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Abstract

SIMD (Single Instruction, Multiple Data) engines are aneggtal
part of the processors in various computing markets, froraess
to the embedded domain. Although SIMD-enabled architestur
have the capability of boosting the performance of manyiegpl
tion domains by exploiting data-level parallelism, it iswehal-
lenging for compilers and also programmers to identify arsohs-
form parts of a program that will benefit from a particular SIM
engine. The focus of this paper is on the problem of SIMDinati
for the growing application domain of streaming. Streamépgpli-
cations are an ideal solution for targeting multi-core aitglttures,
such as shared/distributed memory systems, tiled ar¢bites; and
single-core systems. Since these architectures, in messcaro-
vide SIMD acceleration units as well, it is highly benefi¢@mben-
erate SIMD code from streaming programs. Specifically, wi®-n
duce MacroSS, which is capable of performing macro-SIMiina
on high-level streaming graphs. Macro-SIMDization useghhi
level information such as execution rates of actors and conica-
tion patterns between them to transform the graph structuee-
torize actors of a streaming program, and generate interiated
code. We also propose low-overhead architectural modiéinat
that accelerate shuffling of data elements between the rsaath
vectorized parts of a streaming program. Our experimentsash
that MacroSS is capable of generating code that, on averagie,
performs scalar code compiled with the current state-afeauto-
vectorizing compilers by 54%. Using the low-overhead dataf-s
fling hardware, performance is improved by an additional 8%thw
less than 1% area overhead.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—Compilers ; C.1.Prpcessors Architec-
tureq: Multiple Data Stream Architectures—Single-instructio
stream, multiple-data-stream processors (SIMD)

General Terms Design, Languages, Performance

Keywords Streaming, Compiler, SIMD Architecture, Optimiza-
tion

1. Introduction

Support for parallelism in hardware has greatly evolvedhagast
decade as a response to the ever-increasing demand for pighe
formance and better power efficiency in different applmatdo-
mains. Various companies have introduced vastly diffeseh-

tions to bridge the performance and power gap that many-appli

cations are facing. These solutions include shared-memmuty
ticore systems (Intel Core i7 [13]), distributed-memorylticare
processors (IBM Cell [11]), tiled architectures (Tiler®d[Band in
some cases a combination of these (Intel Larrabee [27]sd be
chitectures not only achieve higher performance and efiogidy
combining multiple cores into one die, but they are also ol
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with one or more single-instruction-multiple-data (SIM&)gines
to enable more efficient data-level parallelism supportskreral
important application domains such as multimedia, graphaad
encryption. SIMD engines are not suitable for all applizasi, but
if an application can be tailored to efficiently exploit thettme per-

formance and power benefits can often be superior to the gains

from other architecture solutions. Therefore, SIMD engitike
Altivec [28], Neon [4], SSE4 [12] are now an essential pantnoist
architectures on the market. With SIMD width expanding in fu
ture architectures, such as Intel's Larrabee, underzatitin of the
SIMD units would translate into a loss in performance ana als
power consumption.

Traditional sequential programming languages are ilieslito
exploit parallel architectures because they have a singteiction
stream and a monolithic memory. Extracting task/pipetiatd-
level parallelism from these languages needs extensiveo&nd
ten intractable compiler analysis. Using techniques tedyéor a
certain class of architectures is also undesirable bedalisgts
the flexibility andretargetability of the program in thagach pro-
gram needs to be rewritten and optimized for a specific agchit
ture. Data-parallel programming languages like OpenCL [19] and
CUDA [24] that target data-parallel architectures like GRi¥pose
parallelism to the compiler, but in their current form failgrovide
retargetable code. The main problem with these languagists
explicitly-programmed parallelism in each applicatiorsia be
tuned for different targets based on the memory size and aumb
of processing elements. To deal with these problems, tlearstr
ing programming paradigm provides an extensive set of cempi
optimizations for mapping and scheduling applicationsadous
parallel architectures ([9, 10]). The retargetability ttéaming lan-

guages, such as Streamlt [29], has made them a good choice for

parallel system programmers.

Streaming language retargetability and performance lsraafi
multi-core systems are mainly a result of having well-eiscégaed
constructs that expose the parallelism and communicatim w
out depending on the topology or granularity of the undedyi
architecture. Currently, streaming compilers map the daooe
of task, pipeline, and data-level parallelism that existhini an
application into task-level parallelism across multipleres but
not into data-level parallelism on SIMD engines. Mappingapa
lelism onto multi-core provides reasonable speedup feasting
applications but can also experience slowdown due to ttes-
communication overhead and high memory/cache trafficizutd
SIMD engines is preferred, even for applications where iruaite
speedup is close to the theoretical maximum, because SIMD en
gines can improve performance without increasing comnatiaic
overhead and memory/cache traffic. Exploiting SIMD enginmes
some cases, can achieve greater performance than mudtiztiie
using less area and power.

Extending the retargetability of streaming languages faltim
core systems by adding effective SIMD support to their cdenpi
is desirable because of the variation in characteristicSIMD
accelerators between different standards, such as nurhlzeres,
memory interface, and scalar/vector transfers. Implemgrand
porting applications between different architectureshmanifficult
and error-prone. Therefore, efficiently vectorizing stngaograms
is essential to expand their applicability as a universag@mming
paradigm for current and future single/multicore architees with
various wide or narrow SIMD units.



To exploit SIMD engines, current streaming compilers trans
late the streaming languages down to an intermediate lgegua
such C++ or Java, and then apply vectorizatioechniques to
generate SIMD-enabled code. The most popular techniques ar
hand-optimizing the code and traditional auto-SIMDizatid—

3, 16, 23]. Both of these solutions have proven difficult t@lgp
in real world scenarios. Hand-optimizing the binary or sayial
code using architecture-specific instructions or intdrfishctions is

a time-consuming and error-prone task which results in iexin
ble and unportable binary. Auto-vectorization is, at thégs, still
impractical and far from being able to universally utilihe tvarious
kinds of available SIMD facilities. Also, performing SIMEation
on streaming applications after intermediate-level coslgegation
may result in an inefficient schedule and mapping of the sirea
graph since the schedule is already fixed and informatiohisha
available in the high-level stream graph is lost. Extragtinis in-
formation from the generated code is predicated on perfaymi
complex compiler analysis and transformations which angoisn
sible in some cases. In summalack of global knowledge about
the program inability to adjust the schedul@and alsdoss of data
flow informationare the main reasons behind inefficiency of tradi-
tional auto-vectorization techniques in dealing with atnéing ap-
plications.

In this work, we introduceMacroS$ a streaming compiler
for the Streamlt language that is capable of performing oyacr
SIMDization on stream graphs. Macro-SIMDization uses high
level information such as the valid set of schedules and cemm
nication patterns between actors to transform the grapictste,
vectorize actors of a streaming program, and generateviettiate
code (C++ in this work). Then, it uses the host compiler to com
pile the generated intermediate code to binary for a speeifget
processor. The information that is used by MacroSS is debuce
from the high-level program structure and is not availabléotv-
level traditional compilers that are used to compile therimiediate
code. As aresult, MacroSS has a broader understanding pfdhe
gram structure and macro-level characteristics of theastieg
application that allows the compiler to utilize SIMD engsnmore
efficiently.

MacroSS is capable of performing single-actor, verticakl a
horizontal SIMDization of actors. Single-actor SIMDizati tar-
gets each SIMDizable actor separately and transforms cotige
sequential executions of a SIMDizable actor to data-pelrelecu-
tions on the SIMD engine. Vertical SIMDization fuses a pipel
of vectorizable actors to build a larger vectorizable actod re-
duces the scalar-to-vector (packing)/vector-to-scalapécking)
overhead that exists between actors. Our experiments dhatw t
vertical SIMDization is applicable in many cases and camifig
icantly improve performance by eliminating the need fonga
lating back and forth between scalar and vector. Finallyizioo-
tal SIMDization takes a set of isomorphic task parallel extnd
replaces them with one or more data parallel actors. Thecehoi
of which vectorization technique to apply to a stream graph i
based on the internal target-specific cost model and thetsteu
of the graph. After SIMDization, MacroSS is able to generate
architecture-specific intermediate code with SIMD intigss This
intermediate code uses vector types and intrinsics speoifibe
target architecture and can be compiled using the host éempi

Packing of scalar values to a vector or unpacking a vector to
scalar values typically takes between a couple of cycleens t
of cycles depending on the architecture. Since communigati

data between vectorized and scalar actors or vice versasneed

several packing/unpacking operations, MacroSS is eqdippth
two techniques to optimize this costly communication oeexh
The first technique tries to replace the packing/unpackiper-o
ations with permutation instructions in actors that, dgrigach
execution, read or writ@" elements. In the second technique,
we introduce a low-overhead dynamic shuffler called theastre

11n this paper, we use SIMD(ize) and Vector(ize) interchaye

ing address generation unit (SAGU). This unit eliminatesribed
to perform complicated address translations, data alighnaad
packing/unpacking of data as data crosses vector-scaladboies
of the graph.

To summarize, this paper makes the following contributions

¢ Introduction of macro-level SIMDization techniques faiestm-
ing languages: single actor, vertical and horizontal SIMD-
ization. Based on these techniques, MacroSS compiler éor th
Streamlt language is implemented.

e Hardware and permutation-based tape optimizations farcred
ing the overhead of scalar-to-vector and vector-to-soddda
conversions.

e Evaluation of MacroSS on various streaming workloads from
the Streamlt benchmark suite [29] on the Intel Core i7.

