
Differential Privacy in New Settings

Cynthia Dwork∗

Abstract
Differential privacy is a recent notion of privacy tailored
to the problem of statistical disclosure control: how to
release statistical information about a set of people without
compromising the the privacy of any individual [7].

We describe new work [10, 9] that extends differentially
private data analysis beyond the traditional setting of a
trusted curator operating, in perfect isolation, on a static
dataset. We ask

• How can we guarantee differential privacy, even against
an adversary that has access to the algorithm’s internal
state, eg, by subpoena? An algorithm that achives this
is said to be pan-private.

• How can we guarantee differential privacy when the
algorithm must continually produce outputs? We call
this differential privacy under continual observation.

We also consider these requirements in conjunction.

1 Introduction

Differential privacy is a recent privacy guarantee tai-
lored to the problem of statistical disclosure control:
how to publicly release statistical information about a
set of people without compromising the privacy of any
individual [7] (see [4, 5, 3] for motivation, history, basic
techniques, and pointers to recent results).

In a nutshell, differential privacy requires that the
probability distribution on the published results of
an analysis is “essentially the same,” independent of
whether any individual opts in to, or opts out of, the
data set. (The probabilities are over the coin flips
of the privacy mechanism.) Statistical databases are
frequently created to achieve a social goal, and increased
participation in the databases permits more accurate
analyses. The differential privacy guarantee supports
the social goal by assuring each individual that she
incurs little risk by joining the database: anything that
can happen is essentially equally likely to do so whether
she joins or abstains.

The strengths of differential privacy are

1. It is independent of any additional information, in-
cluding other databases, available to the adversary;

2. It is achievable using fairly simple and general
mechanisms; and

3. It frequently allows very accurate analyses.

∗Microsoft Research. E-mail: dwork@microsoft.com.

Up to this point, research on differentially private
data analysis has focussed on the setting of a trusted
curator holding a large, static, data set, held in a
permanently infrangible storage system. The curator
either responds to queries (the interactive case) or
prepares some sort of summary or synthetic database
(the non-interactive case), intended to answer all queries
of a particular type1. A line of work investigates the way
in which the accuracy of of the responses to the queries
may need to deteriorate with the number, sensitivity (a
metric describing how much the addition or deletion of a
member of the database can change affect the outputs),
and geometry of the query sequence [2, 8, 12, 13], and
general techniques have been developed that in some
cases match these bounds [11, 1, 7, 14, 13].

In this paper we describe investigations of differ-
ential privacy in two new realms. We describe these
informally, working from a real-life example.

Continual Observation. Consider a website for
H1N1 self-assessment2. Individuals can interact with
the site to learn whether symptoms they are experi-
encing may be indicative of the H1N1 flu. The user
fills in some demographic data (age, zipcode, sex), and
responds to queries about his symptoms (fever over
100.4◦F?, sore throat?, duration of symptoms?). We
would like to continually analyze aggregate information
of consenting users in order to monitor regional health
conditions, with the goal, for example, of organizing im-
proved flu response. Can we do this in a differentially
private fashion with reasonable accuracy (despite the
fact that the system is continually producing outputs)?

We would expect a given individual to interact
very few times with the H1N1 self-assessment site. For
simplicity, let us say this is just once (the general case
is an easy extension). In such a setting, it is sufficient
to ensure event-level privacy, in which the privacy goal
is to hide the presence or absence of a single event
(interaction of one user with the self-assessment site).
That is, the probability of any output sequence should

1The one exception considers a distributed setting, in which

each data holder controls her own data and decides in which
analyses to participate [6]. However, this is done by emulating

the curator via secure multiparty computation.
2https://h1n1.cloudapp.net is such a website. user-supplied

data are stored for analysis only if the user consents.

174 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

be essentially the same, independent of the presence or
absence of any single interaction with the site.

Pan-Privacy The privacy statement at the H1N1
self-assessment site encourages users to allow their data
to be shared:

“This information can be very helpful in mon-
itoring regional health conditions, plan flu re-
sponse, and conduct health research. By al-
lowing the responses to the survey questions
to be used for public health, education and
research purposes, you can help your commu-
nity.”

But the site also describes conditions under which the
data may be disclosed

“...if required to do so by law or in the good
faith belief that such action is necessary to (a)
conform to the edicts of the law or comply with
legal process served on Microsoft or the Site;
(b) protect and defend the rights or property
of Microsoft and our family of Web sites; or
(c) act in urgent circumstances to protect the
personal safety of users of Microsoft products
or members of the public.”

This raises the following question, orthogonal to that
of continual observation: Is it possible to maintain a
differentially private internal state, so that a consenting
user has privacy even against a subpoena or other
intrusion into the local state? Algorithms with this
property are called pan-private, as they are private
inside (internal state) and out (output sequence). The
goal of pan-privacy is to provide a mathematically
rigorous way of (essentially) eliminating the risk – of
anything – incurred by sharing one’s information even
in the presence of an intrusion, further encouraging
participation and thereby increasing the social benefit
of the site. Another motivation is the prevention of
“mission creep” for data, protecting the data curator
from the (very real!) pressure to allow data to be
used for purposes other than that for which they were
collected. This fits well with streaming algorithms with
small state, which can at most store a few data items,
and we do focus on the streaming model. However,
nothing prevents a streaming algorithm from storing
the data of a person of interest. Pan-privacy rules this
out, since the internal state must have essentially the
same distribution, independent of whether the person
of interest is, or is not, in the data set.

