
Scalable Influence Maximization for Prevalent Viral
Marketing in Large-Scale Social Networks

Wei Chen
Microsoft Research Asia

Beijing, China
weic@microsoft.com

Chi Wang
University of Illinois at

Urbana-Champaign, USA
chiwang1@illinois.edu

Yajun Wang
Microsoft Research Asia

Beijing, China
yajunw@microsoft.com

ABSTRACT
Influence maximization, defined by Kempe, Kleinberg, and Tardos
(2003), is the problem of finding a small set of seed nodes in a so-
cial network that maximizes the spread of influence under certain
influence cascade models. The scalability of influence maximiza-
tion is a key factor for enabling prevalent viral marketing in large-
scale online social networks. Prior solutions, such as the greedy al-
gorithm of Kempe et al. (2003) and its improvements are slow and
not scalable, while other heuristic algorithms do not provide con-
sistently good performance on influence spreads. In this paper, we
design a new heuristic algorithm that is easily scalable to millions
of nodes and edges in our experiments. Our algorithm has a sim-
ple tunable parameter for users to control the balance between the
running time and the influence spread of the algorithm. Our results
from extensive simulations on several real-world and synthetic net-
works demonstrate that our algorithm is currently the best scalable
solution to the influence maximization problem: (a) our algorithm
scales beyond million-sized graphs where the greedy algorithm be-
comes infeasible, and (b) in all size ranges, our algorithm performs
consistently well in influence spread — it is always among the best
algorithms, and in most cases it significantly outperforms all other
scalable heuristics to as much as 100%–260% increase in influence
spread.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Experimentation, Performance

Keywords
influence maximization, social networks, viral marketing

1. INTRODUCTION
Word-of-mouth or viral marketing differentiates itself from other

marketing strategies because it is based on trust among individuals’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

close social circle of families, friends, and co-workers. Research
shows that people trust the information obtained from their close
social circle far more than the information obtained from general
advertisement channels such as TV, newspaper and online adver-
tisements [16]. Thus many people believe that word-of-mouth mar-
keting is the most effective marketing strategy (e.g. [15]).

The increasing popularity of many online social network sites,
such as Facebook, Myspace, and Twitter, presents new opportuni-
ties for enabling large-scale and prevalent viral marketing online.
Consider the following hypothetical scenario as a motivating ex-
ample. A small company develops a cool online application and
wants to market it through an online social network. It has a lim-
ited budget such that it can only select a small number of initial
users in the network to use it (by giving them gifts or payments).
The company wishes that these initial users would love the applica-
tion and start influencing their friends on the social network to use
it, and their friends would influence their friends’ friends and so
on, and thus through the word-of-mouth effect a large population
in the social network would adopt the application. The problem is
whom to select as the initial users so that they eventually influence
the largest number of people in the network.

The above problem, called influence maximization, is first for-
mulated as a discrete optimization problem by Kempe, Kleinberg,
and Tardos as follows [10]: A social network is modeled as a graph
with nodes representing individuals and edges representing con-
nections or relationship between two individuals. Influence are
propagated in the network according to a stochastic cascade model,
such as the following independent cascade (IC) model1: Each edge
(u, v) in the graph is associated with a propagation probability
pp(u, v), which is the probability that node u independently ac-
tivates (a.k.a. influences) node v at step t + 1 if u is activated at
step t. Given a social network graph, the IC model, and a small
number k, the influence maximization problem is to find k nodes
in the graph (referred to as seeds) such that under the influence cas-
cade model, the expected number of nodes activated by the k seeds
(referred to as the influence spread) is the largest possible. Kempe
et al. prove that the optimization problem is NP-hard, and present
a greedy approximation algorithm guaranteeing that the influence
spread is within (1−1/e−ε) of the optimal influence spread, where
e is the base of natural logrithm, and ε depends on the accuracy of
their Monte-Carlo estimate of the influence spread given a seed set.

However, their algorithm has a serious drawback — it is not scal-
able to large networks. A key element of their greedy algorithm is
to compute the influence spread given a seed set, which turns out
to be a difficult task (in fact, as we point out in Section 2 the com-
putation is #P-hard). Instead of finding an exact algorithm, Monte-

1Other models are also introduced in [10], but in this paper we
focus on the independent cascade model.

Carlo simulations of the influence cascade model are run for a large
number of times in order to obtain an accurate estimate of the influ-
ence spread. Consequently, even with the recent optimizations [14,
4] that could achieves hundreds of times speedup, it still takes hours
on a modern server to select 50 seeds in a moderate sized graph
(15K nodes and 31K edges) while it becomes completely infea-
sible for larger graphs (e.g. more than 500K edges). Given that
online social networks are typically of large-scale, we believe that
the scalability issue of the greedy algorithm will be a fatal obstacle
preventing it from supporting prevalent viral marketing activities in
large-scale online social networks.

1.1 Our contribution
In this paper, we first show that computing influence spread in

the independent cascade model is #P-hard, which closes an open
question posed by Kempe et al. in [10]. It indicates that the greedy
algorithm of [10] may have intrinsic difficulties to be made scalable
for large graphs.

We then address the scalability issue by proposing a new heuris-
tic algorithm that is several orders of magnitude faster than ex-
isting greedy algorithms while matching the influence spread of
the greedy algorithms. Our heuristic gains efficiency by restricting
computations on the local influence regions of nodes. Moreover,
by tuning the size of local influence regions, our heuristic is able
to achieve tunable tradeoff between efficiency (in terms of running
time) and effectiveness (in term of influence spread). Our heuris-
tic can easily scale up to handle networks with millions of nodes
and edges, and at this scale it beats all other existing heuristics of
similar scalability in terms of the influence spread.

The main idea of our heuristic scheme is to use local arbores-
cence2 structures of each node to approximate the influence propa-
gation. We first compute maximum influence paths (MIP) between
every pair of nodes in the network via a Dijkstra shortest-path algo-
rithm, and ignore MIPs with probability smaller than an influence
threshold θ, effectively restricting influence to a local region. We
then union the MIPs starting or ending at each node into the ar-
borescence structures, which represent the local influence regions
of each node. We only consider influence propagated through these
local arborescences, and we refer to this model as the maximum
influence arborescence (MIA) model.

We show that the influence spread in the MIA model is submod-
ular (i.e. having a diminishing marginal return property), and thus
the simple greedy algorithm that selects one node in each round
with the maximum marginal influence spread can guarantee an
influence spread within (1 − 1/e) of the optimal solution in the
MIA model, while any higher ratio approximation is NP-hard. The
greedy algorithm on the MIA model is very efficient because (a)
computation of the marginal influence spread on the arborescence
structures can be done by efficient recursion; and (b) after selecting
one seed with the largest influence spread, we only need to update
local arborescence structures related to this seed for the selection
of the next seed, and we further design a batch update scheme to
speed up the update process.