The rest of the paper is organized as follows. In Section 2,
the stream programming model and the input language (Stteam
are discussed. Macro-SIMDization and the related optitiuiza
in MacroSS are explained in Section 3. Section 4 includes a
brief discussion about the differences between traditi@ueo-
vectorization and macro-SIMDization. Experiments arenshin
Section 5. Finally, in Section 6, we discuss related works.

2. Stream Programming M odel

With the ubiquity of multi-core systems, the stream prograny
paradigm has become increasingly important. Exposed caamu
cation and abundance of parallelism are the key featuresngnak
streaming a flexible and architecture-independent saiiftio par-
allel programming. In this paper, we focus on stream program
ming models that are based on synchronous data flow (SDF) mod-
els [17]. In SDF, computation is performed by actors, which a
autonomous and isolated computational units. Actors conicate
through data-flow channels (i.e. tapes), often realized IBO§
SDF and its many variations expose the input and output psitg
rates of actors, and in turn this affords many optimizatippartu-
nities that can lead to efficient schedules (e.g., allonatioactors

to cores, and tapes to local memories).

For our purpose, we assume all computation that is performed
in an actor is largely embodied inrsork method. Thevork method
runs repeatedly as long as the actor has data to consumeirgoLits
port. The amount of data that the work method consumes isccall
the pop rate. Similarly, the amount of data each work invocation
produces is called thpushrate. Some streaming languages (e.qg.,
Streamlt [29]) provide a non-destructive read which dodsaiter
the state of the input channel. The amount of data that isinethés
manner is specified by thpeekrate. An actor can also have anit
method that is executed only once for the purpose of irdiiadj the
actor before the execution of program starts.

We distinguish between stateful and stateless actors.téfsta
actor modifies its local state and maintains a persisteturyisf its
execution. Unlike a stateful actor, which restricts oppoities for
parallelism, a stateless actor is data-parallel in thatyemeocation
of the work method does not depend on or mutate the actor's
state. The semantics of stateless actors thus allow us licatp
a stateless actor. This opportunity is quite fruitful in Isg the
amount of parallelism that an application can exploit, aswsh
in [9, 10].

We use the Streamlt programming language to implement
streaming programs. Streamltis an architecture-indegrgrsdream-
ing language based on SDF. The language allows a prograromer t
algorithmically describe the computational graph. In &tné, ac-
tors are known as filters. Filters can be organized hiereatifi
into pipelines(i.e., sequential composition¥plit-joins (i.e., par-
allel composition), andeedback loopgi.e., cyclic composition).
Streamlt is a convenient language for describing strearaigg-
rithms, and its accompanying static compilation technplogkes
it suitable for our work.
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Figure 1: This figure shows an example stream graph and also the interme
diate code template for executing steady state schedyles the repetition

number for.actor. . . . .
crucial consideration in Streamlt programs is to create a

steady state schedule which involves rate-matching of titeaus
graph. Rate-matching guarantees that, in the steady gtateum-

ber of data elements that is produced by an actor is equal to
the number of data elements its successors will consume- Rat
matching assigns a static repetition number to each actahd
implementation of a Streamlt schedule, an actor is enclogea
for-loop that iterates as many times as its repetition number. The
steady state schedule is a sequence of appearances offdhese
loops enclosed in an outer-loop whose main job is to repeat the
steady schedule. The template code in Figure 1b shows the int
mediate code for the steady state schedule of the strearrapl g
shown in Figure la.

3. Macro-SIMDization

The SIMDization path in MacroSS consists of several steps to
make the streaming graph more amenable to vectorizatine the
steady state schedule, vectorize actors, and perfornmttspgeific
code generation.
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Figure 2: Part (a) of this figure shows the stream graph used as a running
example in this paper. Part (b) shows the same stream graph MficroSS
has SIMDized it.

MacroSS is equipped with three main technigu&agle-Actor
Vertical, and Horizontal SIMDization Single actor SIMDization
targets each stateless actor separately. The goal is tertonul-
tiple (equal to SIMD-Width) consecutive executions of a Bligt
able actor into one data-parallel execution on the targ&Dsén-
gine. Single-actor SIMDization leaves the input and outppes

of a vectorized actor as scalar and does not convert the &ape a
cesses to vector since complicated shuffle operations neust-b
troduced in the code in case vector tape accesses are used. Th
scalar tapes introduce packing/unpacking overheads m&ad¢D-
ized actor. Vertical SIMDization, which is a more optimizedy

of performing single-actor SIMDization on a pipeline of t@tz-
able actors, reduces this overhead. It enables MacroSSpie-im
ment vector communication between the actors of a SIMD&abl
pipeline. Both single-actor and vertical SIMDization try ¢on-
vert sequential execution of a single actor or a pipelineabbrs

to data-parallel execution. The third technique, horiab®IMD-
ization, converts task parallelism into data paralleliemd group

of isomorphic actors (stateful or stateless) in a strearptgrélori-
zontal SIMDization is mainly beneficial in cases where a grofi
several isomorphic actors are placed between a splittejoamer
and it is not possible to fuse these actors into one coarse tct
perform vertical SIMDization. MacroSS finds the parts of agir
that are suitable for this kind of SIMDization and convehs &li-
gible task-parallel actors into one or more SIMD actors.

The stream graph illustrated in Figure 2a is used as a running
example to explain different actions that the compiler sake
perform macro-SIMDization. This graph shows the structofe
a streaming application with 10 unique actors. Each box show
one actor in the program. Each edge in this graph indicatape t
implemented using FIFO queues. The text written inside &ash
shows how each actor interacts with its input and outputstape
Each shaded box represents a stateful actor. On the rigat sid
of each node, the repetition number of that node in the steady
state is shown. Even though MacroSS is able to target process
equipped with SIMD engines with any SIMD width, for the sake
of presentation, the target hardware platform to which M&&
compiles is set to a core with SIMD width of four 32-bit datpésg,
and main memory line width of 128-bit. Figure 2b shows how
MacroSS vectorizes the streaming graph. Fpét-join structure
is horizontally vectorized. The task-parallel actors ketw the
splitter and joiner are converted to SIMD actors and thettspli
and joiner are replaced with horizontal versions. Actbrand F
are vertically fused and SIMDized. Single-actor SIMDipatiis
applied to actors.

The details of how MacroSS performs SIMDization on a
streaming graph are explained in the following three suimmex
Next, in Section 3.4, the way MacroSS deals with SIMDizatién
tapes in the presence of architectural support is explairiedlly,
Section 3.5 explains the overall structure of the macro{Sidtion
technique in MacroSS.

3.1 Single-Actor SIMDization

Let SW denote the SIMD width of the target machine. The goal
of single-actor SIMDization is to ruSTW consecutive executions
of an actor in data-parallel fashion using the target SIMDieg.
As mentioned before, actors in a Streamlt program execigedba
on a steady state schedule in which each actor is enclosed by a
for-loop that iterates as many times as its repetition number (see
Figure 1b). Conceptually, single-actor SIMDization is g&nto
vectorizing the actor’s enclosinfgr-loop whose trip count is the
repetition number of the actor. Therefore, MacroSS adjtlsts
repetition numbers of all actors to make them multiplesSo¥
before single-actor SIMDization.

MacroSS finds the smallest factor that the repetition number
of each vectorizable actor should be multiplied by basedhen t
following equation:
LCM(SW, R;

Each term of the\/ax function finds the smallest factor that each
repetition number R;) should be multiplied by to make it a mul-
tiple of SW. After finding the minimum for each SIMDizable ac-
tor, the largest factor is chosen and all of the repetitiominers
are scaled based on that. According to Equation (1), theitiepe

M = Max{ , V SIMDizable actor4, }



numbers of the graph in Figure 2a must be scaled by® jbefore
SIMDization.

Suppose that, after this adjustment of the repetition nusbe
the resulting repetition number of an actdris m x SW. Then,
MacroSS transforms the x STV sequential executions of into
m sequential executions &fiV data-paralleid’s. Since several ex-
ecutions of the SIMDized actor will be running at the sameetim
only stateless actors are eligible for single-actor SIMifian. This
kind of SIMDization can be applied to actof3, E/, andG in the
example shown in Figure 2a. The code in Figure 3 illustrates h
single-actor SIMDization is performed for actabsand E. Ignor-
ing the tape accesses, it can be seen that the variablesdrigiveal
actors are packed into vector variables and computatioctifurs
are calculated on vector variables instead of scalar. Yeeariables
are depicted by suffixasint mp_v[],t -v andcoef f .v[].Ac-
tors D and E originally had repetition number of 12 and 8 and after
SIMDization are executed 3 times and 2 times since each ggacu
of the vectorized actors is in fact 4 data-parallel exeatiof the
original actors.