We remark that, since an intrusion can occur at an
unpredictable time, designing pan-private algorithms is
interesting even when the system will generate only a
single output.

User-Level (Pan-)Privacy. We have made the
reasonable assumption that a single individual interacts
with the H1N1 self-assessment site at most a small
number of times (one). Such an assumption is not
reasonable for other kinds of websites, such as a search
engine. We ask: what kinds of statistics can we gather
while preserving the privacy of an individual’s entire
history of accesses to the website? That is, if we
require that, no matter how many times an individual
accesses the website, and no matter how these accesses
are interleaved with those of others, the distribution on
outputs, or, in the case of user-level pan-privacy, the
distribution on pairs (internal state, output sequence),
should be essentially the same, independent of presence
or absence of of any individual’s data in the stream,
what can we compute?

2 Differential Privacy Basics

In the literature, a differentially private mechanism
operates on a database, or data set. This is a collection
of rows, where the data of an individual are held in a
single row. Differential privacy ensures that the ability
of an adversary to inflict harm (or good, for that matter)
– of any sort, to any set of people – is essentially the
same, independent of whether any individual opts in
to, or opts out of, the dataset. This is done indirectly,
simultaneously addressing all possible forms of harm
and good, by focusing on the probability of any given
output of a privacy mechanism and how this probability
can change with the addition or deletion of any row. We
will concentrate on pairs of databases (D,D′) differing
only in one row, meaning one is a subset of the other and
the larger database contains just one additional row.

Definition 2.1. [7] A randomized function K gives ε-
differential privacy if for all data sets D and D′ differing
in at most one row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S],(2.1)

where the probability space in each case is over the coin
flips of K.

The multiplicative nature of the guarantee implies that
an output whose probability is zero on a given database
must also have probability zero on any neighboring
database, and hence, by repeated application of the
definition, on any other database.

The parameter ε is public, and its selection is a
social question. We tend to think of ε as, say, 0.01, 0.1,
or in some cases, ln 2 or ln 3.

Definition 2.2. [7] For f : D → Rd, the L1 sensitiv-
ity of f is

∆f = max
D,D′

‖f(D)− f(D′)‖1(2.2)

175 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

for all D,D′ differing in at most one row.

The Laplace distribution with parameter b, denoted
Lap(b), has density function P (z|b) = 1

2b exp(−|z|/b)
and variance 2b2. Taking b = 1/ε we have that the
density at z is proportional to e−ε|z|. This distribution
has highest density at 0 (good for accuracy), and for any
z, z′ such that |z − z′| ≤ 1 the density at z is at most
eε times the density at z′. Finally, the distribution gets
flatter as ε decreases: smaller ε means better privacy,
so the noise density should be less “peaked” at 0 and
change more gradually as the magnitude of the noise
increases.

Theorem 2.1. [7] For f : D → Rd, the mechanism
K that adds independently generated noise with distri-
bution Lap(∆f/ε) to each of the d output terms enjoys
ε-differential privacy.

As an example, given a dataset of n rows, consider
the query “How many rows satisfy property P?” The
sensitivity of this query is 1. The theorem says that
adding to the true answer noise distributed according
to Lap(1/ε) suffices to ensure differential privacy.

3 Summary of Results

in this section we briefly summarize the results in [10, 9],
and highlight three of these for more detailed descrip-
tion later in the paper.

Pan-privacy is introduced in [10], where user-level
pan-private streaming algorithms are obtained for a
variety of counting tasks.

We assume a data stream of unbounded length
composed of elements in a universe X. It may be helpful
to keep in mind, as motivation, data analysis on a query
stream, in which queries are accompanied by the IP
address of the issuer. For now, we ignore the query
text itself; the universe X is the universe of potential
IP addresses. Thus, intuitively, privacy protects the
presence or absence of an IP address in the stream,
indpendent of the number of times it arises.

X-Adjacent Data Streams. Data streams (or stream
prefixes) S and S′ are X-adjacent if they differ only in
the presence or absence of any number of occurrences of
a single element x ∈ X. That is, the stream (or stream
prefixes) obtained by deleting all occurrences of x from
S and S′ are identical.

User-Level Pan-Privacy. Let Alg be an algorithm.
Let I denote the set of internal states of the algorithm,
and σ the set of possible output sequences. Then
algorithm Alg mapping data stream prefixes to the
range I × σ, is pan-private (against a single intrusion)

if for all sets I′ ⊆ I and σ′ ⊆ σ, and for all pairs of
X-adjacent data stream prefixes S, S′

Pr[Alg(S) ∈ (I′, σ′)] ≤ eε Pr[Alg(S′) ∈ (I′, σ′)]

where the probability spaces are over the coin flips of
the algorithm Alg.

Note that popular techniques from the streaming
literature, such as Count-Min Sketch and subsampling,
cannot be pan-private.