We conduct extensive experiments on several real-world and
synthetic networks of different scale and features, and under differ-
ent types of the IC model. We compare our heuristic with both the
greedy algorithm [10, 14, 4] and several existing heuristics includ-
ing the degree discount heuristics of [4], the shortest-path based
heuristics of [11], and the popular PageRank algorithm [2] for rank-
ing web pages. Our simulation results show that: (a) the greedy

2An arborescence is a tree in a directed graph where all edges are
either pointing toward the root (in-arborescence) or pointing away
form the root (out-arborescence).

algorithm of [10, 14, 4] and the shortest-path based heuristic [11]
have poor scalability: they take hours or days to select 50 seeds
when the graph size reaches a few hundred thousands and become
infeasible for larger sized graphs, while in the same range MIA
heuristic can finish in seconds (more than three orders of magni-
tude speedup), and it continues to scale up beyonds graphs with
millions of edges, (b) comparing with the greedy algorithm and the
shortest-path based heuristic in real graphs in which they are fea-
sible to run, MIA heuristic has influence spread that matches or is
very close to those of the two other algorithms, (c) comparing with
the rest heuristics, MIA algorithm is always among the best in in-
fluence spread, and in most cases it significantly outperforms the
rest heuristics, with a margin as much as 100%–260% increase in
influence spread. Moreover, we show that by tuning the threshold
θ, we can adjust the tradeoff between efficiency and effectiveness
at difference balance points on a spectrum.

To summarize, our main contribution is the design and evalua-
tion of a scalable and tunable heuristic that handles the influence
maximization problem for large-scale social networks. We demon-
strate that our heuristic is currently the best one that could handle
large-scale networks with more than a million edges, while even
for moderate sized networks it is a very competitive alternative to
much slower algorithms. The balanced efficiency and effectiveness
of our heuristic make it suitable as a generic solution to influence
maximization for many large-scale online social networks encoun-
tered in practice.

1.2 Related work
Domingos and Richardson [6, 18] are the first to study influence

maximization as an algorithmic problem. Their methods are prob-
abilistic, however. Kempe, Kleinberg, and Tardos [10] are the first
to formulate the problem as a discrete optimization problem. Be-
sides what we mentioned above already, they also study a number
of other topics such as generalizations of influence cascade mod-
els and mixed marketing strategies in influence maximization. As
pointed out, a serious drawback of their work is the scalability of
their greedy algorithm.

Several recent studies aimed at addressing this issue. In [14],
Leskovec et al. present a “lazy-forward” optimization in select-
ing new seeds, which greatly reduces the number of evaluations on
the influence spread of nodes and results in as much as 700 times
speedup demonstrated by their experimental results. However, even
though the “lazy-forward” optimization is significant, it still takes
hours to find 50 most influential nodes in a network with a few tens
of thousands of nodes, as shown in [4].

In [11], Kimura and Saito propose shortest-path based influence
cascade models and provide efficient algorithms to compute influ-
ence spread under these models. The key differences between their
work and ours are (a) instead of using maximum influence paths,
they use simple shortest paths on the graph, which are not related
to propagation probabilities, and (b) they do not utilize local struc-
tures such as our arborescences and thus in every round they need
global computations to select the next seed. Therefore, their algo-
rithms are not scalable, as shown in our experiments.

This paper is the continuation of [4] in the pursuit of efficient
and scalable influence maximization algorithms. In [4], we explore
two directions in improving the efficiency: one is to further im-
prove the greedy algorithm of [10], and the other is to design new
heuristic algorithms. The first direction shows improvement but is
not significant enough, indicating that this direction could be diffi-
cult to continue. The second direction leads to new degree discount
heuristics that are very efficient and generate reasonably good influ-
ence spread. The major issue is that the degree discount heuristics

are derived from the uniform IC model where propagation proba-
bilities on all edges are the same, which is rarely the case in reality.
Our current work is a major step in overcoming this limitation —
our new heuristic algorithm works for the general IC model while
still maintain good balance between efficiency and effectiveness.
We conduct much more experiments than in [4] on more and larger
scale graphs, and our results show that the MIA heuristic performs
consistently better than the degree discount heuristic in all graphs.
The degree discount heuristic can be viewed as a special case of
our MIA heuristic restricted on the uniform IC model with all ar-
borescences having depth one.

Paper organization. Section 2 provides preliminaries on the IC
model and the greedy algorithm, and also shows that computing
the exact influence spread given a seed set is #P-hard. Section 3
presents our MIA model and the algorithm for this model as well as
its extension, the PMIA model. Section 4 shows our experimental
results. We discuss future directions in Section 5. Further details
of our work, including the full explanation of the PMIA model and
more experimental results, are presented in our technical report [3].

2. IC MODEL AND GREEDY ALGO-
RITHM

We consider a directed graph G = (V,E) with edge labels
pp : E → [0, 1]. For every edge (u, v) ∈ E, pp(u, v) denotes
the propagation probability of the edge, which is the probability
that v is activated by u through the edge in the next step after u is
activated.

Given a seed set S ⊆ V , the independent cascade (IC) model
works as follows. Let St ⊆ V be the set of nodes that are activated
at step t ≥ 0, with S0 = S. At step t+ 1, every node u ∈ St may
activate its out-neighbors v ∈ V \ ∪0≤i≤tSi with an independent
probability of pp(u, v). The process ends at a step t with St = ∅.
Note that each activated node only has one chance to activate its
out-neighbors at the step right after itself is activated, and each node
stays as an activated node after it is activated. The influence spread
of S, which is the expected number of activated nodes given seed
set S, is denoted as σI(S).

Given an input k, the influence maximization problem in the IC
model is to find a subset S∗ ⊆ V such that |S∗| = k and σI(S∗) =
max{σI(S) | |S| = k, S ⊆ V }. It is shown in [10] that this
problem is NP-hard, but a constant-ratio approximation algorithm
is available.

We say that a non-negative real valued function f on subsets of
V is submodular if f(S ∪{v})− f(S) ≥ f(T ∪{v})− f(T), for
all v ∈ V and all pairs of subsets S and T with S ⊆ T ⊆ V . In-
tuitively, this means that f has diminishing marginal return. More-
over, we say that f is monotone if f(S) ≤ f(T) for all S ⊆ T .
For any submodular and monotone function f with f(∅) = 0, the
problem of finding a set S of size k that maximizes f(S) can be
approximated by a simple greedy algorithm shown as Algorithm 1.
The algorithm iteratively selects new seed u that maximizes the in-
cremental change of f into the seed set S until k seeds are selected.
It is shown in [17] that the algorithm guarantees the approximation
ratio f(S)/f(S∗) ≥ 1− 1/e, where S is the output of the greedy
algorithm and S∗ is the optimal solution.

In [10], it is shown that function σI(·) is submodular and mono-
tone with σI(∅) = 0. Therefore, algorithm Greedy(k, σI) solves
the influence maximization problem with an approximation ratio of
1− 1/e.