¥
6 for (i: 0tol){ N
1 tv.{3}=peek(6); Dv (3)
2 tv.{2}=peek(4);
3 tv.{l}=peek(2);
4 t.v{0}=pop();
5  tmpV[i] =t _v* coeff_¥i];
6 }
7 r0_v=sgrt(tmp_v[0] + tmp V{1]);
8 rpush(r0_v.{3}, 6);
l 9 rpush(ro_v.{2}, 4
10 rpush(ro_v.{1}, 2;
0 for (i:001){ D (12} 11 push(ro_v{0}, 9:
1 t=pop(); 12 r1_v=sgrt(tmp v[0] — tmp_\{1]);
2 tmyi] =t* coefffi];
3} 13 rpush(rl_v.{3}, 6);
4 10 =sgrt(tmp[0] + tmp1]); 14 rpush(rl_v{2}, 4;
5 rpud’]?ﬂ(’)’),( mpl0] + tmpL) 15 rpush(rl_v.{l}., 2;
6 rl=sgrt(tmp[O0] - tmp[1]); N push(r1_v.{0}; J
7 push(rl); ) l
? xOﬁv.(3}ipeek(9)E Ev (2)1
X0_v.{2} = peek(6);
2 x0_v.{1}=peek(3);
0 x0=pop(); E (8)1 3 x0_v.{0}=pop();
1 x1=pop(); 4 x1v.{3}= peek(9);
2 x2=pop(); 5 x1_v.{2} = peek(6);
3 resul{0] = x1* cos(x0) + x2; 6 x1 v.{1}=peek(3);
4 resul{l] = x0* cos(x1) +x2; 7 x1_v.{0} = pop();
5 resul{2] = x1* sin(x0) + x2; 8 x2v.(3}= peck(d)
—v0* S . x2_v.{3}=p ;
tgeane | EERg
. . 10 x2_v.{1}= peek(3);
8  push(resut[i] ); ) 11 x2_v.{0}= pop();
l 12 result_v[0]=x1_v* cos(x0_Y) +x2_V,
13 result_v[1]=X0_v* cos(x1_y +x2_\
14 result_v[2]=x1_v* sin(x0_V) +x2_v,
15 result_v[3]=X0_v* sin(x1_\) +x2_V,
16 for (i: 0to 3) {
17 rpush(result_v([i].{3}, 12
18 rpush(result_vfi].{2}, 8);
19 rpush(result_vf[i].{1}, 4);
20 push(result_v(i].{0});
i J

@ (b)

Figure 3: This figure shows how single-actor SIMDization transforros a
tors D and E into Dy, and D g. All the vector variables are concatenated
with _v at the end. Part (a) of this figure shows the code for acforand £

in scalar mode. Part (b) illustrates the vectorized versidractors D and
E.

In the single-actor vectorization, the input and outputetap
of a vectorized actor are left as scalar in two cases. Finst, t
producer actor that fills the input tape of the vectorizedmist not
SIMDizable. Second, the producer actor is vectorizablétbpiish
rate is different from the pop rate of the consumer actorskuilar
reasons, applying vectorization to the tape between thorzed
actors and its consumer is not possible in some cases. theref

the input and output tapes of a vectorized actor using siagier
SIMDization are not vectorized and remain as scalar. Inrorle
read or write data elements in the correct order from theasagbut
or output tapes in the vectorized actor, the pops/peeksetating
from the input tape and pushes for writing to the output tapstm
be done in a scalar fashion.

Lines 1-4 of Dy in Figure 3b show the scalar tape read ac-
cesses. After single actor vectorization, the thpeek() s and
onepop() inlines 1-4 are induced from orgop() in the orig-
inal code, line 1 ofD in Figure 3a. Thepeek() s andpop() s
are reading the scalar input tape for 45(# ") consecutive execu-
tions of the original actor and packing those four read etgme
into a vector by writing each element to a lane of a vectoralde.
The accesses to th&" lane of a vector variable are indicated by
v. {i }. After a vector is formed from the scalar input tape in this
way, the vector will be used for the computation in the resthef
actor’s code. When the actor wants to write data to the ougpe,
it unpacks the data to scalar variables and pushes them soabar
output tape (lines 8-11 aby in Figure 3b). In other words, after
each read and before each write to tapes, a SIMDized actatcsho
perform packing and unpacking operations.

Since the tapes are left as scalar and each tape read ise@plac
by SW tape reads after single-actor SIMDization, it is necesgary
perform strided reads to receive the right data elementdoh ®f
the SW pops. The stride for each set 811 reads in a SIMDized
actor is equal to the pop rate in the original actor. For eXamp
Figure 3a, since the pop rate of actoris 2, thepop() in line
1 is converted into 4 stride-two input tape reads as showmés|
1-4 of Figure 3b. To read the scalar input tape in a non-detstau
way, peek() is used instead gbop() for the first 3 reads, and
thepop() is used only for the last read which also adjusts the read
pointer of the input tape. For the same set of reasons, tHarsca
output tape is written with a stride equal to the push ratehef t
original actor. In Figure 3b, lines 8-11 unpack vector valga 0_v
and write each element to the scalar output tape with a stfide
since the push rate of the original actér, is 2. The first 3 writes
are done usingandom access pusbperations that do not move
the write pointer of the tape (lines 8-10 and 13-15). Randocess
push operation are indicated bpush(dat a, of fset) inthe
code. The first argument ofpush() is the data to write and the
second argument is the offset from the write pointer of thigpuatu
tape to which the data will be written. The last write of eaehcf
writes is performed using a normal push operation which tgsda
the write pointer of the tape.

In Figure 3, only the code for theork functions of D and £
is shown and thénit functions are omitted. Actual vectorization of
an actor'swork andinit method comprises of two parts: identifying
variables and constants to be vectorized in an actor andtirgyvr
the actor by replacing the vectorized variables with veatmesses
and fixing the tape accesses. Identifying variables andtaotssto
be vectorized can exploit the fact that the tape reads arsotinee
of data for the variables used in the computation assigrsneside
an actor. A variable definition (i.elef) originating for a pop/peek
is marked to be vectorized. For other assignment staterniets
defis identified as vector if its right hand side contains alliable
uses marked as a vector. Also, a variablkeethat is used with other
vector variablauses on the right hand side of a statement is marked
as a vector. Similarly, constants used with other vectdaeuses
are marked to be vectorized as well. For example, in line Ztafra
D in Figure 3at np[] is identified as a vector because the right
hand side variablg, , is written to bypop in line 1. After that,
coef f[] isalso detected as vector because oh the right hand
side. After identifying the variables, the statements &xeritten
using the vector constructs. Also, the tape accesses aaceep
with strided accesses at this point.

Single-actor SIMDization is not applicable to all the astaor
a stream graph. Actors with mutable state (i.e. statefid) ex-
cluded from single-actor SIMDization because it is not paes
to run multiple executions of them in parallel. Splitterslaoiners



at this point are also excluded since they consist of onlg t&p
cess operations without any substantial computation. rAatgth
function calls that are not supported by the SIMD engine ate n
SIMDized either. Input-tape-dependent control flow (ifestate-
ments with pop-dependent conditions) or memory accesses (i
pop-dependent array subscripts) can also prevent Macra®$ f
performing single-actor SIMDization. The way MacroSS Haad
the input-tape-dependent control-flow structures or menzar
cesses is by switching to scalar mode (unpacking) beforia -
tape-dependent structure and switching back to vector rafide
the pop-dependent structure is finished (packing). MacroSS
an internal cost model to decide if SIMDizing an actor witput
tape-dependerit or for-loop structures is beneficial or not.

'3

G for (work_counter0: 0 to2) { [3D ZEJ(D
1 for(i:0t01){
2 tv.{3}=peek(18);
3 tv.{2) = peek(12);
4 tv{1}=peek(6); 5
5 t.v{0} = pop(); 2
6 tmp_v[i] =t_v* coeff_v[i]; ;
7 g
8 r0_v=sgrt(tmp_v[0] +tmp V(1]); 5
9 vpush(r0_v);
10 rl_v=sgrt(tmp_\0] —tmp_\1]);
11 vpush(rl_v);
12}
14 for (work_counterl: 0 to1) {
15  x0_v=vpop(); N
16 x1_v=vpop();
pmi'; f"";p:()’ 17 x2_v=vpop();
push=8
18 resut_v[0] = x1_v* cos(x0_\) +x2_v,
19 resut_v[1] = X0_v* cos(x1_\) +x2_v _
20 resut_V[2] = x1_v* sin(x0_\) +x2_v, 3
3 21 resut_v[3] = x0_v* sin(x1_y) +x2_v, >‘-‘Z
22 for (i:0t03){ <
23 rpush(result_v[i].{3}, 24) m
- L, \4 24 rpush(result_v[i].{2}, 16)
”EU/‘;: pop=2. 25  rpush(result_v[i].{1}, 8);
26 push(result_vil.{0});
i ) 27
» s, 28 b4
& J

¥

@ (b)

Figure 4: Part (a) of this figure shows the stream graph in Figure 2arafte
vertical fusion ofD and E. Part (b) illustrates the vectorized code for the
fused actor3D_2F.