The algorithms in [10] solve the following counting
problems (in each case, the algorithm is given a data
stream prefix drawn from a known universe X):

• Density estimation: estimate what fraction of the
elements of X appear at least once in the stream;

• t-cropped mean: estimate
∑

x∈X max(nx, t), where
nx is the number of times x appears in the stream;

• k-heavy hitters: estimate the fraction of elements
in X that appear at least k times in the stream;

• incidence counts: estimate the fraction of elements
in X that appear exactly k times in the stream;

• modular incidence counts: estimate, for each i =
0, 1, . . . , k − 1 the fraction of elements in X that
appear in the stream i times modulo k.

The paper differentiates between announced and unan-
nounced intrusions. The former are made with the
knowledge of the algorithm; this is what happens in
the case of a subpoena. The latter are made without
the knowledge of the algorithm; this may happen via
a security breach. In general, it is possible for a pan-
private algorithm to tolerate multiple announced intru-
sions, possibly at a loss of accuracy, as the algorithm
can refresh randomness that is used for hiding events.
The algorithms above also tolerate a single unannounced
intrusion. The paper contains strong negative results
for even two unannounced intrusions (but only for algo-
rithms whose state size does not grow with the length
of the stream). We will describe the density estimator
in Section 4.

Differential privacy under continual observation is
introduced in [9], where several results are obtained
based on a counter primitive. We think of a counter
as operating in a sequence of time intervals. In each
interval the algorithm reads a symbol from the stream,
updates its state, and produces an output. At all times
the output is an estimate of the total number of events
“of interest” seen, so far, in the stream. Formally, this
can be modeled by a streaming algorithm operating on
a stream over {0, 1}, where 0 corresponds to no event

176 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in this time period and 1 corresponds to an event of
interest (see Section 5).

The counter ensures event-level privacy under con-
tinual observation. Moreover, a minor modification to
the counter adds pan-privacy against a single unan-
nounced intrusion. The counter is described in Sec-
tion 6.

The counter can be used to strengthen pan-private
estimators from [10], described above, which only per-
mit a single output (or small number of outputs), to
obtain estimators that enjoy user-level pan-privacy un-
der continual observation. On the one hand, this seems
unlikely: the counter only enjoys event-level privacy,
and this is inherent; it counts events that are generated
by individuals, and if events caused by a given indi-
vidual appear many times in the data stream then the
counter must show a significantly higher number than
if no events caused by this individual appear. On the
other hand, speaking intuitively, if we can ensure that
there is only one significant event (or a small number
of significant events) for each individual that need be
recorded by the counter, then event-level privacy of the
counter is sufficient to ensure user-level privacy. This
intuition can be realized, and in Section 7 we describe
a continual observation user-level pan-private estima-
tor [9].

4 Density Estimation

In this section we describe a pan-private streaming algo-
rithm for estimating the density of the input stream [10].
The algorithm uses a technique based on randomized re-
sponse [15]. In this technique the data themselves are
randomized, and statistics are computed from the noisy
data, taking into account the distribution on the pertur-
bation. The term “randomized response” comes from
the practice of having survey respondents secretly flip
a coin and, based on the outcome, answer an invasive
yes/no question (heads) or answer a more emotionally
neutral yes/no question (tails), without revealing to the
curator which of the two questions was answered (the
result of the coin flip). In the computer science liter-
ature, the choice governed by the coin flip is usually
between honestly reporting one’s value and responding
randomly, typically by flipping a second coin and re-
porting the outcome.

We first describe an algorithm with additive error,
and then discuss how to modify it to obtain multiplica-
tive error.

We sample a random a set M ⊆ X of m items,
where m is large enough so that, with high probabil-
ity, the density of M ’s items in the input stream ap-
proximates the density of X’s items. The algorithm
maintains a table, with one entry per item in M . The

table satisfies the following invariant: For items in M
that have not yet appeared in the input stream, the
entry is a draw from a distribution D0 (over {0, 1}).
For items that have appeared at least once, the entry is
a draw from D1 (no matter how many times they ap-
pear). These two distributions should be “close enough”
to guarantee pan-privacy for individual users, but “far
enough” to allow collection of aggregate statistics about
the fraction of users that appear at least once. Specifi-
cally, the distribution D0 will give the outputs 0 and 1
both with probability 1/2. The distribution D1 = D1(ε)
will give 1 with probability 1/2 + ε/4 and 0 with prob-
ability 1/2− ε/4.

Claim 4.1. For ε ≤ 1/2, the distributions D0 and D1

are “ε-differentially private”. For both values b ∈ {0, 1},
it holds that: e−ε ≤ PrD1 [b]/PrD0 [b] ≤ eε.

Density Estimator (ε, α, β)

Init. Sample at random a set M of m =
poly(1/ε, 1/α, log(1/β)) elements (representatives) in
X. Create a table of size m with a single one-bit entry
for each item in M . For every entry x ∈M , generate
a random initial value bx ∼ D0.

Processing. When a value x ∈ M appears in the
data stream, update x’s entry in the table by drawing
it from D1: bx ∼ D1(ε).