One important issue, however, is that there is no efficient way to
compute σI(S) given a set S. Although Kempe et al. claim that

Algorithm 1 Greedy(k, f)

1: initialize S = ∅
2: for i = 1 to k do
3: select u = arg maxw∈V \S(f(S ∪ {w})− f(S))
4: S = S ∪ {u}
5: end for
6: output S

finding an efficient algorithm for computing σI(S) is open [10],
we point out that the computation is actually #P-hard, by showing a
reduction from the counting problem of s-t connectness in a graph.

THEOREM 1. Computing the influence spread σI(S) given a
seed set S is #P-hard.

Proof. We prove the theorem by a reduction from the counting
problem of s-t connectness in a directed graph [21]. An instance of
s-t connectness is a directed graph G = (V,E) and two vertices s
and t in the graph. The problem is to count the number of subgraphs
of G in which s is connected to t. It is straightforward to see that
this problem is equivalent to computing the probability that s is
connected to t when each edge inG has an independent probability
of 1/2 to be connected, and another 1/2 to be disconnected. We
reduce this problem to the influence spread computation problem
as follows. Let σI(S,G) denote the influence spread in G given a
seed set S. First, let S = {s}, and let pp(e) = 1/2 for all e ∈ E,
and compute I1 = σI(S,G). Next, we add a new node t′ and a
directed edge from t to t′ to G, obtaining a new graph G′, and let
pp(t, t′) = 1. Then we compute influence spread I2 = σI(S,G

′).
Let p(S, v,G) denote the probability that v is influenced by seed set
S inG. It is easy to see that I2 = σI(S,G) +p(S, t,G) ·pp(t, t′).
Therefore, I2 − I1 is the probability that s is connected to t, and
thus we solve the s-t connectness counting problem. It is shown
in [21] that s-t connectness is #P-complete, and thus the influence
spread computation problem is #P-hard. 2

The above theorem shows that computing exact influence spread
is hard. Moreover, finding an efficient approximation algorithm
for computing the probability of s-t connectivity is a long-standing
open problem [22]. Together with the fact that several improve-
ments ([14, 4]) of the original greedy algorithm of [10] are still not
efficient, we believe that we need to look for alternative ways, such
as heuristic algorithms, to tackle the efficiency problem in influence
maximization.

3. MIA MODEL AND ITS ALGORITHM

3.1 Basic MIA model and greedy algorithm
For a path P = 〈u = p1, p2, . . . , pm = v〉, we define the prop-

agation probability of the path, pp(P), as

pp(P) = Πm−1
i=1 pp(pi, pi+1).

Intuitively the probability that u activates v through path P is
pp(P), because it needs to activate all nodes along the path. To ap-
proximate the actual expected influence within the social network,
we propose to use the maximum influence path (MIP) to estimate
the influence from one node to another. Let P(G, u, v) denote the
set of all paths from u to v in a graph G.

DEFINITION 1 (MAXIMUM INFLUENCE PATH). For a graph
G, we define the maximum influence path MIPG(u, v) from u to
v in G as

MIPG(u, v) = arg max
P
{pp(P) |P ∈ P(G, u, v)}.

Algorithm 2 ap(u, S,MIIA(v, θ))

1: if u ∈ S then
2: ap(u) = 1
3: else if N in(u) = ∅ then
4: ap(u) = 0
5: else
6: ap(u) = 1−Πw∈N in (u)(1− ap(w) · pp(w, u))
7: end if

Ties are broken in a predetermined and consistent way, such that
MIPG(u, v) is always unique, and any subpath in MIPG(u, v)
from x to y is also the MIPG(x, y). If P(G, u, v) = ∅, we denote
MIPG(u, v) = ∅.

Note that for each edge (u, v) in the graph, if we trans-
late the propagation probability pp(u, v) to a distance weight
− log pp(u, v) on the edge, then MIPG(u, v) is simply the short-
est path from u to v in the weighted graph G. Therefore, the max-
imum influence paths and the later maximum influence arbores-
cences directly correspond to shortest paths and shortest-path ar-
borescences, and thus they permit efficient algorithms such as Di-
jkstra algorithm to compute them.

For a given node v in the graph, we propose to use the maximum
influence in-arborescence (MIIA), which is the union of the maxi-
mum influence paths to v,3 to estimate the influence to v from other
nodes in the network. We use an influence threshold θ to eliminate
MIPs that have too small propagation probabilities. Symmetrically,
we also define maximum influence out-arborescence (MIOA) to es-
timate the influence of v to other nodes.

DEFINITION 2. (MAXIMUM INFLUENCE IN(OUT)-ARBORE-
SCENCE) For an influence threshold θ, the maximum influence in-
arborescence of a node v ∈ V , MIIA(v, θ), is

MIIA(v, θ) = ∪u∈V,pp(MIPG(u,v))≥θMIPG(u, v).

The maximum influence out-arborescence MIOA(v, θ) is:

MIOA(v, θ) = ∪u∈V,pp(MIPG(v,u))≥θMIPG(v, u).

Intuitively, MIIA(v, θ) and MIOA(v, θ) give the local influence
regions of v, and different values of θ controls the size of these local
influence regions.

Given a set of seeds S in G and the in-arborescence MIIA(v, θ)
for some v 6∈ S, we approximate the IC model by assum-
ing that the influence from S to v is only propagated through
edges in MIIA(v, θ). With this approximation, we can calcu-
late the probability that v is activated given S exactly. Let the
activation probability of any node u in MIIA(v, θ), denoted as
ap(u, S,MIIA(v, θ)), be the probability that u is activated when
the seed set is S and influence is propagated in MIIA(v, θ). Let
N in(u,MIIA(v, θ)) be the set of in-neighbors of u in MIIA(v, θ).
In the above notations, MIIA(v, θ) and S may be dropped when it
is clear from the context. Then ap(u, S,MIIA(v, θ)) can be com-
puted recursively as given in Algorithm 2.

Note that because MIIA(v, θ) is an in-arborescence, there are no
multiple paths between any pair of nodes in MIIA(v, θ), and thus
there is no dependency issue in the calculation of the activation
probability and the calculation in Algorithm 2 exactly matches the
IC model restricted onto MIIA(v, θ).
3Since we break ties in maximum influence paths consistently, the
union of maximum influence paths to a node do not have undirected
cycles, and thus it is indeed an arborescence.

In our MIA model we assume that seeds in S influence every
individual node v in G through its MIIA(v, θ). Let σM (S) denote
the influence spread of S in our MIA model, then we have

σM (S) =
∑
v∈V

ap(v, S,MIIA(v, θ)). (3.1)

Even though activating multiple nodes from the same set of seeds
in the MIA model are correlated events, Equation (3.1) is still cor-
rect due to the linearity of the expectation over the sum of random
variables.

We are interested in finding a set of seeds S of size k such that
σM (S) is maximized. It is not surprising that this optimization
problem is NP-hard. In fact, the same reduction from set cover
problem in [10] together with Theorem 5.3 of [7] is sufficient to
show the following.