3.2 Vertical SIMDization

Each actor vectorized by single-actor SIMDization perfeipack-
ing and unpacking at points where tape reads or writes are per
formed for communicating with producer and consumer actors
The overhead introduced by the packing and unpacking opera-
tions can negatively affect the performance gains, eveultieg
in slowdowns in some cases. Vertical SIMDization is introediin
MacroSS to overcome this problem by merging vertically radid)
vectorizable actors and reducing the number of packing and u
packing operations. In vertical SIMDization, pipelineswefttor-
izable actors are detected and transformed into a singte. s
long as the original actors in a pipeline are vectorizahie, @o ac-
tor performs peek operations except the first and the last excthe
pipeline, the resulting coarse actor is guaranteed to beéd&able
since the transformation does not introduce state or argr atn-
struct that may prevent SIMDization. The original actorhjch are
encapsulated in the new coarse node, are calleer actors Fig-
ure 4 shows the stream graph after applying vertical fusiarotes
D andE and the resulting coarse acib_2F.

After vertical fusion, MacroSS adjusts the repetition nensb
of all actors to guarantee that they are all the smallestilpless
multiples of SIMD width, SW. This adjustment is done in two
steps. First, the repetition numbers of inner actors andtiaese
actor are changed. The repetition number of each inner agtior
be its original repetition number multiplied % M’ is found
by plugging the repetition numbers of the inner actors injoid
tion (1). The repetition number of the coarse actors is se}%o

This guarantees that the repetition number of the coarse iactet

to the largest possible multiple or divisor 811. After doing this
step for each vertically fused SIMDizable actor, MacroS§liag
Equation (1) to the entire graph to ensure that repetitiombyer

of all SIMDizable actors, including the coarse actor, is tipig of
SW. In general, applying this method guarantees that the irepet
tion vector of the graph is scaled by the smallest possibhatau.
Using this method, the inner actors for and £ in 3D_2F have
repetition numbers of 3 and 2, while the new n@de_2F has a
repetition number of 4. The pop rate 8D _2F is set to 6, which
equals the original pop rate of the first inner actby) (nultiplied

by the repetition number of that inner actor. Similarly, pfush rate

of 3D_2F is set to 8. Note that the total number of times that
and E' run after the fusion is exactly equal to the number of times
before applying fusion.

The graph resulting after vertical fusion will have coarsedes.
The communication between the inner actors of a coarse mctor
done through internal buffers (i.e. arrays) instead of gldhpes.
Transferring data between the inner nodes can be compleky
using vectors since packing and unpacking are needed orilygdu
tape reads (pops) and writes (pushes) of the new coarse hode a
the boundaries. The main reason behind this is due to thegehan
in the relative execution order @ and E. This will be illustrated
shortly using an example. At this point, single-actor Sii&lion
can be applied to the vertically fused actor. The code intfeigip
shows how the SIMDization is applied to the new actor. Sirtera
3D_2FE has 6 pops and 8 pushes, the strides for accessing input
and output tapes d3D_2F are set to 6 and 8. These reads and
writes from input and to output tapes are performed, as dhetr
in Section 3.1, usingpeek, pop andr push operations at the
beginning and end §D_2F (lines 2-5 and 23-26).

The reads and writes between inner actors are handled-differ
ently. The previous scalar tape writes Bfin lines 8-11 and 13-
16 of Dy in Figure 3b are now written using vector writes as
shown in line 9 and 11 of Figure 4b. Vector variable_v is writ-
ten to the internal vector buffer betwemer D andinner E using
vpush(rO.v).Also, the scalar tape readsBfin lines 0-11 ofFE,,
of Figure 3b are replaced with reads from the internal velotifiier
as in lines 15-17 ir8D_2E. Compared to the code generated af-
ter SIMDizing D and E separately, the vertical SIMDization tech-
nigue in MacroSS eliminates 24 unpackind{$ repetition num-
ber] * [ D’ push rate] * [SIMD width]) and 24 packing f's repe-
tition number] * [ E’s pop rate] * [SIMD width]) operations.

Figure 5 shows the details of how vertical SIMDization chesg
the execution of a stream graph and eliminates the packipgbk-
ing operations between the fused inner nodes. Part (a)ofithire
shows how actor® and E interact with each other in scalar mode.
Since D has a push rate of 2 anf has a pop rate of 3, 12
invocations of actoiD feeds 8 invocations of actdf (D; and E;
denotei’” executions ofD and E, respectively). In other words,
every 3 consecutive executions bf produce enough data fdr
to consecutively execute 2 times. The 24 elements produgdd b
are written to the tape in order and read Byin the same order.
After performing single-actor SIMDization, every 4 constxe
invocations ofD is merged in actoDy . The first execution of this
new actor is similar to executing0, D1, D2, and D3 in parallel
as shown in Figure 5b. Since every 3 conseculdefeeds 2F's,
MacroSS needs to convert the vectors to scalars before etioh s
scalar strided writes to the output tapel®fand then form vectors
after each set of scalar strided readsFirto guarantee thak’ is
receiving its data elements in the correct order. Parts r{d)(d)
of Figure 5 show the order that the pushedlfn write and pops
in Ev read the data elements. If the pusheslirwere replaced
by a vector push, then elements 0, 2, 4, and 6 would be written t
the first row in memory. In that cadé will receive its input in the
wrong order.

Vertical SIMDization applied toD and E replaces these 2
actors with actoBD_2F. After vectorizing this new actor, every
4 consecutive executions &fD_2FE will be merged together as
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Figure 5: Part (a) shows scalar execution of actazand E. Part (b) shows the execution 6f and E after performing single-actor SIMDization. Part (c)
illustrates the order that data elements are written to tyeetin the main memory fro». The elements with the same colors are written in one setsif pu
operations. Part (d) is similar to (c) but for the reads in act. Part (e) shows how vertical SIMDization changes the exacudrder of actorsD and E.
Parts (f) and (g) illustrate the order that the elements aréten to and read from the internal buffer between the inaetors D and E.

shown in Figure 5e. Since each invocation of this actor ebescu
threeDs first (for-loop in line 0 of Figure 4b) and then twigs (for-
loop in line 14 of Figure 4b), running 4 of them in parallel Wil
result in first running{ D0, D3, D6, D9}, {D1, D4, D7, D10},
{D2, D5, D8, D11} and then{ F0, E2, F4, E6} and{E1, E3,-
E5, ET}. Therefore, because thes are generating their outputs
in the same order as thEs need them, the scalar tape between
original D and E can be changed to vector buffers and extra
packing/unpacking operations can be deleted. Figures &f5an
show how the reads and writes are done between intépradnd
FE's. As shown, the vertical SIMDization has eliminated thednee
to perform packing and unpacking betwelrand E. In summary,
vertical fusion of vectorizable actors into a new coarseraaiivays
results in less packing and unpacking operations becausigeof
execution reordering of the inner actors.

3.3 Horizontal SIMDization

As mentioned earlier, only actors without mutable state ban
SIMDized over using single-actor and vertical SIMDizati&nce
an invocation of a stateful actor depends on the previouscation
of the actor, different invocations cannot be paralleliz2de to the
same reason, the existence of a stateful actor within aip&ef
actors or an actor whose peek rate is greater than pop ratengse
MacroSS from performing vertical SIMDization because tbmoa
resulting after vertical fusion will be a stateful actor.

Horizontal SIMDization is an alternative approach taken by
MacroSS to vectorize a set of task-parallel isomorphicractden
vertical and single-actor SIMDization are not applicabiessult in
inefficient SIMD code. First, Horizontal SIMDization findask-
parallel isomorphic actors by investigating ealit-join (i.e. a
subgraph containing a splitter and a joiner and all tasklfrac-
tors between them). After finding the candidates, MacroS$ ho
zontally SIMDizesSW (SIMD Width) isomorphic actors by, con-
ceptually, executing them together side by side. Inputaiytapes
of SW actors in a SIMDized set are also SIMDized, making each

scalar tape a lane of 817/-wide SIMDized tape. Each actor in a
SIMDized set still works on its own tape by accessing eack lan
of the SIMDized tape. Horizontal SIMDization is able to \@ite
stateful actors as well as stateless actors because teaatitbles
are kept in different vector lanes and updated separatelyjasito

the non-vectorized case. The repetition number of the adtor
volved in this kind of SIMDization, unlike vertical and silegactor
SIMDization, is not changed and can be numbers that are nlet mu
tiples of SW.

Horizontal SIMDization mainly targets task-paralgbmorphic
actors insplit-joins Two actors are called isomorphic if they have
identicalwork andinit functions with similar or different constant
literals. A set ofSW isomorphic actors can be horizontally SIMD-
ized as long as the following conditions are true: (1) all leérh
have the same repetition humbers, (2) all of them have the sam
pushandpoprates, and (3) all of them are at the same level in a set
of pipelines that are children of split-join. Actors B, to B3 and
alsoC) to C; are considered isomorphic in Figure 2a.

Figure 6a shows aplit-join subgraph of the stream graph in
Figure 2a in more detail. Waves are used for depicting isptrior
actors due to the lack of space. Shaded acfgro C5 are stateful
and can not be vectorized using any of the previously meetion
techniques. Although actorBy to Bs are stateless, fusing each
of them with theC; right after them prevents MacroSS from per-
forming vertical SIMDization on the fused actor. Horizdr$#VID-
ization can overcome this problem by forming one SIMDizetbac
out of actorsB, to Bs and another SIMDized actor out of actors
Co to C5 as shown in Figure 6b. Note that although the constants
in line 6 of B;s are different in each actor, thigs are still consid-
ered isomorphic because the constants can be vectorizethéog
as shown in line 1 of actaBy in Figure 6b.

