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Abstract 

We propose a parameter shrinkage adaptation framework to 

estimate models with only a limited set of adaptation data to 

improve accuracy for automatic speech recognition, by 

regularizing an objective function with a sum of parameter-

wise power q constraint. For the first attempt, we formulate 

ridge maximum likelihood linear regression (MLLR) and 

ridge constraint MLLR (CMLLR) with an element-wise 

square sum constraint to regularize the objective functions of 

the conventional MLLR and CMLLR, respectively. Tested on 

the 5k-WSJ0 task, the proposed ridge MLLR and ridge 

CMLLR algorithms give significant word error rate reduction 

from the errors obtained with standard MLLR and CMLLR in 

an utterance-by-utterance unsupervised adaptation scenario. 

Index Terms: shrinkage model adaptation, insufficient data, 

ridge MLLR and ridge CMLLR  
 

1. Introduction 

Parameter adaptation is one of the most efficient techniques to 

address the potential mismatches between the training and 

testing environments in automatic speech recognition (ASR). 

Maximum likelihood linear regression (MLLR) [1] and 

maximum a posteriori (MAP) [2] adaptation are two such 

successful methods. If there is only a limited amount of 

adaptation data, MLLR and its variant, constrained MLLR 

(CMLLR) [3] (also known as feature space MLLR, or fMLLR 

[4]) are often preferred because they map the original model 

space into a new space by linear transformations. Matrix 

clusters can also be used for transformation sharing. In some 

application scenarios, such as voice search [5], only one 

utterance can be available for self-adaptation. The limited data 

size may not be enough for reliably estimating even one 

transformation matrix. There are two popular solutions to this 

data insufficiency problem. One is to prepare a prior 

distribution for the transformation, and the MAP criterion is 

used for matrix parameter estimation (e.g., MAPLR [6]). The 

other solution is to employ eigen-family methods, such as 

eigen-voice [7], eigen-MLLR [8], and eigen-fMLLR [9]. They 

online estimate the combination coefficients for a series of 

pre-computed basis vectors or matrices. If the number of 

combination coefficients is less than the total number of 

transformation parameters, the coefficients estimation requires 

less data. Both solutions need either pre-computed prior 

distributions or a collection of basis vectors/matrices.  

In statistical learning, parameter shrinkage has been 

demonstrated as an effective method to handle the data 

sparsity problem. By adding an element-wise power 

regularization term to the original objective function, the 

shrinkage method can be very effective in controlling over-

fitting because it shrinks parameter values toward zero and 

reduces the degree of freedom to estimate them. Successful 

applications include ridge regression [10], least absolute 

shrinkage and selection operator (LASSO) [11] in linear 

regression, and weight decaying [12] in neural networks, to 

name a few.  

In this study, we apply the idea of parameter shrinkage 

to solve the data insufficiency problem in speech 

recognition. Using MLLR and CMLLR as examples, we 

formulate shrinkage model adaptation by adding a sum of 

element-wise power q constraint to the objective function. 

As a first attempt, an element-wise square sum constraint is 

used to derive ridge MLLR and CMLLR. Tested on the 5k-

WSJ0 task in an utterance-by-utterance unsupervised self-

adaptation scenario the proposed ridge MLLR and ridge 

CMLLR algorithms significantly outperform the standard 

MLLR and CMLLR alternatives. 

2. Shrinkage Model Adaptation 

In this following the theory of parameter shrinkage in 

linear regression is briefly reviewed. Then MLLR and 

CMLLR with rotation matrix parameter shrinkage are 

formulated.  Ridge MLLR and CMLLR are then derived 

by applying the element-wise square constraint for a close-

form solution. Next, a comparison of ridge MLLR and 

MAPLR is discussed. Since parameter shrinkage is a 

general idea, we also extend it to formulate a novel full 

precision matrix estimation method in the last part of this 

section. 

2.1 Parameter Shrinkage in Linear Regression 

Linear regression is to use a linear model to predict the 

output   with an input vector,   (          ), as 

 ( )     ∑     
 
   , 

where   is the vector dimension, and   is the regression 

coefficient vector. If   samples are available, we can 

denote   as the   (   ) input matrix (including value 

1 as the bias), and   as the  -vector outputs. Then   can 

be estimated by minimizing the residual sum-of-squares, 

defined as   ( )  (    ) (    ). 

When N is small, i.e., only limited samples are available, 

a regularization term (element-wise q power sum) can be 

added to    ( ) for a reliable estimations of  , i.e., 

  ̂         (    ) (    )   ∑ |  |
 
   

 
 . 

http://scholar.google.com/scholar?q=least+absolute+shrinkage+and+selection+operator&hl=en&as_sdt=0&as_vis=1&oi=scholart
http://scholar.google.com/scholar?q=least+absolute+shrinkage+and+selection+operator&hl=en&as_sdt=0&as_vis=1&oi=scholart


 

 

If    , it is called ridge regression [10]. In the case of 

   , the method is called LASSO [11]. 