THEOREM 2. It is NP-hard to compute a set of nodes S of size
k such that σM (S) is maximized. Furthermore, it is NP-hard to
approximate within a factor of 1− 1/e+ ε for any ε > 0.

It is straight forward to verify the following result, which means
we have an approximation algorithm.

THEOREM 3. Function σM is submodular and monotone and
σM (∅) = 0. Therefore, Greedy(k, σM) of Algorithm 1 achieves
1−1/e approximation ratio for the influence maximization problem
in the basic MIA model.

Note that the recursive computation of ap(u) in Algorithm 2 can
be transformed into an iterative form such that all ap(u)’s with u in
MIIA(v, θ) can be computed by one traverse of the arborescence
MIIA(v, θ) from leaves to the root. Thus, computing σM (S) using
Equation (3.1) and Algorithm 2 is polynomial-time. Together with
Algorithm 1, we already have a polynomial-time approximation al-
gorithm. However, we could further improve the efficiency of the
algorithm, as we shown in the next section.

3.2 More efficient greedy algorithm
The only important step in the greedy algorithm is to select the

next seed that gives the largest incremental influence spread. Con-
sider the maximum influence in-arborescence MIIA(v, θ) of size
t and a given seed set S. To select the next seed u, we need to
compute the activation probability ap(v, S ∪ {w},MIIA(v, θ))
for every w ∈ MIIA(v, θ), which takes O(t2) time if we simply
use Algorithm 2 to compute every ap(v, S ∪ {w},MIIA(v, θ)).
We now show a batch update scheme such that we could compute
ap(v, S ∪ {w},MIIA(v, θ))’s for all w ∈ MIIA(v, θ) in O(t)
time.

To do so, we utilize the linear relationship between ap(u) and
ap(v) in MIIA(v, θ), as shown by the following lemma, which is
not difficult to derive from line 6 of Algorithm 2.

LEMMA 1 (INFLUENCE LINEARITY). Consider MIIA(v, θ)
and a node u in it. If we treat ap(u) as an independent variable,
ap(v) as a dependent variable, and other ap(w)’s as constants for
allw’s not on the path from u to v, then ap(v) = α(v, u) ·ap(u)+
β(v, u), where α(v, u), β(v, u) are constants only depending on
ap(w)′s for w’s not on the path from u to v.

Based on the recursive computation of ap(u, S,MIIA(v, θ)) as
shown in line 6 of Algorithm 2, it is straightforward to derive a
recursive computation of α(v, u), as shown in Algorithm 3. Note
that Algorithm 3 can be transformed into an iterative form such that
all α(v, u)’s can be computed by one traverse of MIIA(v, θ) from
the root to the leaves.

Algorithm 3 Compute α(v, u) with MIIA(v, θ) and S, after
ap(u, S,MIIA(v, θ)) for all u in MIIA(v, θ) are known.
1: /* the following is computed recursively */
2: if u = v then
3: α(v, u) = 1
4: else
5: set w to be the out-neighbor of u
6: if w ∈ S then
7: α(v, u) = 0 /* u’s influence to v is blocked by seed w */
8: else
9: α(v, u) = α(v, w) · pp(u,w) · Πu′∈N in (w)\{u}(1 −

ap(u′) · pp(u′, w))
10: end if
11: end if

Computing the linear coefficients α(v, u) as defined in Lemma 1
is crucial in computing the incremental influence spread of a node
u. Let us consider again the maximum influence in-arborescence
MIIA(v, θ) of size t and a given seed set S. For any w ∈
MIIA(v, θ), if we select w as the next seed, its ap(w) increases
from the current value to 1. Since ap(w) and ap(v) have a linear
relationship with the linear coefficient α(v, w), the incremental in-
fluence of w on v is given by α(v, w) · (1 − ap(w)). Therefore,
we only need one pass of MIIA(v, θ) to compute ap(w)’s for all
w ∈ MIIA(v, θ), and a second pass of MIIA(v, θ) to compute
α(v, w)’s and α(v, w) · (1 − ap(w))’s for all w ∈ MIIA(v, θ).
This reduces the running time of computing incremental influence
spread of all nodes in MIIA(v, θ) from O(t2) to O(t).

Our complete greedy algorithm for the basic MIA model is pre-
sented in Algorithm 4. Lines (2–11) evaluate the incremental influ-
ence spread IncInf (u) for any node u when the current seed set is
empty. The evaluation is exactly as we described above using the
linear coefficients α(v, u).

Lines (15–30) update the incremental influences whenever a new
seed is selected in line 14. Suppose u is selected as the new
seed in an iteration. The influence of u in the MIA model only
reaches nodes in MIOA(u, θ). Thus the incremental influence
spread IncInf (w) for some w needs to be updated if and only
if w is in MIIA(v, θ) for some v ∈ MIOA(u, θ). This means
that the update process is relatively local to u. The update is
done by first subtracting α(v, w) · (1 − ap(w, S,MIIA(v, θ)))
before adding u into the seed set (line 19), and then adding u
into the seed set (line 22), recomputing the ap(w, S,MIIA(v, θ))
and α(v, w) under the new seed set (lines 24–25), and adding
α(v, w) · (1− ap(w, S,MIIA(v, θ))) into IncInf (w) (line 28).
Time and space complexity. Let niθ = maxv∈V {|MIIA(v, θ)|}
and noθ = maxv∈V {|MIOA(v, θ)|}. Computing MIIA(v, θ)
can be done using efficient implementations of Dijkstra’s shortest-
path algorithm. Assume the maximum running time to compute
MIIA(v, θ) for any v ∈ V is tiθ . When MIIA(v, θ)’s for all
node v ∈ V are available, MIOA(v, θ)’s can be derived from
MIIA(v, θ)’s, therefore no extra running time for MIOA(v, θ)’s
is needed. Notice that niθ = O(tiθ).

For every node v ∈ V , our algorithm stores
MIIA(v, θ), MIOA(v, θ), and for every u ∈ MIIA(v, θ),
ap(u, S,MIIA(v, θ)) and α(v, u) are stored (note that
ap(u, S,MIIA(v, θ)) can reuse the same entry for different
seed set S). We also use a max-heap to store and update IncInf (v)
for all v ∈ V . Therefore, the space complexity of the algorithm is
O(n(niθ + noθ)).

