fortran Converter [1, 2] set the grounds for most of
the work on auto-vectorization that followed. For targeting a vari-
ety of SIMD architectures and solving severe problems that arise,
specifically data alignments and permutations, a large number of
studies has been conducted [7, 16, 21, 22, 25, 31]. All these tech-
niques can be applied to the generated intermediate code of stream-
ing applications. However, our work is unique in that vectorization



is applied on a higher level of representation of the program, which
enables us to utilize global information such as execution rates
of actors and exposed data communications for generating better
vectorized codes. In contrast to focusing on local structures like
loop nests and basic blocks, our macro-SIMDization leverages the
streaming applications’ static characteristics, such as static sched-
ules and pre-defined data access patterns.

There has been recent work [20] on generating efficient per-
mutation instructions based on StreamIt, but for only one specific
SIMD device (VIRAM). MacroSS provides efficient SIMDization
for streaming applications which is flexible and portable enough to
be applied to a variety of SIMD architectures.

Vectorizing computations that access non-unit stride datamoti-
vated the development of the SIMdD (Single Instructions on Multi-
ple disjoint Data) model and SIMdD architectures, such as the IBM
eLite DSP[18]. Such architectures better support non-consecutive
data accesses via vector pointer hardware. Tuned for streaming
applications in which non-unit strides are statically known and
fixed for the entire execution of an actor, our architecturalsupport,
SAGU, is simpler and entails smaller overheads than what is avail-
able in general SIMdD architectures.

7. Conclusion
As SIMD-enabled multi-core systems become ubiquitous, it is crit-
ical for programming languages and compilers to be able to flexibly
target both the SIMD and multi-core aspects of these architectures.
Several retargetable streaming languages, such as StreamIt, have
been proposed to exploit parallelism across the cores. These lan-
guages apply traditional auto-vectorization to the imperative inter-
mediate code (e.g. C/C++) to target SIMD engines. In many cases,
applying auto-vectorization to the generated intermediate code re-
sults in under-utilization of SIMD engines because much of the
high-level information available in the streaming application, such
as data-flow information and the set of valid schedules, is not used
by the auto-vectorizer.

In this paper, we introduce macro-SIMDization: a techniquefor
vectorizing stream graphs using the high-level information avail-
able in streaming programs. A new compilation system, MacroSS,
is developed to show the benefits of macro-SIMDization compared
to traditional SIMDization techniques. MacroSS utilizes three new
techniques to achieve high utilization of the SIMD engines:single-
actor, vertical, and horizontal SIMDization. Architectural support
for tape optimizations, using general permutation operations and a
streaming address generation unit (SAGU) is also discussedin the
paper.

Our results show that MacroSS is capable of improving the
performance of streaming applications by an average of 54% and
26% compared to auto-vectorizers in GCC and Intel compiler,re-
spectively. In the experiments, we also evaluated how the SAGU
can improve the performance on average by an additional 8.1%
by eliminating packing/unpacking operations between scalar and
vector actors. Finally, we show the performance benefits of macro-
SIMDization in the presence of a naive multi-core schedulerfor
streaming applications. Even with a naive multi-core scheduler, we
estimate that we can achieve better performance than a 4-core In-
tel Core i7 on only 2-cores using SIMD. The results indicate that
performing macro-SIMDization can significantly improve the per-
formance of streaming applications and extend their retargetabilitiy
by making them more suitable for SIMD programming.

Acknowledgement
Much gratitude goes to the anonymous referees who provided ex-
cellent feedback on this work. We also thank Chandra Krintz for
shepherding this paper. This research was supported by ARM Lim-
ited, the National Science Foundation under grant CNS-0615261
and the Korea Research Foundation grant funded by the Korean
Government (MOEHRD) (KRF-2007-356-D00200).

References
[1] R. Allen and K. Kennedy. Pfc: A program to convert fortranto

parallel form. Technical Report 82-6, Dept. of Math. Sciences., Rice
University, Mar. 1982.