Output. Compute θ, the fraction of entries in the
table with value 1. Output the density value f ′ =
4(θ − 1/2)/ε+ Lap(1/(ε ·m)).

Figure 1: Density Estimator

Theorem 4.1. [10] Assume ε ≤ 1/2. The density
estimator of Figure 1 guarantees 2ε-differential pan-
privacy. For a fixed input, with probability 1−β over the
estimator’s coins, the output is α-close to the fraction of
items in X that appear in the input stream. The space
used is poly(1/ε, 1/α, log(1/β)).

Proof. We argue utility and privacy separately.
Privacy. For items not in M no information is

stored by the algorithm, so privacy is perfect. For an
item in the set M , if the item never appears in the
input stream, then its entry is drawn from D0. If the
item appears once or more in the input stream, then
its entry is drawn from D1 (multiple appearances result
in multiple samples being taken, but the item’s entry
will still be a sample from D1). Thus when an intrusion
occurs, by Claim 4.1, the users in M are guaranteed
ε-differential privacy against the intrusion.

177 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Later, when the algorithm generates its output, the
sensitivity of this output to the presence or absence of
any one user is at most 1/m (0 if the user is not in
M). By adding noise sampled from Lap(1/(ε ·m)) we
guarantee that users are guaranteed 2ε privacy against
the combined information an adversary can gain from
its intrusion and viewing the algorithm’s output.

Utility. First, we claim that the fraction of items
in M that appear at least once is, with probability at
least 1 − β/2, an α/2 approximation to the fraction of
items in X that appear at least once in the input stream.
This follows by a Chernoff bound, because M is a set
of m ≥ poly(1/α, log(1/β)) items chosen uniformly and
at random from the set X.

We now complete the proof by showing that, with
probability at least 1−β/2, the algorithm’s output is an
α/2-approximation to the fraction of items in M that
appear at least once. Let f be the true fraction of items
in M that appear at least once. The expected fraction of
1-entries in the table (over the randomness of drawing
from D0 and D1 is then:

E[θ] = f · (1/2 + ε/4) + (1− f) · 1/2) = 1/2 + f · ε/4

We can separate this fraction into the contribution of
1’s from items that appeared at least once (samples
from D1) and those that did not (samples from D0).
Taking a Chernoff bound we get that, since m =
poly(1/ε, 1/α, log(1/β)), with probability 1 − β/2 the
observed fraction of 1’s θ satisfies:

|θ − E[θ]| ≤ α · ε/8

Now the algorithm outputs f ′ = 4(θ−1/2)/ε+Lap(1/(ε·
m)). We conclude that with probability 1− β:

|f − f ′| ≤ α

Obtaining a multiplicative error. If the frac-
tion of elements of X that appear in the stream is very
small, an additive accuracy guarantee might not provide
a very meaningful result. In such cases it is better to
give a multiplicative guarantee. This can be achieved
as follows.

The universe X is hashed into ` = log |X| smaller
sets X0, X1, . . . , X` = X, |Xi| = 2i. The density
estimation algorithm is run independently for all `
choices of m, using noise Lap((`+1)/ε·m) in the Output
step. Finally, the “right” output must be chosen from
among these ` outputs, as we now explain.

For i = 0, . . . , `, the ith density estimator yields an
additively accurate estimation γ′i of the fraction of hash
values of the input items in the hash set Xi. Were it
not for collisions, the density of the input stream in a
set Xi could give a good idea of the ratio between the

number of distinct items in the input stream and |Xi|,
but the collisions lead to under-counting. Of course, the
problem gets worse as the set size shrinks. We thus want
to use the density of the “right” Xi, one that is neither
too large (leading to the additive error being very large
in multiplicative terms) nor too small (leading to under-
counting).

Hashing is done using pairwise independent hash
functions. In this case, we know that, if the density
of the output in Xk is γk, then with high probability
the number of collisions is at most γ2

k · |Xk|. If we use
the first (smallest k) hash function for which γ′k ≈ α,
them the number of collisions is, with high probability,
bounded by α2 · |Xk|.

On the other hand, we know that the number of
distinct elements in the input is at least about α · |Xk|.
If we obtain an α2-additive approximation to the density
of the input’s hash in Xk we can multiply it by |Xk| and
we actually have an O((α2) · |Xk|)-additively accurate
approximation on the number of distinct items in the
input, which is also an O(α)-multiplicative accurate
estimation on the number of distinct elements (since
the number of distinct elements was at least α · |Xk|).

Handling Multiple Announced Intrusions. It
is possible to handle multiple announced intrusions
by re-randomizing the randomized-response bits after
each intrusion. For example, after the first announced
intrusions, for every x ∈M in the table, we re-draw the
bit bx according to its current value: if previously it was
1, we re-draw from D1, and if it was 0 we re-draw from
D0. Thus entries for items that appeared in the input
stream are now distributed according to D′1, which is 1
w.p. (1/2+ε/8+ε2/16) and 0 w.p. (1/2−ε/8−ε2/16).
Entries for items that did not appear in the stream are
distributed according to D′0, which is 1 w.p. (1/2+ε/8)
and 0 w.p. (1/2−ε/8). The algorithm then changes the
randomized response distributions to be D′1 (for items
that appear) and D′0 (for items that don’t appear). Note
that the algorithm keeps track of how many intrusions
happened (there is no need to protect the intruder’s
privacy).