During the initialization of Algorithm 4, it takes O(ntiθ) time
to compute MIIA(v, θ) for all v ∈ V , O(nniθ) time to compute

Algorithm 4 MIA(G, k, θ)

1: /* initialization */
2: set S = ∅
3: set IncInf (v) = 0 for each node v ∈ V
4: for each node v ∈ V do
5: compute MIIA(v, θ) and MIOA(v, θ)
6: set ap(u, S,MIIA(v, θ)) = 0,∀u ∈ MIIA(v, θ) /* since

S = ∅ */
7: compute α(v, u), ∀u ∈ MIIA(v, θ) (Algo. 3)
8: for each node u ∈ MIIA(v, θ) do
9: IncInf (u) +=α(v, u) · (1− ap(u, S,MIIA(v, θ)))

10: end for
11: end for
12: /* main loop */
13: for i = 1 to k do
14: pick u = arg maxv∈V \S{IncInf (v)}
15: /* update incremental influence spreads*/
16: for v ∈ MIOA(u, θ) \ S do
17: /* subtract previous incremental influence */
18: for w ∈ MIIA(v, θ) \ S do
19: IncInf (w)−= α(v, w) · (1− ap(w, S,MIIA(v, θ)))
20: end for
21: end for
22: S = S ∪ {u}
23: for v ∈ MIOA(u, θ) \ S do
24: compute ap(w, S,MIIA(v, θ)),∀w ∈ MIIA(v, θ)

(Algo. 2)
25: compute α(v, w),∀w ∈ MIIA(v, θ) (Algo. 3)
26: /* add new incremental influence */
27: for w ∈ MIIA(v, θ) \ S do
28: IncInf (w) += α(v, w) · (1− ap(w, S,MIIA(v, θ)))
29: end for
30: end for
31: end for
32: return S

all α(v, u)’s and IncInf (u)’s, andO(n) time to initialize the max-
heap for storing IncInf (u)’s. Therefore, the total running time for
initialization is O(ntiθ). During one iteration of the main loop,
it takes constant time to select the new seed from the max-heap,
O(noθniθ logn) time to update IncInf (w)’s on the max-heap,
and O(noθniθ) time to compute ap(w, S,MIIA(v, θ, S))’s and
α(v, w)’s after selecting the new seed. Thus, one iteration of the
main loop takes O(noθniθ logn) time. Together, the total running
time of the algorithm isO(ntiθ +knoθniθ logn)). Note that with-
out applying the improvement of utilizing the linear relationship,
the time complexity would be O(ntiθ + knoθniθ(niθ + logn)).

Therefore, the algorithm performs the best when niθ , noθ , and
tiθ are significantly smaller than n, that is, when the arborescences
are small. This typically occurs for a reasonable range of θ val-
ues, when the graph is sparse and the propagation probabilities on
edges are usually small, which is the case for social networks. Our
experiments in the Section 4 will demonstrate the efficiency of our
algorithm.

3.3 Prefix excluding MIA model
In the above basic MIA model, it could happen that a seed si is

on the MIP from another seed sj to a node v, in which case the
influence from seed sj to v is completely blocked by seed si. To
better approximate influence propagation in the original graph, we
extend the MIA model to allow sj in the above example to find an
alternative path to v that does not pass through si.

Informally, in our extension, when selecting the next seed, for
every node v, we recompute its in-arborescence such that every
seed candidate w ∈ V \ S has a path to v not passing through any
seed in S. As a result, all selected seeds form a sequence S accord-
ing to the selection order, such that any seed s in S has alternative
paths to all nodes v that do not pass through any seed in the prefix
of S preceeding s. This treatment allows us to have an efficient
algorithm in the same framework as in Algorithm 4. We call this
extension prefix excluding MIA (PMIA) model.

More precisely, Let S = 〈s1, s2, . . . , sm〉 be a sequence of
seeds. Define Si = 〈s1, s2, . . . , si−1〉 and S1 = ∅. Let G(S′) be
the subgraph of G induced by V \ S′ for any sequence S′. In the
PMIA model, the maximum influence path from a seed si ∈ S to
a node v will not pass through any seed nodes in the prefix Si, that
is, it is MIPG(Si)(si, v). However, it may still pass through seeds
after si in sequence S. We define ineffective seeds with respect to a
node v, to be those seeds whose influence to v are blocked by some
other subsequent seeds in sequence S.

DEFINITION 3 (INEFFECTIVE SEEDS). For a given node v ∈
V \ S, we define the set of ineffective seeds for v as:

IS(v, S) = {si ∈ S | ∃j > i, s.t., sj ∈ MIPG(Si)(si, v)}.

When computing the maximum influence in-arborescence in the
PMIA model, in order to keep the influence linearity of Lemma 1
still applicable, we need to give the following special treatment for
the case where the MIP from seed si to v is blocked by a subsequent
seed sj with j > i. Consider a node u 6∈ S located on the MIP from
si to sj . If u is selected as a seed later, then its MIP to v should
avoid all seeds in S, and thus to compute its incremental influence
spread correctly using the linearity property, we need to compute
the MIP from u to v in the graph G(S). Moreover, we need to
remove the ineffective seed si and its MIP to v because otherwise
si would have two different paths to v, violating the arborescence
definition. This leads to the following definition of the maximum
influence in-arborescence for the PMIA model.

DEFINITION 4 (MIIA FOR THE PMIA MODEL). The maxi-
mum influence in-arborescence of v in the PMIA model for v 6∈ S
is:

PMIIA(v, θ, S) =

(∪{MIPG(Si)(si, v) | si ∈ S \ IS(v, S),

pp(MIPG(Si)(si, v)) ≥ θ})
∪(∪{MIPG(S)(u, v) | u ∈ V \ S,

pp(MIPG(S)(u, v)) ≥ θ}).

For out-arborescence from v 6∈ S, we need to consider all MIPs
from v that avoid all seeds in S. This is because we only need
to compute the out-arborescence of a node v when v is just se-
lected as the new seed. In this case, the paths in the above com-
puted out-arborescence of v match the paths in the corresponding
in-arborescences used to compute the incremental influence of v
(since those paths avoid all seeds already in S).

DEFINITION 5 (MIOA FOR THE PMIA MODEL). The max-
imum influence out-arborescence of v in the PMIA model for v 6∈ S
is:

PMIOA(v, θ, S) = ∪{MIPG(S)(v, u) | u ∈ V \ S,
pp(MIPG(S)(v, u)) ≥ θ}.

Given the above definition, we can have activation probabilities
ap(u, S,PMIIA(v, θ, S)) computed by Algorithm 2. Then, sim-
ilar to Equation (3.1), we define σP (S) as the influence spread in

the PMIA model given a seed sequence S, which is computed using
the following equation:

σP (S) =
∑
v∈V

ap(v, S,PMIIA(v, θ, S)). (3.2)

Notice that different sequences S of the same set of seeds may
generate different values of σP (S). Therefore, the submodularity
defined on set functions does not apply to σP . Fortunately, we can
define sequence submodularity in a similar way, which also leads
to the greedy algorithm with an approximation ratio of 1− 1/e.
Sequence submodularity. We now define sequence submodular-
ity, which is implicitly used by Streeter and Golovin in [19]. Let
S be the set of all sequences of V , including the empty sequence
∅. Let ⊕ be the binary operator that concatenates two sequences
into one. We say that a non-negative function f defined on S
is sequence submodular if f(S1 ⊕ S2 ⊕ {t}) − f(S1 ⊕ S2) ≤
f(S1 ⊕ {t}) − f(S1) for all sequences S1, S2 ∈ S. Moreover,
f is prefix monotone if f(S1) ≤ f(S2 ⊕ S1) for all S1, S2 ∈ S.
An important result that matches the one for set submodular func-
tions is that if f is sequence submodular and prefix monotone and
f(∅) = 0, then the greedy algorithm of Algorithm 1 (with set union
∪ replaced by sequence concatenation ⊕) finds a sequence S such
that f(S) ≥ (1− 1/e) maxS′∈S f(S′). The proof of this result is
included in [3], which is adapted from the original proof in [19].