The element-wise power q sum constraint makes some 

components in   shrink toward zero and assures the available 

samples can reliably estimate the remaining components. This 

shrinkage strategy has been demonstrated to be effective in 

the machine learning community [13].  

2.2 Formulation of Shrinkage Model Adaptation 

As stated in [1], the above linear regression is a special case 

of MLLR. Therefore, it is straightforward to borrow the 

success of parameter shrinkage in linear regression to MLLR 

in which adaptation is performed with a linear transformation 

matrix   on the augmented mean vector as  

 ̂     , 

where W is a p*(p+1) matrix with   [    ],   is a bias 

vector, and   is a rotation matrix.  ̂  is the new mean of state 

  and     is the augmented vector of the mean vector   . 

   [    
 ] . 

This can be solved with the expectation maximization 

(EM) algorithm [14] by maximizing this auxiliary function: 
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    , 

where    is the observation vector at time t,   ( )  is the 

posterior probability of state   at time t, and    is the 

covariance matrix of state  . 
Now we can formulate the shrinkage MLLR as follows: 
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with a constraint that  
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       , 

where c is a positive constant. 

Re-formulating the problem, we have 
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where   is the interpolation coefficient.  

Similarly, we can have shrinkage CMLLR formulated as  

 ̂  [ ̂  ̂ ]         
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where  ( )  [   ( ) ]   

2.3 Adaptation with a Sum of Squares Constraint 

We next solve shrinkage model adaptation when    , i.e., 

with a  square sum constraint. We call them ridge MLLR and 

ridge CMLLR, in the same notion as ridge regression [9]. 

For ridge MLLR, we have  
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 ‖ ‖   known as the Frobenius norm. 

Take the derivative of   [    ], and set it as 0. Since 

 ‖ ‖ 
       , we have 
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With some term manipulations, we can have the line-by-

line solution as 
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where    is the  th row of  . 

Similarly, ridge CMLLR has the    and    as the 

following, and the solution has the same format as the 

process in [3]. 
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2.4 Discussion 

In MAPLR [5], the following prior density is used  

 ( ) | | 
   
 | | 

 
    { 

 

 
  (   )    ( 

  )   }  

where         are the corresponding hyper-parameters, 

       (   ),       , and    (   ) (   ). In an 

extreme case, if we set matrix   as 0,   and   as the 

identity matrix, then  

 ( )       
 

 
    . 

With some derivation, this MAPLR will have a very 

similar formulation as ridge MLLR. However, the major 

difference is that ridge MLLR only regularizes the rotation 

matrix   and still gives the freedom to estimate the bias   

when the amount of adaptation data is very limited. In 

contrast, in the above extreme case, MAPLR will simply 

make the estimation of   [    ] to be 0.  

Also, in MAPLR the hyper-parameters         are 

always pre-computed from the training set. Therefore, the 

above extreme case should not exist. In another word, 

MAPLR estimates the transformation parameters by 

incorporating regularization from prior knowledge while 

ridge MLLR uses a constraint that aims at improving the 

estimation reliability without any prior knowledge.  

2.5 Extension 

The idea of shrinkage model adaptation can also be 

extended to other data insufficiency problems in ASR. For 

example, because of limited available data, the model 

covariance matrix in ASR is usually assumed to be 

diagonal. If we intend to use the full covariance matrix, 



 

 

model tying (such as semi-tied covariance matrices [15]) or 

precision matrix combinations [16] are usually used.  

We believe the parameter shrinkage method can also be 

utilized by applying regularization to the model precision 

matrix    with the following formulation: 
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With the element-wise q power sum constraint on the off-

diagonal precision matrix terms, we should have reliable 

estimation of the model precision matrix in the data sparsity 

scenario. We will study this issue elsewhere. 

3. Experiment 

We used the 5k-WSJ0 task to evaluate the effectiveness of 

shrinkage MLLR and shrinkage CMLLR. The training set is 

the SI-84 set with 7077 utterances. All testing is conducted 

on the Nov92 evaluation set with 330 utterances. Baseline 

models used cross-word triphones obtained with maximum 

likelihood estimation. There were 2818 shared states resulted 

from a decision tree state clustering. Each state observation 

density is characterized by an 8-mixture Gaussian mixture 

model. The input features were 12 MFCCs + energy, and 

their first and second order time derivatives. A trigram 

language model was used for decoding. The baseline word 

error rate (WER) was 5.08%. 

To evaluate the unsupervised adaptation performance, 

every test utterance is first decoded to get its transcription 

hypothesis. Then this decoded transcription is used to adapt 

models for this utterance. The adapted model is used to get 

the final decoding transcription.  