5 Definitions for Continual Observation
Algorithms

Speaking intuitively, we think of continual observation
algorithms as taking steps at discrete time intervals; at
each step the algorithm receives an input, computes,
and produces output. We model this formally with a
streaming algorithm, just as in earlier sections of this
paper. Thus, as before, computation proceeds in a
sequence of atomic steps. At each step the algorithm
receives an input from the stream, computes (changes
state), and produces outputs. Thus the intuitive notion

178 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

of “t time periods” corresponds to processing a sequence
of t elements in the stream.

Because we are modeling real systems, where time is
a factor (computers have clocks, as do the adversaries),
we will occasionally need to model the fact that “noth-
ing has happened” in a given time unit. We may do this
by means of a “nothing happened” element. For exam-
ple, the motivation behind the counter primitive below
is to count the number of times that something has oc-
curred since the algorithm was started (the counter is
very general; we don’t specify a priori what it is count-
ing). This is modeled by an input stream over {0, 1}.
Here, “0” menas “nothing happened,” “1” means the
event of interest occurred, and for t = 1, 2, . . . the algo-
rithm outputs an approximation to the number of 1’s
seen in the length t prefix of the stream.

To define privacy, we need a notion of adjacent
stream prefixes. The definition of adjacency in Section 2
permited strings of radically different lengths to be
adjacent. To be able to capture time, we modify
the definition as follows. Let X be the universe of
possible input symbols. Let S and S′ be stream prefixes
(ie, finite streams) of symbols drawn from X. Then
Adj(S, S′) (“S is adjacent to S′”) if and only if there
exist x, x′ ∈ X so that if we change some of the instances
of x in S to instances of x′, then we get S′. More
formally, Adj(S, S′) iff ∃x, x′ ∈ X and ∃T ⊆ [|S|],
such that S|T :x→x′ = S′. Here, T is a set of indices
in the stream prefix S, and S|T :x→x′ is the result of
replacing all the occurrences of x at these indices with
x′ (note that without loss of generality we can assume
S|T contains only occurrences of x).

With this definition, X-adjacent prefixes are always
of the same length.

6 The Counter Primitive

A Simple Solution. A natural approach to creat-
ing a counter is to noisily report each value (in {0, 1})
observed at each step. This could be done using ran-
domized response, drawing from distribution D0, re-
spectively D1, as appropriate, and outputting the cu-
mulative sum at each step. Alternatively, at step t, on
input xt ∈ {0, 1}, the algorithm can add xt+Lap(1/ε) to
the output. We call this the simple solution. Event-level
pan-privacy is immediate for both these algorithms,
which keep no state. Accuracy, however, is more prob-
lematic. Over t steps of the simple solution, for large
enough t, we expect the total amount of noise added to
be O(

√
t/ε). For “dense” data streams, where many of

the xt’s are 1, this algorithm performs well. The prob-
lem is that if the number of 1’s is smaller than

√
t, a

reasonable scenario (especially if the granularity of time
periods is small), the output count will be overwhelmed

by the noise. We seek an algorithm that will produce
accurate answers even for streams that are “sparse”, i.e.
with few 1’s.

Cascading Buffers Counter [9]. We now de-
scribe a counter in which the error depends only poly-
logarithmically on the number of length of the stream
prefix processed, addressing the deficiency, in the case
of sparse data streams, of the simple approach. The
basic strategy is to reduce the frequency of updates as
the stream density decreases, and increase it when the
density increases. Since the frequency of updates is pub-
licly observable, we must do this in a privacy-preserving
fashion.

The idea is as follows. We implement a (pan-
private) internal buffer for the algorithm. We only
update the output count when this buffer gets “flushed”
(reducing the frequency of updates). The buffer keeps
track of (a privacy-preserving and somewhat accurate
approximation to) the number of 1’s in the data stream
since the last flush. Whenever this number hits a certain
threshold `, the buffer is flushed and reset to 0, and
an update occurs. Thus, the buffer determines when
updates occur (but not what the update is). To update
the output count, we also keep a separate accumulator
that tracks the exact number of 1’s that have occurred in
the input stream since the last flush (this accumulator
is not pan-private). When an update occurs we add
the value in the accumulator plus noise Lap(1/ε) to the
output counter, and reset the accumulator. Finally, to
assist with accurace on dense streams, a buffer flush
is also triggered if there have been a large number of
updates since the previous flush.

The poor performance of the simple solution on
sparse streams is ameliorated because the frequency of
updates is greately reduced. Since (Laplacian) noise is
only added during an update, this reduces the noise.

The intuition for privacy is that the step times
of updates are not disclosive because the buffer is
differentially private, and the content of the updates
preserves privacy because of the additional noise being
added to the accumulator.