It is not difficult to verify that σP is sequence submodular and
prefix monotone, and thus

THEOREM 4. Function σP is sequence submodular and prefix
monotone and σP (∅) = 0. Therefore, Greedy(k, σP) of Algo-
rithm 1 (with set union ∪ replaced by sequence concatenation ⊕)
achieves 1 − 1/e approximation ratio for the influence maximiza-
tion problem in the PMIA model.

Algorithm in the PMIA model. We now explain the neces-
sary changes needed to adapt Algorithm 4 to the PMIA model.
The major change is the computation of PMIIA(v, θ, S) and
PMIOA(v, θ, S). The computation of PMIOA(v, θ, S) is rela-
tively simple, since we only need to remove S from the graph.
Therefore, we can use the Dijkstra algorithm on graph G(S) to
compute PMIOA(v, θ, S).

To efficiently compute PMIIA(v, θ, S), we maintain the set of
ineffective seeds IS(v, S) for each node v ∈ V \ S. Given
IS(v, S), PMIIA(v, θ, S) can be calculated as follows. We start
a Dijkstra algorithm from v traversing inward edges. Whenever
the Dijkstra algorithm hits a seed node s, it stops this branch and
does not go further on the in-neighbors of s. After the Dijkstra
algorithm completes, we remove all nodes IS(v, S) from the com-
puted in-arborescence. When a new seed u is selected, we need to
update IS(v, S) for all nodes v in PMIOA(u, θ, S). This can be
done by checking the set of effective seeds (those in S \ IS(v, S))
that are blocked by u in PMIIA(v, θ, S).

After the above changes, we can essentially use Algorithm 4
for the PMIA model, with all MIIA(v, θ) and MIOA(u, θ)
replaced by PMIIA(v, θ, S) and PMIOA(u, θ, S) respectively,
and we recompute PMIOA(u, θ, S) after line 14 and recompute
PMIIA(v, θ, S) after line 23. The full pseudocode of the PMIA
model algorithm can be found in [3].

4. EXPERIMENT
We conduct experiments on our algorithm as well as a number of

other algorithms on several real-world and synthetic networks. Our
experiments aim at illustrating the performance of our algorithm
from the following aspects: (a) its scalability comparing to other

Table 1: Statistics of four tested real-world networks.
Dataset NetHEPT DBLP Epinions Amazon
#Node 15K 655K 76K 262K
#Edge 31K 2.0M 509K 1.2M
Average Degree 4.12 6.1 13.4 9.4
Maximal Degree 64 588 3079 425
#Connected Com-
ponent 1781 73K 11 1

Largest Component
Size 6794 517K 76K 262K

Average Compo-
nent Size 8.6 9.0 6.9K 262K

algorithms; (b) its influence spread comparing to other algorithms;
and (c) the tuning of its control parameter θ.

4.1 Experiment setup
Datasets. We use four real-world networks and a synthetic
dataset. The first one, denoted NetHEPT, is the same as used
in [4]. It is an academic collaboration network extracted from
"High Energy Physics - Theory" section of the e-print arXiv
(http://www.arXiv.org), with nodes representing authors and edges
representing coauthorship relations. The second is a much larger
collaboration network, the DBLP Computer Science Bibliography
Database maintained by Michael Ley. The other two datasets are
published network data by Jure Leskovec. One is a Who-trust-
whom network of Epinions.com [13], where nodes are members of
the site and a directed edge from u to v means v trust u (and thus u
has influence to v). Another is the Amazon product co-purchasing
network [12] dated on March 2, 2003, where nodes are products
and a directed edge from u to v means product v is often purchased
with product u (and thus u has influence to v).4 We refer to these
two datasets as Epinions and Amazon. We choose these networks
since it covers a variety of networks with sizes ranging from 30K
edges to 2M edges. Some basic statistics about these networks
are given in Table 1 (Epinions and Amazon networks are treated as
undirected graphs in the statistics). Finally, in the scalability test,
we use the DIGG package available on the web [5] to randomly
generate power-law graphs of difference sizes based on the model
of [1].
Generating propagation probabilities. Since our algorithm is tar-
geted at the general IC model with nonuniform propagation proba-
bilities, we use the following two models to generate these nonuni-
form probabilities.

• WC model: This is the weighted cascade model proposed
in [10]. In this model, pp(u, v) for an edge (u, v) is 1/d(v),
where d(v) is the in-degree of v. Thus even if the original
graph is undirected, the model will generate asymmetric and
nonuniform propagation probabilities.
• TRIVALENCY model: On every edge (u, v), we uni-

formly at random select a probability from the set
{0.1, 0.01, 0.001}, which corresponds to high, midium, and
low influences.

Algorithms. We compare our MIA heuristic with both the greedy
algorithm and several heuristics that appear in the literature. The
following is a list of algorithms we evaluate in our experiments.
4Although the Amazon dataset is for products, we still include it
in our experiments to test a variant of a network. Moreover, it also
makes sense to find top seed products that lead to the most co-
purchasing behaviors.

(a) normal scale (b) log-log scale

Figure 1: Scalability of different algorithms in synthetic
datasets. Each data point is an average of ten runs.

• PMIA(θ): Our Algorithm 4 for the PMIA model with influ-
ence threshold θ. The value of θ for a particular dataset is
selected using the heuristic discussed in the “tuning of pa-
rameter θ” part of Section 4.2.
• Greedy: The original greedy algorithm on the IC model

[10] with the lazy-forward optimization of [14]. For each
candidate seed set S, 20000 simulations is run to obtain an
accurate estimate of σI(S).
• DegreeDiscountIC: The degree discount heuristic of [4] de-

veloped for the uniform IC model with a propagation proba-
bility of p = 0.01, same as used in [4].
• SP1M: The shortest-path based heuristic algorithm of [11],

also enhanced with the lazy-forward optimization of [14].
• PageRank: The popular algorithm used for ranking web

pages [2]. Here the transition probability along edge (u, v)
is pp(v, u)/ρu, where ρu is the sum of propagation proba-
bilities on all incoming edges of u. Note that in the PageR-
ank algorithm the transition probability of (u, v) indicates
u’s “vote” to v’s ranking, and thus if pp(v, u) is higher, v is
more influential to u and thus u should vote v higher. We use
0.15 as the restart probability for PageRank, and we use the
power method to compute the PageRank values. The stop-
ping criteria is when two consecutive iterations differ for at
most 10−4 in L1 norm.
• Random: As a baseline comparison, simply select k random

vertices in the graph.

We ignore other centrality measures, such as distance centrality
and betweenness centrality [8] as heuristics, since we have shown
in [4] that distance centrality is very slow and has very poor influ-
ence spread, while betweenness centrality would be much slower
than distance centrality.