Before horizontal vectorization, each pipeline®f andC; ac-
tors works on a separate set of scalar tapes highlightedfeyetit
shades in Figure 6a. Horizontal vectorization SIMDizes #t of
four scalar tapes into one vector tape (See Figurevgidp() in



; :

Hsplitter (4)

0 work({ B work({ 0 work { ' By
for(i: 0 to 2){ 0 for(i: 0 to 2)( \m?ro cl(;nzs)‘(v: {5,6,7,8);
a0=pop(); a0=pop(); ao.v:vpop()'
al=pop(); al=pop(); B, B, a0y vpop():
22Zpopd: a2=pon(; 22 2')2 a2_v= vpcvp()I
a3=pop(); - :

r=@0*al+a2*ad)/5;
push(r);
}
}

(0 it statd31]; Co)

1 intplace_holder 0;

r=@0*al+a2*a3)/6;
push(r);

RIS

1
2
3
4
5 a3=pop();
6
7
8
9

init{
for(i: 0 to 31)
state[place_holder} 0;

RN

work {
push(state[place_holdei}
state[place_holder} pop();
place_holdef+;
0}

© ®©~N o

g EE
-1

QR :

@

a3_v=vpop();
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vpush(r_v);

}
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(0 vectorint state_{B1]; cv )
1 intplace_holder 0;

2 init{

3 vector inttmp_v={0,0,0,0};

4 for(inti: 0 to 31)
state_v[place_holdery tmp_y
6}

7 work {
8 vpush(state_v[place_holde}]
9 state_v[place_holder¥ vpop();
10 place_holdef+;

Figure 6: Part (a) and (b) show the graph before and after horizontllBization, respectively.

line 3 of By reads 4 data items at once from the vectorized input tion. The destination of pop and peek operations are marked a

tape. The lanes of this vector tape corresponBdpB:, B2 andBs
respectively. Similarlyypush() in line 8 pushes 4 data items at
once to the vectorized output tape. Since tapes are alsorizst,
no non-unit strided accesse usipgek () orr push() is needed.
Horizontally vectorizing tapes can greatly improve thelfpperfor-
mance by replacing the scalar tape accesses with vectossasce
and, therefore, better utilizing the memory bandwidth.okstB,

to B3, originally had 96 pops (= [pop rates: 12][repetition num-
bers: 2] x [SIMD with: 4]) which is reduced to 24 vector pops
(= [vector pop rates: 12k [repetition number: 2] ) after SIMD-
ization. Similarly, the number of pushes Bs decreases to 6 vec-
tor pushes from 24 pushes, a6i's 24 pops (pushes) drops to 6
vector pops (pushes). In general, the number of tape ascésse
the actors between a horizontally vectorizgdit-join structure is
always reduced by factor &fiV.

During horizontal SIMDization, MacroSS replaces the aragi
splitter and joiner witthorizontal splitter (HSplitterandhorizon-
tal joiner (HJoiner) In a horizontally vectorized structure, tran-
sitions between a scalar tape and vector tape occurs witiein t
HSplitter and HJoiner. The HSplitter reads from a scalae tapd
performs packing operations and writes them to its veatdriaut-
put tape. The HJoiner reads vector data types from its inpdt a
converts them to scalar before writing them to its scalapwiut
tape. For example, in Figure 6, before SIMDization, thetspliex-
ecutes 6 times and, during each execution, it conducts 16 fpom
its scalar input tape and distributes the popped valuesdsstits
scalar output tapes in a round-robin fashion using scalsh p-
erations. After horizontal vectorization, the new HSplitstill ex-
ecutes 6 times and it performs 16 pops from its scalar inpé ta
each time it executes. It forms 4 vectors out of the 16 dataehts
using packing operations and finally does a vector push tedtor
output tape. The HJoiner is formed in a similar way, but iadtef
packing, it performs unpacking on the vector data it readsfits
input tape.

Horizontal vectorization of an actorwork and init method
comprises of two parts similar to single-actor SIMDizatiaten-
tifying the vectors and rewriting the code for the actor.sEir
MacroSS needs to identify variables and constants for vigeto

vector variables. Also, if the value of a constant in an adsor
different from that of a matching constant in another isqohar
actor, the constant should be raised to a vector constantdoina
tains the values of a matching constantS3#” actors. The vector
variableconst _v in line 1 of By in Figure 6b is created from 4
different constants i3y to Bs. The identified vector variables and
constants are used as the seeds for marking the other vector v
ables similar to single-actor SIMDization. After markirggdone,
MacroSS rewrites the horizontally SIMDizable actors usihg
marked vectors and changes their input and output tapesctorve
tapes. Finally, the splitter and joiner in the horizont&ivDizable
split-join are replaced with horizontal splitter and joiner actors.

In summary, horizontal SIMDization is different from vesi
and single-actor SIMDization in several ways. First, honial
SIMDization can be applied only to isomorphic actors. Segon
unlike other techniques used by MacroSS, it can handlefgtate
actors. Third, horizontal SIMDization does not affect theehcy of
the graph because there is no need to scale the repetitiobensm
of the actors. Finally, using horizontal vectorization,aSS can
transform the existing task-level parallelism among tloenisrphic
actors to data-level parallelism.

3.4 Architecture Support for Tape SIMDization

In both single-actor and vertical SIMDization techniguiage ac-
cesses are left as scalar. Converting these accesses to &MD
cesses results in reading or writing the data elements inrder o
which is different from the scalar execution. Vertical SIiBtion
reduces this overhead by replacing the scalar tape acdetsesen

a pipeline of SIMDizable actors that are fuse-able with oeeic-
cesses to an internal buffer. In this section, two techricpirat
MacroSS uses to optimize the scalar tape accesses aresgidcus
The first technique uses a permutation based approach &i theg
overhead of performing packing/unpacking whenever dataris-
municated between scalar and vector parts of the strearh.grap
second technique shows how MacroSS can simplify the read and
write accesses of data that moves between scalar and vetbos a
in the presence of a unit called the streaming address dgamera
unit (SAGU).
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Figure 7: This graph shows how 16 stride-4 tape reads in an actor are
replaced with 4 vector pops and 8 permutation instructions

Permutation-based Tape Accesses. The packing/unpacking
overhead exists between scalar and vector actors, suéh aasl
G, in the SIMDized graph in Figure 2b. MacroSS optimizes these
data conversions for actors whose push or pop counts are pow-
ers of 2 using two general architecture independent petionta
operationextracteven(V1, V2, R), extractdd(V1, V2, R)Theex-
tract_even( extractodd) operation takes two input vectofg,l and
V2, and constructs a third vectaR, using even (odd) positions
of the inputs. This kind of permutation is supported by altak
SIMD standards (SSE, Altivec, Cell SPU, Neon).

Assume an actor{) has X,. pop accesses without any peeks.
Each pop access is a load operation followed by an add totdbgus
position of the read pointer. After single-actor vectatiza on A,
the stride for scalar pop accesses willXe. For example, actob
in Figure 2a originally had(,, = 2 pops and after SIMDization the
stride is 2 as well. This stride guarantees that each seatdrgoops
reads the right elements from the input tape. If a load icton
takesC,. cycles, ignoring the add operations, popping the elements
from the input tape in actad,, actor A after SIMDization, takes
C, x X, x SW cycles. The other way that MacroSS can perform
the same pop operations is to & vector loads, and then perform
a set of permutations to form vectors identical to the caaettie
pops were in strided scalar format. MacroSS finds the minimum
number ofextractodd and extractevenoperations to shuffle the
elements in the vectors after the vector pops. An examplaisf t
is shown in Figure 7. Assume that MacroSS is trying to SIMDize
an actor with 4 pop operations. Instead of performing l@lstti
pop/peek operations, MacroSS can generate 4 vector popkemd
use 8 permutation operations €Atractevenand 4extractodd) to
form the strided pattern. This reduces the 16 scalar loachtipas
to 4 vector load operations and 8 permutations. We ignore the
savings due to removal of address generation operations.

In general, shuffling the elements &f,. vectors to get to the
same number of vectors each with elements strided at distanc
of X, from the original vector needX,lg> X, extractodd and
extractevenoperations [22]. The same formula can be used to find
the number of permutations that are needed to replace snasar
or peek operations with their vector equivalent. MacroS8ares
the overhead of performing scalar tape accesses and vep®r t
accesses to identify the cheaper solution. After findingctiesaper
solution, MacroSS transforms the tape accesses. The betbso
can be different based on the SIMD width, tape access strides
permutation cost, and also read/write access latencies.

Streaming Address Gener ation Unit: Exploiting permutation-

based tape accesses becomes harder when the push and pop rate

are not powers of two or the underlying architecture does not
support the needed permutation instructions. In theseasican
replacing the strided scalar push or pop operations withovec
versions in a vectorized actor forces subsequent scalauoer or
producer actors to perform complex address calculatioastess
the tape in the correct order. Although replacing the scadaesses
with vector accesses reduces the number of memory accasdes a
address generation operations in the vector actor, theneadr
introduced due to additional address calculation opearatiothe
direct consumer or producer is non-trivial. The code in Fég8&
shows how the address calculation should be performed larsca
actors that are connected to vectorized actors in whichhall t
pushes are replaced with vector pushes. FhshCntis set to the
push rate of the vectorized actor. The overhead introdugetib

code on the Intel Core i7 is at best 6 cycles on top of the memory
access overhead assuming multiple back-to-back pop dpesat

6 if (PushCat - (BaseCntr-1) == 0 ) { N
1 BaseCntr = 0;
2 if (StrideCntr - (SIMD SIZE-1) == 0) {
3 StrideCntr = 0;
4 OffsetAddr = OffsetAddr + (PushCnt << LOG2 SIMD));
5 } else { StrideCntr++; }
} else { BaseCntr++; }
7 OffsetValue = BaseCntr << LOG2 SIMD;
8 OffsetValue += StrideCntr;
9 OffsetValue += OffsetAddr;
\l0 Resulthddr - OffsetValue + BaseAddr; J
Figure 8: This code shows the address calculation in a scalar actockwhi

is the consumer of a vectorized actor with vector pushes.