 

 
Figure 1: Histogram of the number of frames in the WSJ0 test 

utterances 

 

As shown in Figure 1, the test set of WSJ0 is quite 

suitable to evaluate the proposed approach on the insufficient 

data problem. If we consider that roughly 39*39+39=1560 

frames are need to reliably estimate the MLLR or CMLLR 

transform matrix, no test utterance can reach that criterion. 

Table 1 lists the WERs of the baseline, standard MLLR, 

and ridge MLLR with different setups. The standard MLLR 

gets a slightly better WER than the baseline. Most likely, it is 

because of the data insufficiency problem. Within a broad 

range of   (from 100 to 500), ridge MLLR is much better 

than the standard MLLR. If    is too small, then ridge 

MLLR behaviors similarly as the standard MLLR. In 

contrast, if   is too large (e.g., 800), ridge MLLR shrinks 

toward bias estimation with small gain. The best ridge 

MLLR obtains 4.58% WER, corresponding to about 

7.10% relative WER reduction from the 4.93% WER of  

the standard MLLR.  

 

Table 1: Detailed WERs of baseline, standard MLLR, 

and ridge MLLR 

system  WER 

Baseline 5.08 

MLLR 4.93 

ridge MLLR (    ) 4.84 

ridge MLLR (     ) 4.69 

ridge MLLR (     ) 4.58 

ridge MLLR (     ) 4.58 

ridge MLLR (     ) 4.86 

 

 
Figure 2: Histogram of the log values of standard MLLR 

(rotation matrix A) coefficients 

 

 Figure 3: Histogram of the log values of ridge MLLR 

(rotation matrix A) coefficients (     ) 

 

Figures 2 and 3 compare the histograms of the log 

values of the standard MLLR and ridge MLLR 

coefficients in the rotation matrix A. It is clear that the log 

values of ridge MLLR coefficients in Figure 3 are shifted 

200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

number of frames

n
u
m

b
e
r 

o
f 

u
tt

e
ra

n
c
e
s

-20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6
x 10

4

-20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6
x 10

4



 

 

left from those in Figure 2, which means more ridge MLLR 

coefficients approach 0. This is exactly the effects of 

parameter shrinkage. As discussed above, by the parameters 

shrinking toward 0, we can have more reliable parameter 

estimations, as demonstrated in Table 1. 

Table 2 lists the WERs of baseline, standard CMLLR, 

and ridge CMLLR with different setups. It is noted that the 

standard CMLLR works better than the standard MLLR in 

Table 1. A possible reason is that the standard CMLLR 

adaptation works better in ill-condition with limited data 

because of its mean-covariance constraint.  

Ridge CMLLR still outperforms the standard CMLLR in 

Table 2. The best case achieves 6.7% relative WER reduction 

from the standard CMLLR. It is also noted that the WERs of 

ridge CMLLR are slightly lower than those of ridge MLLR. 

The behaviors of different    values for ridge CMLLR are 

similar to those for ridge MLLR.  

 

Table 2: Detailed WERs of baseline, standard CMLLR, 

and ridge CMLLR 

system  WER 

Baseline 5.08 

CMLLR 4.78 

ridge CMLLR (    ) 4.76 

ridge CMLLR (     ) 4.56 

ridge CMLLR (     ) 4.46 

ridge CMLLR (     ) 4.52 

ridge CMLLR (     ) 4.69 

 

4. Conclusion 

We have formulated a general form of shrinkage model 

adaptation to address the data insufficiency problem. Because 

the element-wise q power sum constraint automatically 

shrinks the rotation matrix coefficients toward zero, the 

adaptation parameters can have a reliable estimation. The 

shrinkage method does not require the use of pre-computed 

basis vectors/matrices or priors for fast adaptation. Using the 

element-wise square sum constraint, ridge MLLR and ridge 

CMLLR are derived as the first attempt to show the 

effectiveness of shrinkage model adaptation. We used the 5k-

WSJ0 task for the unsupervised self adaptation test. Ridge 

MLLR and ridge CMLLR achieved about 7.1% and 6.1% 

relative WER reductions from their standard counterparts, 

respectively.  

In this study, we also propose a novel full covariance 

matrix estimation method by using the regularization term to 

handle the data insufficiency problem. We believe the 

parameter shrinkage methodology is powerful and can be 

generalized to the common data sparsity problems in ASR. 

This paper only presents our initial study. We are now 

working on shrinkage model adaptation with the    norm 

constraint. The problem of regression with the sum of square 

constraint is that all the regularized coefficients are shrunk in 

the same time. In contrast, regression with the    norm 

constraint can have some of the regularized coefficients 

exactly to be zero. This brings more benefits to the data 

insufficiency problem [11]. Since ridge MLLR and ridge 

CMLLR already work very well in this study, we expect 

shrinkage MLLR and CMLLR with the    norm constraint 

should have even better performance. 
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