To obtain the influence spread of the heuristic algorithms, for
each seed set, we run the simulation on the networks 20000 times
and take the average of the influence spread, which matches the
accuracy of the greedy algorithms. The experiments are run on a
server with 2.33GHz Quad-Core Intel Xeon E5410 and 32G mem-
ory.

We actually conduct further experiments using more datasets,
more variants of the IC model, and more heuristic algorithms. The
results are similar to the results reported here. These further results
are included in our full technical report [3].

4.2 Experiment results
Scalability on the synthetic dataset. To test scalability, we gen-
erate a family of graphs of increasing sizes using the DIGG pack-
age [5], which applies the random power-law graph model of [1] to
generate random graphs. We use graphs of doubling sizes — 2K,
4K, 8K, . . ., up to 256K in the number of nodes, and a power-law

exponent of 2.16. The average degree of these graphs is between
2 and 3 for these graphs, which is lower than the real networks in
Table 1. We use the WC model for the graphs, and run PMIA algo-
rithm with a fixed θ = 1/320, as well as other algorithms, to find
50 seeds in every graph. The result is shown in Figure 1, with nor-
mal scale shown in (a) and log-log scale of the same figure shown
in (b) to differentiate different algorithms better.

The result in Figure 1 (a) clearly separate all algorithms into two
groups. Algorithms Greedy and SP1M are not scalable: their run-
ning times are in the hour range with around 400K edge graphs and
it becomes infeasible to run them in larger graphs since we want to
take average of 10 runs of every algorithm. Note that we already
choose low average degree graphs so that they could run faster.
Later reports on real graphs will show that they run even slower on
those graphs. Our PMIA along with the rest heuristics can all scale
up quite well. Figure 1 (b) differentiates the algorithms further.
SP1M has the worst slope and is certainly not feasible for large-
scale graphs. Greedy has the similar slope as other algorithms
but its intercept is too large, because its Monte-Carlo simulation-
based estimation of incremental influence spread for every node is
too slow. Our PMIA has both good slope and intercept, making it
easily scalable to large graphs with millions of edges.

Influence spread and running time for the real-world datasets
We run tests on the four datasets and the two IC models to obtain
influence spread results. The seed set size k ranges from 1 to 50.
For ease of reading, in all influence spread figures (best viewed
in color), the legend ranks the algorithms top-down in the same
order as the influence spreads of the algorithms when k = 50.
Moreover, if two curves are two close to each other, we group them
together and show properly in the legend. All percentage difference
reported below on influence spreads are the average of percentage
differences from selecting one seed to selecting 50 seeds. Taking
average is reasonable, since some algorithms may behave better
when selecting the first few seeds while other algorithms behave
better when selecting more seeds. The running time results are the
time for selecting 50 seeds.

Figures 2–5 show the results on influence spreads for the four
datasets on two IC models, while Figure 6 shows the running time
results of the four datasets on the WC model (results on the TRIVA-
LENCY model are similar and omitted).

For the moderate sized graph NetHEPT where Greedy is still
feasible to run, the influence results in Figure 2 shows that Greedy
produces the best influence spread, but PMIA is very close to
Greedy: its influence spread essentially matches that of Greedy
for the WC model and is only 3.8% less than Greedy for the
TRIVALENCY model. Comparing with other heuristics, PMIA
performs quite well: it matches the influence spread of SP1M
while outforms the rest heuristics in both models — in the WC
model, PMIA is 3.9% and 11.4% better, while in the TRIVA-
LENCY model, PMIA is 6.5% and 15.4% better, comparing to
DegreeDiscountIC and PageRank respectively. Random has a
much worse influence spread, indicating that a careful seed selec-
tion is indeed important to effective viral marketing results. When
looking at the running time in Figure 6 for NetHEPT on WC, we
clearly see that Greedy is already quite slow (1.3 hours), while
PMIA only takes 1 second, more than three orders of magnitude
better. PMIA is also more than one order of magnitude faster than
SP1M, and is comparable with PageRank. DegreeDiscountIC
is the best in running time, because it is simple and specially tuned
for the uniform IC model.

Figure 3 shows the result on the Epinions dataset, a large net-
work with half a million edges. The graph is already too large

for Greedy to run, so Greedy is out of the picture. For the WC
model, PMIA still matches the influence spread of SPIM while it
has a large winning margin over DegreeDiscountIC and PageR-
ank — PMIA is 96% and 115% better than DegreeDiscountIC
and PageRank, respectively. This demonstrates that DegreeDis-
countIC and PageRank are rather unstable heuristics while PMIA
is very consistent in influence performance. For the TRIVALENCY
model, we see that all heuristics, even Random reach a high level
of influence spread after only a few seeds, while afterwards the in-
crease in influence spread is slow. This behavior is quite different
from the behavior of other test results we have seen so far, but it
is very similar to a result presented in [10] for a graph when every
edge has a propagation probability of 0.1. Therefore, we believe
that the explanation is also similar: in this test, after deleting the
edges based on their propagation probabilities and only keep the
edges that will propagate influence, the resulting graph is likely
to have a relatively large strongly connected component, and thus
even random node selection would likely to hit this component after
a few attempts, drastically increasing the influence spread. How-
ever, afterwards, additional seeds could only reach a small por-
tion of still unaffected nodes, so further improvement in influence
spread is small. But even in this case PMIA is still the best, out-
performing the rest heuristics. For running time, we see that PMIA
only takes 10 seconds but SP1M now takes 2.1 hours, more than
700 times slower than PMIA.

Next, for the one million-edge graph Amazon, Figure 4 shows
that in the WC model PMIA again outperforms PageRank and
DegreeDiscountIC with a large margin (99% and 266%, respec-
tively), and in the TRIVALENCY model, it even outperforms
SP1M significantly (14.1%, 23.9%, and 41.7% better than SP1M,
PageRank, DegreeDiscountIC, respectively). Two unique fea-
tures for this dataset are: (a) the influence spread is rather small,
e.g. in TRIVALENCY, 50 seeds only generate a spread of around
80 nodes, and (b) the increase in influence spread is almost linear.
The two features have the same reason — influence is very local
and cannot propagate very far. It is probably because Amazon is a
product co-purchasing network, not a social network. For running
time, we now see that SP1M takes 30 hours, reaching its feasibility
limit, while PMIA still only takes 10 seconds, showing its superb
scalability over SP1M.

Finally, for the two million edge DBLP dataset, Figure 5 shows
that this time PageRank and DegreeDiscountIC matches PMIA
and are slightly better than PMIA for the WC model. Looking at all
test cases (including additional ones in [3]), only a couple of cases
where other scalable heuristics have matching influence spread as
PMIA. This means that PMIA performs consistently well among
the best scalable heuristics while others such as PageRank and
DegreeDiscountIC are not stable — there exist a few cases that
they perform well but in most other cases they performs not as well
and sometimes they performs poorly comparing to PMIA. For run-
ning time, even at two million edge range, PMIA only takes 3 min-
utes to run. Therefore, PMIA has very good scalability and can
handle million-sized or even larger graphs well.