To deal with this problem, we developed the Streaming Addres
Generation Unit (SAGU). The SAGU is able to reduce the over-
head cost of address calculation in a scalar actor that isexbad
to a vectorized actor, in which all the scalar strided tapzesses
are replaced with vector version, through a special funefioinit
that loads configuration data (push or pop count) and hol&s-in
nal state allowing for quick generation of the required addes.
Figure 9 shows the hardware of the SAGU. Conceptually, when
vector pushes (pops) occur the writes (reads) are row bagdtd
reads (writes) have to access tape in a column-wise ordetc-to a
cess the data elements in correct order. $trade Counterpoints
to the column that needs to be accessed.BdmeCounterregister
points to the row location in the current column that corgaime
data element needed by the actor. TDfésetAddressregister off-
sets theBaseAddresgo the next set of vector data elements. Each
scalar pop increments tligaseCounter After the number of pops
equals to thePushCount the Stride Counterincrements in order
to access the next column and BaseCounteris reset. When the
Stride Counterequals theSW the Stride Counterresets and the
OffsetAddressncrements. The same operation occurs when scalar
pushes are used. When designing the SAGU, we found that the
largest push/pop count for SIMD to scalar conversion acatiske
kernels was 16K. With a SIMD width of 4, this allows us to use
only 16-bit calculations throughout the unit except when asiel
the results to the base address register to generate tlotveffad-
dress. Most of the operations occur in parallel making tlitecat
path two 16-bit operations and the 64-bit base addresslatitmu
When optimized, we find that this unit will not be on the catic
path allowing the address calculation to take the same anwun
time as other address calculation instructions.

[PoprPush_Count] Base_Counter |
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1 Loaded Values
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Figure 9: This figure shows the hardware for the SAGU.

To use the SAGU, only minor modification to the ISA or
hardware needs to be done. Many ISAs like Intel x86 [13] and
ARM [26] support multiple addressing modes which can penfor
operations on multiple address registers. There are alaikd-
dressing mode configurations in these ISAs that we can maalify



support the SAGU addressing mode. Effectively, this wowdike
performing a post-increment on an address register whiaidvo
be transparent to the programmer and architecture. Thmatiee

to this technique, if the ISA cannot support the addressiogan
would be to add another opcode to setup the SAGU and to in-
crement it. Before starting each scalar actor, we wouldoperfa
SAGU setup and write the pop or push count. This would reget th
internal counters to 0. After performing a pop or push openabn

the address register we would execute a SAGU increment tateipd
the value to the next memory location. This would only regr
additional instructions to the ISA and introduce 1 extrdrinstion

for each memory operation in the program which would be fss le
than directly calculating the address. Because of the |cstf @i

the SAGU and the speed of the calculation, multiple units fwan
implemented if needed with little to no overhead.

3.5 Implementation

Algorithm 1 Macro SIMDization Steps

Input: Stream Grapl®, Architecture Descriptior\
{Apply prepass classic and streaming optimizations andpsiorm
scheduling on the graph.

: Prepass-Optimizations (G);

: Prepass-Scheduling (G);

{Find the segments suitable for vertical/horizontal SIMddian.}
. (Gv, Gpg) := Find-Vectorizable-Segments(G, A.CostModeék

{Adjust the repetition numbers and perform vertical SIMBiza on
the specified segmenjs.

. Adjust-Repetition-Numbers (G);

: Vertically-SIMDize (G, A.CostModef

o s

{Perform horizontal SIMDization after vertical is finishgd.
: Horizontally-SIMDize (G g, A.CostModet

{Apply Permutation-based optimizations and exploit SABU.
: Optimize-Tapes (G, A.CostModeél

{Generate intermediate code for the specified tayget.
: Emit-Intermediate-Code (G, A);

MacroSS’s SIMDization algorithm can be divided into sev-
eral distinct phases. In this section, a high-level ovevnié these
steps are given. Algorithms 1 illustrates the overall arugmof
the macro-SIMDization phases in MacroSS for vertical, famtal
SIMDization, and tape SIMDization. The remainder of thistsm
explains each of the phases and their relationship to ortha@no

Prepass Optimizations and Scheduling: MacroSS applies
a set of classic and streaming optimizations and also pesfor
scheduling before starting the macro-SIMDization. Thesiaand
streaming optimizations mainly improve the overall parfiance
of the graph. The streaming optimization in some casestrasul
more efficient macro-SIMDization. For example, static paeter
propagation, which propagates the values of the static-oegd
variables of an actor to all of its instances, helps detaatibiso-
morphic actors. The steady state scheduling of the streaphds
also performed as a prepass.

Identify Vectorizable Segments: In this phase, MacroSS ex-

until the pipeline can not be extended anymore. At this paiht
the actors in the pipeline are marked for vertical vectaigmaand
added td7v . Identifying horizontally vectorizablsplit-joins starts
by testing the eligibility of a givesplit-join based on the definition
given in Section 3.3. If &plit-join passes the eligibility test it will
be added @~ 5.

One actor may be a member of bofl and Gx. Since
MacroSS applies one form of SIMDization to any actor, it uses
its cost model to choose what type of SIMDization (vertiaghor-
izontal) is more effective for the actors that are in béth and
Gm. At the end, MacroSS guarantees that the intersection of the
setsGy andG g is empty.

Vertical SIMDization and Repetition Number Adjustment:
After finding the segments suitable for horizontal and aiti
SIMDization, MacroSS adjusts the repetition numbers ofabe
tors as described in Section 3.2. Then, the actual vertieetov-
ization is performed. This parts fuses the pipelines ofamézable
actors () found in the previous steps and changes them to vec-
torizable actors. Single-actor SIMDization is done as @isppease
of vertical SIMDization when a pipeline of vectorizable acton-
tains only one actor.

Horizontal SIMDization: After vertical SIMDization, the
steady state repetition numbers are finaliz8glit-joins eligible
for horizontal SIMDization are passed to this phase and b&Sr
changes the splitter and joiner actors to their horizonéssions.
The statements in the task-parallel actors between thitesdind
joiner are also merged to form vector instructions.

Tape Optimization: After vertical and horizontal vectorization,
MacroSS searches for opportunities to perform tape opiticia
that are discussed in Section 3.4. This phase basically €iigible
set of reads or writes. Then, if it is cheaper, MacroSS reslac
them with vector read or writes plus permutation instrucsiolf
the target architecture is equipped with SAGU, MacroSSddok
cases where it can be exploited.

Code Generation: The final phase of macro-SIMDization deals
with intermediate code generation. In this phase, Macro@gsm
the internal stream representation to the target specifle (G++
in this case) and uses available architecture-dependeimsics to
better utilize the target SIMD engines.

4. Comparison To Traditional SIM Dization

Since MacroSS generates the intermediate code in a coomahti
imperative language, such as C or C++, traditional vecition
techniques can also be a viable approach to perform SIMiDizat
on streaming applications. Traditional vectorizationht@ques
mainly consist of inner-most loop, outer loop, and supedaevel
parallelism extraction [1-3, 16, 23]. In this section, wetty com-
pare MacroSS's graph-level SIMDization to traditionalheitjues
and highlight the differences.

As streaming code gets converted to imperative intermedi-
ate code, it gets harder to extract the high-level inforamathat
is available at the graph-level. As a result, performingetfire
SIMDization becomes very difficult for some actors. Secadnd,
some cases, traditional SIMDization is predicated on tgenm-
plicated, carefully phase-ordered compiler analysis tigsds the
code in a certain templated form.

One of the points that makes MacroSS’s SIMDization more
powerful than any other vectorization technique on intetize
codes is the ability to identify isomorphic actors and perfanor-

amines the stream graph and finds the segments of the graph thaizontal SIMDization. At the graph level, MacroSS knows thkar

are suitable for vertical and horizontal SIMDization. Fartical
SIMDization, MacroSS starts from a single vectorizabl@adthis
actor is added to an empty pipeline of vectorizable actorenT
MacroSS examines the consumer of that actor. If the consigner
also vectorizable and can be fused with the original actdh-wi
out introducing state, it is added to the pipeline. This jsested

2Area overhead is less than 1% of the area of the Core i7. This wa
measured by synthesizing the hardware model.

tion between the actors and can detect the task-paraltabigzhic
actors by doing a graph traversal. Performing the same tasheo
intermediate code is complicated. To find the isomorphioracthe
auto-vectorizer needs to extract the task graph and thepa@nthe
source code for the actors. Both of extracting the task geaph
matching source code can be obfuscated by other optimizatio
The other issue that may disable auto-vectorization ofrite-

mediate code is inability to adjust the schedule of the tasbkly
One of the main parts of the schedule is the repetition nusaber
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Figure 10: In this graph the performance benefits of applying traditilbauto-vectorization, macro-SIMDization, and both ofrthtogether are compared.
Part (a) shows the speedups when GCC is used as the intetimediapiler. Applications in part (b) are compiled with Ih@ompiler (ICC).