This is the basic idea behind the cascading buffers
algorithm. One question remains, however: How do
we implement the initial privacy-preserving “somewhat
accurate” buffer? This in itself is a counting task!
The first idea is to implement the buffer using the
simple solution. This results in significantly improved
accuracy. The error, over t steps, shrinks to about
O((
√
n + t1/4)/ε) (where n is the number of 1’s in the

data stream, and for the right choice of the threshold `).
For sparse data streams this is much better than

√
t/ε

of the simple solution. To get even better accuracy we
can (essentially) now recursively use this new and more

179 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

accurate counter to implement a more accurate buffer,
and get an even more accurate counter. This leads to a
“cascading buffers” algorithm, with d levels of recursive
buffering. The output level is d+ 1.

We note that the algorithm just described is not
pan-private, because the accumulators hold sensitive
information. It can easily be made pan-private at only
a small cost to accuracy, as follows. On initialization
and every reset, add to the accumulator a fresh draw
from Lap(1/ε).

We also note that repeated announced intrusions
can be handled by flushing the buffer and accumulator
after every intrusion (the error grows with the number
of intrusions).

The full, pan-private, algorithm is presented in
Figure 2. Theorem 6.1 and Corollary 6.1 give precise
statements of its performance.

Cascading Buffers Counter(ε, d, `, κ)

Init. Initialize the output counter ocount ← 0. For
i← 1 . . . d initialize the i-th level’s state, including:

• The accumulator (accumulated count since the
last flush), ai ← Lap(1/ε)

• The buffer, bi ← 0

• The number of updates since last flush, ui ← 0

Processing. In each step t, on input xt ∈ {0, 1},
for each level 1 ≤ i ≤ d, update the accumulator
for level i: ai ← ai + xt. Now, treat the input as a
buffer update for level 1 with input xt and proceed
as follows.

Buffer update for level i, input x. On an update
for level i with input x ∈ {0, 1, . . .}, update the buffer
bi ← bi + x + Lap(1/ε), and the number of updates
since the last flush ui ← ui + 1.
If bi ≥ ` (buffer overflow) or if ui = (` · ε/4κ)2 (there
have many updates since the last flush), then flush
the buffer:

• Update the buffer of the next level i+ 1:

For the output level (i+ 1 = d+ 1), update the
output counter ocount ← ocount +ai +Lap(1/ε)

For i < d, run the buffer update procedure for
level i+ 1 with input ai

• Reset the accumulator ai ← Lap(1/ε), the buffer
bi ← 0, and the number of updates since last
flush ui ← 0

Figure 2: Cascading Buffers Counter

Theorem 6.1. [9]
The counter of Figure 2 is an event-level pan-private

counter with ((2d + 1) · ε)-differential privacy. At any

step t, for an input stream with correct output nt, with
all but exp(−κ) probability over the counter’s coins, the
additive error is O((d`)+(

√
t/(`ε/4κ)d)+(

√
n/(`ε/κ))).

Proof. (Sketch.) We first sketch the proof of privacy,
then address accuracy.

Privacy. To argue event-level pan-privacy, recall
the processing of each input xt: (i) It is added to level
1’s buffer together with noise Lap(1/ε) that was drawn
independently specifically for xt. This guarantees ε-
differential event-level pan- privacy of level 1’s buffer.
(ii) It is added to the d accumulators. Since each of
these is initialized with (independent) noise drawn from
Lap(1/ε), these accumulators maintain dε-differential
event-level pan-privacy. We conclude that the internal
state of the algorithm at any single point in time is in
fact ((d+ 1)ε)-differential event-level pan-private.

This alone does not suffice, as an adversary can
also observe the counter’s continual observations before
and after intruding into its internal state. The counter
does not add new independent noise separately for each
xt added to the accumulators (noise is only added on
initializations and after a flush occurs), and so (since
we cannot add more noise after an undetected intrusion)
information learned during an intrusion, taken together
with the continual outputs, might lead to a privacy
breach.

To see that this does not occur, observe that the
counter only uses the accumulators when buffer flushes
occur. Whenever an accumulator is used, the counter
adds to that accumulator fresh independently drawn
noise from Lap(1/ε) (and then resets it). This guar-
antees event-level pan-privacy even given the continual
observations. More formally, we have already argued
(d+1)·ε event-level pan-privacy of the algorithm’s inter-
nal state at any point in time. Now considering also the
continual outputs, we observe that each xt affects level
1’s buffer (we have already accounted for this privacy
loss) and the d accumulators. In turn, the d accumu-
lators affect the output (when flushes occur) by being
added to the buffers of layers 2 . . . d and to the output
count. However, whenever an accumulator is added to
a buffer or the output count, it is added with indepen-
dently drawn noise from Lap(1/ε). This guarantees that
the additional privacy loss incurred from the continual
observations is at most d · ε. In total, we conclude that
the counter is (2d+ 1) · ε-event-level pan-private.

Accuracy. Accuracy will follow from the following
two claims:

Claim 6.1. For a length T stream prefix with n 1’s,
with all but exp(−κ) probability, the number of updates
to the output counter ocount is O((T/(` · ε/4κ)2d) +
(n/(` · ε/κ)2)).

180 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Claim 6.2. For any input stream, step t and level i ∈
{1, . . . , d}, let ni be the number of 1’s that have appeared
in the input stream since level i’s buffer was last flushed.
With all but exp(−κ) probability, the difference between
the buffer bi and ni is at most 2i · `.