Overall, we see that PMIA can scale beyond millions of edges,
while Greedy and SP1M become too slow for half million edges
or above. In all size ranges, PMIA consistently performs among
the best algorithms (including Greedy and SP1M), while in most
cases it significantly outperforms the rest scalable heuristics to as
much as 100%–260% increase in influence spread.
Tuning of parameter θ. We investigate the effect of the tuning
parameter θ on the running time and the influence spread of our
algorithm. Figure 7 shows that the running time increases when
the θ value decreases, as expected. More interestingly, the running

(a) WC model (b) TRIVALENCY model

Figure 2: Influence spread results on the NetHEPT dataset.

(a) WC model (b) TRIVALENCY model

Figure 3: Influence spread results on the Epinions dataset.

(a) WC model (b) TRIVALENCY model

Figure 4: Influence spread results on the Amazon dataset.

(a) WC model (b) TRIVALENCY model

Figure 5: Influence spread results on the DBLP dataset.

Figure 6: Running time of different algorithms in for datasets

time is almost linear to 1/θ. This can be roughly explained as fol-
lows. First, by the running time analysis of Section 3.2, we can
see that when n and k are fixed and θ varies, the dominant term is
a quadratic term noθniθ , which means the running time is propor-
tional to the square of the average arborescence size. Figure 7 fur-
ther shows that the average arborescence size is about O(

√
1/θ).

Therefore together the running time is close to a linear relationship
with 1/θ.

Figure 8 shows the change of influence spread with respect to
the running time of our algorithm for the NetHEPT set in the WC
model. Since the relationship between running time and 1/θ is
linear, it does not matter much if we use running time or 1/θ as
x-axis. The result indicates that as running time increases (θ de-
creases), the influence spread also increases, meaning that we ob-
tain better quality results. Comparing other algorithms also shown
in the figure, we see that on one side, we can tune 1/θ to a larger
value so that our influence spread can match the one provided by
SP1M with at least 10 times speedup, while on the other side we
can tune 1/θ to a small value to get close to the running time of
PageRank with matching influence spread. Therefore, we can use

Figure 7: Running time and average arborescence size of PMIA
vs. the threshold 1/θ in the WC model, for NetHEPT dataset.

one algorithm to achieve different efficiency-effectiveness tradeoff
needs by properly tuning the parameters.

One noticeable result is the knee in the curve of our algorithm.
It means that the increase in influence spread is no longer signifi-
cant after we lower θ to a certain level. This is because as shown
in Figure 7, arborescence size increases in square root of 1/θ (and
thus in square root of running time), while influence spread may
change much slower after the arborescence grows beyond a certain
size. The knee point suggests a good tuning point for the algo-
rithm. If we select θ such that the influence-time tradeoff is close
to the knee point, we could obtain the best gain from both influ-
ence spread and running time. Correlating with Figure 7, we found
that the corresponding knee point to be close to the point where the
change of arborescence size slows down (the dot with 1/θ = 320).
We observe similar situations in other dataset that we did not report
here. Thus, this suggests the following way of tuning parameter θ.
Given a new graph, randomly sample a small portion of nodes in

Figure 8: maximal influence spread by 50 seeds w.r.t. running
time, for the NetHEPT dataset in the WC model.

the graph to compute the average arborescence sizes with varying
1/θ, and find a point where the change of arborescence size slows
down, and use the θ value at that point for the PMIA algorithm. The
θ values selected in our experiments are based on this method.

5. FUTURE WORK
One possible future research is to further explore the advantages

of our MIA heuristic. For example, we believe that MIA heuris-
tic fits into the parallel computation framework better than the
greedy algorithm and shortest-path based SP1M heuristic. This
is because our computation are restricted on local arborescences
around nodes, and thus the graph can be easily partitioned for
parallel computation, with sharing data only needed for arbores-
cences at the boundary. On the contrary, the greedy algorithm and
the SP1M heuristic need simulations and computations among the
whole graph, so graph partition is difficult, and parallel computa-
tion is only possible for different computation tasks that require
sharing of the entire graph. Another future direction is to look for
hybrid approaches that combine the advantages of different algo-
rithms to further improve the efficiency and effectiveness of influ-
ence maximization.

Beyond influence maximization, one interesting direction that
requires further research is the data mining of social influence from
real online social network data sets. A few studies have started
to address this issue for blogspace [9] and academic collaboration
network [20]. In fact, we used a dataset from [20] with propaga-
tion probabilities computed by their algorithm, but the graph size is
small and thus we only include the result in [3]. We plan to study
social influence mining in other social media and design appropri-
ate algorithms for these social media. Social influence mining and
influence maximization together will form the key components that
enable prevalent viral marketing in online social networks.

6. REFERENCES
[1] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model

for massive graphs. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 171–180, 2000.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[3] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large scale
social networks. Technical Report MSR-TR-2010-2,
Microsoft Research, Jan. 2010.

[4] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In Proceedings of the 15th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2009.

[5] L. Cowen, A. Brady, and P. Schmid. DIGG: DynamIc Graph
Generator. http://digg.cs.tufts.edu.

[6] P. Domingos and M. Richardson. Mining the network value
of customers. In Proceedings of the 7th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pages 57–66, 2001.

[7] U. Feige. A threshold of lnn for approximating set cover.
Journal of the ACM, 45(4):634–652, 1998.

[8] L. Freeman. Centrality in social networks: conceptual
clarification. Social Networks, 1:215–239, 1979.

[9] D. Gruhl, R. V. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In Proceedings of
the 13th international conference on World Wide Web, pages
491–501, 2004.

[10] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In Proceedings
of the 9th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 137–146, 2003.

[11] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In Proceedings of the 10th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 259–271, 2006.

[12] J. Leskovec. Amazon product co-purchasing network, march
02 2003. http://snap.stanford.edu/data/amazon0302.html.

[13] J. Leskovec. Epinions social network.
http://snap.stanford.edu/data/soc-Epinions1.html.

[14] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 420–429, 2007.

[15] I. R. Misner. The World’s best known marketing secret:
Building your business with word-of-mouth marketing. Bard
Press, 2nd edition, 1999.

[16] J. Nail. The consumer advertising backlash, May 2004.
Forrester Research and Intelliseek Market Research Report.

[17] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the
approximations for maximizing submodular set functions.
Mathematical Programming, 14:265–294, 1978.

[18] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the 8th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 61–70, 2002.

[19] M. Streeter and D. Golovin. An online algorithm for
maximizing submodular functions. Technical Report
Technical Report CMU-CS-07-171, Carnegie Mellon
University, 2007.

[20] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence
analysis in large-scale networks. In Proceedings of the 15th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2009.

[21] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3):410–421, 1979.

[22] V. V. Vazirani. Approximation Algorithms. Springer, 2004.