MacroSS can intelligently scale the repetition numberseesiad
by the SIMDization. Since the repetition numbers affect yrzauts
of the generated code such as buffer (i.e. tape) allocedimh for-
loop boundaries, they are not easily possible to adjust géeera-
tion of intermediate code.

Vertical SIMDization is another technique that MacroSSsuse
perform vectorization. Even though performing verticaiéun on
selected actors is in theory possible on intermediate dbdegds
complex transformations and compiler analysis such as memo
aliasing analysis, loop distribution, and loop relatioralgais.
MacroSS does not need these complex transformations ahg ana
ses since, at the graph-level, aliasing information andrehation
between across is already embedded.

Although we are not proposing any universal partitioning ap
proach that can handle both SIMDization and multi-coreifant
ing, performing vectorization on the high-level graph neaiteos-
sible for the partitioner and mapper parts of the streamamgpler
to be able to make SIMD-aware decisions. This can lead torfindi
more efficient graph partitioning and mapping decisionac&ithe
intermediate code is already partitioned without consdepossi-
bility of SIMDization, it under-performs the macro-SIMRid code
even after auto-vectorization.

In summary, MacroSS’s SIMDization techniques are more effi-
cient than auto-vectorization approaches because MadraS e
ability to decide which actors are suitable for what kind e€tor-
ization at the graph-level, transform the graph, adjusstiredule
accordingly and generate permutation instructions baseattors
read and write characteristics. Performing the same taskagl
auto-vectorization after generation of intermediate dedificult.

5. Methodology and Experiments

In this section, macro-SIMDization techniques in MacroSg€ a
evaluated and compared against traditional techniquesrform
auto-vectorization on languages. Also, the effectiveinésertical
and horizontal SIMDization is shown. The performance besefi
the streaming address generation unit is measured anchprdse
this section. Finally, the interaction between macro-Sikéiftion
and multi-core scheduling is discussed.

Methodology: A set of benchmarks from the Streamlit bench-
mark suite [29] are used to evaluate MacroSS. The benchraagks
compiled and evaluated on a 3.26 GHz Intel Core i7 proce$her.
Intel Core i7 is used because it is equipped with the latasiove
of the SIMD engine from Intel, SSE 4.2.

MacroSS implementation is based on the Streamit compiler.
The macro-SIMDization steps are implemented as a sepavate ¢
piler backend. The output of MacroSS is C++ code. To convert t
generated C++to x86 binary, GCC 4.3 [8] and Intel CompilEQ)
11.1 [14] are used. Both of these compilers are capable of per
forming aggressive optimizations and also auto-vecttidmaon
C++ code. ICC is considered one of the best for its capadslitn

performing inner-most, outer-most loop and superworeillparal-
lelism vectorization. GCC also supports auto-vectortwafor x86
processors and is widely used to compile C/C++ for Intel gsoc
sors. In order to isolate the benefits of macro-SIMDizatalhthe
experiments are performed using only one core of the process
except in the last experiment where we show performancefitene
compared to multiple cores.

The original Streamlt backend in MacroSS is used to generate
the baseline scalar intermediate C++ code. The baselinamiet
diate code is compiled to x86 binary using GCC or ICC with ag-
gressive optimization flags enabled. The auto-vectodnghiass in
these compilers is used to perform traditional auto-vézation
on the generated C++ code. To macro-SIMDize streaming -appli
cations, the new backend in MacroSS is used to generate macro
SIMDized intermediate C++ code using target specific vetyioes
and intrinsics. For measuring the performance of the géeeiai-
nary the performance counters on the Intel Core i7 are ebeploi

Overall Performance: The set of Streamlt benchmarks are
compiled using macro-SIMDization and compared against4CC
and GCC's auto-vectorization. ICC and GCC are the leading-au
vectorizer compilers for Intel architectures capable oplgpg
complex vectorization techniques proposed in the liteeatkig-
ure 10 illustrates how MacroSS's techniques perform coag&r
traditional auto-vectorization techniques. Figure 10awsh per-
formance comparison between GCC's auto-vectorized, macro
SIMDized and auto-vectorized macro-SIMDized code. Figi0ke
contains the same comparison for ICC. In both cases, macro-
SIMDization achieves higher performance gains comparedito-
vectorization. On average, macro-SIMDization improves fihal
performance by an additional 54% and 26% compared to GCC
and ICC auto-vectorizations. Applying both macro-SIMDiaa
and auto-SIMDization can improve the performance by amothe
1.5% and 2.2% in benchmarks compiled using GCC and ICC. The
only case that traditional auto-vectorization outperfermacro-
SIMDization is FMRadioon ICC. In this special case, ICC per-
forms inner-loop vectorization on the main for-loop in thede
which results to aligned memory accesses but MacroSS’samacr
SIMDization results in unaligned memory accesses. It issipos
ble to make MacroSS leave this for-loop for inner-loop veetr
since, during macro-SIMDization, it knows inner loop vetta-
tion will be more efficient in this special casBeamFormerand
FilterBank mainly consists of several pipelines gflit-join struc-
tures with isomorphic task-parallel actors. It is not pbkesto col-
lapse these pipelines into one pipeline because they hate- st
ful actors. Therefore, the speedups in these two benchnzaeks
mainly due to horizontal vectorization. In summary, GCCvg0
unimpressive gains using auto-vectorization. Althou@C shows
fairly large gains (1.34x on average), MacroSS'’s techrsgasult
in even larger gains (2.07x on average). Having access tmblo
information enables MacroSS to achieve significant speedup



Effect of Vertical SIMDization: Vertical SIMDization is one
of the main techniques that MacroSS uses to perform veetoriz
tion on streaming graphs. Figure 11 illustrates, the effeness
of this type of SIMDization. In this experiment, the baselis a
streaming graph macro-SIMDized with only single-actor B
ization and compiled with GCC. As shown in the figure, vettica
SIMDization, on average, improves the performance of treeba
line by 40%.Matrix Multiply Block benefits the most because the
vertical fusion of SIMDizable actors eliminates a large tem
of packing/unpacking operations. Without vertical fusiomacro-
SIMDization in this benchmark would result in significanthss
speedup then that shown in Figure 10a. The benefiterBank

andBeamFormeare very negligible because these benchmarks are

vectorized mostly using horizontal vectorization.AMRadioand
AudioBeanthe opportunity for performing vertical SIMDization is
very small because most of the vectorizable actors in theserb
marks are isolated from each other and do not form a pipeline.
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Figure 11: This graph shows percent speedup due to vertical SIMDizatio
compared to single-actor SIMDization.

Streaming Address Generation Unit: MacroSS utilizes the
SAGU to eliminate the packing/unpacking overhead and aiso i
prove memory bandwidth utilization when data is crossirgjac
and vector boundaries in a stream graph. To evaluate théitsesfe
the SAGU, we use the performance counters on the Intel Cdce i7
find the overheads introduced by packing and unpacking tipesa
and also scalar memory accesses. Figure 12 illustratesftw e
of utilizing SAGU. The baseline in this graph is macro-SIMBxl
code. On average, this unit can improve the final performahttee
macro-SIMDized benchmarks by 8.1%. The performanddatfix
Multiply andDCT are improved 22% and 17% respectively because
they perform a large number of packing/unpacking operatamd
scalar memory reads and writ&eamFormershows the least im-
provement because almost all the speedup in this benchsddei
to horizontal SIMDizationMP3 Decoderis also not affected by
the SAGU because its computation to communication rati@ig v
high and the packing/unpacking operations do not causesiasub
tial performance overhead.

Multicore and Macro-SIMDization: Implementing a sched-
uler to decide how to partition a stream graph between nieltip
cores and also use the SIMD engines is a non-trivial taskitidar
ing and mapping decisions taken by a naive multi-core sdeedu
may reduce the SIMD opportunities. In this section, we show+c
servatively estimated numbers on how a simple SIMD-awar&-mu
core scheduler/partitioner performs. The scheduler werugiais
experiment first performs multi-core partitioning and tipenforms
macro-SIMDization. This approach reduces the opportemitor
performing vertical fusion and also horizontal SIMDizatiolf
multi-core partitioning removes most of the benefits of the3-
ization and the scheduler has to choose between SIMDizatidn
multi-core execution, it always chooses SIMDization beeait
reduces memory/cache traffic and communication overhead be
tween the cores. Since the multi-core scheduler does nasidmEn
the possible benefits of vertical fusion and horizontal SixéEion
in several benchmarks, the performance benefits of SIMDizat

Performance Benefits of SAGU

% Improvement

Figure 12: This graph shows how SAGU can improve the performance of a
macro-SIMDized graph.

is reduced compared to Figure 10. Therefore, these numbers a
conservative estimates of the performance of a SIMD-awaié-m
core scheduler. As shown in Figure 13, the performance lignefi
of 4-core execution is within 5% of macro-SIMDized 2-core-ex
cution. Exploiting the SIMD engines increases the speedom f
1.28x to 2.03x in 2-core schedule and from 1.85x to 3.17x in 4-
core schedule. Fdvlatrix Multiply andMatrix Multiply Block the
scheduler prefers to only use the SIMD engines because-onuki
partitioning, in this case, leads to high inter-core comication
overhead.
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Figure 13: The performance benefit of SIMDization in case a graph is
scheduled for multi-core is shown in this graph.