Both claims are proved by induction on the level
number, i. The key to the proof of Claim 6.1 is to show
that

Bi = T/(` · ε/4κ)2i + 2n/(` · ε/4κ)2

is, with high probability, an upper bound on the number
of flushes of level i (or updates to i+ 1), when handling
a stream prefix of length n. (The output counter
ocount is level d + 1.) The basis of the induction is
straightforward. For a higher level, i + 1, an update
occurs every time level i’s buffer flushes. The proof for
level i + 1 bounds separately the number of flushes for
level i that occur because the buffer grows to `, and the
number of flushes that occur because there have been
too many updates.

The key to the proof of Claim 6.2 is the observation
that the algorithm satisfies the following invariant: At
every step t, with overwhelming probability, simultane-
ously at every level i, the total amount of noise added
to the buffer at level i (both via noise added to the ac-
cumulator in level i−1 and via noise added to the buffer
itself when level i − 1 flushes) since the buffer was last
flushed is at most `/2 < `. The proof also uses the fact
that immediately after buffer i is flushed, there are no
1’s “trapped” in lower levels of the cascade.

Corollary 6.1. Let T be a bound on the number
of steps (length of the stream prefix to be processed).
Initializing the counter of Figure 2 with ε′ = ε/ log T ,
d = O(log T), ` = O(log3 T/ε) and κ = log2 T , we
get an ε- event-level pan-private counter. With all but
ν(T) probability, the error in every step t is at most
O((
√
nt + log4 T)/ε), where nt is the number of 1’s in

the stream prefix of length t.

7 Continual Observation Density Estimation

In this section we use the (event-level) counter to
convert the (user-level) single output density estimator
of Section 4 to obtain a user-level pan-private continual
observation density estimator.

The intuition is as follows. The algorithm will have
two data structures. The first is a table of bits, one per
element in M , a randomly chosen subset of the universe
X. This is as in the single output density estimator, and
the bits are initialized to independent draws from D0

(unbiased bits). The second data structure is a counter,
as in Section 6.

We denote by xt the tth element in the stream. A
special “blank” symbol, ⊥, is used to mean “nothing

happened.” Formally, the stream is a sequence of
elements of X ′ = X ∪ {⊥}.

Inputs to the counter are generated by the algo-
rithm; the tth input to the counter, denoted yt ∈ {0, 1},
will be drawn, using fresh randomness, from one of three
distributions: D0, D+, and D−, where:

• D0 is the unbiased distribution. This will be in-
voked on elements x /∈M . The expected contribu-
tion of these over t steps is t/2.

• D+ is biased toward 1: it assigns probability 1/2 +
ε + ε2/2 to 1. It is used when processing x ∈ M
where bx = 0.

• D− is biased toward 0: it assigns probability 1/2−
ε + ε2/2 to 1. It is used when processing x ∈ M
where bx = 1.

Recall from Section 4 that D1 = D1(ε) is a distri-
bution on {0, 1} assigning probability 1/2 + ε/4 to 1.

Continual Observation Density Estimator (ε, α, β, T)

Init. Initialize a counter that is polylog(T)-
accurate and ε-event level pan-private (see Corol-
lary 6.1). Sample at random a set M of m =
poly(1/ε, 1/α, log(1/β)) elements (representatives) in
X. Create a table of size m with a single one-bit entry
for each item in M . For every entry x ∈M , generate
a random initial value bx ∼ D0.

Processing. In step t, let xt be the current input.
Generate an update value yt ∈ {0, 1} for the counter:

• If xt is ⊥ (“nothing happened”) or xt /∈M , then
choose yt to be a uniformly random bit.

• Otherwise, if the current input value is xt ∈M ,
let bxt be xt’s entry in the table. If bxt = 0,
then choose yt ∼ D+. If bxt = 1, then choose
yt ∼ D−.

Update the counter with update value y. Update
x’s entry in the table by drawing it from D1: bxt ∼
D1(ε). Finally, let ocount be the counter’s current
output. The density estimator’s output is (ocount −
t/2)/(ε2/2).

Figure 3: Continual Observation Density Estimator

Theorem 7.1. [9] The continual observation density
estimator of Figure 3 is O(ε)-user level pan-private.
With all but β probability, its additive error at step t
is at most O((

√
t+ α)/ε2).

Proof. (Sketch.) The key to privacy under continual
observation is the following claim.

181 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Claim 7.1. In every step t with input xt, the distribu-
tion of yt (used to update the counter) is as follows: (i)
If xt is blank (⊥) or xt /∈ M , then yt is a uniformly
random bit. (ii) If xt ∈ M and this is not the first
appearance of xt in the data stream, yt is a uniformly
random bit (independently of any yt values generated for
previous appearances of xt). (iii) If xt ∈M and this is
the first appearance of xt, then yt is 1 with probability
1/2 + ε2/2 and 0 with probability 1/2− ε2/2.

Proof. When the input is either a blank symbol, or an
input xt /∈ M , the distribution of the counter update
value yt is drawn uniformly from {0, 1}, so it is unbiased.