[2] R. Allen and K. Kennedy. Automatic translation of fortran programs
to vector form.ACM TOPLAS, 9(4):491–542, 1987.

[3] R. Allen and K. Kennedy.Optimizing compilers for modern architec-
tures: A dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[4] ARM Ltd. ARM Neon, 2009. http://www.arm.com/miscPDFs/6629.p
df.

[5] I. Buck et al. Brook for GPUs: Stream computing on graphics hard-
ware.ACM Trans. Gr., 23(3):777–786, Aug. 2004.

[6] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. Shangri-
la: Achieving high performance from compiled network applications
while enabling ease of programming. InProc. ’05 PLDI, pages 224–
236, June 2005.

[7] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorizationfor simd
architectures with alignment constraints. InProc. ’04 PLDI, pages
82–93, 2004.

[8] GNU Compiler Collection. Gcc 4.3.2, 2008. http://gcc.gnu.org/gcc-
4.3/.

[9] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A
stream compiler for communication-exposed architectures. In 10th
ASPLOS, pages 291–303, Oct. 2002.

[10] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
12th ASPLOS, pages 151–162, 2006.

[11] IBM. Cell Broadband Engine Architecture, Mar. 2006.
[12] Intel. Intel sse4, 2006. http://download.intel.com/technology/architec-

ture/new-instructions-paper.pdf.
[13] Intel. Intel Core i7, 2008. http://www.intel.com/products/processor/cor

ei7/index.htm.
[14] Intel. Intel compiler, 2009. software.intel.com/en-us/intel-compilers/.
[15] M. Kudlur and S. Mahlke. Orchestrating the execution ofstream

programs on multicore platforms. InProc. ’08 PLDI, pages 114–124,
June 2008.

[16] S. Larsen and S. Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. InProc. ’00 PLDI, pages 145–156,
June 2000.

[17] E. Lee and D. Messerschmitt. Synchronous data flow.Proc. IEEE,
75(9):1235–1245, 1987.

[18] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S.
Ware, K. Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W.
Fox, D. Littrell, M. Biberstein, D. Naishlos, and H. Hunter.An in-
novative low-power high-performance programmable signalprocessor
for digital communications.IBM Jrn. of Research and Development,
47(2-3):299–326, 2003.

[19] A. Munshi. Opencl parallel computing on the gpu and cpu., 2008.
[20] M. Narayanan and K. A. Yelick. Generating permutation instructions

from a high-level description. InIn Proc. MSP’04, 2004.
[21] D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In

Proc. 2006 CGO, pages 281–294, 2006.
[22] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization ofinterleaved

data for simd. InProc. ’06 PLDI, pages 132–142, 2006.
[23] D. Nuzman and A. Zaks. Outer-loop vectorization - revisited for short

simd architectures. pages 2–11, 2008.
[24] Nvidia. CUDA Programming Guide, June 2007. http://developer.dow

nload.nvidia.com/compute/cuda.
[25] G. Ren, P. Wu, and D. Padua. Optimizing data permutations for simd

devices. InProc. ’06 PLDI, pages 118–131, 2006.
[26] D. Seal. ARM Architecture Reference Manual. Addison-Wesley,

London, UK, 2000.
[27] L. Seiler et al. Larrabee: a many-core x86 architecturefor visual

computing.ACM Trans. Gr., 27(3):1–15, 2008.
[28] F. Semiconductor. Altivec, 2009. www.freescale.com/altivec.
[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A lan-

guage for streaming applications. InProc. 02 CC, pages 179–196,
2002.

[30] Tilera. Tile64 processor - product brief, 2008. http://www.tilera.com/
pdf/.

[31] P. Wu, A. E. Eichenberger, and A. Wang. Efficient simd code genera-
tion for runtime alignment and length conversion. InProc. 2005 CGO,
pages 153–164, 2005.