6. Related Work

There is a large body of literature that deals with explgitpar-
allelism in streaming languages for better performanceé[29].
The most relevant works include stream graph refinementsg-to e
tract coarse-grain task-level, data-level and pipelinalfdism and
map them onto multi-core architectures [9, 10]. Authorslib] [ap-
plied modulo scheduling to task graphs for maximizing pipeel
parallelism also on multi-core architectures. Our work igtidc-
tively different from and complementary to these previoasks in
its ability to exploit SIMD parallelism and generate SIMDeéxted
codes for various architectures. Vertical SIMDizationuses on
fine-grain SIMD parallelism, while horizontal SIMDizatidgrans-
forms task-level parallelism to SIMD parallelism.
Auto-vectorization and SIMD code generation were studied e
tensively in the literature. The seminal work of Allen andnikedy
on the Parallel Fortran Converter [1, 2] set the grounds fostrof
the work on auto-vectorization that followed. For targgtavari-
ety of SIMD architectures and solving severe problems thaea
specifically data alignments and permutations, a large eurob
studies has been conducted [7, 16, 21, 22, 25, 31]. All thede t
nigues can be applied to the generated intermediate codeafis
ing applications. However, our work is unique in that veiatation



is applied on a higher level of representation of the progahich
enables us to utilize global information such as executates
of actors and exposed data communications for generatitigrbe
vectorized codes. In contrast to focusing on local strestuike
loop nests and basic blocks, our macro-SIMDization levesage
streaming applications’ static characteristics, suchtascssched-
ules and pre-defined data access patterns.

There has been recent work [20] on generating efficient per-
mutation instructions based on Streamlt, but for only oreciic
SIMD device (VIRAM). MacroSS provides efficient SIMDizatio
for streaming applications which is flexible and portablewggh to
be applied to a variety of SIMD architectures.

Vectorizing computations that access non-unit stride oadt-
vated the development of the SIMdD (Single Instructions aritiv
ple disjoint Data) model and SIMdD architectures, such a$giv
eLite DSP[18]. Such architectures better support non-amurts/e
data accesses via vector pointer hardware. Tuned for strigam
applications in which non-unit strides are statically kmoand
fixed for the entire execution of an actor, our architectargdport,
SAGU, is simpler and entails smaller overheads than whataig-a
able in general SIMdD architectures.

7. Conclusion

As SIMD-enabled multi-core systems become ubiquitous,dti-
ical for programming languages and compilers to be ablexdfie
target both the SIMD and multi-core aspects of these arcthites.
Several retargetable streaming languages, such as Strdmwé
been proposed to exploit parallelism across the cores.eTlaes
guages apply traditional auto-vectorization to the imfpeganter-
mediate code (e.g. C/C++) to target SIMD engines. In mangs;as
applying auto-vectorization to the generated intermediatle re-
sults in under-utilization of SIMD engines because muchhef t
high-level information available in the streaming appiica, such
as data-flow information and the set of valid schedules, isised
by the auto-vectorizer.

In this paper, we introduce macro-SIMDization: a technifpre
vectorizing stream graphs using the high-level infornratwail-
able in streaming programs. A new compilation system, Magro
is developed to show the benefits of macro-SIMDization caegha
to traditional SIMDization techniques. MacroSS utilizeese new
techniques to achieve high utilization of the SIMD engirsésgle-
actor, vertical, and horizontal SIMDization. Architeclsupport
for tape optimizations, using general permutation openatand a
streaming address generation unit (SAGU) is also discusst
paper.

Our results show that MacroSS is capable of improving the
performance of streaming applications by an average of 5d&o a
26% compared to auto-vectorizers in GCC and Intel compiter,
spectively. In the experiments, we also evaluated how th€$A
can improve the performance on average by an additional 8.1%
by eliminating packing/unpacking operations betweenascahd
vector actors. Finally, we show the performance benefitsaufror
SIMDization in the presence of a naive multi-core schedtder
streaming applications. Even with a naive multi-core schagwe
estimate that we can achieve better performance than agdhtor
tel Core i7 on only 2-cores using SIMD. The results indicéiat t
performing macro-SIMDization can significantly improvesther-
formance of streaming applications and extend their retatglitiy
by making them more suitable for SIMD programming.

Acknowledgement

Much gratitude goes to the anonymous referees who provided e

cellent feedback on th|s ork We aLso thank Chan gl[)a Krintz f
shepherding this paper. T |s research was supported by ARM L

ited, the National Science Foundation under grant CNS-B&15

and the Korea Research Foundation grant funded by the Korean

Government (MOEHRD) (KRF-2007-356-D00200).

References

[1] R. Allen and K. Kennedy. Pfc: A program to convert fortréam
parallel form. Technical Report 82-6, Dept. of Math. Scies¢ Rice
University, Mar. 1982.

[2] R. Allen and K. Kennedy. Automatic translation of fontrarograms
to vector form.ACM TOPLAS9(4):491-542, 1987.

[3] R. Allen and K. KennedyOptimizing compilers for modern architec-
tures: A dependence-based approadhiorgan Kaufmann Publishers
Inc., 2002.

[4] ARM Ltd. ARM Neon2009. http://www.arm.com/miscPDFs/6629.p
df.

[5] I. Buck et al. Brook for GPUs: Stream computing on graphti@rd-
ware. ACM Trans. Gr, 23(3):777-786, Aug. 2004.

[6] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. Sheri-
la: Achieving high performance from compiled network apations
while enabling ease of programming. Pmoc. '05 PLDI, pages 224—
236, June 2005.

[7] A. E. Eichenberger, P. Wu, and K. O'Brien. Vectorizatifor simd
architectures with alignment constraints. Bmnoc. '04 PLDI, pages
82-93, 2004.

[8] GN/U Compiler Collection. Gcc 4.3.2, 2008. http://gawugorg/gcec-
3

[9] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Ldm
C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasmghe A
stream compiler for communication- exposed architecturks 10th
ASPLOSpages 291-303, Oct. 2002.

[10] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploitingacse-
grained task, data, and pipeline parallelism in streamnarog. In
12th ASPLOSpages 151-162, 2006.

[11] IBM. Cell Broadband Engine Architectur&ar. 2006.

[12] Intel. Intel sse4, 2006. http://download.intel.cémehnology/architec-
ture/new-instructions-paper.pdf.

[13] Intel. Intel Core i7, 2008. http://www.intel.com/giacts/processor/cor
ei7/index.htm.

[14] Intel. Intel compiler, 2009. software.intel.com/asfintel-compilers/.

[15] M. Kudlur and S. Mahlke. Orchestrating the executionstieam
programs on multicore platforms. Froc. '08 PLDI, pages 114-124,
June 2008.

[16] S. Larsen and S. Amarasinghe. Exploiting superwordllparallelism
with multimedia instruction sets. IRroc. '00 PLDI, pages 145-156,
June 2000.

[17] E. Lee and D. Messerschmitt. Synchronous data fl@roc. IEEE
75(9):1235-1245, 1987.

[18] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. tdy, M. S.
Ware, K. Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaady\T
Fox, D. Littrell, M. Biberstein, D. Naishlos, and H. HunteAn in-
novative low-power high-performance programmable signatessor
for digital communicationsIBM Jrn. of Research and Development
47(2-3):299-326, 2003.

[19] A. Munshi. Opencl parallel computing on the gpu and ¢g008.

[20] M. Narayanan and K. A. Yelick. Generating permutatiostiuctions
from a high-level description. Iln Proc. MSP'04 2004.

[21] D. Nuzman and R. Henderson. Multi-platform auto-veizgtion. In
Proc. 2006 CGQpages 281-294, 2006.

2] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorizatiorintérleaved
data for simd. IrProc. '06 PLDI, pages 132-142, 2006.

[23] D. Nuzman and A. Zaks. Outer-loop vectorization - rieis for short
simd architectures. pages 2-11, 2008.

[24] Nvidia. CUDA Programming GuideJune 2007. http://developer.dow
nload.nvidia.com/compute/cuda.

[25] G. Ren, P. Wu, and D. Padua. Optimizing data permutatfonsimd
devices. IrProc. '06 PLDI, pages 118-131, 2006.

[26] D. Seal. ARM Architecture Reference ManualAddison-Wesley,
London, UK, 2000.

[27] L. Seiler et al. Larrabee: a many-core x86 architectiarevisual
computing.ACM Trans. Gr, 27(3):1-15, 2008.

[28] F. Semiconductor. Altivec, 2009. www.freescale.calti/ec.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streafnlan-
guage for streaming applications. Rroc. 02 CC pages 179-196,
2002.

[30] Tilera. Tile64 processor - product brief, 2008. httpww.tilera.com/

pdf/.

[31] P Wau, A. E. Eichenberger, and A. Wang. Efficient simdegénera-
tion for runtime alignment and length conversion Piroc. 2005 CGQ
pages 153-164, 2005.