When the input is an item xt ∈ M , then if xt has
appeared previously in the data stream its bit in the
table bxt

is drawn from D1. The probability that yt is
1 is thus:

(
1
2
− ε

4
)(

1
2

+ ε+
ε2

2
) + (

1
2

+
ε

4
)(

1
2
− ε+

ε2

2
) =

1
2
.

Thus, yt is a uniformly random bit. The distribution of
yt is independent of the previous y values obtained on
xt inputs, because bxt

was chosen independently of the
previous value in xt’s entry of the table.

When the input is an item xt ∈ M that has
not appeared before, then bx,t is drawn from D0 (it
is uniformly random). This means that yt is 1 with
probability:

1
2

(
1
2

+ ε+
ε2

2
) +

1
2

(
1
2
− ε+

ε2

2
) =

1
2

+
ε2

2
.

It follows from the claim that the inputs to the
counter are simply independent and uniformly random
bits, except when an item appears for the first time, at
which point the input to the counter is biased towards 1.
This means that the appearance of an input item in
the data stream can only generate one significant event:
its first appearance. The event-level pan-privacy of the
counter will protect this single event. Combined with
the user-level privacy of the density estimator this will
guarantee user-level pan-privacy. (A formal argument
studies the difference in probability distributions on
internal states and output sequences on X ′-adjacent
stream prefixes.)

Accuracy of the continual density estimator will
be “inherited” from the accuracy of the counter. In
particular, with overwhelming probability, the counter’s
output ocount should be within a polylogT error of the
correct number of 1’s that it received as input. By the
accuracy of the density estimator, we know that the
difference between the fraction of 1’s in the table and the
actual density is at most α. If the density of the stream
at step t is mt, by Claim 7.1 we know that the number

of 1’s given as input to the counter is with overwhelming
probability within a O(

√
t+α)-error of t/2+(ε2/2) ·mt.

We conclude that the density estimator’s output
(ocount − t/2)/ε2 has (with overwhelming probability)
error at most O((

√
t+ α)/(ε2/2)).

8 Conclusions

We have described two new settings for differential
privacy, motivated by real life concerns. Although the
results described here are a (strict) subset of those
obtained in [10, 9], there is still much more to be done:
(1) [9] initiates a study of continual observation differ-
entially private data structures, built on the counter.
Necessarily, this first paper just scratches the surface of
what can be achieved. Similarly, [10] initiates a study of
pan-privacy to provide an added level of protection, this
time against intrusions. We do not know the range of,
and limitations on, what can be achieved pan-privately
with decent accuracy.
(2) Continuing the original motivation of [10], formal-
izing the prevention of, or reasonable limitation on, the
re-purposing of data, or “mission creep,” and exploring
the space of what can be achieved under these controls,
could be of enormous social value.

Acknowledgement. The author thanks Guy Roth-
blum for many helpful discussions during the prepara-
tion of this paper.

References

[1] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Prac-
tical privacy: The SuLQ framework. In Proceedings
of the 24th ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, June 2005.

[2] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In Proceedings of the Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 202–210,
2003.

[3] C. Dwork. A firm foundation for private data analysis.
Communications of the ACM (to appear).

[4] C. Dwork. An ad omnia approach to defining and
achieving private data analysis. In F. Bonchi, E. Fer-
rari, B. Malin, and Y. Saygin, editors, Privacy, Secu-
rity, and Trust in KDD, First ACM SIGKDD Inter-
national (PinKDD), Revised Selected Papers, volume
4890 of Lecture Notes in Computer Science, pages 1–
13. Springer, 2007.

[5] C. Dwork. The differential privacy frontier. In Pro-
ceedings of the 6th Theory of Cryptography Conference
(TCC), 2009.

[6] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: privacy via dis-
tributed noise generation. In Advances in Cryptology:
Proceedings of EUROCRYPT, pages 486–503, 2006.

182 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In
Proceedings of the 3rd Theory of Cryptography Confer-
ence, pages 265–284, 2006.

[8] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of lp decoding. In Proceedings
of the 39th ACM Symposium on Theory of Computing,
pages pp. 85–94, 2007.

[9] C. Dwork, M. Naor, T. Pitassi, and G. Roth-
blum. Differential privacy under continual observation.
Manuscript in preparation, 2009.

[10] C. Dwork, M. Naor, T. Pitassi, G. Rothblum, and
S. Yekhanin. Pan-private streaming algorithms.
Manuscript submitted for publication, 2009.

[11] C. Dwork and K. Nissim. Privacy-preserving datamin-
ing on vertically partitioned databases. In Proceedings
of CRYPTO 2004, volume 3152, pages 528–544, 2004.

[12] C. Dwork and S. Yekhanin. New efficient attacks on
statistical disclosure control mechanisms. In Proceed-
ings of CRYPTO 2008, pages 468–480, 2008.

[13] M. Hardt and K. Talwar. On the geometry of differen-
tial privacy. arXiv:0907.3754v2, 2009.

[14] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proceedings of the 48th Annual
Symposium on Foundations of Computer Science, 2007.

[15] S. Warner. Randomized response: a survey technique
for eliminating evasive answer bias. JASA, pages 63–
69, 1965.

183 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

